blob: 18e0f909c3fb8e4072a6eacac02ddc7094424011 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
52
53namespace {
54 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55 static char ID;
56 FPS() : MachineFunctionPass((intptr_t)&ID) {}
57
58 virtual bool runOnMachineFunction(MachineFunction &MF);
59
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 private:
63 const TargetInstrInfo *TII; // Machine instruction info.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 cerr << "\n";
76 }
77 private:
Chris Lattnerb56cc342008-03-11 03:23:40 +000078 /// isStackEmpty - Return true if the FP stack is empty.
79 bool isStackEmpty() const {
80 return StackTop == 0;
81 }
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // getSlot - Return the stack slot number a particular register number is
Chris Lattnerb56cc342008-03-11 03:23:40 +000084 // in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 unsigned getSlot(unsigned RegNo) const {
86 assert(RegNo < 8 && "Regno out of range!");
87 return RegMap[RegNo];
88 }
89
Chris Lattnerb56cc342008-03-11 03:23:40 +000090 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 unsigned getStackEntry(unsigned STi) const {
92 assert(STi < StackTop && "Access past stack top!");
93 return Stack[StackTop-1-STi];
94 }
95
96 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattnerb56cc342008-03-11 03:23:40 +000097 // FP<RegNo> register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 unsigned getSTReg(unsigned RegNo) const {
99 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
100 }
101
Chris Lattnerb56cc342008-03-11 03:23:40 +0000102 // pushReg - Push the specified FP<n> register onto the stack.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 void pushReg(unsigned Reg) {
104 assert(Reg < 8 && "Register number out of range!");
105 assert(StackTop < 8 && "Stack overflow!");
106 Stack[StackTop] = Reg;
107 RegMap[Reg] = StackTop++;
108 }
109
110 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattnerb56cc342008-03-11 03:23:40 +0000111 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
112 if (isAtTop(RegNo)) return;
113
114 unsigned STReg = getSTReg(RegNo);
115 unsigned RegOnTop = getStackEntry(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116
Chris Lattnerb56cc342008-03-11 03:23:40 +0000117 // Swap the slots the regs are in.
118 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
Chris Lattnerb56cc342008-03-11 03:23:40 +0000120 // Swap stack slot contents.
121 assert(RegMap[RegOnTop] < StackTop);
122 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123
Chris Lattnerb56cc342008-03-11 03:23:40 +0000124 // Emit an fxch to update the runtime processors version of the state.
125 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
126 NumFXCH++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 }
128
129 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
130 unsigned STReg = getSTReg(RegNo);
131 pushReg(AsReg); // New register on top of stack
132
133 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
134 }
135
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator &I);
139
140 // freeStackSlotAfter - Free the specified register from the register stack,
141 // so that it is no longer in a register. If the register is currently at
142 // the top of the stack, we just pop the current instruction, otherwise we
143 // store the current top-of-stack into the specified slot, then pop the top
144 // of stack.
145 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
146
147 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
148
149 void handleZeroArgFP(MachineBasicBlock::iterator &I);
150 void handleOneArgFP(MachineBasicBlock::iterator &I);
151 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
152 void handleTwoArgFP(MachineBasicBlock::iterator &I);
153 void handleCompareFP(MachineBasicBlock::iterator &I);
154 void handleCondMovFP(MachineBasicBlock::iterator &I);
155 void handleSpecialFP(MachineBasicBlock::iterator &I);
156 };
157 char FPS::ID = 0;
158}
159
160FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
161
Chris Lattner4b7054f2008-01-14 06:41:29 +0000162/// getFPReg - Return the X86::FPx register number for the specified operand.
163/// For example, this returns 3 for X86::FP3.
164static unsigned getFPReg(const MachineOperand &MO) {
165 assert(MO.isRegister() && "Expected an FP register!");
166 unsigned Reg = MO.getReg();
167 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
168 return Reg - X86::FP0;
169}
170
171
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000172/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
173/// register references into FP stack references.
174///
175bool FPS::runOnMachineFunction(MachineFunction &MF) {
176 // We only need to run this pass if there are any FP registers used in this
177 // function. If it is all integer, there is nothing for us to do!
178 bool FPIsUsed = false;
179
180 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
181 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner1b989192007-12-31 04:13:23 +0000182 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 FPIsUsed = true;
184 break;
185 }
186
187 // Early exit.
188 if (!FPIsUsed) return false;
189
190 TII = MF.getTarget().getInstrInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 StackTop = 0;
192
193 // Process the function in depth first order so that we process at least one
194 // of the predecessors for every reachable block in the function.
195 std::set<MachineBasicBlock*> Processed;
196 MachineBasicBlock *Entry = MF.begin();
197
198 bool Changed = false;
199 for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
200 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
201 I != E; ++I)
202 Changed |= processBasicBlock(MF, **I);
203
204 return Changed;
205}
206
207/// processBasicBlock - Loop over all of the instructions in the basic block,
208/// transforming FP instructions into their stack form.
209///
210bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
211 bool Changed = false;
212 MBB = &BB;
213
214 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
215 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000216 unsigned Flags = MI->getDesc().TSFlags;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
218 continue; // Efficiently ignore non-fp insts!
219
220 MachineInstr *PrevMI = 0;
221 if (I != BB.begin())
Chris Lattner5d294e52008-03-09 07:05:32 +0000222 PrevMI = prior(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 ++NumFP; // Keep track of # of pseudo instrs
225 DOUT << "\nFPInst:\t" << *MI;
226
227 // Get dead variables list now because the MI pointer may be deleted as part
228 // of processing!
229 SmallVector<unsigned, 8> DeadRegs;
230 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
231 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman38a9a9f2007-09-14 20:33:02 +0000232 if (MO.isRegister() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 DeadRegs.push_back(MO.getReg());
234 }
235
236 switch (Flags & X86II::FPTypeMask) {
237 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
238 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
239 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
240 case X86II::TwoArgFP: handleTwoArgFP(I); break;
241 case X86II::CompareFP: handleCompareFP(I); break;
242 case X86II::CondMovFP: handleCondMovFP(I); break;
243 case X86II::SpecialFP: handleSpecialFP(I); break;
244 default: assert(0 && "Unknown FP Type!");
245 }
246
247 // Check to see if any of the values defined by this instruction are dead
248 // after definition. If so, pop them.
249 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
250 unsigned Reg = DeadRegs[i];
251 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
252 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
253 freeStackSlotAfter(I, Reg-X86::FP0);
254 }
255 }
256
257 // Print out all of the instructions expanded to if -debug
258 DEBUG(
259 MachineBasicBlock::iterator PrevI(PrevMI);
260 if (I == PrevI) {
261 cerr << "Just deleted pseudo instruction\n";
262 } else {
263 MachineBasicBlock::iterator Start = I;
264 // Rewind to first instruction newly inserted.
265 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
266 cerr << "Inserted instructions:\n\t";
267 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000268 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000269 }
270 dumpStack();
271 );
272
273 Changed = true;
274 }
275
Chris Lattnerb56cc342008-03-11 03:23:40 +0000276 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 return Changed;
278}
279
280//===----------------------------------------------------------------------===//
281// Efficient Lookup Table Support
282//===----------------------------------------------------------------------===//
283
284namespace {
285 struct TableEntry {
286 unsigned from;
287 unsigned to;
288 bool operator<(const TableEntry &TE) const { return from < TE.from; }
289 friend bool operator<(const TableEntry &TE, unsigned V) {
290 return TE.from < V;
291 }
292 friend bool operator<(unsigned V, const TableEntry &TE) {
293 return V < TE.from;
294 }
295 };
296}
297
298static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
299 for (unsigned i = 0; i != NumEntries-1; ++i)
300 if (!(Table[i] < Table[i+1])) return false;
301 return true;
302}
303
304static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
305 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
306 if (I != Table+N && I->from == Opcode)
307 return I->to;
308 return -1;
309}
310
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311#ifdef NDEBUG
312#define ASSERT_SORTED(TABLE)
313#else
314#define ASSERT_SORTED(TABLE) \
315 { static bool TABLE##Checked = false; \
316 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000317 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 "All lookup tables must be sorted for efficient access!"); \
319 TABLE##Checked = true; \
320 } \
321 }
322#endif
323
324//===----------------------------------------------------------------------===//
325// Register File -> Register Stack Mapping Methods
326//===----------------------------------------------------------------------===//
327
328// OpcodeTable - Sorted map of register instructions to their stack version.
329// The first element is an register file pseudo instruction, the second is the
330// concrete X86 instruction which uses the register stack.
331//
332static const TableEntry OpcodeTable[] = {
333 { X86::ABS_Fp32 , X86::ABS_F },
334 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000335 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 { X86::ADD_Fp32m , X86::ADD_F32m },
337 { X86::ADD_Fp64m , X86::ADD_F64m },
338 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000339 { X86::ADD_Fp80m32 , X86::ADD_F32m },
340 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
342 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000343 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
345 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000346 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347 { X86::CHS_Fp32 , X86::CHS_F },
348 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000349 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
351 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000352 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000353 { X86::CMOVB_Fp32 , X86::CMOVB_F },
354 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000355 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 { X86::CMOVE_Fp32 , X86::CMOVE_F },
357 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000358 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000359 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
360 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000361 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
363 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000364 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
366 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000367 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
369 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000370 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 { X86::CMOVP_Fp32 , X86::CMOVP_F },
372 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000373 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 { X86::COS_Fp32 , X86::COS_F },
375 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000376 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377 { X86::DIVR_Fp32m , X86::DIVR_F32m },
378 { X86::DIVR_Fp64m , X86::DIVR_F64m },
379 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000380 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
381 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
383 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000384 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
386 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000387 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388 { X86::DIV_Fp32m , X86::DIV_F32m },
389 { X86::DIV_Fp64m , X86::DIV_F64m },
390 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000391 { X86::DIV_Fp80m32 , X86::DIV_F32m },
392 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
394 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000395 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
397 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000398 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 { X86::ILD_Fp16m32 , X86::ILD_F16m },
400 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000401 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 { X86::ILD_Fp32m32 , X86::ILD_F32m },
403 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000404 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 { X86::ILD_Fp64m32 , X86::ILD_F64m },
406 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000407 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
409 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000410 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
412 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000413 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
415 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000416 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 { X86::IST_Fp16m32 , X86::IST_F16m },
418 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000419 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000420 { X86::IST_Fp32m32 , X86::IST_F32m },
421 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000422 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 { X86::IST_Fp64m32 , X86::IST_FP64m },
424 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000425 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 { X86::LD_Fp032 , X86::LD_F0 },
427 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000428 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 { X86::LD_Fp132 , X86::LD_F1 },
430 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000431 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000433 { X86::LD_Fp32m64 , X86::LD_F32m },
434 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000436 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000437 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 { X86::MUL_Fp32m , X86::MUL_F32m },
439 { X86::MUL_Fp64m , X86::MUL_F64m },
440 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000441 { X86::MUL_Fp80m32 , X86::MUL_F32m },
442 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
444 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000445 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
447 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000448 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 { X86::SIN_Fp32 , X86::SIN_F },
450 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000451 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 { X86::SQRT_Fp32 , X86::SQRT_F },
453 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000454 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 { X86::ST_Fp32m , X86::ST_F32m },
456 { X86::ST_Fp64m , X86::ST_F64m },
457 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000458 { X86::ST_Fp80m32 , X86::ST_F32m },
459 { X86::ST_Fp80m64 , X86::ST_F64m },
460 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 { X86::SUBR_Fp32m , X86::SUBR_F32m },
462 { X86::SUBR_Fp64m , X86::SUBR_F64m },
463 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000464 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
465 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
467 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000468 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
470 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000471 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 { X86::SUB_Fp32m , X86::SUB_F32m },
473 { X86::SUB_Fp64m , X86::SUB_F64m },
474 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000475 { X86::SUB_Fp80m32 , X86::SUB_F32m },
476 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
478 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000479 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
481 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000482 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 { X86::TST_Fp32 , X86::TST_F },
484 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000485 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
487 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000488 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000489 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
490 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000491 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000492};
493
494static unsigned getConcreteOpcode(unsigned Opcode) {
495 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000496 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
498 return Opc;
499}
500
501//===----------------------------------------------------------------------===//
502// Helper Methods
503//===----------------------------------------------------------------------===//
504
505// PopTable - Sorted map of instructions to their popping version. The first
506// element is an instruction, the second is the version which pops.
507//
508static const TableEntry PopTable[] = {
509 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
510
511 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
512 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
513
514 { X86::IST_F16m , X86::IST_FP16m },
515 { X86::IST_F32m , X86::IST_FP32m },
516
517 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
518
519 { X86::ST_F32m , X86::ST_FP32m },
520 { X86::ST_F64m , X86::ST_FP64m },
521 { X86::ST_Frr , X86::ST_FPrr },
522
523 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
524 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
525
526 { X86::UCOM_FIr , X86::UCOM_FIPr },
527
528 { X86::UCOM_FPr , X86::UCOM_FPPr },
529 { X86::UCOM_Fr , X86::UCOM_FPr },
530};
531
532/// popStackAfter - Pop the current value off of the top of the FP stack after
533/// the specified instruction. This attempts to be sneaky and combine the pop
534/// into the instruction itself if possible. The iterator is left pointing to
535/// the last instruction, be it a new pop instruction inserted, or the old
536/// instruction if it was modified in place.
537///
538void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
539 ASSERT_SORTED(PopTable);
540 assert(StackTop > 0 && "Cannot pop empty stack!");
541 RegMap[Stack[--StackTop]] = ~0; // Update state
542
543 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000544 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 if (Opcode != -1) {
Chris Lattner86bb02f2008-01-11 18:10:50 +0000546 I->setDesc(TII->get(Opcode));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000547 if (Opcode == X86::UCOM_FPPr)
548 I->RemoveOperand(0);
549 } else { // Insert an explicit pop
550 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
551 }
552}
553
554/// freeStackSlotAfter - Free the specified register from the register stack, so
555/// that it is no longer in a register. If the register is currently at the top
556/// of the stack, we just pop the current instruction, otherwise we store the
557/// current top-of-stack into the specified slot, then pop the top of stack.
558void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
559 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
560 popStackAfter(I);
561 return;
562 }
563
564 // Otherwise, store the top of stack into the dead slot, killing the operand
565 // without having to add in an explicit xchg then pop.
566 //
567 unsigned STReg = getSTReg(FPRegNo);
568 unsigned OldSlot = getSlot(FPRegNo);
569 unsigned TopReg = Stack[StackTop-1];
570 Stack[OldSlot] = TopReg;
571 RegMap[TopReg] = OldSlot;
572 RegMap[FPRegNo] = ~0;
573 Stack[--StackTop] = ~0;
574 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
575}
576
577
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578//===----------------------------------------------------------------------===//
579// Instruction transformation implementation
580//===----------------------------------------------------------------------===//
581
582/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
583///
584void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
585 MachineInstr *MI = I;
586 unsigned DestReg = getFPReg(MI->getOperand(0));
587
588 // Change from the pseudo instruction to the concrete instruction.
589 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000590 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591
592 // Result gets pushed on the stack.
593 pushReg(DestReg);
594}
595
596/// handleOneArgFP - fst <mem>, ST(0)
597///
598void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
599 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000600 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000601 assert((NumOps == 5 || NumOps == 1) &&
602 "Can only handle fst* & ftst instructions!");
603
604 // Is this the last use of the source register?
605 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000606 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607
608 // FISTP64m is strange because there isn't a non-popping versions.
609 // If we have one _and_ we don't want to pop the operand, duplicate the value
610 // on the stack instead of moving it. This ensure that popping the value is
611 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000612 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613 //
614 if (!KillsSrc &&
615 (MI->getOpcode() == X86::IST_Fp64m32 ||
616 MI->getOpcode() == X86::ISTT_Fp16m32 ||
617 MI->getOpcode() == X86::ISTT_Fp32m32 ||
618 MI->getOpcode() == X86::ISTT_Fp64m32 ||
619 MI->getOpcode() == X86::IST_Fp64m64 ||
620 MI->getOpcode() == X86::ISTT_Fp16m64 ||
621 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000622 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000623 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000624 MI->getOpcode() == X86::ISTT_Fp16m80 ||
625 MI->getOpcode() == X86::ISTT_Fp32m80 ||
626 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000627 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 duplicateToTop(Reg, 7 /*temp register*/, I);
629 } else {
630 moveToTop(Reg, I); // Move to the top of the stack...
631 }
632
633 // Convert from the pseudo instruction to the concrete instruction.
634 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000635 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636
637 if (MI->getOpcode() == X86::IST_FP64m ||
638 MI->getOpcode() == X86::ISTT_FP16m ||
639 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000640 MI->getOpcode() == X86::ISTT_FP64m ||
641 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 assert(StackTop > 0 && "Stack empty??");
643 --StackTop;
644 } else if (KillsSrc) { // Last use of operand?
645 popStackAfter(I);
646 }
647}
648
649
650/// handleOneArgFPRW: Handle instructions that read from the top of stack and
651/// replace the value with a newly computed value. These instructions may have
652/// non-fp operands after their FP operands.
653///
654/// Examples:
655/// R1 = fchs R2
656/// R1 = fadd R2, [mem]
657///
658void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
659 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000660 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000661 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
662
663 // Is this the last use of the source register?
664 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000665 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666
667 if (KillsSrc) {
668 // If this is the last use of the source register, just make sure it's on
669 // the top of the stack.
670 moveToTop(Reg, I);
671 assert(StackTop > 0 && "Stack cannot be empty!");
672 --StackTop;
673 pushReg(getFPReg(MI->getOperand(0)));
674 } else {
675 // If this is not the last use of the source register, _copy_ it to the top
676 // of the stack.
677 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
678 }
679
680 // Change from the pseudo instruction to the concrete instruction.
681 MI->RemoveOperand(1); // Drop the source operand.
682 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner86bb02f2008-01-11 18:10:50 +0000683 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684}
685
686
687//===----------------------------------------------------------------------===//
688// Define tables of various ways to map pseudo instructions
689//
690
691// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
692static const TableEntry ForwardST0Table[] = {
693 { X86::ADD_Fp32 , X86::ADD_FST0r },
694 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000695 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696 { X86::DIV_Fp32 , X86::DIV_FST0r },
697 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000698 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699 { X86::MUL_Fp32 , X86::MUL_FST0r },
700 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000701 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702 { X86::SUB_Fp32 , X86::SUB_FST0r },
703 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000704 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705};
706
707// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
708static const TableEntry ReverseST0Table[] = {
709 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
710 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000711 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 { X86::DIV_Fp32 , X86::DIVR_FST0r },
713 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000714 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
716 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000717 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718 { X86::SUB_Fp32 , X86::SUBR_FST0r },
719 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000720 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721};
722
723// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
724static const TableEntry ForwardSTiTable[] = {
725 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
726 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000727 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
729 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000730 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
732 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000733 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
735 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000736 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737};
738
739// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
740static const TableEntry ReverseSTiTable[] = {
741 { X86::ADD_Fp32 , X86::ADD_FrST0 },
742 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000743 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 { X86::DIV_Fp32 , X86::DIV_FrST0 },
745 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000746 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 { X86::MUL_Fp32 , X86::MUL_FrST0 },
748 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000749 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 { X86::SUB_Fp32 , X86::SUB_FrST0 },
751 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000752 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753};
754
755
756/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
757/// instructions which need to be simplified and possibly transformed.
758///
759/// Result: ST(0) = fsub ST(0), ST(i)
760/// ST(i) = fsub ST(0), ST(i)
761/// ST(0) = fsubr ST(0), ST(i)
762/// ST(i) = fsubr ST(0), ST(i)
763///
764void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
765 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
766 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
767 MachineInstr *MI = I;
768
Chris Lattner5b930372008-01-07 07:27:27 +0000769 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
771 unsigned Dest = getFPReg(MI->getOperand(0));
772 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
773 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000774 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
775 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776
777 unsigned TOS = getStackEntry(0);
778
779 // One of our operands must be on the top of the stack. If neither is yet, we
780 // need to move one.
781 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
782 // We can choose to move either operand to the top of the stack. If one of
783 // the operands is killed by this instruction, we want that one so that we
784 // can update right on top of the old version.
785 if (KillsOp0) {
786 moveToTop(Op0, I); // Move dead operand to TOS.
787 TOS = Op0;
788 } else if (KillsOp1) {
789 moveToTop(Op1, I);
790 TOS = Op1;
791 } else {
792 // All of the operands are live after this instruction executes, so we
793 // cannot update on top of any operand. Because of this, we must
794 // duplicate one of the stack elements to the top. It doesn't matter
795 // which one we pick.
796 //
797 duplicateToTop(Op0, Dest, I);
798 Op0 = TOS = Dest;
799 KillsOp0 = true;
800 }
801 } else if (!KillsOp0 && !KillsOp1) {
802 // If we DO have one of our operands at the top of the stack, but we don't
803 // have a dead operand, we must duplicate one of the operands to a new slot
804 // on the stack.
805 duplicateToTop(Op0, Dest, I);
806 Op0 = TOS = Dest;
807 KillsOp0 = true;
808 }
809
810 // Now we know that one of our operands is on the top of the stack, and at
811 // least one of our operands is killed by this instruction.
812 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
813 "Stack conditions not set up right!");
814
815 // We decide which form to use based on what is on the top of the stack, and
816 // which operand is killed by this instruction.
817 const TableEntry *InstTable;
818 bool isForward = TOS == Op0;
819 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
820 if (updateST0) {
821 if (isForward)
822 InstTable = ForwardST0Table;
823 else
824 InstTable = ReverseST0Table;
825 } else {
826 if (isForward)
827 InstTable = ForwardSTiTable;
828 else
829 InstTable = ReverseSTiTable;
830 }
831
Owen Anderson1636de92007-09-07 04:06:50 +0000832 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
833 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
835
836 // NotTOS - The register which is not on the top of stack...
837 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
838
839 // Replace the old instruction with a new instruction
840 MBB->remove(I++);
841 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
842
843 // If both operands are killed, pop one off of the stack in addition to
844 // overwriting the other one.
845 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
846 assert(!updateST0 && "Should have updated other operand!");
847 popStackAfter(I); // Pop the top of stack
848 }
849
850 // Update stack information so that we know the destination register is now on
851 // the stack.
852 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
853 assert(UpdatedSlot < StackTop && Dest < 7);
854 Stack[UpdatedSlot] = Dest;
855 RegMap[Dest] = UpdatedSlot;
856 delete MI; // Remove the old instruction
857}
858
859/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
860/// register arguments and no explicit destinations.
861///
862void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
863 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
864 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
865 MachineInstr *MI = I;
866
Chris Lattner5b930372008-01-07 07:27:27 +0000867 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
869 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
870 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000871 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
872 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000873
874 // Make sure the first operand is on the top of stack, the other one can be
875 // anywhere.
876 moveToTop(Op0, I);
877
878 // Change from the pseudo instruction to the concrete instruction.
879 MI->getOperand(0).setReg(getSTReg(Op1));
880 MI->RemoveOperand(1);
Chris Lattner86bb02f2008-01-11 18:10:50 +0000881 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882
883 // If any of the operands are killed by this instruction, free them.
884 if (KillsOp0) freeStackSlotAfter(I, Op0);
885 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
886}
887
888/// handleCondMovFP - Handle two address conditional move instructions. These
889/// instructions move a st(i) register to st(0) iff a condition is true. These
890/// instructions require that the first operand is at the top of the stack, but
891/// otherwise don't modify the stack at all.
892void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
893 MachineInstr *MI = I;
894
895 unsigned Op0 = getFPReg(MI->getOperand(0));
896 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000897 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000898
899 // The first operand *must* be on the top of the stack.
900 moveToTop(Op0, I);
901
902 // Change the second operand to the stack register that the operand is in.
903 // Change from the pseudo instruction to the concrete instruction.
904 MI->RemoveOperand(0);
905 MI->RemoveOperand(1);
906 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner86bb02f2008-01-11 18:10:50 +0000907 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000908
909 // If we kill the second operand, make sure to pop it from the stack.
910 if (Op0 != Op1 && KillsOp1) {
911 // Get this value off of the register stack.
912 freeStackSlotAfter(I, Op1);
913 }
914}
915
916
917/// handleSpecialFP - Handle special instructions which behave unlike other
918/// floating point instructions. This is primarily intended for use by pseudo
919/// instructions.
920///
921void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
922 MachineInstr *MI = I;
923 switch (MI->getOpcode()) {
924 default: assert(0 && "Unknown SpecialFP instruction!");
Chris Lattner5d294e52008-03-09 07:05:32 +0000925 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
926 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
927 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 assert(StackTop == 0 && "Stack should be empty after a call!");
929 pushReg(getFPReg(MI->getOperand(0)));
930 break;
Chris Lattner5d294e52008-03-09 07:05:32 +0000931 case X86::FpGET_ST0_ST1:
Evan Cheng931a8f42008-01-29 19:34:22 +0000932 assert(StackTop == 0 && "Stack should be empty after a call!");
933 pushReg(getFPReg(MI->getOperand(0)));
934 pushReg(getFPReg(MI->getOperand(1)));
935 break;
Chris Lattneraaef8dc2008-03-09 07:08:44 +0000936 case X86::FpSET_ST0_32:
937 case X86::FpSET_ST0_64:
938 case X86::FpSET_ST0_80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 assert(StackTop == 1 && "Stack should have one element on it to return!");
940 --StackTop; // "Forget" we have something on the top of stack!
941 break;
942 case X86::MOV_Fp3232:
943 case X86::MOV_Fp3264:
944 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000945 case X86::MOV_Fp6464:
946 case X86::MOV_Fp3280:
947 case X86::MOV_Fp6480:
948 case X86::MOV_Fp8032:
949 case X86::MOV_Fp8064:
950 case X86::MOV_Fp8080: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951 unsigned SrcReg = getFPReg(MI->getOperand(1));
952 unsigned DestReg = getFPReg(MI->getOperand(0));
953
Evan Chengc7daf1f2008-03-05 00:59:57 +0000954 if (MI->killsRegister(X86::FP0+SrcReg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000955 // If the input operand is killed, we can just change the owner of the
956 // incoming stack slot into the result.
957 unsigned Slot = getSlot(SrcReg);
958 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
959 Stack[Slot] = DestReg;
960 RegMap[DestReg] = Slot;
961
962 } else {
963 // For FMOV we just duplicate the specified value to a new stack slot.
964 // This could be made better, but would require substantial changes.
965 duplicateToTop(SrcReg, DestReg, I);
966 }
Nick Lewycky052a31f2008-03-11 05:56:09 +0000967 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968 break;
Chris Lattnerb56cc342008-03-11 03:23:40 +0000969 case X86::RET:
970 case X86::RETI:
971 // If RET has an FP register use operand, pass the first one in ST(0) and
972 // the second one in ST(1).
973 if (isStackEmpty()) return; // Quick check to see if any are possible.
974
975 // Find the register operands.
976 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
977
978 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
979 MachineOperand &Op = MI->getOperand(i);
980 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
981 continue;
982 assert(Op.isUse() && Op.isKill() &&
983 "Ret only defs operands, and values aren't live beyond it");
984
985 if (FirstFPRegOp == ~0U)
986 FirstFPRegOp = getFPReg(Op);
987 else {
988 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
989 SecondFPRegOp = getFPReg(Op);
990 }
991
992 // Remove the operand so that later passes don't see it.
993 MI->RemoveOperand(i);
994 --i, --e;
995 }
996
997 // There are only four possibilities here:
998 // 1) we are returning a single FP value. In this case, it has to be in
999 // ST(0) already, so just declare success by removing the value from the
1000 // FP Stack.
1001 if (SecondFPRegOp == ~0U) {
1002 // Assert that the top of stack contains the right FP register.
1003 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1004 "Top of stack not the right register for RET!");
1005
1006 // Ok, everything is good, mark the value as not being on the stack
1007 // anymore so that our assertion about the stack being empty at end of
1008 // block doesn't fire.
1009 StackTop = 0;
1010 return;
1011 }
1012
1013 assert(0 && "TODO: This code should work, but has never been tested."
1014 "Test it when we have multiple FP return values working");
1015
1016 // Otherwise, we are returning two values:
1017 // 2) If returning the same value for both, we only have one thing in the FP
1018 // stack. Consider: RET FP1, FP1
1019 if (StackTop == 1) {
1020 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1021 "Stack misconfiguration for RET!");
1022
1023 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1024 // register to hold it.
1025 unsigned NewReg = (FirstFPRegOp+1)%7;
1026 duplicateToTop(FirstFPRegOp, NewReg, MI);
1027 FirstFPRegOp = NewReg;
1028 }
1029
1030 /// Okay we know we have two different FPx operands now:
1031 assert(StackTop == 2 && "Must have two values live!");
1032
1033 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1034 /// in ST(1). In this case, emit an fxch.
1035 if (getStackEntry(0) == SecondFPRegOp) {
1036 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1037 moveToTop(FirstFPRegOp, MI);
1038 }
1039
1040 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1041 /// ST(1). Just remove both from our understanding of the stack and return.
1042 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1043 assert(getStackEntry(0) == SecondFPRegOp && "Unknown regs live");
1044 StackTop = 0;
1045 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047
1048 I = MBB->erase(I); // Remove the pseudo instruction
1049 --I;
1050}