blob: 37c415f6cc4aa3b87df9ed0caf2c8f2061ddf216 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal
11// representation of machine-dependent LLVM code to Intel-format
12// assembly language. This printer is the output mechanism used
13// by `llc' and `lli -print-machineinstrs' on X86.
14//
15//===----------------------------------------------------------------------===//
16
Misha Brukman05794492004-06-24 17:31:42 +000017#define DEBUG_TYPE "asmprinter"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "PowerPC.h"
19#include "PowerPCInstrInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/Assembly/Writer.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukman05794492004-06-24 17:31:42 +000025#include "llvm/CodeGen/MachineFunctionPass.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000026#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Support/Mangler.h"
Misha Brukman05794492004-06-24 17:31:42 +000029#include "Support/CommandLine.h"
30#include "Support/Debug.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031#include "Support/Statistic.h"
32#include "Support/StringExtras.h"
Misha Brukman05794492004-06-24 17:31:42 +000033#include <set>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000034
35namespace llvm {
36
37namespace {
38 Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
39
40 struct Printer : public MachineFunctionPass {
41 /// Output stream on which we're printing assembly code.
42 ///
43 std::ostream &O;
44
45 /// Target machine description which we query for reg. names, data
46 /// layout, etc.
47 ///
48 TargetMachine &TM;
49
50 /// Name-mangler for global names.
51 ///
52 Mangler *Mang;
53 std::set< std::string > Stubs;
54 std::set<std::string> Strings;
55
56 Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
57
58 /// We name each basic block in a Function with a unique number, so
59 /// that we can consistently refer to them later. This is cleared
60 /// at the beginning of each call to runOnMachineFunction().
61 ///
62 typedef std::map<const Value *, unsigned> ValueMapTy;
63 ValueMapTy NumberForBB;
64
65 /// Cache of mangled name for current function. This is
66 /// recalculated at the beginning of each call to
67 /// runOnMachineFunction().
68 ///
69 std::string CurrentFnName;
70
71 virtual const char *getPassName() const {
72 return "PowerPC Assembly Printer";
73 }
74
75 void printMachineInstruction(const MachineInstr *MI);
76 void printOp(const MachineOperand &MO,
77 bool elideOffsetKeyword = false);
78 void printConstantPool(MachineConstantPool *MCP);
79 bool runOnMachineFunction(MachineFunction &F);
80 bool doInitialization(Module &M);
81 bool doFinalization(Module &M);
82 void emitGlobalConstant(const Constant* CV);
83 void emitConstantValueOnly(const Constant *CV);
84 };
85} // end of anonymous namespace
86
87/// createPPCCodePrinterPass - Returns a pass that prints the X86
88/// assembly code for a MachineFunction to the given output stream,
89/// using the given target machine description. This should work
90/// regardless of whether the function is in SSA form.
91///
92FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){
93 return new Printer(o, tm);
94}
95
96/// isStringCompatible - Can we treat the specified array as a string?
97/// Only if it is an array of ubytes or non-negative sbytes.
98///
99static bool isStringCompatible(const ConstantArray *CVA) {
100 const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
101 if (ETy == Type::UByteTy) return true;
102 if (ETy != Type::SByteTy) return false;
103
104 for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
105 if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
106 return false;
107
108 return true;
109}
110
111/// toOctal - Convert the low order bits of X into an octal digit.
112///
113static inline char toOctal(int X) {
114 return (X&7)+'0';
115}
116
117/// getAsCString - Return the specified array as a C compatible
118/// string, only if the predicate isStringCompatible is true.
119///
120static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
121 assert(isStringCompatible(CVA) && "Array is not string compatible!");
122
123 O << "\"";
124 for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
125 unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
126
127 if (C == '"') {
128 O << "\\\"";
129 } else if (C == '\\') {
130 O << "\\\\";
131 } else if (isprint(C)) {
132 O << C;
133 } else {
134 switch(C) {
135 case '\b': O << "\\b"; break;
136 case '\f': O << "\\f"; break;
137 case '\n': O << "\\n"; break;
138 case '\r': O << "\\r"; break;
139 case '\t': O << "\\t"; break;
140 default:
141 O << '\\';
142 O << toOctal(C >> 6);
143 O << toOctal(C >> 3);
144 O << toOctal(C >> 0);
145 break;
146 }
147 }
148 }
149 O << "\"";
150}
151
152// Print out the specified constant, without a storage class. Only the
153// constants valid in constant expressions can occur here.
154void Printer::emitConstantValueOnly(const Constant *CV) {
155 if (CV->isNullValue())
156 O << "0";
157 else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
158 assert(CB == ConstantBool::True);
159 O << "1";
160 } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
161 O << CI->getValue();
162 else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
163 O << CI->getValue();
164 else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
165 // This is a constant address for a global variable or function. Use the
166 // name of the variable or function as the address value.
167 O << Mang->getValueName(CPR->getValue());
168 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
169 const TargetData &TD = TM.getTargetData();
170 switch(CE->getOpcode()) {
171 case Instruction::GetElementPtr: {
172 // generate a symbolic expression for the byte address
173 const Constant *ptrVal = CE->getOperand(0);
174 std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
175 if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
176 O << "(";
177 emitConstantValueOnly(ptrVal);
178 O << ") + " << Offset;
179 } else {
180 emitConstantValueOnly(ptrVal);
181 }
182 break;
183 }
184 case Instruction::Cast: {
185 // Support only non-converting or widening casts for now, that is, ones
186 // that do not involve a change in value. This assertion is really gross,
187 // and may not even be a complete check.
188 Constant *Op = CE->getOperand(0);
189 const Type *OpTy = Op->getType(), *Ty = CE->getType();
190
191 // Remember, kids, pointers on x86 can be losslessly converted back and
192 // forth into 32-bit or wider integers, regardless of signedness. :-P
193 assert(((isa<PointerType>(OpTy)
194 && (Ty == Type::LongTy || Ty == Type::ULongTy
195 || Ty == Type::IntTy || Ty == Type::UIntTy))
196 || (isa<PointerType>(Ty)
197 && (OpTy == Type::LongTy || OpTy == Type::ULongTy
198 || OpTy == Type::IntTy || OpTy == Type::UIntTy))
199 || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
200 && OpTy->isLosslesslyConvertibleTo(Ty))))
201 && "FIXME: Don't yet support this kind of constant cast expr");
202 O << "(";
203 emitConstantValueOnly(Op);
204 O << ")";
205 break;
206 }
207 case Instruction::Add:
208 O << "(";
209 emitConstantValueOnly(CE->getOperand(0));
210 O << ") + (";
211 emitConstantValueOnly(CE->getOperand(1));
212 O << ")";
213 break;
214 default:
215 assert(0 && "Unsupported operator!");
216 }
217 } else {
218 assert(0 && "Unknown constant value!");
219 }
220}
221
222// Print a constant value or values, with the appropriate storage class as a
223// prefix.
224void Printer::emitGlobalConstant(const Constant *CV) {
225 const TargetData &TD = TM.getTargetData();
226
227 if (CV->isNullValue()) {
228 O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";
229 return;
230 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
231 if (isStringCompatible(CVA)) {
232 O << ".ascii";
233 printAsCString(O, CVA);
234 O << "\n";
235 } else { // Not a string. Print the values in successive locations
236 const std::vector<Use> &constValues = CVA->getValues();
237 for (unsigned i=0; i < constValues.size(); i++)
238 emitGlobalConstant(cast<Constant>(constValues[i].get()));
239 }
240 return;
241 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
242 // Print the fields in successive locations. Pad to align if needed!
243 const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
244 const std::vector<Use>& constValues = CVS->getValues();
245 unsigned sizeSoFar = 0;
246 for (unsigned i=0, N = constValues.size(); i < N; i++) {
247 const Constant* field = cast<Constant>(constValues[i].get());
248
249 // Check if padding is needed and insert one or more 0s.
250 unsigned fieldSize = TD.getTypeSize(field->getType());
251 unsigned padSize = ((i == N-1? cvsLayout->StructSize
252 : cvsLayout->MemberOffsets[i+1])
253 - cvsLayout->MemberOffsets[i]) - fieldSize;
254 sizeSoFar += fieldSize + padSize;
255
256 // Now print the actual field value
257 emitGlobalConstant(field);
258
259 // Insert the field padding unless it's zero bytes...
260 if (padSize)
261 O << "\t.space\t " << padSize << "\n";
262 }
263 assert(sizeSoFar == cvsLayout->StructSize &&
264 "Layout of constant struct may be incorrect!");
265 return;
266 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
267 // FP Constants are printed as integer constants to avoid losing
268 // precision...
269 double Val = CFP->getValue();
Misha Brukmand71bd562004-06-21 17:19:08 +0000270 switch (CFP->getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000271 default: assert(0 && "Unknown floating point type!");
272 case Type::FloatTyID: {
273 union FU { // Abide by C TBAA rules
274 float FVal;
275 unsigned UVal;
276 } U;
277 U.FVal = Val;
278 O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
279 return;
280 }
281 case Type::DoubleTyID: {
282 union DU { // Abide by C TBAA rules
283 double FVal;
284 uint64_t UVal;
285 struct {
286 uint32_t MSWord;
287 uint32_t LSWord;
288 } T;
289 } U;
290 U.FVal = Val;
291
292 O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n";
293 O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n";
294 return;
295 }
296 }
297 } else if (CV->getType()->getPrimitiveSize() == 64) {
298 const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
299 if(CI) {
300 union DU { // Abide by C TBAA rules
301 int64_t UVal;
302 struct {
303 uint32_t MSWord;
304 uint32_t LSWord;
305 } T;
306 } U;
307 U.UVal = CI->getRawValue();
308
309 O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n";
310 O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n";
311 return;
312 }
313 }
314
315 const Type *type = CV->getType();
316 O << "\t";
Misha Brukmand71bd562004-06-21 17:19:08 +0000317 switch (type->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 case Type::UByteTyID: case Type::SByteTyID:
319 O << ".byte";
320 break;
321 case Type::UShortTyID: case Type::ShortTyID:
322 O << ".short";
323 break;
324 case Type::BoolTyID:
325 case Type::PointerTyID:
326 case Type::UIntTyID: case Type::IntTyID:
327 O << ".long";
328 break;
329 case Type::ULongTyID: case Type::LongTyID:
330 assert (0 && "Should have already output double-word constant.");
331 case Type::FloatTyID: case Type::DoubleTyID:
332 assert (0 && "Should have already output floating point constant.");
333 default:
334 assert (0 && "Can't handle printing this type of thing");
335 break;
336 }
337 O << "\t";
338 emitConstantValueOnly(CV);
339 O << "\n";
340}
341
342/// printConstantPool - Print to the current output stream assembly
343/// representations of the constants in the constant pool MCP. This is
344/// used to print out constants which have been "spilled to memory" by
345/// the code generator.
346///
347void Printer::printConstantPool(MachineConstantPool *MCP) {
348 const std::vector<Constant*> &CP = MCP->getConstants();
349 const TargetData &TD = TM.getTargetData();
350
351 if (CP.empty()) return;
352
353 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
354 O << "\t.const\n";
355 O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
356 << "\n";
357 O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
358 << *CP[i] << "\n";
359 emitGlobalConstant(CP[i]);
360 }
361}
362
363/// runOnMachineFunction - This uses the printMachineInstruction()
364/// method to print assembly for each instruction.
365///
366bool Printer::runOnMachineFunction(MachineFunction &MF) {
367 // BBNumber is used here so that a given Printer will never give two
368 // BBs the same name. (If you have a better way, please let me know!)
369 static unsigned BBNumber = 0;
370
371 O << "\n\n";
372 // What's my mangled name?
373 CurrentFnName = Mang->getValueName(MF.getFunction());
374
375 // Print out constants referenced by the function
376 printConstantPool(MF.getConstantPool());
377
378 // Print out labels for the function.
379 O << "\t.text\n";
380 O << "\t.globl\t" << CurrentFnName << "\n";
381 O << "\t.align 5\n";
382 O << CurrentFnName << ":\n";
383
384 // Number each basic block so that we can consistently refer to them
385 // in PC-relative references.
386 NumberForBB.clear();
387 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
388 I != E; ++I) {
389 NumberForBB[I->getBasicBlock()] = BBNumber++;
390 }
391
392 // Print out code for the function.
393 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
394 I != E; ++I) {
395 // Print a label for the basic block.
396 O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# "
397 << I->getBasicBlock()->getName() << "\n";
398 for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
399 II != E; ++II) {
400 // Print the assembly for the instruction.
401 O << "\t";
402 printMachineInstruction(II);
403 }
404 }
405
406 // We didn't modify anything.
407 return false;
408}
409
410
411
412void Printer::printOp(const MachineOperand &MO,
413 bool elideOffsetKeyword /* = false */) {
414 const MRegisterInfo &RI = *TM.getRegisterInfo();
415 int new_symbol;
416
417 switch (MO.getType()) {
418 case MachineOperand::MO_VirtualRegister:
419 if (Value *V = MO.getVRegValueOrNull()) {
420 O << "<" << V->getName() << ">";
421 return;
422 }
423 // FALLTHROUGH
424 case MachineOperand::MO_MachineRegister:
425 O << RI.get(MO.getReg()).Name;
426 return;
427
428 case MachineOperand::MO_SignExtendedImmed:
429 case MachineOperand::MO_UnextendedImmed:
430 O << (int)MO.getImmedValue();
431 return;
432 case MachineOperand::MO_MachineBasicBlock: {
433 MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
434 O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
435 << "_" << MBBOp->getNumber () << "\t# "
436 << MBBOp->getBasicBlock ()->getName ();
437 return;
438 }
439 case MachineOperand::MO_PCRelativeDisp:
440 std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
441 abort ();
442 return;
443 case MachineOperand::MO_GlobalAddress:
444 if (!elideOffsetKeyword) {
445 if(isa<Function>(MO.getGlobal())) {
446 Stubs.insert(Mang->getValueName(MO.getGlobal()));
447 O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
448 } else {
449 O << Mang->getValueName(MO.getGlobal());
450 }
451 }
452 return;
453 case MachineOperand::MO_ExternalSymbol:
454 O << MO.getSymbolName();
455 return;
456 default:
457 O << "<unknown operand type>"; return;
458 }
459}
460
461#if 0
462static inline
463unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
464 int i;
465 unsigned int retval = 1;
466
467 for(i = 0; i<5; i++) {
468 switch(ArgType[i]) {
469 case none:
470 break;
471 case Gpr:
472 case Gpr0:
473 Type::UIntTy
474 case Simm16:
475 case Zimm16:
476 case PCRelimm24:
477 case Imm24:
478 case Imm5:
479 case PCRelimm14:
480 case Imm14:
481 case Imm2:
482 case Crf:
483 case Imm3:
484 case Imm1:
485 case Fpr:
486 case Imm4:
487 case Imm8:
488 case Disimm16:
489 case Spr:
490 case Sgr:
491 };
492
493 }
494 }
495}
496#endif
497
498/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
499/// MI in Darwin syntax to the current output stream.
500///
501void Printer::printMachineInstruction(const MachineInstr *MI) {
502 unsigned Opcode = MI->getOpcode();
503 const TargetInstrInfo &TII = *TM.getInstrInfo();
504 const TargetInstrDescriptor &Desc = TII.get(Opcode);
505 unsigned int i;
506
507 unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
508 unsigned int ArgType[5];
509
510
511 ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask;
512 ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask;
513 ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask;
514 ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask;
515 ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask;
516
517 assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support");
518 assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support");
519 //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
520 ++EmittedInsts;
521
522 if(Opcode == PPC32::MovePCtoLR) {
523 O << "mflr r0\n";
524 O << "bcl 20,31,L" << CurrentFnName << "$pb\n";
525 O << "L" << CurrentFnName << "$pb:\n";
526 return;
527 }
528
529 O << TII.getName(MI->getOpcode()) << " ";
Misha Brukman05794492004-06-24 17:31:42 +0000530 DEBUG(std::cerr << TII.getName(MI->getOpcode()) << " expects "
531 << ArgCount << " args\n");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000532
533 if(Opcode == PPC32::LOADLoAddr) {
534 printOp(MI->getOperand(0));
535 O << ", ";
536 printOp(MI->getOperand(1));
537 O << ", lo16(";
538 printOp(MI->getOperand(2));
539 O << "-L" << CurrentFnName << "$pb)\n";
540 return;
541 }
542
543 if(Opcode == PPC32::LOADHiAddr) {
544 printOp(MI->getOperand(0));
545 O << ", ";
546 printOp(MI->getOperand(1));
547 O << ", ha16(" ;
548 printOp(MI->getOperand(2));
549 O << "-L" << CurrentFnName << "$pb)\n";
550 return;
551 }
552
553 if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) {
554 printOp(MI->getOperand(0));
555 O << ", ";
556 printOp(MI->getOperand(1));
557 O << "(";
558 if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) {
559 O << "0";
560 } else {
561 printOp(MI->getOperand(2));
562 }
563 O << ")\n";
564 } else {
565 for(i = 0; i< ArgCount; i++) {
566 if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) {
567 O << "0";
568 } else {
569 //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
570 printOp(MI->getOperand(i));
571 }
572 if( ArgCount - 1 == i) {
573 O << "\n";
574 } else {
575 O << ", ";
576 }
577 }
578 }
579
580 return;
581}
582
583bool Printer::doInitialization(Module &M) {
584 // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
585 //
586 // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
587 // instruction as a reference to the register named sp, and if you try to
588 // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
589 // before being looked up in the symbol table. This creates spurious
590 // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
591 // mode, and decorate all register names with percent signs.
592 // O << "\t.intel_syntax\n";
593 Mang = new Mangler(M, true);
594 return false; // success
595}
596
597// SwitchSection - Switch to the specified section of the executable if we are
598// not already in it!
599//
600static void SwitchSection(std::ostream &OS, std::string &CurSection,
601 const char *NewSection) {
602 if (CurSection != NewSection) {
603 CurSection = NewSection;
604 if (!CurSection.empty())
605 OS << "\t" << NewSection << "\n";
606 }
607}
608
609bool Printer::doFinalization(Module &M) {
610 const TargetData &TD = TM.getTargetData();
611 std::string CurSection;
612
613 // Print out module-level global variables here.
614 for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
615 if (I->hasInitializer()) { // External global require no code
616 O << "\n\n";
617 std::string name = Mang->getValueName(I);
618 Constant *C = I->getInitializer();
619 unsigned Size = TD.getTypeSize(C->getType());
620 unsigned Align = TD.getTypeAlignment(C->getType());
621
622 if (C->isNullValue() &&
623 (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
624 I->hasWeakLinkage() /* FIXME: Verify correct */)) {
625 SwitchSection(O, CurSection, ".data");
626 if (I->hasInternalLinkage())
627 O << "\t.local " << name << "\n";
628
629 O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
630 << "," << (unsigned)TD.getTypeAlignment(C->getType());
631 O << "\t\t# ";
632 WriteAsOperand(O, I, true, true, &M);
633 O << "\n";
634 } else {
635 switch (I->getLinkage()) {
636 case GlobalValue::LinkOnceLinkage:
637 case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
638 // Nonnull linkonce -> weak
639 O << "\t.weak " << name << "\n";
640 SwitchSection(O, CurSection, "");
641 O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
642 break;
643
644 case GlobalValue::AppendingLinkage:
645 // FIXME: appending linkage variables should go into a section of
646 // their name or something. For now, just emit them as external.
647 case GlobalValue::ExternalLinkage:
648 // If external or appending, declare as a global symbol
649 O << "\t.globl " << name << "\n";
650 // FALL THROUGH
651 case GlobalValue::InternalLinkage:
652 if (C->isNullValue())
653 SwitchSection(O, CurSection, ".bss");
654 else
655 SwitchSection(O, CurSection, ".data");
656 break;
657 }
658
659 O << "\t.align " << Align << "\n";
660 O << name << ":\t\t\t\t# ";
661 WriteAsOperand(O, I, true, true, &M);
662 O << " = ";
663 WriteAsOperand(O, C, false, false, &M);
664 O << "\n";
665 emitGlobalConstant(C);
666 }
667 }
668
669 for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) {
670 O << ".data\n";
671 O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
672 O << "\t.align 2\n";
673 O << "L" << *i << "$stub:\n";
674 O << "\t.indirect_symbol " << *i << "\n";
675 O << "\tmflr r0\n";
676 O << "\tbcl 20,31,L0$" << *i << "\n";
677 O << "L0$" << *i << ":\n";
678 O << "\tmflr r11\n";
679 O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
680 O << "\tmtlr r0\n";
681 O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
682 O << "\tmtctr r12\n";
683 O << "\tbctr\n";
684 O << ".data\n";
685 O << ".lazy_symbol_pointer\n";
686 O << "L" << *i << "$lazy_ptr:\n";
687 O << ".indirect_symbol " << *i << "\n";
688 O << ".long dyld_stub_binding_helper\n";
689
690 }
691
692 delete Mang;
693 return false; // success
694}
695
696} // End llvm namespace