blob: 494da31cf5be6a91a4aa7caa5e9eb1ee57a40650 [file] [log] [blame]
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001//***************************************************************************
2// File:
3// InstrScheduling.cpp
4//
5// Purpose:
6//
7// History:
8// 7/23/01 - Vikram Adve - Created
9//***************************************************************************
10
Chris Lattner1ff63a12001-09-07 21:19:42 +000011#include "llvm/CodeGen/InstrScheduling.h"
12#include "llvm/CodeGen/SchedPriorities.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000013#include "llvm/Analysis/LiveVar/BBLiveVar.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000014#include "llvm/CodeGen/MachineInstr.h"
Chris Lattner1ff63a12001-09-07 21:19:42 +000015#include "llvm/Support/CommandLine.h"
16#include "llvm/Instruction.h"
17#include <hash_set>
18#include <algorithm>
19#include <iterator>
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000020
21cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
22 "enable instruction scheduling debugging information",
23 clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
24 clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
25 clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
26 clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
27
28
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000029class InstrSchedule;
30class SchedulingManager;
31class DelaySlotInfo;
32
33static void ForwardListSchedule (SchedulingManager& S);
34
35static void RecordSchedule (const BasicBlock* bb,
36 const SchedulingManager& S);
37
38static unsigned ChooseOneGroup (SchedulingManager& S);
39
40static void MarkSuccessorsReady (SchedulingManager& S,
41 const SchedGraphNode* node);
42
43static unsigned FindSlotChoices (SchedulingManager& S,
44 DelaySlotInfo*& getDelaySlotInfo);
45
46static void AssignInstructionsToSlots(class SchedulingManager& S,
47 unsigned maxIssue);
48
49static void ScheduleInstr (class SchedulingManager& S,
50 const SchedGraphNode* node,
51 unsigned int slotNum,
52 cycles_t curTime);
53
54static bool ViolatesMinimumGap (const SchedulingManager& S,
55 MachineOpCode opCode,
56 const cycles_t inCycle);
57
58static bool ConflictsWithChoices (const SchedulingManager& S,
59 MachineOpCode opCode);
60
61static void ChooseInstructionsForDelaySlots(SchedulingManager& S,
62 const BasicBlock* bb,
63 SchedGraph* graph);
64
65static bool NodeCanFillDelaySlot (const SchedulingManager& S,
66 const SchedGraphNode* node,
67 const SchedGraphNode* brNode,
68 bool nodeIsPredecessor);
69
70static void MarkNodeForDelaySlot (SchedulingManager& S,
71 SchedGraphNode* node,
72 const SchedGraphNode* brNode,
73 bool nodeIsPredecessor);
74
75//************************* Internal Data Types *****************************/
76
77
78//----------------------------------------------------------------------
79// class InstrGroup:
80//
81// Represents a group of instructions scheduled to be issued
82// in a single cycle.
83//----------------------------------------------------------------------
84
85class InstrGroup: public NonCopyable {
86public:
87 inline const SchedGraphNode* operator[](unsigned int slotNum) const {
88 assert(slotNum < group.size());
89 return group[slotNum];
90 }
91
92private:
93 friend class InstrSchedule;
94
95 inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
96 assert(slotNum < group.size());
97 group[slotNum] = node;
98 }
99
100 /*ctor*/ InstrGroup(unsigned int nslots)
101 : group(nslots, NULL) {}
102
103 /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
104
105private:
106 vector<const SchedGraphNode*> group;
107};
108
109
110//----------------------------------------------------------------------
111// class ScheduleIterator:
112//
113// Iterates over the machine instructions in the for a single basic block.
114// The schedule is represented by an InstrSchedule object.
115//----------------------------------------------------------------------
116
117template<class _NodeType>
118class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
119private:
120 unsigned cycleNum;
121 unsigned slotNum;
122 const InstrSchedule& S;
123public:
124 typedef ScheduleIterator<_NodeType> _Self;
125
126 /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
127 unsigned _cycleNum,
128 unsigned _slotNum)
129 : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
130 skipToNextInstr();
131 }
132
133 /*ctor*/ inline ScheduleIterator(const _Self& x)
134 : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
135
136 inline bool operator==(const _Self& x) const {
137 return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
138 }
139
140 inline bool operator!=(const _Self& x) const { return !operator==(x); }
141
142 inline _NodeType* operator*() const {
143 assert(cycleNum < S.groups.size());
144 return (*S.groups[cycleNum])[slotNum];
145 }
146 inline _NodeType* operator->() const { return operator*(); }
147
148 _Self& operator++(); // Preincrement
149 inline _Self operator++(int) { // Postincrement
150 _Self tmp(*this); ++*this; return tmp;
151 }
152
153 static _Self begin(const InstrSchedule& _schedule);
154 static _Self end( const InstrSchedule& _schedule);
155
156private:
157 inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
158 void skipToNextInstr();
159};
160
161
162//----------------------------------------------------------------------
163// class InstrSchedule:
164//
165// Represents the schedule of machine instructions for a single basic block.
166//----------------------------------------------------------------------
167
168class InstrSchedule: public NonCopyable {
169private:
170 const unsigned int nslots;
171 unsigned int numInstr;
172 vector<InstrGroup*> groups; // indexed by cycle number
173 vector<cycles_t> startTime; // indexed by node id
174
175public: // iterators
176 typedef ScheduleIterator<SchedGraphNode> iterator;
177 typedef ScheduleIterator<const SchedGraphNode> const_iterator;
178
179 iterator begin();
180 const_iterator begin() const;
181 iterator end();
182 const_iterator end() const;
183
184public: // constructors and destructor
185 /*ctor*/ InstrSchedule (unsigned int _nslots,
186 unsigned int _numNodes);
187 /*dtor*/ ~InstrSchedule ();
188
189public: // accessor functions to query chosen schedule
190 const SchedGraphNode* getInstr (unsigned int slotNum,
191 cycles_t c) const {
192 const InstrGroup* igroup = this->getIGroup(c);
193 return (igroup == NULL)? NULL : (*igroup)[slotNum];
194 }
195
196 inline InstrGroup* getIGroup (cycles_t c) {
197 if (c >= groups.size())
198 groups.resize(c+1);
199 if (groups[c] == NULL)
200 groups[c] = new InstrGroup(nslots);
201 return groups[c];
202 }
203
204 inline const InstrGroup* getIGroup (cycles_t c) const {
205 assert(c < groups.size());
206 return groups[c];
207 }
208
209 inline cycles_t getStartTime (unsigned int nodeId) const {
210 assert(nodeId < startTime.size());
211 return startTime[nodeId];
212 }
213
214 unsigned int getNumInstructions() const {
215 return numInstr;
216 }
217
218 inline void scheduleInstr (const SchedGraphNode* node,
219 unsigned int slotNum,
220 cycles_t cycle) {
221 InstrGroup* igroup = this->getIGroup(cycle);
222 assert((*igroup)[slotNum] == NULL && "Slot already filled?");
223 igroup->addInstr(node, slotNum);
224 assert(node->getNodeId() < startTime.size());
225 startTime[node->getNodeId()] = cycle;
226 ++numInstr;
227 }
228
229private:
230 friend class iterator;
231 friend class const_iterator;
232 /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
233};
234
235
236/*ctor*/
237InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
238 : nslots(_nslots),
239 numInstr(0),
240 groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
241 startTime(_numNodes, (cycles_t) -1) // set all to -1
242{
243}
244
245
246/*dtor*/
247InstrSchedule::~InstrSchedule()
248{
249 for (unsigned c=0, NC=groups.size(); c < NC; c++)
250 if (groups[c] != NULL)
251 delete groups[c]; // delete InstrGroup objects
252}
253
254
255template<class _NodeType>
256inline
257void
258ScheduleIterator<_NodeType>::skipToNextInstr()
259{
260 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
261 ++cycleNum; // skip cycles with no instructions
262
263 while (cycleNum < S.groups.size() &&
264 (*S.groups[cycleNum])[slotNum] == NULL)
265 {
266 ++slotNum;
267 if (slotNum == S.nslots)
268 {
269 ++cycleNum;
270 slotNum = 0;
271 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
272 ++cycleNum; // skip cycles with no instructions
273 }
274 }
275}
276
277template<class _NodeType>
278inline
279ScheduleIterator<_NodeType>&
280ScheduleIterator<_NodeType>::operator++() // Preincrement
281{
282 ++slotNum;
283 if (slotNum == S.nslots)
284 {
285 ++cycleNum;
286 slotNum = 0;
287 }
288 skipToNextInstr();
289 return *this;
290}
291
292template<class _NodeType>
293ScheduleIterator<_NodeType>
294ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
295{
296 return _Self(_schedule, 0, 0);
297}
298
299template<class _NodeType>
300ScheduleIterator<_NodeType>
301ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
302{
303 return _Self(_schedule, _schedule.groups.size(), 0);
304}
305
306InstrSchedule::iterator
307InstrSchedule::begin()
308{
309 return iterator::begin(*this);
310}
311
312InstrSchedule::const_iterator
313InstrSchedule::begin() const
314{
315 return const_iterator::begin(*this);
316}
317
318InstrSchedule::iterator
319InstrSchedule::end()
320{
321 return iterator::end(*this);
322}
323
324InstrSchedule::const_iterator
325InstrSchedule::end() const
326{
327 return const_iterator::end( *this);
328}
329
330
331//----------------------------------------------------------------------
332// class DelaySlotInfo:
333//
334// Record information about delay slots for a single branch instruction.
335// Delay slots are simply indexed by slot number 1 ... numDelaySlots
336//----------------------------------------------------------------------
337
338class DelaySlotInfo: public NonCopyable {
339private:
340 const SchedGraphNode* brNode;
341 unsigned int ndelays;
342 vector<const SchedGraphNode*> delayNodeVec;
343 cycles_t delayedNodeCycle;
344 unsigned int delayedNodeSlotNum;
345
346public:
347 /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
348 unsigned _ndelays)
349 : brNode(_brNode), ndelays(_ndelays),
350 delayedNodeCycle(0), delayedNodeSlotNum(0) {}
351
352 inline unsigned getNumDelays () {
353 return ndelays;
354 }
355
356 inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
357 return delayNodeVec;
358 }
359
360 inline void addDelayNode (const SchedGraphNode* node) {
361 delayNodeVec.push_back(node);
362 assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
363 }
364
365 inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
366 delayedNodeCycle = cycle;
367 delayedNodeSlotNum = slotNum;
368 }
369
370 void scheduleDelayedNode (SchedulingManager& S);
371};
372
373
374//----------------------------------------------------------------------
375// class SchedulingManager:
376//
377// Represents the schedule of machine instructions for a single basic block.
378//----------------------------------------------------------------------
379
380class SchedulingManager: public NonCopyable {
381public: // publicly accessible data members
382 const unsigned int nslots;
383 const MachineSchedInfo& schedInfo;
384 SchedPriorities& schedPrio;
385 InstrSchedule isched;
386
387private:
388 unsigned int totalInstrCount;
389 cycles_t curTime;
390 cycles_t nextEarliestIssueTime; // next cycle we can issue
391 vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
392 vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
393 vector<int> numInClass; // indexed by sched class
394 vector<cycles_t> nextEarliestStartTime; // indexed by opCode
395 hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
396 // indexed by branch node ptr
397
398public:
399 /*ctor*/ SchedulingManager (const TargetMachine& _target,
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000400 const MachineSchedInfo &schedinfo,
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000401 const SchedGraph* graph,
402 SchedPriorities& schedPrio);
403 /*dtor*/ ~SchedulingManager () {}
404
405 //----------------------------------------------------------------------
406 // Simplify access to the machine instruction info
407 //----------------------------------------------------------------------
408
409 inline const MachineInstrInfo& getInstrInfo () const {
410 return schedInfo.getInstrInfo();
411 }
412
413 //----------------------------------------------------------------------
414 // Interface for checking and updating the current time
415 //----------------------------------------------------------------------
416
417 inline cycles_t getTime () const {
418 return curTime;
419 }
420
421 inline cycles_t getEarliestIssueTime() const {
422 return nextEarliestIssueTime;
423 }
424
425 inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
426 assert(opCode < (int) nextEarliestStartTime.size());
427 return nextEarliestStartTime[opCode];
428 }
429
430 // Update current time to specified cycle
431 inline void updateTime (cycles_t c) {
432 curTime = c;
433 schedPrio.updateTime(c);
434 }
435
436 //----------------------------------------------------------------------
437 // Functions to manage the choices for the current cycle including:
438 // -- a vector of choices by priority (choiceVec)
439 // -- vectors of the choices for each instruction slot (choicesForSlot[])
440 // -- number of choices in each sched class, used to check issue conflicts
441 // between choices for a single cycle
442 //----------------------------------------------------------------------
443
444 inline unsigned int getNumChoices () const {
445 return choiceVec.size();
446 }
447
448 inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
449 assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
450 return numInClass[sc];
451 }
452
453 inline const SchedGraphNode* getChoice(unsigned int i) const {
454 // assert(i < choiceVec.size()); don't check here.
455 return choiceVec[i];
456 }
457
458 inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
459 assert(slotNum < nslots);
460 return choicesForSlot[slotNum];
461 }
462
463 inline void addChoice (const SchedGraphNode* node) {
464 // Append the instruction to the vector of choices for current cycle.
465 // Increment numInClass[c] for the sched class to which the instr belongs.
466 choiceVec.push_back(node);
Chris Lattner1ff63a12001-09-07 21:19:42 +0000467 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000468 assert(sc < (int) numInClass.size());
469 numInClass[sc]++;
470 }
471
472 inline void addChoiceToSlot (unsigned int slotNum,
473 const SchedGraphNode* node) {
474 // Add the instruction to the choice set for the specified slot
475 assert(slotNum < nslots);
476 choicesForSlot[slotNum].insert(node);
477 }
478
479 inline void resetChoices () {
480 choiceVec.clear();
481 for (unsigned int s=0; s < nslots; s++)
482 choicesForSlot[s].clear();
483 for (unsigned int c=0; c < numInClass.size(); c++)
484 numInClass[c] = 0;
485 }
486
487 //----------------------------------------------------------------------
488 // Code to query and manage the partial instruction schedule so far
489 //----------------------------------------------------------------------
490
491 inline unsigned int getNumScheduled () const {
492 return isched.getNumInstructions();
493 }
494
495 inline unsigned int getNumUnscheduled() const {
496 return totalInstrCount - isched.getNumInstructions();
497 }
498
499 inline bool isScheduled (const SchedGraphNode* node) const {
500 return (isched.getStartTime(node->getNodeId()) >= 0);
501 }
502
503 inline void scheduleInstr (const SchedGraphNode* node,
504 unsigned int slotNum,
505 cycles_t cycle)
506 {
507 assert(! isScheduled(node) && "Instruction already scheduled?");
508
509 // add the instruction to the schedule
510 isched.scheduleInstr(node, slotNum, cycle);
511
512 // update the earliest start times of all nodes that conflict with `node'
513 // and the next-earliest time anything can issue if `node' causes bubbles
514 updateEarliestStartTimes(node, cycle);
515
516 // remove the instruction from the choice sets for all slots
517 for (unsigned s=0; s < nslots; s++)
518 choicesForSlot[s].erase(node);
519
520 // and decrement the instr count for the sched class to which it belongs
Chris Lattner1ff63a12001-09-07 21:19:42 +0000521 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000522 assert(sc < (int) numInClass.size());
523 numInClass[sc]--;
524 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000525
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000526 //----------------------------------------------------------------------
527 // Create and retrieve delay slot info for delayed instructions
528 //----------------------------------------------------------------------
529
530 inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
531 bool createIfMissing=false)
532 {
533 DelaySlotInfo* dinfo;
534 hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator
535 I = delaySlotInfoForBranches.find(bn);
536 if (I == delaySlotInfoForBranches.end())
537 {
538 if (createIfMissing)
539 {
540 dinfo = new DelaySlotInfo(bn,
Chris Lattner1ff63a12001-09-07 21:19:42 +0000541 getInstrInfo().getNumDelaySlots(bn->getMachineInstr()->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000542 delaySlotInfoForBranches[bn] = dinfo;
543 }
544 else
545 dinfo = NULL;
546 }
547 else
548 dinfo = (*I).second;
549
550 return dinfo;
551 }
552
553private:
554 /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT.
555 void updateEarliestStartTimes(const SchedGraphNode* node,
556 cycles_t schedTime);
557};
558
559
560/*ctor*/
561SchedulingManager::SchedulingManager(const TargetMachine& target,
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000562 const MachineSchedInfo &schedinfo,
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000563 const SchedGraph* graph,
564 SchedPriorities& _schedPrio)
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000565 : nslots(schedinfo.getMaxNumIssueTotal()),
566 schedInfo(schedinfo),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000567 schedPrio(_schedPrio),
568 isched(nslots, graph->getNumNodes()),
569 totalInstrCount(graph->getNumNodes() - 2),
570 nextEarliestIssueTime(0),
571 choicesForSlot(nslots),
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000572 numInClass(schedinfo.getNumSchedClasses(), 0), // set all to 0
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000573 nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
574 (cycles_t) 0) // set all to 0
575{
576 updateTime(0);
577
578 // Note that an upper bound on #choices for each slot is = nslots since
579 // we use this vector to hold a feasible set of instructions, and more
580 // would be infeasible. Reserve that much memory since it is probably small.
581 for (unsigned int i=0; i < nslots; i++)
582 choicesForSlot[i].resize(nslots);
583}
584
585
586void
587SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
588 cycles_t schedTime)
589{
Chris Lattner1ff63a12001-09-07 21:19:42 +0000590 if (schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000591 { // Update next earliest time before which *nothing* can issue.
592 nextEarliestIssueTime = max(nextEarliestIssueTime,
Chris Lattner1ff63a12001-09-07 21:19:42 +0000593 curTime + 1 + schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000594 }
595
596 const vector<MachineOpCode>*
Chris Lattner1ff63a12001-09-07 21:19:42 +0000597 conflictVec = schedInfo.getConflictList(node->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000598
599 if (conflictVec != NULL)
600 for (unsigned i=0; i < conflictVec->size(); i++)
601 {
602 MachineOpCode toOp = (*conflictVec)[i];
Chris Lattner1ff63a12001-09-07 21:19:42 +0000603 cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getMachineInstr()->getOpCode(),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000604 toOp);
605 assert(toOp < (int) nextEarliestStartTime.size());
606 if (nextEarliestStartTime[toOp] < est)
607 nextEarliestStartTime[toOp] = est;
608 }
609}
610
611//************************* External Functions *****************************/
612
613
614//---------------------------------------------------------------------------
615// Function: ScheduleInstructionsWithSSA
616//
617// Purpose:
618// Entry point for instruction scheduling on SSA form.
619// Schedules the machine instructions generated by instruction selection.
620// Assumes that register allocation has not been done, i.e., operands
621// are still in SSA form.
622//---------------------------------------------------------------------------
623
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000624bool ScheduleInstructionsWithSSA(Method* method, const TargetMachine &target,
625 const MachineSchedInfo &schedInfo) {
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000626 SchedGraphSet graphSet(method, target);
627
628 if (SchedDebugLevel >= Sched_PrintSchedGraphs)
629 {
630 cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING"
631 << endl;
632 graphSet.dump();
633 }
634
635 for (SchedGraphSet::const_iterator GI=graphSet.begin();
636 GI != graphSet.end(); ++GI)
637 {
638 SchedGraph* graph = (*GI).second;
639 const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks();
640 assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
641 const BasicBlock* bb = bbvec[0];
642
643 if (SchedDebugLevel >= Sched_PrintSchedTrace)
644 cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
645
646 SchedPriorities schedPrio(method, graph); // expensive!
Chris Lattnerf6e0e282001-09-14 04:32:55 +0000647 SchedulingManager S(target, schedInfo, graph, schedPrio);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000648
649 ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
650
651 ForwardListSchedule(S); // computes schedule in S
652
653 RecordSchedule((*GI).first, S); // records schedule in BB
654 }
655
656 if (SchedDebugLevel >= Sched_PrintMachineCode)
657 {
658 cout << endl
659 << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl;
660 PrintMachineInstructions(method);
661 }
662
663 return false; // no reason to fail yet
664}
665
666
667// Check minimum gap requirements relative to instructions scheduled in
668// previous cycles.
669// Note that we do not need to consider `nextEarliestIssueTime' here because
670// that is also captured in the earliest start times for each opcode.
671//
672static inline bool
673ViolatesMinimumGap(const SchedulingManager& S,
674 MachineOpCode opCode,
675 const cycles_t inCycle)
676{
677 return (inCycle < S.getEarliestStartTimeForOp(opCode));
678}
679
680
681// Check if the instruction would conflict with instructions already
682// chosen for the current cycle
683//
684static inline bool
685ConflictsWithChoices(const SchedulingManager& S,
686 MachineOpCode opCode)
687{
688 // Check if the instruction must issue by itself, and some feasible
689 // choices have already been made for this cycle
690 if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
691 return true;
692
693 // For each class that opCode belongs to, check if there are too many
694 // instructions of that class.
695 //
696 const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
697 return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
698}
699
700
701// Check if any issue restrictions would prevent the instruction from
702// being issued in the current cycle
703//
704bool
705instrIsFeasible(const SchedulingManager& S,
706 MachineOpCode opCode)
707{
708 // skip the instruction if it cannot be issued due to issue restrictions
709 // caused by previously issued instructions
710 if (ViolatesMinimumGap(S, opCode, S.getTime()))
711 return false;
712
713 // skip the instruction if it cannot be issued due to issue restrictions
714 // caused by previously chosen instructions for the current cycle
715 if (ConflictsWithChoices(S, opCode))
716 return false;
717
718 return true;
719}
720
721//************************* Internal Functions *****************************/
722
723
724static void
725ForwardListSchedule(SchedulingManager& S)
726{
727 unsigned N;
728 const SchedGraphNode* node;
729
730 S.schedPrio.initialize();
731
732 while ((N = S.schedPrio.getNumReady()) > 0)
733 {
734 // Choose one group of instructions for a cycle. This will
735 // advance S.getTime() to the first cycle instructions can be issued.
736 // It may also schedule delay slot instructions in later cycles,
737 // but those are ignored here because they are outside the graph.
738 //
739 unsigned numIssued = ChooseOneGroup(S);
740 assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
741
742 // Notify the priority manager of scheduled instructions and mark
743 // any successors that may now be ready
744 //
745 const InstrGroup* igroup = S.isched.getIGroup(S.getTime());
746 for (unsigned int s=0; s < S.nslots; s++)
747 if ((node = (*igroup)[s]) != NULL)
748 {
749 S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
750 MarkSuccessorsReady(S, node);
751 }
752
753 // Move to the next the next earliest cycle for which
754 // an instruction can be issued, or the next earliest in which
755 // one will be ready, or to the next cycle, whichever is latest.
756 //
757 S.updateTime(max(S.getTime() + 1,
758 max(S.getEarliestIssueTime(),
759 S.schedPrio.getEarliestReadyTime())));
760 }
761}
762
763
764//
765// For now, just assume we are scheduling within a single basic block.
766// Get the machine instruction vector for the basic block and clear it,
767// then append instructions in scheduled order.
768// Also, re-insert the dummy PHI instructions that were at the beginning
769// of the basic block, since they are not part of the schedule.
770//
771static void
772RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
773{
774 if (S.isched.getNumInstructions() == 0)
775 return; // empty basic block!
776
777 MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
778 unsigned int oldSize = mvec.size();
779
780 // First find the dummy instructions at the start of the basic block
781 const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
782 MachineCodeForBasicBlock::iterator I = mvec.begin();
783 for ( ; I != mvec.end(); ++I)
784 if (! mii.isDummyPhiInstr((*I)->getOpCode()))
785 break;
786
787 // Erase all except the dummy PHI instructions from mvec, and
788 // pre-allocate create space for the ones we will be put back in.
789 mvec.erase(I, mvec.end());
790 mvec.reserve(mvec.size() + S.isched.getNumInstructions());
791
792 InstrSchedule::const_iterator NIend = S.isched.end();
793 for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
Chris Lattner2e530932001-09-09 19:41:52 +0000794 mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000795}
796
797
798static unsigned
799ChooseOneGroup(SchedulingManager& S)
800{
801 assert(S.schedPrio.getNumReady() > 0
802 && "Don't get here without ready instructions.");
803
804 DelaySlotInfo* getDelaySlotInfo;
805
806 // Choose up to `nslots' feasible instructions and their possible slots.
807 unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
808
809 while (numIssued == 0)
810 {
811 S.updateTime(S.getTime()+1);
812 numIssued = FindSlotChoices(S, getDelaySlotInfo);
813 }
814
815 AssignInstructionsToSlots(S, numIssued);
816
817 if (getDelaySlotInfo != NULL)
818 getDelaySlotInfo->scheduleDelayedNode(S);
819
820 // Print trace of scheduled instructions before newly ready ones
821 if (SchedDebugLevel >= Sched_PrintSchedTrace)
822 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000823 cout << " Cycle " << S.getTime() << " : Scheduled instructions:\n";
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000824 const InstrGroup* igroup = S.isched.getIGroup(S.getTime());
825 for (unsigned int s=0; s < S.nslots; s++)
826 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000827 cout << " ";
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000828 if ((*igroup)[s] != NULL)
829 cout << * ((*igroup)[s])->getMachineInstr() << endl;
830 else
831 cout << "<none>" << endl;
832 }
833 }
834
835 return numIssued;
836}
837
838
839static void
840MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
841{
842 // Check if any successors are now ready that were not already marked
843 // ready before, and that have not yet been scheduled.
844 //
845 for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
846 if (! (*SI)->isDummyNode()
847 && ! S.isScheduled(*SI)
848 && ! S.schedPrio.nodeIsReady(*SI))
849 {// successor not scheduled and not marked ready; check *its* preds.
850
851 bool succIsReady = true;
852 for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
853 if (! (*P)->isDummyNode()
854 && ! S.isScheduled(*P))
855 {
856 succIsReady = false;
857 break;
858 }
859
860 if (succIsReady) // add the successor to the ready list
861 S.schedPrio.insertReady(*SI);
862 }
863}
864
865
866// Choose up to `nslots' FEASIBLE instructions and assign each
867// instruction to all possible slots that do not violate feasibility.
868// FEASIBLE means it should be guaranteed that the set
869// of chosen instructions can be issued in a single group.
870//
871// Return value:
872// maxIssue : total number of feasible instructions
873// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
874//
875static unsigned
876FindSlotChoices(SchedulingManager& S,
877 DelaySlotInfo*& getDelaySlotInfo)
878{
879 // initialize result vectors to empty
880 S.resetChoices();
881
882 // find the slot to start from, in the current cycle
883 unsigned int startSlot = 0;
884 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
885 for (int s = S.nslots - 1; s >= 0; s--)
886 if ((*igroup)[s] != NULL)
887 {
888 startSlot = s+1;
889 break;
890 }
891
892 // Make sure we pick at most one instruction that would break the group.
893 // Also, if we do pick one, remember which it was.
894 unsigned int indexForBreakingNode = S.nslots;
895 unsigned int indexForDelayedInstr = S.nslots;
896 DelaySlotInfo* delaySlotInfo = NULL;
897
898 getDelaySlotInfo = NULL;
899
900 // Choose instructions in order of priority.
901 // Add choices to the choice vector in the SchedulingManager class as
902 // we choose them so that subsequent choices will be correctly tested
903 // for feasibility, w.r.t. higher priority choices for the same cycle.
904 //
905 while (S.getNumChoices() < S.nslots - startSlot)
906 {
907 const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
908 if (nextNode == NULL)
909 break; // no more instructions for this cycle
910
Chris Lattner1ff63a12001-09-07 21:19:42 +0000911 if (S.getInstrInfo().getNumDelaySlots(nextNode->getMachineInstr()->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000912 {
913 delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
914 if (delaySlotInfo != NULL)
915 {
916 if (indexForBreakingNode < S.nslots)
917 // cannot issue a delayed instr in the same cycle as one
918 // that breaks the issue group or as another delayed instr
919 nextNode = NULL;
920 else
921 indexForDelayedInstr = S.getNumChoices();
922 }
923 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000924 else if (S.schedInfo.breaksIssueGroup(nextNode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000925 {
926 if (indexForBreakingNode < S.nslots)
927 // have a breaking instruction already so throw this one away
928 nextNode = NULL;
929 else
930 indexForBreakingNode = S.getNumChoices();
931 }
932
933 if (nextNode != NULL)
934 S.addChoice(nextNode);
935
Chris Lattner1ff63a12001-09-07 21:19:42 +0000936 if (S.schedInfo.isSingleIssue(nextNode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000937 {
938 assert(S.getNumChoices() == 1 &&
939 "Prioritizer returned invalid instr for this cycle!");
940 break;
941 }
942
943 if (indexForDelayedInstr < S.nslots)
944 break; // leave the rest for delay slots
945 }
946
947 assert(S.getNumChoices() <= S.nslots);
948 assert(! (indexForDelayedInstr < S.nslots &&
949 indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
950
951 // Assign each chosen instruction to all possible slots for that instr.
952 // But if only one instruction was chosen, put it only in the first
953 // feasible slot; no more analysis will be needed.
954 //
955 if (indexForDelayedInstr >= S.nslots &&
956 indexForBreakingNode >= S.nslots)
957 { // No instructions that break the issue group or that have delay slots.
958 // This is the common case, so handle it separately for efficiency.
959
960 if (S.getNumChoices() == 1)
961 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000962 MachineOpCode opCode = S.getChoice(0)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000963 unsigned int s;
964 for (s=startSlot; s < S.nslots; s++)
965 if (S.schedInfo.instrCanUseSlot(opCode, s))
966 break;
967 assert(s < S.nslots && "No feasible slot for this opCode?");
968 S.addChoiceToSlot(s, S.getChoice(0));
969 }
970 else
971 {
972 for (unsigned i=0; i < S.getNumChoices(); i++)
973 {
Chris Lattner1ff63a12001-09-07 21:19:42 +0000974 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000975 for (unsigned int s=startSlot; s < S.nslots; s++)
976 if (S.schedInfo.instrCanUseSlot(opCode, s))
977 S.addChoiceToSlot(s, S.getChoice(i));
978 }
979 }
980 }
981 else if (indexForDelayedInstr < S.nslots)
982 {
983 // There is an instruction that needs delay slots.
984 // Try to assign that instruction to a higher slot than any other
985 // instructions in the group, so that its delay slots can go
986 // right after it.
987 //
988
989 assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
990 "Instruction with delay slots should be last choice!");
991 assert(delaySlotInfo != NULL && "No delay slot info for instr?");
992
993 const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
Chris Lattner1ff63a12001-09-07 21:19:42 +0000994 MachineOpCode delayOpCode = delayedNode->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000995 unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
996
997 unsigned delayedNodeSlot = S.nslots;
998 int highestSlotUsed;
999
1000 // Find the last possible slot for the delayed instruction that leaves
1001 // at least `d' slots vacant after it (d = #delay slots)
1002 for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
1003 if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
1004 {
1005 delayedNodeSlot = s;
1006 break;
1007 }
1008
1009 highestSlotUsed = -1;
1010 for (unsigned i=0; i < S.getNumChoices() - 1; i++)
1011 {
1012 // Try to assign every other instruction to a lower numbered
1013 // slot than delayedNodeSlot.
Chris Lattner1ff63a12001-09-07 21:19:42 +00001014 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001015 bool noSlotFound = true;
1016 unsigned int s;
1017 for (s=startSlot; s < delayedNodeSlot; s++)
1018 if (S.schedInfo.instrCanUseSlot(opCode, s))
1019 {
1020 S.addChoiceToSlot(s, S.getChoice(i));
1021 noSlotFound = false;
1022 }
1023
1024 // No slot before `delayedNodeSlot' was found for this opCode
1025 // Use a later slot, and allow some delay slots to fall in
1026 // the next cycle.
1027 if (noSlotFound)
1028 for ( ; s < S.nslots; s++)
1029 if (S.schedInfo.instrCanUseSlot(opCode, s))
1030 {
1031 S.addChoiceToSlot(s, S.getChoice(i));
1032 break;
1033 }
1034
1035 assert(s < S.nslots && "No feasible slot for instruction?");
1036
1037 highestSlotUsed = max(highestSlotUsed, (int) s);
1038 }
1039
1040 assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
1041
1042 // We will put the delayed node in the first slot after the
1043 // highest slot used. But we just mark that for now, and
1044 // schedule it separately because we want to schedule the delay
1045 // slots for the node at the same time.
1046 cycles_t dcycle = S.getTime();
1047 unsigned int dslot = highestSlotUsed + 1;
1048 if (dslot == S.nslots)
1049 {
1050 dslot = 0;
1051 ++dcycle;
1052 }
1053 delaySlotInfo->recordChosenSlot(dcycle, dslot);
1054 getDelaySlotInfo = delaySlotInfo;
1055 }
1056 else
1057 { // There is an instruction that breaks the issue group.
1058 // For such an instruction, assign to the last possible slot in
1059 // the current group, and then don't assign any other instructions
1060 // to later slots.
1061 assert(indexForBreakingNode < S.nslots);
1062 const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
1063 unsigned breakingSlot = INT_MAX;
1064 unsigned int nslotsToUse = S.nslots;
1065
1066 // Find the last possible slot for this instruction.
1067 for (int s = S.nslots-1; s >= (int) startSlot; s--)
Chris Lattner1ff63a12001-09-07 21:19:42 +00001068 if (S.schedInfo.instrCanUseSlot(breakingNode->getMachineInstr()->getOpCode(), s))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001069 {
1070 breakingSlot = s;
1071 break;
1072 }
1073 assert(breakingSlot < S.nslots &&
1074 "No feasible slot for `breakingNode'?");
1075
1076 // Higher priority instructions than the one that breaks the group:
1077 // These can be assigned to all slots, but will be assigned only
1078 // to earlier slots if possible.
1079 for (unsigned i=0;
1080 i < S.getNumChoices() && i < indexForBreakingNode; i++)
1081 {
Chris Lattner1ff63a12001-09-07 21:19:42 +00001082 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001083
1084 // If a higher priority instruction cannot be assigned to
1085 // any earlier slots, don't schedule the breaking instruction.
1086 //
1087 bool foundLowerSlot = false;
1088 nslotsToUse = S.nslots; // May be modified in the loop
1089 for (unsigned int s=startSlot; s < nslotsToUse; s++)
1090 if (S.schedInfo.instrCanUseSlot(opCode, s))
1091 {
1092 if (breakingSlot < S.nslots && s < breakingSlot)
1093 {
1094 foundLowerSlot = true;
1095 nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
1096 }
1097
1098 S.addChoiceToSlot(s, S.getChoice(i));
1099 }
1100
1101 if (!foundLowerSlot)
1102 breakingSlot = INT_MAX; // disable breaking instr
1103 }
1104
1105 // Assign the breaking instruction (if any) to a single slot
1106 // Otherwise, just ignore the instruction. It will simply be
1107 // scheduled in a later cycle.
1108 if (breakingSlot < S.nslots)
1109 {
1110 S.addChoiceToSlot(breakingSlot, breakingNode);
1111 nslotsToUse = breakingSlot;
1112 }
1113 else
1114 nslotsToUse = S.nslots;
1115
1116 // For lower priority instructions than the one that breaks the
1117 // group, only assign them to slots lower than the breaking slot.
1118 // Otherwise, just ignore the instruction.
1119 for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
1120 {
1121 bool foundLowerSlot = false;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001122 MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001123 for (unsigned int s=startSlot; s < nslotsToUse; s++)
1124 if (S.schedInfo.instrCanUseSlot(opCode, s))
1125 S.addChoiceToSlot(s, S.getChoice(i));
1126 }
1127 } // endif (no delay slots and no breaking slots)
1128
1129 return S.getNumChoices();
1130}
1131
1132
1133static void
1134AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
1135{
1136 // find the slot to start from, in the current cycle
1137 unsigned int startSlot = 0;
1138 cycles_t curTime = S.getTime();
1139
1140 assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
1141
1142 // If only one instruction can be issued, do so.
1143 if (maxIssue == 1)
1144 for (unsigned s=startSlot; s < S.nslots; s++)
1145 if (S.getChoicesForSlot(s).size() > 0)
1146 {// found the one instruction
1147 S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
1148 return;
1149 }
1150
1151 // Otherwise, choose from the choices for each slot
1152 //
1153 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
1154 assert(igroup != NULL && "Group creation failed?");
1155
1156 // Find a slot that has only a single choice, and take it.
1157 // If all slots have 0 or multiple choices, pick the first slot with
1158 // choices and use its last instruction (just to avoid shifting the vector).
1159 unsigned numIssued;
1160 for (numIssued = 0; numIssued < maxIssue; numIssued++)
1161 {
1162 int chosenSlot = -1, chosenNodeIndex = -1;
1163 for (unsigned s=startSlot; s < S.nslots; s++)
1164 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
1165 {
1166 chosenSlot = (int) s;
1167 break;
1168 }
1169
1170 if (chosenSlot == -1)
1171 for (unsigned s=startSlot; s < S.nslots; s++)
1172 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
1173 {
1174 chosenSlot = (int) s;
1175 break;
1176 }
1177
1178 if (chosenSlot != -1)
1179 { // Insert the chosen instr in the chosen slot and
1180 // erase it from all slots.
1181 const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
1182 S.scheduleInstr(node, chosenSlot, curTime);
1183 }
1184 }
1185
1186 assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
1187}
1188
1189
1190
1191//---------------------------------------------------------------------
1192// Code for filling delay slots for delayed terminator instructions
1193// (e.g., BRANCH and RETURN). Delay slots for non-terminator
1194// instructions (e.g., CALL) are not handled here because they almost
1195// always can be filled with instructions from the call sequence code
1196// before a call. That's preferable because we incur many tradeoffs here
1197// when we cannot find single-cycle instructions that can be reordered.
1198//----------------------------------------------------------------------
1199
1200static void
1201ChooseInstructionsForDelaySlots(SchedulingManager& S,
1202 const BasicBlock* bb,
1203 SchedGraph* graph)
1204{
1205 // Look for instructions that can be used for delay slots.
1206 // Remove them from the graph, and mark them to be used for delay slots.
1207 const MachineInstrInfo& mii = S.getInstrInfo();
1208 const TerminatorInst* term = bb->getTerminator();
1209 MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
1210
1211 // Find the first branch instr in the sequence of machine instrs for term
1212 //
1213 unsigned first = 0;
1214 while (! mii.isBranch(termMvec[first]->getOpCode()))
1215 ++first;
1216 assert(first < termMvec.size() &&
1217 "No branch instructions for BR? Ok, but weird! Delete assertion.");
1218 if (first == termMvec.size())
1219 return;
1220
1221 SchedGraphNode* brNode = graph->getGraphNodeForInstr(termMvec[first]);
Chris Lattner1ff63a12001-09-07 21:19:42 +00001222 assert(! mii.isCall(brNode->getMachineInstr()->getOpCode()) && "Call used as terminator?");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001223
Chris Lattner1ff63a12001-09-07 21:19:42 +00001224 unsigned ndelays = mii.getNumDelaySlots(brNode->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001225 if (ndelays == 0)
1226 return;
1227
1228 // Use vectors to remember the nodes chosen for delay slots, and the
1229 // NOPs that will be unused. We cannot remove them from the graph while
1230 // walking through the preds and succs of the brNode here, so we
1231 // remember the nodes in the vectors and remove them later.
1232 // We use separate vectors for the single-cycle and multi-cycle nodes,
1233 // so that we can give preference to single-cycle nodes.
1234 //
1235 vector<SchedGraphNode*> sdelayNodeVec;
1236 vector<SchedGraphNode*> mdelayNodeVec;
1237 vector<SchedGraphNode*> nopNodeVec;
1238 unsigned numUseful = 0;
1239
1240 sdelayNodeVec.reserve(ndelays);
1241
1242 for (sg_pred_iterator P = pred_begin(brNode);
1243 P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
1244 if (! (*P)->isDummyNode() &&
Chris Lattner1ff63a12001-09-07 21:19:42 +00001245 ! mii.isNop((*P)->getMachineInstr()->getOpCode()) &&
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001246 NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
1247 {
1248 ++numUseful;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001249 if (mii.maxLatency((*P)->getMachineInstr()->getOpCode()) > 1)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001250 mdelayNodeVec.push_back(*P);
1251 else
1252 sdelayNodeVec.push_back(*P);
1253 }
1254
1255 // If not enough single-cycle instructions were found, select the
1256 // lowest-latency multi-cycle instructions and use them.
1257 // Note that this is the most efficient code when only 1 (or even 2)
1258 // values need to be selected.
1259 //
1260 while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
1261 {
1262 unsigned latency;
Chris Lattner1ff63a12001-09-07 21:19:42 +00001263 unsigned minLatency = mii.maxLatency(mdelayNodeVec[0]->getMachineInstr()->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001264 unsigned minIndex = 0;
1265 for (unsigned i=1; i < mdelayNodeVec.size(); i++)
1266 if (minLatency >=
Chris Lattner1ff63a12001-09-07 21:19:42 +00001267 (latency = mii.maxLatency(mdelayNodeVec[i]->getMachineInstr()->getOpCode())))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001268 {
1269 minLatency = latency;
1270 minIndex = i;
1271 }
1272 sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
1273 if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
1274 mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
1275 }
1276
1277 // Now, remove the NOPs currently in delay slots from the graph.
1278 // If not enough useful instructions were found, use the NOPs to
1279 // fill delay slots, otherwise, just discard them.
1280 for (sg_succ_iterator I=succ_begin(brNode); I != succ_end(brNode); ++I)
1281 if (! (*I)->isDummyNode()
Chris Lattner1ff63a12001-09-07 21:19:42 +00001282 && mii.isNop((*I)->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001283 {
1284 if (sdelayNodeVec.size() < ndelays)
1285 sdelayNodeVec.push_back(*I);
1286 else
1287 nopNodeVec.push_back(*I);
1288 }
1289
1290 // Mark the nodes chosen for delay slots. This removes them from the graph.
1291 for (unsigned i=0; i < sdelayNodeVec.size(); i++)
1292 MarkNodeForDelaySlot(S, sdelayNodeVec[i], brNode, true);
1293
1294 // And remove the unused NOPs the graph.
1295 for (unsigned i=0; i < nopNodeVec.size(); i++)
1296 nopNodeVec[i]->eraseAllEdges();
1297}
1298
1299
1300bool
1301NodeCanFillDelaySlot(const SchedulingManager& S,
1302 const SchedGraphNode* node,
1303 const SchedGraphNode* brNode,
1304 bool nodeIsPredecessor)
1305{
1306 assert(! node->isDummyNode());
1307
1308 // don't put a branch in the delay slot of another branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001309 if (S.getInstrInfo().isBranch(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001310 return false;
1311
1312 // don't put a single-issue instruction in the delay slot of a branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001313 if (S.schedInfo.isSingleIssue(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001314 return false;
1315
1316 // don't put a load-use dependence in the delay slot of a branch
1317 const MachineInstrInfo& mii = S.getInstrInfo();
1318
1319 for (SchedGraphNode::const_iterator EI = node->beginInEdges();
1320 EI != node->endInEdges(); ++EI)
1321 if (! (*EI)->getSrc()->isDummyNode()
Chris Lattner1ff63a12001-09-07 21:19:42 +00001322 && mii.isLoad((*EI)->getSrc()->getMachineInstr()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001323 && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
1324 return false;
1325
1326 // for now, don't put an instruction that does not have operand
1327 // interlocks in the delay slot of a branch
Chris Lattner1ff63a12001-09-07 21:19:42 +00001328 if (! S.getInstrInfo().hasOperandInterlock(node->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001329 return false;
1330
1331 // Finally, if the instruction preceeds the branch, we make sure the
1332 // instruction can be reordered relative to the branch. We simply check
1333 // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
1334 //
1335 if (nodeIsPredecessor)
1336 {
1337 bool onlyCDEdgeToBranch = true;
1338 for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
1339 OEI != node->endOutEdges(); ++OEI)
1340 if (! (*OEI)->getSink()->isDummyNode()
1341 && ((*OEI)->getSink() != brNode
1342 || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
1343 {
1344 onlyCDEdgeToBranch = false;
1345 break;
1346 }
1347
1348 if (!onlyCDEdgeToBranch)
1349 return false;
1350 }
1351
1352 return true;
1353}
1354
1355
1356void
1357MarkNodeForDelaySlot(SchedulingManager& S,
1358 SchedGraphNode* node,
1359 const SchedGraphNode* brNode,
1360 bool nodeIsPredecessor)
1361{
1362 if (nodeIsPredecessor)
1363 { // If node is in the same basic block (i.e., preceeds brNode),
1364 // remove it and all its incident edges from the graph.
1365 node->eraseAllEdges();
1366 }
1367 else
1368 { // If the node was from a target block, add the node to the graph
1369 // and add a CD edge from brNode to node.
1370 assert(0 && "NOT IMPLEMENTED YET");
1371 }
1372
1373 DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
1374 dinfo->addDelayNode(node);
1375}
1376
1377
1378//
1379// Schedule the delayed branch and its delay slots
1380//
1381void
1382DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
1383{
1384 assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
1385 assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
1386 && "Slot for branch should be empty");
1387
1388 unsigned int nextSlot = delayedNodeSlotNum;
1389 cycles_t nextTime = delayedNodeCycle;
1390
1391 S.scheduleInstr(brNode, nextSlot, nextTime);
1392
1393 for (unsigned d=0; d < ndelays; d++)
1394 {
1395 ++nextSlot;
1396 if (nextSlot == S.nslots)
1397 {
1398 nextSlot = 0;
1399 nextTime++;
1400 }
1401
1402 // Find the first feasible instruction for this delay slot
1403 // Note that we only check for issue restrictions here.
1404 // We do *not* check for flow dependences but rely on pipeline
1405 // interlocks to resolve them. Machines without interlocks
1406 // will require this code to be modified.
1407 for (unsigned i=0; i < delayNodeVec.size(); i++)
1408 {
1409 const SchedGraphNode* dnode = delayNodeVec[i];
1410 if ( ! S.isScheduled(dnode)
Chris Lattner1ff63a12001-09-07 21:19:42 +00001411 && S.schedInfo.instrCanUseSlot(dnode->getMachineInstr()->getOpCode(), nextSlot)
1412 && instrIsFeasible(S, dnode->getMachineInstr()->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001413 {
Chris Lattner1ff63a12001-09-07 21:19:42 +00001414 assert(S.getInstrInfo().hasOperandInterlock(dnode->getMachineInstr()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001415 && "Instructions without interlocks not yet supported "
1416 "when filling branch delay slots");
1417 S.scheduleInstr(dnode, nextSlot, nextTime);
1418 break;
1419 }
1420 }
1421 }
1422
1423 // Update current time if delay slots overflowed into later cycles.
1424 // Do this here because we know exactly which cycle is the last cycle
1425 // that contains delay slots. The next loop doesn't compute that.
1426 if (nextTime > S.getTime())
1427 S.updateTime(nextTime);
1428
1429 // Now put any remaining instructions in the unfilled delay slots.
1430 // This could lead to suboptimal performance but needed for correctness.
1431 nextSlot = delayedNodeSlotNum;
1432 nextTime = delayedNodeCycle;
1433 for (unsigned i=0; i < delayNodeVec.size(); i++)
1434 if (! S.isScheduled(delayNodeVec[i]))
1435 {
1436 do { // find the next empty slot
1437 ++nextSlot;
1438 if (nextSlot == S.nslots)
1439 {
1440 nextSlot = 0;
1441 nextTime++;
1442 }
1443 } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
1444
1445 S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
1446 break;
1447 }
1448}
1449