Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
| 15 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 16 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 17 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 18 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 19 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 20 | using namespace llvm; |
| 21 | |
| 22 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 23 | : TM(tm), TD(TM.getTargetData()) { |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 24 | assert(ISD::BUILTIN_OP_END <= 128 && |
| 25 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 26 | // All operations default to being supported. |
| 27 | memset(OpActions, 0, sizeof(OpActions)); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 28 | |
| 29 | IsLittleEndian = TD.isLittleEndian(); |
Chris Lattner | 714b69d | 2005-01-16 23:59:48 +0000 | [diff] [blame] | 30 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 31 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 32 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 33 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 34 | allowUnalignedMemoryAccesses = false; |
Chris Lattner | 8e6be8b | 2005-09-27 22:13:56 +0000 | [diff] [blame] | 35 | UseUnderscoreSetJmpLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 36 | IntDivIsCheap = false; |
| 37 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 38 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 39 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 40 | } |
| 41 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 42 | TargetLowering::~TargetLowering() {} |
| 43 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 44 | /// setValueTypeAction - Set the action for a particular value type. This |
| 45 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 46 | static void SetValueTypeAction(MVT::ValueType VT, |
| 47 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 48 | TargetLowering &TLI, |
| 49 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 50 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 51 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 52 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 53 | MVT::ValueType PromoteTo; |
| 54 | if (VT == MVT::f32) |
| 55 | PromoteTo = MVT::f64; |
| 56 | else { |
| 57 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 58 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 59 | ++LargerReg; |
| 60 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 61 | "Nothing to promote to??"); |
| 62 | } |
| 63 | PromoteTo = (MVT::ValueType)LargerReg; |
| 64 | } |
| 65 | |
| 66 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 67 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 68 | "Can only promote from int->int or fp->fp!"); |
| 69 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 70 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 71 | } else if (Action == TargetLowering::Expand) { |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 72 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 73 | "Cannot expand this type: target must support SOME integer reg!"); |
| 74 | // Expand to the next smaller integer type! |
| 75 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 80 | /// computeRegisterProperties - Once all of the register classes are added, |
| 81 | /// this allows us to compute derived properties we expose. |
| 82 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 83 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 84 | "Too many value types for ValueTypeActions to hold!"); |
| 85 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 86 | // Everything defaults to one. |
| 87 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 88 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 89 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 90 | // Find the largest integer register class. |
| 91 | unsigned LargestIntReg = MVT::i128; |
| 92 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 93 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 94 | |
| 95 | // Every integer value type larger than this largest register takes twice as |
| 96 | // many registers to represent as the previous ValueType. |
| 97 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 98 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 99 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 100 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 101 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 102 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 103 | // If we are expanding this type, expand it! |
| 104 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 105 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 106 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 107 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 108 | // Otherwise, if we don't have native support, we must promote to a |
| 109 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 110 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 111 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 112 | else |
| 113 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 114 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 115 | // If the target does not have native support for F32, promote it to F64. |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 116 | if (!isTypeLegal(MVT::f32)) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 117 | SetValueTypeAction(MVT::f32, Promote, *this, |
| 118 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 119 | else |
| 120 | TransformToType[MVT::f32] = MVT::f32; |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 121 | |
| 122 | // Set MVT::Vector to always be Expanded |
| 123 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 124 | ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 125 | |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 126 | assert(isTypeLegal(MVT::f64) && "Target does not support FP?"); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 127 | TransformToType[MVT::f64] = MVT::f64; |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 128 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 129 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 130 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 131 | return NULL; |
| 132 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 133 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 134 | //===----------------------------------------------------------------------===// |
| 135 | // Optimization Methods |
| 136 | //===----------------------------------------------------------------------===// |
| 137 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 138 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 139 | /// specified instruction is a constant integer. If so, check to see if there |
| 140 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 141 | /// constant and return true. |
| 142 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 143 | uint64_t Demanded) { |
| 144 | // FIXME: ISD::SELECT |
| 145 | switch(Op.getOpcode()) { |
| 146 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 147 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 148 | case ISD::OR: |
| 149 | case ISD::XOR: |
| 150 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 151 | if ((~Demanded & C->getValue()) != 0) { |
| 152 | MVT::ValueType VT = Op.getValueType(); |
| 153 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 154 | DAG.getConstant(Demanded & C->getValue(), |
| 155 | VT)); |
| 156 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 157 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 158 | break; |
| 159 | } |
| 160 | return false; |
| 161 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 162 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 163 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 164 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 165 | /// use this information to simplify Op, create a new simplified DAG node and |
| 166 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 167 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 168 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 169 | /// only be accurate for those bits in the DemandedMask. |
| 170 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 171 | uint64_t &KnownZero, |
| 172 | uint64_t &KnownOne, |
| 173 | TargetLoweringOpt &TLO, |
| 174 | unsigned Depth) const { |
| 175 | KnownZero = KnownOne = 0; // Don't know anything. |
| 176 | // Other users may use these bits. |
| 177 | if (!Op.Val->hasOneUse()) { |
| 178 | if (Depth != 0) { |
| 179 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 180 | // simplify things downstream. |
| 181 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 182 | return false; |
| 183 | } |
| 184 | // If this is the root being simplified, allow it to have multiple uses, |
| 185 | // just set the DemandedMask to all bits. |
| 186 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 187 | } else if (DemandedMask == 0) { |
| 188 | // Not demanding any bits from Op. |
| 189 | if (Op.getOpcode() != ISD::UNDEF) |
| 190 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 191 | return false; |
| 192 | } else if (Depth == 6) { // Limit search depth. |
| 193 | return false; |
| 194 | } |
| 195 | |
| 196 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 197 | switch (Op.getOpcode()) { |
| 198 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 199 | // We know all of the bits for a constant! |
| 200 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 201 | KnownZero = ~KnownOne & DemandedMask; |
| 202 | return false; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 203 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 204 | // If either the LHS or the RHS are Zero, the result is zero. |
| 205 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 206 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 207 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 208 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 209 | // If something is known zero on the RHS, the bits aren't demanded on the |
| 210 | // LHS. |
| 211 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 212 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 213 | return true; |
| 214 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 215 | |
| 216 | // If all of the demanded bits are known one on one side, return the other. |
| 217 | // These bits cannot contribute to the result of the 'and'. |
| 218 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 219 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 220 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 221 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 222 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 223 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 224 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 225 | // If the RHS is a constant, see if we can simplify it. |
| 226 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 227 | return true; |
| 228 | |
| 229 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 230 | KnownOne &= KnownOne2; |
| 231 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 232 | KnownZero |= KnownZero2; |
| 233 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 234 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 235 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 236 | KnownOne, TLO, Depth+1)) |
| 237 | return true; |
| 238 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 239 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 240 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 241 | return true; |
| 242 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 243 | |
| 244 | // If all of the demanded bits are known zero on one side, return the other. |
| 245 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 246 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 247 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 248 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 249 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 250 | // If all of the potentially set bits on one side are known to be set on |
| 251 | // the other side, just use the 'other' side. |
| 252 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 253 | (DemandedMask & (~KnownZero))) |
| 254 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 255 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 256 | (DemandedMask & (~KnownZero2))) |
| 257 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 258 | // If the RHS is a constant, see if we can simplify it. |
| 259 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 260 | return true; |
| 261 | |
| 262 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 263 | KnownZero &= KnownZero2; |
| 264 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 265 | KnownOne |= KnownOne2; |
| 266 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 267 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 268 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 269 | KnownOne, TLO, Depth+1)) |
| 270 | return true; |
| 271 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 272 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 273 | KnownOne2, TLO, Depth+1)) |
| 274 | return true; |
| 275 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 276 | |
| 277 | // If all of the demanded bits are known zero on one side, return the other. |
| 278 | // These bits cannot contribute to the result of the 'xor'. |
| 279 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 280 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 281 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 282 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 283 | |
| 284 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 285 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 286 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 287 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 288 | |
| 289 | // If all of the unknown bits are known to be zero on one side or the other |
| 290 | // (but not both) turn this into an *inclusive* or. |
| 291 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 292 | if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) |
| 293 | if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) |
| 294 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 295 | Op.getOperand(0), |
| 296 | Op.getOperand(1))); |
| 297 | // If all of the demanded bits on one side are known, and all of the set |
| 298 | // bits on that side are also known to be set on the other side, turn this |
| 299 | // into an AND, as we know the bits will be cleared. |
| 300 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 301 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 302 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 303 | MVT::ValueType VT = Op.getValueType(); |
| 304 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 305 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 306 | ANDC)); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | // If the RHS is a constant, see if we can simplify it. |
| 311 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 312 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 313 | return true; |
| 314 | |
| 315 | KnownZero = KnownZeroOut; |
| 316 | KnownOne = KnownOneOut; |
| 317 | break; |
| 318 | case ISD::SETCC: |
| 319 | // If we know the result of a setcc has the top bits zero, use this info. |
| 320 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 321 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 322 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 323 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 324 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 325 | KnownOne, TLO, Depth+1)) |
| 326 | return true; |
| 327 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 328 | KnownOne2, TLO, Depth+1)) |
| 329 | return true; |
| 330 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 331 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 332 | |
| 333 | // If the operands are constants, see if we can simplify them. |
| 334 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 335 | return true; |
| 336 | |
| 337 | // Only known if known in both the LHS and RHS. |
| 338 | KnownOne &= KnownOne2; |
| 339 | KnownZero &= KnownZero2; |
| 340 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 341 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 342 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 343 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 344 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 345 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 346 | KnownZero <<= SA->getValue(); |
| 347 | KnownOne <<= SA->getValue(); |
| 348 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 349 | } |
| 350 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 351 | case ISD::SRL: |
| 352 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 353 | MVT::ValueType VT = Op.getValueType(); |
| 354 | unsigned ShAmt = SA->getValue(); |
| 355 | |
| 356 | // Compute the new bits that are at the top now. |
| 357 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 358 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 359 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 360 | |
| 361 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 362 | (DemandedMask << ShAmt) & TypeMask, |
| 363 | KnownZero, KnownOne, TLO, Depth+1)) |
| 364 | return true; |
| 365 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 366 | KnownZero &= TypeMask; |
| 367 | KnownOne &= TypeMask; |
| 368 | KnownZero >>= ShAmt; |
| 369 | KnownOne >>= ShAmt; |
| 370 | KnownZero |= HighBits; // high bits known zero. |
| 371 | } |
| 372 | break; |
| 373 | case ISD::SRA: |
| 374 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 375 | MVT::ValueType VT = Op.getValueType(); |
| 376 | unsigned ShAmt = SA->getValue(); |
| 377 | |
| 378 | // Compute the new bits that are at the top now. |
| 379 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 380 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 381 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 382 | |
| 383 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 384 | (DemandedMask << ShAmt) & TypeMask, |
| 385 | KnownZero, KnownOne, TLO, Depth+1)) |
| 386 | return true; |
| 387 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 388 | KnownZero &= TypeMask; |
| 389 | KnownOne &= TypeMask; |
| 390 | KnownZero >>= SA->getValue(); |
| 391 | KnownOne >>= SA->getValue(); |
| 392 | |
| 393 | // Handle the sign bits. |
| 394 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 395 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 396 | |
| 397 | // If the input sign bit is known to be zero, or if none of the top bits |
| 398 | // are demanded, turn this into an unsigned shift right. |
| 399 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 400 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 401 | Op.getOperand(1))); |
| 402 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 403 | KnownOne |= HighBits; |
| 404 | } |
| 405 | } |
| 406 | break; |
| 407 | case ISD::SIGN_EXTEND_INREG: { |
| 408 | MVT::ValueType VT = Op.getValueType(); |
| 409 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 410 | |
| 411 | // Sign or Zero extension. Compute the bits in the result that are not |
| 412 | // present in the input. |
| 413 | uint64_t NotIn = ~MVT::getIntVTBitMask(EVT); |
| 414 | uint64_t NewBits = MVT::getIntVTBitMask(VT) & NotIn; |
| 415 | |
| 416 | // Sign extension. |
| 417 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 418 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 419 | |
| 420 | // If any of the sign extended bits are demanded, we know that the sign |
| 421 | // bit is demanded. |
| 422 | if (NewBits & DemandedMask) |
| 423 | InputDemandedBits |= InSignBit; |
| 424 | |
| 425 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 426 | KnownZero, KnownOne, TLO, Depth+1)) |
| 427 | return true; |
| 428 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 429 | |
| 430 | // If the sign bit of the input is known set or clear, then we know the |
| 431 | // top bits of the result. |
| 432 | |
| 433 | // If the input sign bit is known zero, or if the NewBits are not demanded |
| 434 | // convert this into a zero extension. |
| 435 | if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) { |
| 436 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 437 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 438 | KnownOne |= NewBits; |
| 439 | KnownZero &= ~NewBits; |
| 440 | } else { // Input sign bit unknown |
| 441 | KnownZero &= ~NewBits; |
| 442 | KnownOne &= ~NewBits; |
| 443 | } |
| 444 | break; |
| 445 | } |
| 446 | case ISD::ADD: |
| 447 | if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 448 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero, |
| 449 | KnownOne, TLO, Depth+1)) |
| 450 | return true; |
| 451 | // Compute the KnownOne/KnownZero masks for the constant, so we can set |
| 452 | // KnownZero appropriately if we're adding a constant that has all low |
| 453 | // bits cleared. |
| 454 | ComputeMaskedBits(Op.getOperand(1), |
| 455 | MVT::getIntVTBitMask(Op.getValueType()), |
| 456 | KnownZero2, KnownOne2, Depth+1); |
| 457 | |
| 458 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 459 | CountTrailingZeros_64(~KnownZero2)); |
| 460 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 461 | KnownOne = 0; |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 462 | |
| 463 | SDOperand SH = Op.getOperand(0); |
| 464 | // fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1) |
| 465 | if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() && |
| 466 | Op.Val->hasOneUse()) { |
| 467 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) { |
| 468 | MVT::ValueType VT = Op.getValueType(); |
| 469 | unsigned ShiftAmt = SA->getValue(); |
| 470 | uint64_t AddAmt = AA->getValue(); |
| 471 | uint64_t AddShr = AddAmt >> ShiftAmt; |
| 472 | if (AddAmt == (AddShr << ShiftAmt)) { |
| 473 | SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0), |
| 474 | TLO.DAG.getConstant(AddShr, VT)); |
| 475 | SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1)); |
| 476 | return TLO.CombineTo(Op, SHL); |
| 477 | } |
| 478 | } |
| 479 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 480 | } |
| 481 | break; |
| 482 | case ISD::CTTZ: |
| 483 | case ISD::CTLZ: |
| 484 | case ISD::CTPOP: { |
| 485 | MVT::ValueType VT = Op.getValueType(); |
| 486 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 487 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 488 | KnownOne = 0; |
| 489 | break; |
| 490 | } |
| 491 | } |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 496 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 497 | /// for bits that V cannot have. |
| 498 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 499 | unsigned Depth) const { |
| 500 | uint64_t KnownZero, KnownOne; |
| 501 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 502 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 503 | return (KnownZero & Mask) == Mask; |
| 504 | } |
| 505 | |
| 506 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 507 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 508 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 509 | /// processing. |
| 510 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 511 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 512 | unsigned Depth) const { |
| 513 | KnownZero = KnownOne = 0; // Don't know anything. |
| 514 | if (Depth == 6 || Mask == 0) |
| 515 | return; // Limit search depth. |
| 516 | |
| 517 | uint64_t KnownZero2, KnownOne2; |
| 518 | |
| 519 | switch (Op.getOpcode()) { |
| 520 | case ISD::Constant: |
| 521 | // We know all of the bits for a constant! |
| 522 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 523 | KnownZero = ~KnownOne & Mask; |
| 524 | return; |
| 525 | case ISD::AND: |
| 526 | // If either the LHS or the RHS are Zero, the result is zero. |
| 527 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 528 | Mask &= ~KnownZero; |
| 529 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 530 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 531 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 532 | |
| 533 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 534 | KnownOne &= KnownOne2; |
| 535 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 536 | KnownZero |= KnownZero2; |
| 537 | return; |
| 538 | case ISD::OR: |
| 539 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 540 | Mask &= ~KnownOne; |
| 541 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 542 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 543 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 544 | |
| 545 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 546 | KnownZero &= KnownZero2; |
| 547 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 548 | KnownOne |= KnownOne2; |
| 549 | return; |
| 550 | case ISD::XOR: { |
| 551 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 552 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 553 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 554 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 555 | |
| 556 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 557 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 558 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 559 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 560 | KnownZero = KnownZeroOut; |
| 561 | return; |
| 562 | } |
| 563 | case ISD::SELECT: |
| 564 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 565 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 566 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 567 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 568 | |
| 569 | // Only known if known in both the LHS and RHS. |
| 570 | KnownOne &= KnownOne2; |
| 571 | KnownZero &= KnownZero2; |
| 572 | return; |
| 573 | case ISD::SELECT_CC: |
| 574 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 575 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 576 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 577 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 578 | |
| 579 | // Only known if known in both the LHS and RHS. |
| 580 | KnownOne &= KnownOne2; |
| 581 | KnownZero &= KnownZero2; |
| 582 | return; |
| 583 | case ISD::SETCC: |
| 584 | // If we know the result of a setcc has the top bits zero, use this info. |
| 585 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 586 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 587 | return; |
| 588 | case ISD::SHL: |
| 589 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 590 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 591 | Mask >>= SA->getValue(); |
| 592 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 593 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 594 | KnownZero <<= SA->getValue(); |
| 595 | KnownOne <<= SA->getValue(); |
| 596 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
| 597 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 598 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 599 | case ISD::SRL: |
| 600 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 601 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 602 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 603 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 604 | Mask <<= SA->getValue(); |
| 605 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 606 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 607 | KnownZero >>= SA->getValue(); |
| 608 | KnownOne >>= SA->getValue(); |
| 609 | KnownZero |= HighBits; // high bits known zero. |
| 610 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 611 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 612 | case ISD::SRA: |
| 613 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 614 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 615 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 616 | Mask <<= SA->getValue(); |
| 617 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 618 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 619 | KnownZero >>= SA->getValue(); |
| 620 | KnownOne >>= SA->getValue(); |
| 621 | |
| 622 | // Handle the sign bits. |
| 623 | uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1); |
| 624 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 625 | |
| 626 | if (KnownZero & SignBit) { // New bits are known zero. |
| 627 | KnownZero |= HighBits; |
| 628 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 629 | KnownOne |= HighBits; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 630 | } |
| 631 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 632 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 633 | case ISD::CTTZ: |
| 634 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 635 | case ISD::CTPOP: { |
| 636 | MVT::ValueType VT = Op.getValueType(); |
| 637 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 638 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 639 | KnownOne = 0; |
| 640 | return; |
| 641 | } |
| 642 | case ISD::ZEXTLOAD: { |
| 643 | unsigned SrcBits = |
| 644 | MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT()); |
| 645 | KnownZero |= ~((1ULL << SrcBits)-1); |
| 646 | return; |
| 647 | } |
| 648 | case ISD::ZERO_EXTEND: { |
| 649 | unsigned SrcBits = |
| 650 | MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 651 | KnownZero |= ~((1ULL << SrcBits)-1); |
| 652 | return; |
| 653 | } |
| 654 | case ISD::ANY_EXTEND: { |
| 655 | unsigned SrcBits = |
| 656 | MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 657 | KnownZero &= ((1ULL << SrcBits)-1); |
| 658 | KnownOne &= ((1ULL << SrcBits)-1); |
| 659 | return; |
| 660 | } |
| 661 | case ISD::AssertZext: { |
| 662 | unsigned SrcBits = |
| 663 | MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 664 | KnownZero |= ~((1ULL << SrcBits)-1); |
| 665 | return; |
| 666 | } |
| 667 | case ISD::ADD: { |
| 668 | // If either the LHS or the RHS are Zero, the result is zero. |
| 669 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 670 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 671 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 672 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 673 | |
| 674 | // Output known-0 bits are known if clear or set in both the low clear bits |
| 675 | // common to both LHS & RHS; |
| 676 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 677 | CountTrailingZeros_64(~KnownZero2)); |
| 678 | |
| 679 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 680 | KnownOne = 0; |
| 681 | return; |
| 682 | } |
| 683 | case ISD::SUB: |
| 684 | // We know that the top bits of C-X are clear if X contains less bits |
| 685 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
| 686 | // positive if we can prove that X is >= 0 and < 16. |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 687 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 688 | default: |
| 689 | // Allow the target to implement this method for its nodes. |
| 690 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 691 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 692 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 693 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 694 | } |
| 695 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 696 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 697 | /// in Mask are known to be either zero or one and return them in the |
| 698 | /// KnownZero/KnownOne bitsets. |
| 699 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 700 | uint64_t Mask, |
| 701 | uint64_t &KnownZero, |
| 702 | uint64_t &KnownOne, |
| 703 | unsigned Depth) const { |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 704 | assert(Op.getOpcode() >= ISD::BUILTIN_OP_END && |
| 705 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 706 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 707 | KnownZero = 0; |
| 708 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 709 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 710 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 711 | //===----------------------------------------------------------------------===// |
| 712 | // Inline Assembler Implementation Methods |
| 713 | //===----------------------------------------------------------------------===// |
| 714 | |
| 715 | TargetLowering::ConstraintType |
| 716 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 717 | // FIXME: lots more standard ones to handle. |
| 718 | switch (ConstraintLetter) { |
| 719 | default: return C_Unknown; |
| 720 | case 'r': return C_RegisterClass; |
| 721 | case 'i': // Simple Integer or Relocatable Constant |
| 722 | case 'n': // Simple Integer |
| 723 | case 's': // Relocatable Constant |
| 724 | case 'I': // Target registers. |
| 725 | case 'J': |
| 726 | case 'K': |
| 727 | case 'L': |
| 728 | case 'M': |
| 729 | case 'N': |
| 730 | case 'O': |
| 731 | case 'P': return C_Other; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | bool TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 736 | char ConstraintLetter) { |
| 737 | switch (ConstraintLetter) { |
| 738 | default: return false; |
| 739 | case 'i': // Simple Integer or Relocatable Constant |
| 740 | case 'n': // Simple Integer |
| 741 | case 's': // Relocatable Constant |
| 742 | return true; // FIXME: not right. |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 747 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame^] | 748 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 749 | MVT::ValueType VT) const { |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 750 | // Not a physreg, must not be a register reference or something. |
| 751 | if (Constraint[0] != '{') return std::vector<unsigned>(); |
| 752 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 753 | |
| 754 | // Remove the braces from around the name. |
| 755 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
| 756 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 757 | // Scan to see if this constraint is a register name. |
| 758 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
| 759 | for (unsigned i = 1, e = RI->getNumRegs(); i != e; ++i) { |
| 760 | if (const char *Name = RI->get(i).Name) |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 761 | if (StringsEqualNoCase(RegName, Name)) |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 762 | return std::vector<unsigned>(1, i); |
| 763 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 764 | |
| 765 | // Unknown physreg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 766 | return std::vector<unsigned>(); |
| 767 | } |
| 768 | |