blob: 837815a77ddc823d2eb558d1e9aa7121d1425b80 [file] [log] [blame]
Chris Lattner602c832c2007-10-31 06:30:21 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Extending the Language: Control Flow</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <link rel="stylesheet" href="../llvm.css" type="text/css">
10</head>
11
12<body>
13
14<div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div>
15
Chris Lattner128eb862007-11-05 19:06:59 +000016<ul>
Chris Lattner0e555b12007-11-05 20:04:56 +000017<li><a href="index.html">Up to Tutorial Index</a></li>
Chris Lattner128eb862007-11-05 19:06:59 +000018<li>Chapter 5
19 <ol>
20 <li><a href="#intro">Chapter 5 Introduction</a></li>
21 <li><a href="#ifthen">If/Then/Else</a>
22 <ol>
23 <li><a href="#iflexer">Lexer Extensions</a></li>
24 <li><a href="#ifast">AST Extensions</a></li>
25 <li><a href="#ifparser">Parser Extensions</a></li>
26 <li><a href="#ifir">LLVM IR</a></li>
27 <li><a href="#ifcodegen">Code Generation</a></li>
28 </ol>
29 </li>
30 <li><a href="#for">'for' Loop Expression</a>
31 <ol>
32 <li><a href="#forlexer">Lexer Extensions</a></li>
33 <li><a href="#forast">AST Extensions</a></li>
34 <li><a href="#forparser">Parser Extensions</a></li>
35 <li><a href="#forir">LLVM IR</a></li>
36 <li><a href="#forcodegen">Code Generation</a></li>
37 </ol>
38 </li>
39 <li><a href="#code">Full Code Listing</a></li>
40 </ol>
41</li>
Chris Lattner0e555b12007-11-05 20:04:56 +000042<li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language:
43User-defined Operators</li>
Chris Lattner128eb862007-11-05 19:06:59 +000044</ul>
45
Chris Lattner602c832c2007-10-31 06:30:21 +000046<div class="doc_author">
47 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
48</div>
49
50<!-- *********************************************************************** -->
Chris Lattner128eb862007-11-05 19:06:59 +000051<div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div>
Chris Lattner602c832c2007-10-31 06:30:21 +000052<!-- *********************************************************************** -->
53
54<div class="doc_text">
55
Chris Lattner128eb862007-11-05 19:06:59 +000056<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
57with LLVM</a>" tutorial. Parts 1-4 described the implementation of the simple
Chris Lattner602c832c2007-10-31 06:30:21 +000058Kaleidoscope language and included support for generating LLVM IR, following by
59optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is
60mostly useless: it has no control flow other than call and return. This means
61that you can't have conditional branches in the code, significantly limiting its
62power. In this episode of "build that compiler", we'll extend Kaleidoscope to
Chris Lattner1092a962007-11-07 05:47:48 +000063have an if/then/else expression plus a simple 'for' loop.</p>
Chris Lattner602c832c2007-10-31 06:30:21 +000064
65</div>
66
67<!-- *********************************************************************** -->
68<div class="doc_section"><a name="ifthen">If/Then/Else</a></div>
69<!-- *********************************************************************** -->
70
71<div class="doc_text">
72
73<p>
74Extending Kaleidoscope to support if/then/else is quite straight-forward. It
75basically requires adding lexer support for this "new" concept to the lexer,
76parser, AST, and LLVM code emitter. This example is nice, because it shows how
77easy it is to "grow" a language over time, incrementally extending it as new
78ideas are discovered.</p>
79
80<p>Before we get going on "how" we do this extension, lets talk about what we
81want. The basic idea is that we want to be able to write this sort of thing:
82</p>
83
84<div class="doc_code">
85<pre>
86def fib(x)
87 if x &lt; 3 then
88 1
89 else
90 fib(x-1)+fib(x-2);
91</pre>
92</div>
93
94<p>In Kaleidoscope, every construct is an expression: there are no statements.
95As such, the if/then/else expression needs to return a value like any other.
96Since we're using a mostly functional form, we'll have it evaluate its
97conditional, then return the 'then' or 'else' value based on how the condition
98was resolved. This is very similar to the C "?:" expression.</p>
99
100<p>The semantics of the if/then/else expression is that it first evaluates the
Chris Lattner1092a962007-11-07 05:47:48 +0000101condition to a boolean equality value: 0.0 is considered to be false and
102everything else is considered to be true.
Chris Lattner602c832c2007-10-31 06:30:21 +0000103If the condition is true, the first subexpression is evaluated and returned, if
104the condition is false, the second subexpression is evaluated and returned.
105Since Kaleidoscope allows side-effects, this behavior is important to nail down.
106</p>
107
108<p>Now that we know what we want, lets break this down into its constituent
109pieces.</p>
110
111</div>
112
113<!-- ======================================================================= -->
114<div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for
115If/Then/Else</a></div>
116<!-- ======================================================================= -->
117
118
119<div class="doc_text">
120
121<p>The lexer extensions are straight-forward. First we add new enum values
122for the relevant tokens:</p>
123
124<div class="doc_code">
125<pre>
126 // control
127 tok_if = -6, tok_then = -7, tok_else = -8,
128</pre>
129</div>
130
131<p>Once we have that, we recognize the new keywords in the lexer, pretty simple
132stuff:</p>
133
134<div class="doc_code">
135<pre>
136 ...
137 if (IdentifierStr == "def") return tok_def;
138 if (IdentifierStr == "extern") return tok_extern;
139 <b>if (IdentifierStr == "if") return tok_if;
140 if (IdentifierStr == "then") return tok_then;
141 if (IdentifierStr == "else") return tok_else;</b>
142 return tok_identifier;
143</pre>
144</div>
145
146</div>
147
148<!-- ======================================================================= -->
149<div class="doc_subsubsection"><a name="ifast">AST Extensions for
Chris Lattner128eb862007-11-05 19:06:59 +0000150 If/Then/Else</a></div>
Chris Lattner602c832c2007-10-31 06:30:21 +0000151<!-- ======================================================================= -->
152
153<div class="doc_text">
154
155<p>To represent the new expression we add a new AST node for it:</p>
156
157<div class="doc_code">
158<pre>
159/// IfExprAST - Expression class for if/then/else.
160class IfExprAST : public ExprAST {
161 ExprAST *Cond, *Then, *Else;
162public:
163 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
164 : Cond(cond), Then(then), Else(_else) {}
165 virtual Value *Codegen();
166};
167</pre>
168</div>
169
170<p>The AST node just has pointers to the various subexpressions.</p>
171
172</div>
173
174<!-- ======================================================================= -->
175<div class="doc_subsubsection"><a name="ifparser">Parser Extensions for
Chris Lattner128eb862007-11-05 19:06:59 +0000176If/Then/Else</a></div>
Chris Lattner602c832c2007-10-31 06:30:21 +0000177<!-- ======================================================================= -->
178
179<div class="doc_text">
180
181<p>Now that we have the relevant tokens coming from the lexer and we have the
182AST node to build, our parsing logic is relatively straight-forward. First we
183define a new parsing function:</p>
184
185<div class="doc_code">
186<pre>
187/// ifexpr ::= 'if' expression 'then' expression 'else' expression
188static ExprAST *ParseIfExpr() {
189 getNextToken(); // eat the if.
190
191 // condition.
192 ExprAST *Cond = ParseExpression();
193 if (!Cond) return 0;
194
195 if (CurTok != tok_then)
196 return Error("expected then");
197 getNextToken(); // eat the then
198
199 ExprAST *Then = ParseExpression();
200 if (Then == 0) return 0;
201
202 if (CurTok != tok_else)
203 return Error("expected else");
204
205 getNextToken();
206
207 ExprAST *Else = ParseExpression();
208 if (!Else) return 0;
209
210 return new IfExprAST(Cond, Then, Else);
211}
212</pre>
213</div>
214
215<p>Next we hook it up as a primary expression:</p>
216
217<div class="doc_code">
218<pre>
219static ExprAST *ParsePrimary() {
220 switch (CurTok) {
221 default: return Error("unknown token when expecting an expression");
222 case tok_identifier: return ParseIdentifierExpr();
223 case tok_number: return ParseNumberExpr();
224 case '(': return ParseParenExpr();
225 <b>case tok_if: return ParseIfExpr();</b>
226 }
227}
228</pre>
229</div>
230
231</div>
232
233<!-- ======================================================================= -->
234<div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div>
235<!-- ======================================================================= -->
236
237<div class="doc_text">
238
239<p>Now that we have it parsing and building the AST, the final piece is adding
240LLVM code generation support. This is the most interesting part of the
241if/then/else example, because this is where it starts to introduce new concepts.
Chris Lattner1092a962007-11-07 05:47:48 +0000242All of the code above has been thoroughly described in previous chapters.
Chris Lattner602c832c2007-10-31 06:30:21 +0000243</p>
244
245<p>To motivate the code we want to produce, lets take a look at a simple
246example. Consider:</p>
247
248<div class="doc_code">
249<pre>
250extern foo();
251extern bar();
252def baz(x) if x then foo() else bar();
253</pre>
254</div>
255
256<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
257looks like this:</p>
258
259<div class="doc_code">
260<pre>
261declare double @foo()
262
263declare double @bar()
264
265define double @baz(double %x) {
266entry:
267 %ifcond = fcmp one double %x, 0.000000e+00
268 br i1 %ifcond, label %then, label %else
269
270then: ; preds = %entry
271 %calltmp = call double @foo()
272 br label %ifcont
273
274else: ; preds = %entry
275 %calltmp1 = call double @bar()
276 br label %ifcont
277
278ifcont: ; preds = %else, %then
279 %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
280 ret double %iftmp
281}
282</pre>
283</div>
284
285<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
286'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool. If you put this LLVM IR
287into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
288href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
289see this graph:</p>
290
291<center><img src="LangImpl5-cfg.png" alt="Example CFG" width="423"
292height="315"></center>
293
294<p>Another way to get this is to call "<tt>F-&gt;viewCFG()</tt>" or
295"<tt>F-&gt;viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
296inserting actual calls into the code and recompiling or by calling these in the
297debugger. LLVM has many nice features for visualizing various graphs.</p>
298
299<p>Coming back to the generated code, it is fairly simple: the entry block
300evaluates the conditional expression ("x" in our case here) and compares the
301result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
Chris Lattner1092a962007-11-07 05:47:48 +0000302instruction ('one' is "Ordered and Not Equal"). Based on the result of this
Chris Lattner602c832c2007-10-31 06:30:21 +0000303expression, the code jumps to either the "then" or "else" blocks, which contain
Chris Lattner1092a962007-11-07 05:47:48 +0000304the expressions for the true/false cases.</p>
Chris Lattner602c832c2007-10-31 06:30:21 +0000305
306<p>Once the then/else blocks is finished executing, they both branch back to the
Chris Lattner1092a962007-11-07 05:47:48 +0000307'ifcont' block to execute the code that happens after the if/then/else. In this
Chris Lattner602c832c2007-10-31 06:30:21 +0000308case the only thing left to do is to return to the caller of the function. The
309question then becomes: how does the code know which expression to return?</p>
310
311<p>The answer to this question involves an important SSA operation: the
312<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
313operation</a>. If you're not familiar with SSA, <a
314href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
315article</a> is a good introduction and there are various other introductions to
316it available on your favorite search engine. The short version is that
317"execution" of the Phi operation requires "remembering" which block control came
318from. The Phi operation takes on the value corresponding to the input control
319block. In this case, if control comes in from the "then" block, it gets the
320value of "calltmp". If control comes from the "else" block, it gets the value
321of "calltmp1".</p>
322
Chris Lattner71155212007-11-06 01:39:12 +0000323<p>At this point, you are probably starting to think "oh no! this means my
Chris Lattner602c832c2007-10-31 06:30:21 +0000324simple and elegant front-end will have to start generating SSA form in order to
325use LLVM!". Fortunately, this is not the case, and we strongly advise
326<em>not</em> implementing an SSA construction algorithm in your front-end
327unless there is an amazingly good reason to do so. In practice, there are two
328sorts of values that float around in code written in your average imperative
329programming language that might need Phi nodes:</p>
330
331<ol>
332<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
333<li>Values that are implicit in the structure of your AST, such as the phi node
334in this case.</li>
335</ol>
336
Chris Lattnerb0f0deb2007-11-05 07:02:49 +0000337<p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable
338variables"), we'll talk about #1
Chris Lattner602c832c2007-10-31 06:30:21 +0000339in depth. For now, just believe me that you don't need SSA construction to
340handle them. For #2, you have the choice of using the techniques that we will
341describe for #1, or you can insert Phi nodes directly if convenient. In this
342case, it is really really easy to generate the Phi node, so we choose to do it
343directly.</p>
344
345<p>Okay, enough of the motivation and overview, lets generate code!</p>
346
347</div>
348
349<!-- ======================================================================= -->
350<div class="doc_subsubsection"><a name="ifcodegen">Code Generation for
351If/Then/Else</a></div>
352<!-- ======================================================================= -->
353
354<div class="doc_text">
355
356<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
357for <tt>IfExprAST</tt>:</p>
358
359<div class="doc_code">
360<pre>
361Value *IfExprAST::Codegen() {
362 Value *CondV = Cond-&gt;Codegen();
363 if (CondV == 0) return 0;
364
365 // Convert condition to a bool by comparing equal to 0.0.
366 CondV = Builder.CreateFCmpONE(CondV,
367 ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
368 "ifcond");
369</pre>
370</div>
371
372<p>This code is straight-forward and similar to what we saw before. We emit the
373expression for the condition, then compare that value to zero to get a truth
374value as a 1-bit (bool) value.</p>
375
376<div class="doc_code">
377<pre>
378 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
379
380 // Create blocks for the then and else cases. Insert the 'then' block at the
381 // end of the function.
382 BasicBlock *ThenBB = new BasicBlock("then", TheFunction);
383 BasicBlock *ElseBB = new BasicBlock("else");
384 BasicBlock *MergeBB = new BasicBlock("ifcont");
385
386 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
387</pre>
388</div>
389
390<p>This code creates the basic blocks that are related to the if/then/else
391statement, and correspond directly to the blocks in the example above. The
Chris Lattner1092a962007-11-07 05:47:48 +0000392first line gets the current Function object that is being built. It
Chris Lattner602c832c2007-10-31 06:30:21 +0000393gets this by asking the builder for the current BasicBlock, and asking that
394block for its "parent" (the function it is currently embedded into).</p>
395
396<p>Once it has that, it creates three blocks. Note that it passes "TheFunction"
397into the constructor for the "then" block. This causes the constructor to
398automatically insert the new block onto the end of the specified function. The
399other two blocks are created, but aren't yet inserted into the function.</p>
400
401<p>Once the blocks are created, we can emit the conditional branch that chooses
402between them. Note that creating new blocks does not implicitly affect the
403LLVMBuilder, so it is still inserting into the block that the condition
404went into. Also note that it is creating a branch to the "then" block and the
405"else" block, even though the "else" block isn't inserted into the function yet.
406This is all ok: it is the standard way that LLVM supports forward
407references.</p>
408
409<div class="doc_code">
410<pre>
411 // Emit then value.
412 Builder.SetInsertPoint(ThenBB);
413
414 Value *ThenV = Then-&gt;Codegen();
415 if (ThenV == 0) return 0;
416
417 Builder.CreateBr(MergeBB);
418 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
419 ThenBB = Builder.GetInsertBlock();
420</pre>
421</div>
422
423<p>After the conditional branch is inserted, we move the builder to start
424inserting into the "then" block. Strictly speaking, this call moves the
425insertion point to be at the end of the specified block. However, since the
426"then" block is empty, it also starts out by inserting at the beginning of the
427block. :)</p>
428
429<p>Once the insertion point is set, we recursively codegen the "then" expression
430from the AST. To finish off the then block, we create an unconditional branch
431to the merge block. One interesting (and very important) aspect of the LLVM IR
432is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
433to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
434instruction</a> such as return or branch. This means that all control flow,
435<em>including fall throughs</em> must be made explicit in the LLVM IR. If you
436violate this rule, the verifier will emit an error.</p>
437
438<p>The final line here is quite subtle, but is very important. The basic issue
439is that when we create the Phi node in the merge block, we need to set up the
440block/value pairs that indicate how the Phi will work. Importantly, the Phi
Chris Lattnerb5019642007-11-05 17:52:04 +0000441node expects to have an entry for each predecessor of the block in the CFG. Why
Chris Lattner602c832c2007-10-31 06:30:21 +0000442then are we getting the current block when we just set it to ThenBB 5 lines
443above? The problem is that the "Then" expression may actually itself change the
444block that the Builder is emitting into if, for example, it contains a nested
445"if/then/else" expression. Because calling Codegen recursively could
446arbitrarily change the notion of the current block, we are required to get an
447up-to-date value for code that will set up the Phi node.</p>
448
449<div class="doc_code">
450<pre>
451 // Emit else block.
452 TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
453 Builder.SetInsertPoint(ElseBB);
454
455 Value *ElseV = Else-&gt;Codegen();
456 if (ElseV == 0) return 0;
457
458 Builder.CreateBr(MergeBB);
459 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
460 ElseBB = Builder.GetInsertBlock();
461</pre>
462</div>
463
464<p>Code generation for the 'else' block is basically identical to codegen for
465the 'then' block. The only significant difference is the first line, which adds
466the 'else' block to the function. Recall previously that the 'else' block was
467created, but not added to the function. Now that the 'then' and 'else' blocks
468are emitted, we can finish up with the merge code:</p>
469
470<div class="doc_code">
471<pre>
472 // Emit merge block.
473 TheFunction->getBasicBlockList().push_back(MergeBB);
474 Builder.SetInsertPoint(MergeBB);
475 PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
476
477 PN->addIncoming(ThenV, ThenBB);
478 PN->addIncoming(ElseV, ElseBB);
479 return PN;
480}
481</pre>
482</div>
483
484<p>The first two lines here are now familiar: the first adds the "merge" block
485to the Function object (it was previously floating, like the else block above).
486The second block changes the insertion point so that newly created code will go
487into the "merge" block. Once that is done, we need to create the PHI node and
488set up the block/value pairs for the PHI.</p>
489
490<p>Finally, the CodeGen function returns the phi node as the value computed by
491the if/then/else expression. In our example above, this returned value will
492feed into the code for the top-level function, which will create the return
493instruction.</p>
494
495<p>Overall, we now have the ability to execution conditional code in
496Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language
497that can calculate a wide variety of numeric functions. Next up we'll add
498another useful expression that is familiar from non-functional languages...</p>
499
500</div>
501
502<!-- *********************************************************************** -->
503<div class="doc_section"><a name="for">'for' Loop Expression</a></div>
504<!-- *********************************************************************** -->
505
506<div class="doc_text">
507
Chris Lattnerf5234802007-10-31 06:47:39 +0000508<p>Now that we know how to add basic control flow constructs to the language,
509we have the tools to add more powerful things. Lets add something more
510aggressive, a 'for' expression:</p>
511
512<div class="doc_code">
513<pre>
Chris Lattnerf5234802007-10-31 06:47:39 +0000514 extern putchard(char)
Chris Lattner6093bd52007-10-31 07:29:43 +0000515 def printstar(n)
516 for i = 1, i &lt; n, 1.0 in
517 putchard(42); # ascii 42 = '*'
518
519 # print 100 '*' characters
520 printstar(100);
Chris Lattnerf5234802007-10-31 06:47:39 +0000521</pre>
522</div>
523
Chris Lattner6093bd52007-10-31 07:29:43 +0000524<p>This expression defines a new variable ("i" in this case) which iterates from
525a starting value, while the condition ("i &lt; n" in this case) is true,
Chris Lattnerf5234802007-10-31 06:47:39 +0000526incrementing by an optional step value ("1.0" in this case). If the step value
527is omitted, it defaults to 1.0. While the loop is true, it executes its
528body expression. Because we don't have anything better to return, we'll just
529define the loop as always returning 0.0. In the future when we have mutable
530variables, it will get more useful.</p>
531
532<p>As before, lets talk about the changes that we need to Kaleidoscope to
533support this.</p>
534
535</div>
536
537<!-- ======================================================================= -->
538<div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for
539the 'for' Loop</a></div>
540<!-- ======================================================================= -->
541
542<div class="doc_text">
543
544<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
545
546<div class="doc_code">
547<pre>
548 ... in enum Token ...
549 // control
550 tok_if = -6, tok_then = -7, tok_else = -8,
551<b> tok_for = -9, tok_in = -10</b>
552
553 ... in gettok ...
554 if (IdentifierStr == "def") return tok_def;
555 if (IdentifierStr == "extern") return tok_extern;
556 if (IdentifierStr == "if") return tok_if;
557 if (IdentifierStr == "then") return tok_then;
558 if (IdentifierStr == "else") return tok_else;
559 <b>if (IdentifierStr == "for") return tok_for;
560 if (IdentifierStr == "in") return tok_in;</b>
561 return tok_identifier;
562</pre>
563</div>
564
565</div>
566
567<!-- ======================================================================= -->
568<div class="doc_subsubsection"><a name="forast">AST Extensions for
569the 'for' Loop</a></div>
570<!-- ======================================================================= -->
571
572<div class="doc_text">
573
574<p>The AST node is similarly simple. It basically boils down to capturing
Chris Lattner1092a962007-11-07 05:47:48 +0000575the variable name and the constituent expressions in the node.</p>
Chris Lattnerf5234802007-10-31 06:47:39 +0000576
577<div class="doc_code">
578<pre>
579/// ForExprAST - Expression class for for/in.
580class ForExprAST : public ExprAST {
581 std::string VarName;
582 ExprAST *Start, *End, *Step, *Body;
583public:
584 ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
585 ExprAST *step, ExprAST *body)
586 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
587 virtual Value *Codegen();
588};
589</pre>
590</div>
591
592</div>
593
594<!-- ======================================================================= -->
595<div class="doc_subsubsection"><a name="forparser">Parser Extensions for
596the 'for' Loop</a></div>
597<!-- ======================================================================= -->
598
599<div class="doc_text">
600
601<p>The parser code is also fairly standard. The only interesting thing here is
602handling of the optional step value. The parser code handles it by checking to
603see if the second comma is present. If not, it sets the step value to null in
604the AST node:</p>
605
606<div class="doc_code">
607<pre>
Chris Lattner20a0c802007-11-05 17:54:34 +0000608/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
Chris Lattnerf5234802007-10-31 06:47:39 +0000609static ExprAST *ParseForExpr() {
610 getNextToken(); // eat the for.
611
612 if (CurTok != tok_identifier)
613 return Error("expected identifier after for");
614
615 std::string IdName = IdentifierStr;
Chris Lattner20a0c802007-11-05 17:54:34 +0000616 getNextToken(); // eat identifier.
Chris Lattnerf5234802007-10-31 06:47:39 +0000617
618 if (CurTok != '=')
619 return Error("expected '=' after for");
620 getNextToken(); // eat '='.
621
622
623 ExprAST *Start = ParseExpression();
624 if (Start == 0) return 0;
625 if (CurTok != ',')
626 return Error("expected ',' after for start value");
627 getNextToken();
628
629 ExprAST *End = ParseExpression();
630 if (End == 0) return 0;
631
632 // The step value is optional.
633 ExprAST *Step = 0;
634 if (CurTok == ',') {
635 getNextToken();
636 Step = ParseExpression();
637 if (Step == 0) return 0;
638 }
639
640 if (CurTok != tok_in)
641 return Error("expected 'in' after for");
642 getNextToken(); // eat 'in'.
643
644 ExprAST *Body = ParseExpression();
645 if (Body == 0) return 0;
646
647 return new ForExprAST(IdName, Start, End, Step, Body);
648}
649</pre>
650</div>
651
652</div>
653
654<!-- ======================================================================= -->
655<div class="doc_subsubsection"><a name="forir">LLVM IR for
656the 'for' Loop</a></div>
657<!-- ======================================================================= -->
658
659<div class="doc_text">
660
661<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
Gordon Henriksenbb310f12007-11-12 13:46:21 +0000662With the simple example above, we get this LLVM IR (note that this dump is
663generated with optimizations disabled for clarity):
Chris Lattnerf5234802007-10-31 06:47:39 +0000664</p>
665
Chris Lattner6093bd52007-10-31 07:29:43 +0000666<div class="doc_code">
667<pre>
668declare double @putchard(double)
Chris Lattnerf5234802007-10-31 06:47:39 +0000669
Chris Lattner6093bd52007-10-31 07:29:43 +0000670define double @printstar(double %n) {
671entry:
672 ; initial value = 1.0 (inlined into phi)
673 br label %loop
674
675loop: ; preds = %loop, %entry
676 %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
677 ; body
678 %calltmp = call double @putchard( double 4.200000e+01 )
679 ; increment
680 %nextvar = add double %i, 1.000000e+00
681
682 ; termination test
Chris Lattner71155212007-11-06 01:39:12 +0000683 %cmptmp = fcmp ult double %i, %n
684 %booltmp = uitofp i1 %cmptmp to double
Chris Lattner6093bd52007-10-31 07:29:43 +0000685 %loopcond = fcmp one double %booltmp, 0.000000e+00
686 br i1 %loopcond, label %loop, label %afterloop
687
688afterloop: ; preds = %loop
689 ; loop always returns 0.0
690 ret double 0.000000e+00
691}
692</pre>
693</div>
694
695<p>This loop contains all the same constructs we saw before: a phi node, several
696expressions, and some basic blocks. Lets see how this fits together.</p>
Chris Lattnerf5234802007-10-31 06:47:39 +0000697
698</div>
699
700<!-- ======================================================================= -->
701<div class="doc_subsubsection"><a name="forcodegen">Code Generation for
702the 'for' Loop</a></div>
703<!-- ======================================================================= -->
704
705<div class="doc_text">
706
Chris Lattner6093bd52007-10-31 07:29:43 +0000707<p>The first part of codegen is very simple: we just output the start expression
708for the loop value:</p>
Chris Lattnerf5234802007-10-31 06:47:39 +0000709
710<div class="doc_code">
711<pre>
712Value *ForExprAST::Codegen() {
Chris Lattner6093bd52007-10-31 07:29:43 +0000713 // Emit the start code first, without 'variable' in scope.
714 Value *StartVal = Start-&gt;Codegen();
715 if (StartVal == 0) return 0;
716</pre>
717</div>
718
719<p>With this out of the way, the next step is to set up the LLVM basic block
720for the start of the loop body. In the case above, the whole loop body is one
721block, but remember that the body code itself could consist of multiple blocks
Chris Lattner1092a962007-11-07 05:47:48 +0000722(e.g. if it contains an if/then/else or a for/in expression).</p>
Chris Lattner6093bd52007-10-31 07:29:43 +0000723
724<div class="doc_code">
725<pre>
726 // Make the new basic block for the loop header, inserting after current
727 // block.
728 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
729 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
730 BasicBlock *LoopBB = new BasicBlock("loop", TheFunction);
731
732 // Insert an explicit fall through from the current block to the LoopBB.
733 Builder.CreateBr(LoopBB);
734</pre>
735</div>
736
737<p>This code is similar to what we saw for if/then/else. Because we will need
738it to create the Phi node, we remember the block that falls through into the
739loop. Once we have that, we create the actual block that starts the loop and
740create an unconditional branch for the fall-through between the two blocks.</p>
741
742<div class="doc_code">
743<pre>
744 // Start insertion in LoopBB.
745 Builder.SetInsertPoint(LoopBB);
746
747 // Start the PHI node with an entry for Start.
748 PHINode *Variable = Builder.CreatePHI(Type::DoubleTy, VarName.c_str());
749 Variable-&gt;addIncoming(StartVal, PreheaderBB);
750</pre>
751</div>
752
753<p>Now that the "preheader" for the loop is set up, we switch to emitting code
754for the loop body. To begin with, we move the insertion point and create the
Chris Lattner1092a962007-11-07 05:47:48 +0000755PHI node for the loop induction variable. Since we already know the incoming
Chris Lattner6093bd52007-10-31 07:29:43 +0000756value for the starting value, we add it to the Phi node. Note that the Phi will
757eventually get a second value for the backedge, but we can't set it up yet
758(because it doesn't exist!).</p>
759
760<div class="doc_code">
761<pre>
762 // Within the loop, the variable is defined equal to the PHI node. If it
763 // shadows an existing variable, we have to restore it, so save it now.
764 Value *OldVal = NamedValues[VarName];
765 NamedValues[VarName] = Variable;
766
767 // Emit the body of the loop. This, like any other expr, can change the
768 // current BB. Note that we ignore the value computed by the body, but don't
769 // allow an error.
770 if (Body-&gt;Codegen() == 0)
771 return 0;
772</pre>
773</div>
774
775<p>Now the code starts to get more interesting. Our 'for' loop introduces a new
776variable to the symbol table. This means that our symbol table can now contain
777either function arguments or loop variables. To handle this, before we codegen
778the body of the loop, we add the loop variable as the current value for its
779name. Note that it is possible that there is a variable of the same name in the
780outer scope. It would be easy to make this an error (emit an error and return
781null if there is already an entry for VarName) but we choose to allow shadowing
782of variables. In order to handle this correctly, we remember the Value that
783we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
784no shadowed variable).</p>
785
786<p>Once the loop variable is set into the symbol table, the code recursively
787codegen's the body. This allows the body to use the loop variable: any
788references to it will naturally find it in the symbol table.</p>
789
790<div class="doc_code">
791<pre>
792 // Emit the step value.
793 Value *StepVal;
794 if (Step) {
795 StepVal = Step-&gt;Codegen();
796 if (StepVal == 0) return 0;
797 } else {
798 // If not specified, use 1.0.
799 StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0));
800 }
801
802 Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
803</pre>
804</div>
805
806<p>Now that the body is emitted, we compute the next value of the iteration
807variable by adding the step value or 1.0 if it isn't present. '<tt>NextVar</tt>'
808will be the value of the loop variable on the next iteration of the loop.</p>
809
810<div class="doc_code">
811<pre>
812 // Compute the end condition.
813 Value *EndCond = End-&gt;Codegen();
814 if (EndCond == 0) return EndCond;
815
816 // Convert condition to a bool by comparing equal to 0.0.
817 EndCond = Builder.CreateFCmpONE(EndCond,
818 ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
819 "loopcond");
820</pre>
821</div>
822
823<p>Finally, we evaluate the exit value of the loop, to determine whether the
824loop should exit. This mirrors the condition evaluation for the if/then/else
825statement.</p>
826
827<div class="doc_code">
828<pre>
829 // Create the "after loop" block and insert it.
830 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
831 BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction);
832
833 // Insert the conditional branch into the end of LoopEndBB.
834 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
835
836 // Any new code will be inserted in AfterBB.
837 Builder.SetInsertPoint(AfterBB);
838</pre>
839</div>
840
841<p>With the code for the body of the loop complete, we just need to finish up
842the control flow for it. This remembers the end block (for the phi node), then
843creates the block for the loop exit ("afterloop"). Based on the value of the
844exit condition, it creates a conditional branch that chooses between executing
845the loop again and exiting the loop. Any future code is emitted in the
846"afterloop" block, so it sets the insertion position to it.</p>
847
848<div class="doc_code">
849<pre>
850 // Add a new entry to the PHI node for the backedge.
851 Variable-&gt;addIncoming(NextVar, LoopEndBB);
852
853 // Restore the unshadowed variable.
854 if (OldVal)
855 NamedValues[VarName] = OldVal;
856 else
857 NamedValues.erase(VarName);
858
859 // for expr always returns 0.0.
860 return Constant::getNullValue(Type::DoubleTy);
861}
862</pre>
863</div>
864
865<p>The final code handles various cleanups: now that we have the "NextVar"
866value, we can add the incoming value to the loop PHI node. After that, we
867remove the loop variable from the symbol table, so that it isn't in scope after
868the for loop. Finally, code generation of the for loop always returns 0.0, so
869that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
870
871<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
872the tutorial. We added two control flow constructs, and used them to motivate
873a couple of aspects of the LLVM IR that are important for front-end implementors
874to know. In the next chapter of our saga, we will get a bit crazier and add
Chris Lattner71155212007-11-06 01:39:12 +0000875<a href="LangImpl6.html">user-defined operators</a> to our poor innocent
876language.</p>
Chris Lattner6093bd52007-10-31 07:29:43 +0000877
878</div>
879
880<!-- *********************************************************************** -->
881<div class="doc_section"><a name="code">Full Code Listing</a></div>
882<!-- *********************************************************************** -->
883
884<div class="doc_text">
885
886<p>
887Here is the complete code listing for our running example, enhanced with the
888if/then/else and for expressions.. To build this example, use:
889</p>
890
891<div class="doc_code">
892<pre>
893 # Compile
894 g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
895 # Run
896 ./toy
897</pre>
898</div>
899
900<p>Here is the code:</p>
901
902<div class="doc_code">
903<pre>
904#include "llvm/DerivedTypes.h"
905#include "llvm/ExecutionEngine/ExecutionEngine.h"
906#include "llvm/Module.h"
907#include "llvm/ModuleProvider.h"
908#include "llvm/PassManager.h"
909#include "llvm/Analysis/Verifier.h"
910#include "llvm/Target/TargetData.h"
911#include "llvm/Transforms/Scalar.h"
912#include "llvm/Support/LLVMBuilder.h"
913#include &lt;cstdio&gt;
914#include &lt;string&gt;
915#include &lt;map&gt;
916#include &lt;vector&gt;
917using namespace llvm;
918
919//===----------------------------------------------------------------------===//
920// Lexer
921//===----------------------------------------------------------------------===//
922
923// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
924// of these for known things.
925enum Token {
926 tok_eof = -1,
927
928 // commands
929 tok_def = -2, tok_extern = -3,
930
931 // primary
932 tok_identifier = -4, tok_number = -5,
933
934 // control
935 tok_if = -6, tok_then = -7, tok_else = -8,
936 tok_for = -9, tok_in = -10
937};
938
939static std::string IdentifierStr; // Filled in if tok_identifier
940static double NumVal; // Filled in if tok_number
941
942/// gettok - Return the next token from standard input.
943static int gettok() {
944 static int LastChar = ' ';
945
946 // Skip any whitespace.
947 while (isspace(LastChar))
948 LastChar = getchar();
949
950 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
951 IdentifierStr = LastChar;
952 while (isalnum((LastChar = getchar())))
953 IdentifierStr += LastChar;
954
955 if (IdentifierStr == "def") return tok_def;
956 if (IdentifierStr == "extern") return tok_extern;
957 if (IdentifierStr == "if") return tok_if;
958 if (IdentifierStr == "then") return tok_then;
959 if (IdentifierStr == "else") return tok_else;
960 if (IdentifierStr == "for") return tok_for;
961 if (IdentifierStr == "in") return tok_in;
962 return tok_identifier;
963 }
964
965 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
966 std::string NumStr;
967 do {
968 NumStr += LastChar;
969 LastChar = getchar();
970 } while (isdigit(LastChar) || LastChar == '.');
971
972 NumVal = strtod(NumStr.c_str(), 0);
973 return tok_number;
974 }
975
976 if (LastChar == '#') {
977 // Comment until end of line.
978 do LastChar = getchar();
979 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp; LastChar != '\r');
980
981 if (LastChar != EOF)
982 return gettok();
983 }
984
985 // Check for end of file. Don't eat the EOF.
986 if (LastChar == EOF)
987 return tok_eof;
988
989 // Otherwise, just return the character as its ascii value.
990 int ThisChar = LastChar;
991 LastChar = getchar();
992 return ThisChar;
993}
994
995//===----------------------------------------------------------------------===//
996// Abstract Syntax Tree (aka Parse Tree)
997//===----------------------------------------------------------------------===//
998
999/// ExprAST - Base class for all expression nodes.
1000class ExprAST {
1001public:
1002 virtual ~ExprAST() {}
1003 virtual Value *Codegen() = 0;
1004};
1005
1006/// NumberExprAST - Expression class for numeric literals like "1.0".
1007class NumberExprAST : public ExprAST {
1008 double Val;
1009public:
1010 NumberExprAST(double val) : Val(val) {}
1011 virtual Value *Codegen();
1012};
1013
1014/// VariableExprAST - Expression class for referencing a variable, like "a".
1015class VariableExprAST : public ExprAST {
1016 std::string Name;
1017public:
1018 VariableExprAST(const std::string &amp;name) : Name(name) {}
1019 virtual Value *Codegen();
1020};
1021
1022/// BinaryExprAST - Expression class for a binary operator.
1023class BinaryExprAST : public ExprAST {
1024 char Op;
1025 ExprAST *LHS, *RHS;
1026public:
1027 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
1028 : Op(op), LHS(lhs), RHS(rhs) {}
1029 virtual Value *Codegen();
1030};
1031
1032/// CallExprAST - Expression class for function calls.
1033class CallExprAST : public ExprAST {
1034 std::string Callee;
1035 std::vector&lt;ExprAST*&gt; Args;
1036public:
1037 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
1038 : Callee(callee), Args(args) {}
1039 virtual Value *Codegen();
1040};
1041
1042/// IfExprAST - Expression class for if/then/else.
1043class IfExprAST : public ExprAST {
1044 ExprAST *Cond, *Then, *Else;
1045public:
1046 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
1047 : Cond(cond), Then(then), Else(_else) {}
1048 virtual Value *Codegen();
1049};
1050
1051/// ForExprAST - Expression class for for/in.
1052class ForExprAST : public ExprAST {
1053 std::string VarName;
1054 ExprAST *Start, *End, *Step, *Body;
1055public:
1056 ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
1057 ExprAST *step, ExprAST *body)
1058 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
1059 virtual Value *Codegen();
1060};
1061
1062/// PrototypeAST - This class represents the "prototype" for a function,
1063/// which captures its argument names as well as if it is an operator.
1064class PrototypeAST {
1065 std::string Name;
1066 std::vector&lt;std::string&gt; Args;
1067public:
1068 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
1069 : Name(name), Args(args) {}
1070
1071 Function *Codegen();
1072};
1073
1074/// FunctionAST - This class represents a function definition itself.
1075class FunctionAST {
1076 PrototypeAST *Proto;
1077 ExprAST *Body;
1078public:
1079 FunctionAST(PrototypeAST *proto, ExprAST *body)
1080 : Proto(proto), Body(body) {}
1081
1082 Function *Codegen();
1083};
1084
1085//===----------------------------------------------------------------------===//
1086// Parser
1087//===----------------------------------------------------------------------===//
1088
1089/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
1090/// token the parser it looking at. getNextToken reads another token from the
1091/// lexer and updates CurTok with its results.
1092static int CurTok;
1093static int getNextToken() {
1094 return CurTok = gettok();
1095}
1096
1097/// BinopPrecedence - This holds the precedence for each binary operator that is
1098/// defined.
1099static std::map&lt;char, int&gt; BinopPrecedence;
1100
1101/// GetTokPrecedence - Get the precedence of the pending binary operator token.
1102static int GetTokPrecedence() {
1103 if (!isascii(CurTok))
1104 return -1;
1105
1106 // Make sure it's a declared binop.
1107 int TokPrec = BinopPrecedence[CurTok];
1108 if (TokPrec &lt;= 0) return -1;
1109 return TokPrec;
1110}
1111
1112/// Error* - These are little helper functions for error handling.
1113ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
1114PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
1115FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
1116
1117static ExprAST *ParseExpression();
1118
1119/// identifierexpr
Chris Lattner20a0c802007-11-05 17:54:34 +00001120/// ::= identifier
1121/// ::= identifier '(' expression* ')'
Chris Lattner6093bd52007-10-31 07:29:43 +00001122static ExprAST *ParseIdentifierExpr() {
1123 std::string IdName = IdentifierStr;
1124
Chris Lattner20a0c802007-11-05 17:54:34 +00001125 getNextToken(); // eat identifier.
Chris Lattner6093bd52007-10-31 07:29:43 +00001126
1127 if (CurTok != '(') // Simple variable ref.
1128 return new VariableExprAST(IdName);
1129
1130 // Call.
1131 getNextToken(); // eat (
1132 std::vector&lt;ExprAST*&gt; Args;
1133 if (CurTok != ')') {
1134 while (1) {
1135 ExprAST *Arg = ParseExpression();
1136 if (!Arg) return 0;
1137 Args.push_back(Arg);
1138
1139 if (CurTok == ')') break;
1140
1141 if (CurTok != ',')
1142 return Error("Expected ')'");
1143 getNextToken();
1144 }
1145 }
1146
1147 // Eat the ')'.
1148 getNextToken();
1149
1150 return new CallExprAST(IdName, Args);
1151}
1152
1153/// numberexpr ::= number
1154static ExprAST *ParseNumberExpr() {
1155 ExprAST *Result = new NumberExprAST(NumVal);
1156 getNextToken(); // consume the number
1157 return Result;
1158}
1159
1160/// parenexpr ::= '(' expression ')'
1161static ExprAST *ParseParenExpr() {
1162 getNextToken(); // eat (.
1163 ExprAST *V = ParseExpression();
1164 if (!V) return 0;
1165
1166 if (CurTok != ')')
1167 return Error("expected ')'");
1168 getNextToken(); // eat ).
1169 return V;
1170}
1171
1172/// ifexpr ::= 'if' expression 'then' expression 'else' expression
1173static ExprAST *ParseIfExpr() {
1174 getNextToken(); // eat the if.
1175
1176 // condition.
1177 ExprAST *Cond = ParseExpression();
1178 if (!Cond) return 0;
1179
1180 if (CurTok != tok_then)
1181 return Error("expected then");
1182 getNextToken(); // eat the then
1183
1184 ExprAST *Then = ParseExpression();
1185 if (Then == 0) return 0;
1186
1187 if (CurTok != tok_else)
1188 return Error("expected else");
1189
1190 getNextToken();
1191
1192 ExprAST *Else = ParseExpression();
1193 if (!Else) return 0;
1194
1195 return new IfExprAST(Cond, Then, Else);
1196}
1197
Chris Lattner20a0c802007-11-05 17:54:34 +00001198/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
Chris Lattner6093bd52007-10-31 07:29:43 +00001199static ExprAST *ParseForExpr() {
1200 getNextToken(); // eat the for.
1201
1202 if (CurTok != tok_identifier)
1203 return Error("expected identifier after for");
1204
1205 std::string IdName = IdentifierStr;
Chris Lattner20a0c802007-11-05 17:54:34 +00001206 getNextToken(); // eat identifier.
Chris Lattner6093bd52007-10-31 07:29:43 +00001207
1208 if (CurTok != '=')
1209 return Error("expected '=' after for");
1210 getNextToken(); // eat '='.
1211
1212
1213 ExprAST *Start = ParseExpression();
1214 if (Start == 0) return 0;
1215 if (CurTok != ',')
1216 return Error("expected ',' after for start value");
1217 getNextToken();
1218
1219 ExprAST *End = ParseExpression();
1220 if (End == 0) return 0;
1221
1222 // The step value is optional.
1223 ExprAST *Step = 0;
1224 if (CurTok == ',') {
1225 getNextToken();
1226 Step = ParseExpression();
1227 if (Step == 0) return 0;
1228 }
1229
1230 if (CurTok != tok_in)
1231 return Error("expected 'in' after for");
1232 getNextToken(); // eat 'in'.
1233
1234 ExprAST *Body = ParseExpression();
1235 if (Body == 0) return 0;
1236
1237 return new ForExprAST(IdName, Start, End, Step, Body);
1238}
1239
1240
1241/// primary
1242/// ::= identifierexpr
1243/// ::= numberexpr
1244/// ::= parenexpr
1245/// ::= ifexpr
1246/// ::= forexpr
1247static ExprAST *ParsePrimary() {
1248 switch (CurTok) {
1249 default: return Error("unknown token when expecting an expression");
1250 case tok_identifier: return ParseIdentifierExpr();
1251 case tok_number: return ParseNumberExpr();
1252 case '(': return ParseParenExpr();
1253 case tok_if: return ParseIfExpr();
1254 case tok_for: return ParseForExpr();
1255 }
1256}
1257
1258/// binoprhs
1259/// ::= ('+' primary)*
1260static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
1261 // If this is a binop, find its precedence.
1262 while (1) {
1263 int TokPrec = GetTokPrecedence();
1264
1265 // If this is a binop that binds at least as tightly as the current binop,
1266 // consume it, otherwise we are done.
1267 if (TokPrec &lt; ExprPrec)
1268 return LHS;
1269
1270 // Okay, we know this is a binop.
1271 int BinOp = CurTok;
1272 getNextToken(); // eat binop
1273
1274 // Parse the primary expression after the binary operator.
1275 ExprAST *RHS = ParsePrimary();
1276 if (!RHS) return 0;
1277
1278 // If BinOp binds less tightly with RHS than the operator after RHS, let
1279 // the pending operator take RHS as its LHS.
1280 int NextPrec = GetTokPrecedence();
1281 if (TokPrec &lt; NextPrec) {
1282 RHS = ParseBinOpRHS(TokPrec+1, RHS);
1283 if (RHS == 0) return 0;
1284 }
1285
1286 // Merge LHS/RHS.
1287 LHS = new BinaryExprAST(BinOp, LHS, RHS);
1288 }
1289}
1290
1291/// expression
1292/// ::= primary binoprhs
1293///
1294static ExprAST *ParseExpression() {
1295 ExprAST *LHS = ParsePrimary();
1296 if (!LHS) return 0;
1297
1298 return ParseBinOpRHS(0, LHS);
1299}
1300
1301/// prototype
1302/// ::= id '(' id* ')'
1303static PrototypeAST *ParsePrototype() {
1304 if (CurTok != tok_identifier)
1305 return ErrorP("Expected function name in prototype");
1306
1307 std::string FnName = IdentifierStr;
1308 getNextToken();
1309
1310 if (CurTok != '(')
1311 return ErrorP("Expected '(' in prototype");
1312
1313 std::vector&lt;std::string&gt; ArgNames;
1314 while (getNextToken() == tok_identifier)
1315 ArgNames.push_back(IdentifierStr);
1316 if (CurTok != ')')
1317 return ErrorP("Expected ')' in prototype");
1318
1319 // success.
1320 getNextToken(); // eat ')'.
1321
1322 return new PrototypeAST(FnName, ArgNames);
1323}
1324
1325/// definition ::= 'def' prototype expression
1326static FunctionAST *ParseDefinition() {
1327 getNextToken(); // eat def.
1328 PrototypeAST *Proto = ParsePrototype();
1329 if (Proto == 0) return 0;
1330
1331 if (ExprAST *E = ParseExpression())
1332 return new FunctionAST(Proto, E);
1333 return 0;
1334}
1335
1336/// toplevelexpr ::= expression
1337static FunctionAST *ParseTopLevelExpr() {
1338 if (ExprAST *E = ParseExpression()) {
1339 // Make an anonymous proto.
1340 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1341 return new FunctionAST(Proto, E);
1342 }
1343 return 0;
1344}
1345
1346/// external ::= 'extern' prototype
1347static PrototypeAST *ParseExtern() {
1348 getNextToken(); // eat extern.
1349 return ParsePrototype();
1350}
1351
1352//===----------------------------------------------------------------------===//
1353// Code Generation
1354//===----------------------------------------------------------------------===//
1355
1356static Module *TheModule;
1357static LLVMFoldingBuilder Builder;
1358static std::map&lt;std::string, Value*&gt; NamedValues;
1359static FunctionPassManager *TheFPM;
1360
1361Value *ErrorV(const char *Str) { Error(Str); return 0; }
1362
1363Value *NumberExprAST::Codegen() {
1364 return ConstantFP::get(Type::DoubleTy, APFloat(Val));
1365}
1366
1367Value *VariableExprAST::Codegen() {
1368 // Look this variable up in the function.
1369 Value *V = NamedValues[Name];
1370 return V ? V : ErrorV("Unknown variable name");
1371}
1372
1373Value *BinaryExprAST::Codegen() {
1374 Value *L = LHS-&gt;Codegen();
1375 Value *R = RHS-&gt;Codegen();
1376 if (L == 0 || R == 0) return 0;
1377
1378 switch (Op) {
1379 case '+': return Builder.CreateAdd(L, R, "addtmp");
1380 case '-': return Builder.CreateSub(L, R, "subtmp");
1381 case '*': return Builder.CreateMul(L, R, "multmp");
1382 case '&lt;':
Chris Lattner71155212007-11-06 01:39:12 +00001383 L = Builder.CreateFCmpULT(L, R, "cmptmp");
Chris Lattner6093bd52007-10-31 07:29:43 +00001384 // Convert bool 0/1 to double 0.0 or 1.0
1385 return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
1386 default: return ErrorV("invalid binary operator");
1387 }
1388}
1389
1390Value *CallExprAST::Codegen() {
1391 // Look up the name in the global module table.
1392 Function *CalleeF = TheModule-&gt;getFunction(Callee);
1393 if (CalleeF == 0)
1394 return ErrorV("Unknown function referenced");
1395
1396 // If argument mismatch error.
1397 if (CalleeF-&gt;arg_size() != Args.size())
1398 return ErrorV("Incorrect # arguments passed");
1399
1400 std::vector&lt;Value*&gt; ArgsV;
1401 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1402 ArgsV.push_back(Args[i]-&gt;Codegen());
1403 if (ArgsV.back() == 0) return 0;
1404 }
1405
1406 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1407}
1408
1409Value *IfExprAST::Codegen() {
1410 Value *CondV = Cond-&gt;Codegen();
1411 if (CondV == 0) return 0;
1412
1413 // Convert condition to a bool by comparing equal to 0.0.
1414 CondV = Builder.CreateFCmpONE(CondV,
1415 ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
1416 "ifcond");
1417
1418 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1419
1420 // Create blocks for the then and else cases. Insert the 'then' block at the
1421 // end of the function.
1422 BasicBlock *ThenBB = new BasicBlock("then", TheFunction);
1423 BasicBlock *ElseBB = new BasicBlock("else");
1424 BasicBlock *MergeBB = new BasicBlock("ifcont");
1425
1426 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1427
1428 // Emit then value.
1429 Builder.SetInsertPoint(ThenBB);
1430
1431 Value *ThenV = Then-&gt;Codegen();
1432 if (ThenV == 0) return 0;
1433
1434 Builder.CreateBr(MergeBB);
1435 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1436 ThenBB = Builder.GetInsertBlock();
1437
1438 // Emit else block.
1439 TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
1440 Builder.SetInsertPoint(ElseBB);
1441
1442 Value *ElseV = Else-&gt;Codegen();
1443 if (ElseV == 0) return 0;
1444
1445 Builder.CreateBr(MergeBB);
1446 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1447 ElseBB = Builder.GetInsertBlock();
1448
1449 // Emit merge block.
1450 TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
1451 Builder.SetInsertPoint(MergeBB);
1452 PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
1453
1454 PN-&gt;addIncoming(ThenV, ThenBB);
1455 PN-&gt;addIncoming(ElseV, ElseBB);
1456 return PN;
1457}
1458
1459Value *ForExprAST::Codegen() {
Chris Lattnerf5234802007-10-31 06:47:39 +00001460 // Output this as:
1461 // ...
1462 // start = startexpr
1463 // goto loop
1464 // loop:
1465 // variable = phi [start, loopheader], [nextvariable, loopend]
1466 // ...
1467 // bodyexpr
1468 // ...
1469 // loopend:
1470 // step = stepexpr
1471 // nextvariable = variable + step
1472 // endcond = endexpr
1473 // br endcond, loop, endloop
1474 // outloop:
1475
1476 // Emit the start code first, without 'variable' in scope.
1477 Value *StartVal = Start-&gt;Codegen();
1478 if (StartVal == 0) return 0;
1479
1480 // Make the new basic block for the loop header, inserting after current
1481 // block.
1482 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1483 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
1484 BasicBlock *LoopBB = new BasicBlock("loop", TheFunction);
1485
1486 // Insert an explicit fall through from the current block to the LoopBB.
Chris Lattnerf5234802007-10-31 06:47:39 +00001487 Builder.CreateBr(LoopBB);
Chris Lattner6093bd52007-10-31 07:29:43 +00001488
1489 // Start insertion in LoopBB.
Chris Lattnerf5234802007-10-31 06:47:39 +00001490 Builder.SetInsertPoint(LoopBB);
1491
1492 // Start the PHI node with an entry for Start.
1493 PHINode *Variable = Builder.CreatePHI(Type::DoubleTy, VarName.c_str());
1494 Variable-&gt;addIncoming(StartVal, PreheaderBB);
1495
1496 // Within the loop, the variable is defined equal to the PHI node. If it
1497 // shadows an existing variable, we have to restore it, so save it now.
1498 Value *OldVal = NamedValues[VarName];
1499 NamedValues[VarName] = Variable;
1500
1501 // Emit the body of the loop. This, like any other expr, can change the
1502 // current BB. Note that we ignore the value computed by the body, but don't
1503 // allow an error.
1504 if (Body-&gt;Codegen() == 0)
1505 return 0;
1506
1507 // Emit the step value.
1508 Value *StepVal;
1509 if (Step) {
1510 StepVal = Step-&gt;Codegen();
1511 if (StepVal == 0) return 0;
1512 } else {
1513 // If not specified, use 1.0.
1514 StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0));
1515 }
1516
1517 Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
1518
Chris Lattnerf5234802007-10-31 06:47:39 +00001519 // Compute the end condition.
1520 Value *EndCond = End-&gt;Codegen();
1521 if (EndCond == 0) return EndCond;
1522
1523 // Convert condition to a bool by comparing equal to 0.0.
1524 EndCond = Builder.CreateFCmpONE(EndCond,
1525 ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
1526 "loopcond");
1527
1528 // Create the "after loop" block and insert it.
1529 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
1530 BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction);
1531
1532 // Insert the conditional branch into the end of LoopEndBB.
1533 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1534
1535 // Any new code will be inserted in AfterBB.
1536 Builder.SetInsertPoint(AfterBB);
1537
1538 // Add a new entry to the PHI node for the backedge.
1539 Variable-&gt;addIncoming(NextVar, LoopEndBB);
1540
1541 // Restore the unshadowed variable.
1542 if (OldVal)
1543 NamedValues[VarName] = OldVal;
1544 else
1545 NamedValues.erase(VarName);
1546
1547
1548 // for expr always returns 0.0.
1549 return Constant::getNullValue(Type::DoubleTy);
1550}
Chris Lattner6093bd52007-10-31 07:29:43 +00001551
1552Function *PrototypeAST::Codegen() {
1553 // Make the function type: double(double,double) etc.
1554 std::vector&lt;const Type*&gt; Doubles(Args.size(), Type::DoubleTy);
1555 FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
1556
1557 Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
1558
1559 // If F conflicted, there was already something named 'Name'. If it has a
1560 // body, don't allow redefinition or reextern.
1561 if (F-&gt;getName() != Name) {
1562 // Delete the one we just made and get the existing one.
1563 F-&gt;eraseFromParent();
1564 F = TheModule-&gt;getFunction(Name);
1565
1566 // If F already has a body, reject this.
1567 if (!F-&gt;empty()) {
1568 ErrorF("redefinition of function");
1569 return 0;
1570 }
1571
1572 // If F took a different number of args, reject.
1573 if (F-&gt;arg_size() != Args.size()) {
1574 ErrorF("redefinition of function with different # args");
1575 return 0;
1576 }
1577 }
1578
1579 // Set names for all arguments.
1580 unsigned Idx = 0;
1581 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1582 ++AI, ++Idx) {
1583 AI-&gt;setName(Args[Idx]);
1584
1585 // Add arguments to variable symbol table.
1586 NamedValues[Args[Idx]] = AI;
1587 }
1588
1589 return F;
1590}
1591
1592Function *FunctionAST::Codegen() {
1593 NamedValues.clear();
1594
1595 Function *TheFunction = Proto-&gt;Codegen();
1596 if (TheFunction == 0)
1597 return 0;
1598
1599 // Create a new basic block to start insertion into.
1600 BasicBlock *BB = new BasicBlock("entry", TheFunction);
1601 Builder.SetInsertPoint(BB);
1602
1603 if (Value *RetVal = Body-&gt;Codegen()) {
1604 // Finish off the function.
1605 Builder.CreateRet(RetVal);
1606
1607 // Validate the generated code, checking for consistency.
1608 verifyFunction(*TheFunction);
1609
1610 // Optimize the function.
1611 TheFPM-&gt;run(*TheFunction);
1612
1613 return TheFunction;
1614 }
1615
1616 // Error reading body, remove function.
1617 TheFunction-&gt;eraseFromParent();
1618 return 0;
1619}
1620
1621//===----------------------------------------------------------------------===//
1622// Top-Level parsing and JIT Driver
1623//===----------------------------------------------------------------------===//
1624
1625static ExecutionEngine *TheExecutionEngine;
1626
1627static void HandleDefinition() {
1628 if (FunctionAST *F = ParseDefinition()) {
1629 if (Function *LF = F-&gt;Codegen()) {
1630 fprintf(stderr, "Read function definition:");
1631 LF-&gt;dump();
1632 }
1633 } else {
1634 // Skip token for error recovery.
1635 getNextToken();
1636 }
1637}
1638
1639static void HandleExtern() {
1640 if (PrototypeAST *P = ParseExtern()) {
1641 if (Function *F = P-&gt;Codegen()) {
1642 fprintf(stderr, "Read extern: ");
1643 F-&gt;dump();
1644 }
1645 } else {
1646 // Skip token for error recovery.
1647 getNextToken();
1648 }
1649}
1650
1651static void HandleTopLevelExpression() {
1652 // Evaluate a top level expression into an anonymous function.
1653 if (FunctionAST *F = ParseTopLevelExpr()) {
1654 if (Function *LF = F-&gt;Codegen()) {
1655 // JIT the function, returning a function pointer.
1656 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
1657
1658 // Cast it to the right type (takes no arguments, returns a double) so we
1659 // can call it as a native function.
1660 double (*FP)() = (double (*)())FPtr;
1661 fprintf(stderr, "Evaluated to %f\n", FP());
1662 }
1663 } else {
1664 // Skip token for error recovery.
1665 getNextToken();
1666 }
1667}
1668
1669/// top ::= definition | external | expression | ';'
1670static void MainLoop() {
1671 while (1) {
1672 fprintf(stderr, "ready&gt; ");
1673 switch (CurTok) {
1674 case tok_eof: return;
1675 case ';': getNextToken(); break; // ignore top level semicolons.
1676 case tok_def: HandleDefinition(); break;
1677 case tok_extern: HandleExtern(); break;
1678 default: HandleTopLevelExpression(); break;
1679 }
1680 }
1681}
Chris Lattnerf5234802007-10-31 06:47:39 +00001682
Chris Lattner602c832c2007-10-31 06:30:21 +00001683
Chris Lattner602c832c2007-10-31 06:30:21 +00001684
Chris Lattner6093bd52007-10-31 07:29:43 +00001685//===----------------------------------------------------------------------===//
1686// "Library" functions that can be "extern'd" from user code.
1687//===----------------------------------------------------------------------===//
Chris Lattner602c832c2007-10-31 06:30:21 +00001688
Chris Lattner6093bd52007-10-31 07:29:43 +00001689/// putchard - putchar that takes a double and returns 0.
1690extern "C"
1691double putchard(double X) {
1692 putchar((char)X);
1693 return 0;
1694}
Chris Lattner602c832c2007-10-31 06:30:21 +00001695
Chris Lattner6093bd52007-10-31 07:29:43 +00001696//===----------------------------------------------------------------------===//
1697// Main driver code.
1698//===----------------------------------------------------------------------===//
Chris Lattner602c832c2007-10-31 06:30:21 +00001699
Chris Lattner6093bd52007-10-31 07:29:43 +00001700int main() {
1701 // Install standard binary operators.
1702 // 1 is lowest precedence.
1703 BinopPrecedence['&lt;'] = 10;
1704 BinopPrecedence['+'] = 20;
1705 BinopPrecedence['-'] = 20;
1706 BinopPrecedence['*'] = 40; // highest.
Chris Lattner602c832c2007-10-31 06:30:21 +00001707
Chris Lattner6093bd52007-10-31 07:29:43 +00001708 // Prime the first token.
1709 fprintf(stderr, "ready&gt; ");
1710 getNextToken();
Chris Lattner602c832c2007-10-31 06:30:21 +00001711
Chris Lattner6093bd52007-10-31 07:29:43 +00001712 // Make the module, which holds all the code.
1713 TheModule = new Module("my cool jit");
1714
1715 // Create the JIT.
1716 TheExecutionEngine = ExecutionEngine::create(TheModule);
1717
1718 {
1719 ExistingModuleProvider OurModuleProvider(TheModule);
1720 FunctionPassManager OurFPM(&amp;OurModuleProvider);
1721
1722 // Set up the optimizer pipeline. Start with registering info about how the
1723 // target lays out data structures.
1724 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
1725 // Do simple "peephole" optimizations and bit-twiddling optzns.
1726 OurFPM.add(createInstructionCombiningPass());
1727 // Reassociate expressions.
1728 OurFPM.add(createReassociatePass());
1729 // Eliminate Common SubExpressions.
1730 OurFPM.add(createGVNPass());
1731 // Simplify the control flow graph (deleting unreachable blocks, etc).
1732 OurFPM.add(createCFGSimplificationPass());
1733 // Set the global so the code gen can use this.
1734 TheFPM = &amp;OurFPM;
1735
1736 // Run the main "interpreter loop" now.
1737 MainLoop();
1738
1739 TheFPM = 0;
1740 } // Free module provider and pass manager.
1741
1742
1743 // Print out all of the generated code.
1744 TheModule-&gt;dump();
1745 return 0;
1746}
Chris Lattner602c832c2007-10-31 06:30:21 +00001747</pre>
1748</div>
1749
1750</div>
1751
1752<!-- *********************************************************************** -->
1753<hr>
1754<address>
1755 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1756 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1757 <a href="http://validator.w3.org/check/referer"><img
1758 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1759
1760 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1761 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1762 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1763</address>
1764</body>
1765</html>