blob: 9597696d2dc97f85bfa74c78ed10f642f2231820 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
Evan Cheng56966222007-01-12 02:11:51 +000024/// InitLibcallNames - Set default libcall names.
25///
Evan Cheng79cca502007-01-12 22:51:10 +000026static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000027 Names[RTLIB::SHL_I32] = "__ashlsi3";
28 Names[RTLIB::SHL_I64] = "__ashldi3";
29 Names[RTLIB::SRL_I32] = "__lshrsi3";
30 Names[RTLIB::SRL_I64] = "__lshrdi3";
31 Names[RTLIB::SRA_I32] = "__ashrsi3";
32 Names[RTLIB::SRA_I64] = "__ashrdi3";
33 Names[RTLIB::MUL_I32] = "__mulsi3";
34 Names[RTLIB::MUL_I64] = "__muldi3";
35 Names[RTLIB::SDIV_I32] = "__divsi3";
36 Names[RTLIB::SDIV_I64] = "__divdi3";
37 Names[RTLIB::UDIV_I32] = "__udivsi3";
38 Names[RTLIB::UDIV_I64] = "__udivdi3";
39 Names[RTLIB::SREM_I32] = "__modsi3";
40 Names[RTLIB::SREM_I64] = "__moddi3";
41 Names[RTLIB::UREM_I32] = "__umodsi3";
42 Names[RTLIB::UREM_I64] = "__umoddi3";
43 Names[RTLIB::NEG_I32] = "__negsi2";
44 Names[RTLIB::NEG_I64] = "__negdi2";
45 Names[RTLIB::ADD_F32] = "__addsf3";
46 Names[RTLIB::ADD_F64] = "__adddf3";
47 Names[RTLIB::SUB_F32] = "__subsf3";
48 Names[RTLIB::SUB_F64] = "__subdf3";
49 Names[RTLIB::MUL_F32] = "__mulsf3";
50 Names[RTLIB::MUL_F64] = "__muldf3";
51 Names[RTLIB::DIV_F32] = "__divsf3";
52 Names[RTLIB::DIV_F64] = "__divdf3";
53 Names[RTLIB::REM_F32] = "fmodf";
54 Names[RTLIB::REM_F64] = "fmod";
55 Names[RTLIB::NEG_F32] = "__negsf2";
56 Names[RTLIB::NEG_F64] = "__negdf2";
57 Names[RTLIB::POWI_F32] = "__powisf2";
58 Names[RTLIB::POWI_F64] = "__powidf2";
59 Names[RTLIB::SQRT_F32] = "sqrtf";
60 Names[RTLIB::SQRT_F64] = "sqrt";
61 Names[RTLIB::SIN_F32] = "sinf";
62 Names[RTLIB::SIN_F64] = "sin";
63 Names[RTLIB::COS_F32] = "cosf";
64 Names[RTLIB::COS_F64] = "cos";
65 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83 Names[RTLIB::OEQ_F32] = "__eqsf2";
84 Names[RTLIB::OEQ_F64] = "__eqdf2";
85 Names[RTLIB::UNE_F32] = "__nesf2";
86 Names[RTLIB::UNE_F64] = "__nedf2";
87 Names[RTLIB::OGE_F32] = "__gesf2";
88 Names[RTLIB::OGE_F64] = "__gedf2";
89 Names[RTLIB::OLT_F32] = "__ltsf2";
90 Names[RTLIB::OLT_F64] = "__ltdf2";
91 Names[RTLIB::OLE_F32] = "__lesf2";
92 Names[RTLIB::OLE_F64] = "__ledf2";
93 Names[RTLIB::OGT_F32] = "__gtsf2";
94 Names[RTLIB::OGT_F64] = "__gtdf2";
95 Names[RTLIB::UO_F32] = "__unordsf2";
96 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +000097 Names[RTLIB::O_F32] = "__unordsf2";
98 Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107 CCs[RTLIB::UNE_F32] = ISD::SETNE;
108 CCs[RTLIB::UNE_F64] = ISD::SETNE;
109 CCs[RTLIB::OGE_F32] = ISD::SETGE;
110 CCs[RTLIB::OGE_F64] = ISD::SETGE;
111 CCs[RTLIB::OLT_F32] = ISD::SETLT;
112 CCs[RTLIB::OLT_F64] = ISD::SETLT;
113 CCs[RTLIB::OLE_F32] = ISD::SETLE;
114 CCs[RTLIB::OLE_F64] = ISD::SETLE;
115 CCs[RTLIB::OGT_F32] = ISD::SETGT;
116 CCs[RTLIB::OGT_F64] = ISD::SETGT;
117 CCs[RTLIB::UO_F32] = ISD::SETNE;
118 CCs[RTLIB::UO_F64] = ISD::SETNE;
119 CCs[RTLIB::O_F32] = ISD::SETEQ;
120 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000121}
122
Chris Lattner310968c2005-01-07 07:44:53 +0000123TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000124 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000125 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000126 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000127 // All operations default to being supported.
128 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000129 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000130 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000131 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000132 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000133
134 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000135 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
136 for (unsigned IM = (unsigned)ISD::PRE_INC;
137 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
138 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
139 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
140 }
141 }
Chris Lattner310968c2005-01-07 07:44:53 +0000142
Owen Andersona69571c2006-05-03 01:29:57 +0000143 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000144 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000145 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000146 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000147 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +0000148 memset(TargetDAGCombineArray, 0,
149 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000150 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000151 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000152 UseUnderscoreSetJmp = false;
153 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000154 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000155 IntDivIsCheap = false;
156 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000157 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000158 ExceptionPointerRegister = 0;
159 ExceptionSelectorRegister = 0;
Evan Cheng0577a222006-01-25 18:52:42 +0000160 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000161 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000162 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000163 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000164
165 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000166 InitCmpLibcallCCs(CmpLibcallCCs);
Chris Lattner310968c2005-01-07 07:44:53 +0000167}
168
Chris Lattnercba82f92005-01-16 07:28:11 +0000169TargetLowering::~TargetLowering() {}
170
Chris Lattner310968c2005-01-07 07:44:53 +0000171/// computeRegisterProperties - Once all of the register classes are added,
172/// this allows us to compute derived properties we expose.
173void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000174 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000175 "Too many value types for ValueTypeActions to hold!");
176
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000177 // Everything defaults to needing one register.
178 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000179 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000180 RegisterTypeForVT[i] = TransformToType[i] = i;
181 }
182 // ...except isVoid, which doesn't need any registers.
183 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000184
Chris Lattner310968c2005-01-07 07:44:53 +0000185 // Find the largest integer register class.
186 unsigned LargestIntReg = MVT::i128;
187 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
188 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
189
190 // Every integer value type larger than this largest register takes twice as
191 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000192 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
193 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000194 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000195 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
196 TransformToType[ExpandedReg] = ExpandedReg - 1;
197 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000198 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000199
200 // Inspect all of the ValueType's smaller than the largest integer
201 // register to see which ones need promotion.
202 MVT::ValueType LegalIntReg = LargestIntReg;
203 for (MVT::ValueType IntReg = LargestIntReg - 1;
204 IntReg >= MVT::i1; --IntReg) {
205 if (isTypeLegal(IntReg)) {
206 LegalIntReg = IntReg;
207 } else {
208 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
209 ValueTypeActions.setTypeAction(IntReg, Promote);
210 }
211 }
212
213 // Decide how to handle f64. If the target does not have native f64 support,
214 // expand it to i64 and we will be generating soft float library calls.
215 if (!isTypeLegal(MVT::f64)) {
216 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
217 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
218 TransformToType[MVT::f64] = MVT::i64;
219 ValueTypeActions.setTypeAction(MVT::f64, Expand);
220 }
221
222 // Decide how to handle f32. If the target does not have native support for
223 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
224 if (!isTypeLegal(MVT::f32)) {
225 if (isTypeLegal(MVT::f64)) {
226 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
227 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
228 TransformToType[MVT::f32] = MVT::f64;
229 ValueTypeActions.setTypeAction(MVT::f32, Promote);
230 } else {
231 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
232 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
233 TransformToType[MVT::f32] = MVT::i32;
234 ValueTypeActions.setTypeAction(MVT::f32, Expand);
235 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000236 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000237
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000238 // Loop over all of the vector value types to see which need transformations.
239 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000240 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000241 if (!isTypeLegal(i)) {
242 MVT::ValueType IntermediateVT, RegisterVT;
243 unsigned NumIntermediates;
244 NumRegistersForVT[i] =
245 getVectorTypeBreakdown(i,
246 IntermediateVT, NumIntermediates,
247 RegisterVT);
248 RegisterTypeForVT[i] = RegisterVT;
249 TransformToType[i] = MVT::Other; // this isn't actually used
250 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000251 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000252 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000253}
Chris Lattnercba82f92005-01-16 07:28:11 +0000254
Evan Cheng72261582005-12-20 06:22:03 +0000255const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
256 return NULL;
257}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000258
Dan Gohman7f321562007-06-25 16:23:39 +0000259/// getVectorTypeBreakdown - Vector types are broken down into some number of
260/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000261/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000262/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000263///
Dan Gohman7f321562007-06-25 16:23:39 +0000264/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000265/// register. It also returns the VT and quantity of the intermediate values
266/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000267///
Dan Gohman7f321562007-06-25 16:23:39 +0000268unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000269 MVT::ValueType &IntermediateVT,
270 unsigned &NumIntermediates,
271 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000272 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000273 unsigned NumElts = MVT::getVectorNumElements(VT);
274 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000275
276 unsigned NumVectorRegs = 1;
277
278 // Divide the input until we get to a supported size. This will always
279 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000280 while (NumElts > 1 &&
281 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000282 NumElts >>= 1;
283 NumVectorRegs <<= 1;
284 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000285
286 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000287
Dan Gohman7f321562007-06-25 16:23:39 +0000288 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
289 if (!isTypeLegal(NewVT))
290 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000291 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000292
Dan Gohman7f321562007-06-25 16:23:39 +0000293 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000294 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000295 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000296 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000297 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000298 } else {
299 // Otherwise, promotion or legal types use the same number of registers as
300 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000301 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000302 }
303
Evan Chenge9b3da12006-05-17 18:10:06 +0000304 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000305}
306
Chris Lattnereb8146b2006-02-04 02:13:02 +0000307//===----------------------------------------------------------------------===//
308// Optimization Methods
309//===----------------------------------------------------------------------===//
310
Nate Begeman368e18d2006-02-16 21:11:51 +0000311/// ShrinkDemandedConstant - Check to see if the specified operand of the
312/// specified instruction is a constant integer. If so, check to see if there
313/// are any bits set in the constant that are not demanded. If so, shrink the
314/// constant and return true.
315bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
316 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000317 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000318 switch(Op.getOpcode()) {
319 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000320 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000321 case ISD::OR:
322 case ISD::XOR:
323 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
324 if ((~Demanded & C->getValue()) != 0) {
325 MVT::ValueType VT = Op.getValueType();
326 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
327 DAG.getConstant(Demanded & C->getValue(),
328 VT));
329 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000330 }
Nate Begemande996292006-02-03 22:24:05 +0000331 break;
332 }
333 return false;
334}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000335
Nate Begeman368e18d2006-02-16 21:11:51 +0000336/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
337/// DemandedMask bits of the result of Op are ever used downstream. If we can
338/// use this information to simplify Op, create a new simplified DAG node and
339/// return true, returning the original and new nodes in Old and New. Otherwise,
340/// analyze the expression and return a mask of KnownOne and KnownZero bits for
341/// the expression (used to simplify the caller). The KnownZero/One bits may
342/// only be accurate for those bits in the DemandedMask.
343bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
344 uint64_t &KnownZero,
345 uint64_t &KnownOne,
346 TargetLoweringOpt &TLO,
347 unsigned Depth) const {
348 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000349
350 // The masks are not wide enough to represent this type! Should use APInt.
351 if (Op.getValueType() == MVT::i128)
352 return false;
353
Nate Begeman368e18d2006-02-16 21:11:51 +0000354 // Other users may use these bits.
355 if (!Op.Val->hasOneUse()) {
356 if (Depth != 0) {
357 // If not at the root, Just compute the KnownZero/KnownOne bits to
358 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000359 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000360 return false;
361 }
362 // If this is the root being simplified, allow it to have multiple uses,
363 // just set the DemandedMask to all bits.
364 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
365 } else if (DemandedMask == 0) {
366 // Not demanding any bits from Op.
367 if (Op.getOpcode() != ISD::UNDEF)
368 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
369 return false;
370 } else if (Depth == 6) { // Limit search depth.
371 return false;
372 }
373
374 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000375 switch (Op.getOpcode()) {
376 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000377 // We know all of the bits for a constant!
378 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
379 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000380 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000381 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000382 // If the RHS is a constant, check to see if the LHS would be zero without
383 // using the bits from the RHS. Below, we use knowledge about the RHS to
384 // simplify the LHS, here we're using information from the LHS to simplify
385 // the RHS.
386 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
387 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000388 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
389 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000390 // If the LHS already has zeros where RHSC does, this and is dead.
391 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
392 return TLO.CombineTo(Op, Op.getOperand(0));
393 // If any of the set bits in the RHS are known zero on the LHS, shrink
394 // the constant.
395 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
396 return true;
397 }
398
Nate Begeman368e18d2006-02-16 21:11:51 +0000399 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
400 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000401 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000402 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000403 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
404 KnownZero2, KnownOne2, TLO, Depth+1))
405 return true;
406 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
407
408 // If all of the demanded bits are known one on one side, return the other.
409 // These bits cannot contribute to the result of the 'and'.
410 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
411 return TLO.CombineTo(Op, Op.getOperand(0));
412 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
413 return TLO.CombineTo(Op, Op.getOperand(1));
414 // If all of the demanded bits in the inputs are known zeros, return zero.
415 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
416 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
417 // If the RHS is a constant, see if we can simplify it.
418 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
419 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000420
Nate Begeman368e18d2006-02-16 21:11:51 +0000421 // Output known-1 bits are only known if set in both the LHS & RHS.
422 KnownOne &= KnownOne2;
423 // Output known-0 are known to be clear if zero in either the LHS | RHS.
424 KnownZero |= KnownZero2;
425 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000426 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000427 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
428 KnownOne, TLO, Depth+1))
429 return true;
430 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
431 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
432 KnownZero2, KnownOne2, TLO, Depth+1))
433 return true;
434 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
435
436 // If all of the demanded bits are known zero on one side, return the other.
437 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000438 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000439 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000440 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000441 return TLO.CombineTo(Op, Op.getOperand(1));
442 // If all of the potentially set bits on one side are known to be set on
443 // the other side, just use the 'other' side.
444 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
445 (DemandedMask & (~KnownZero)))
446 return TLO.CombineTo(Op, Op.getOperand(0));
447 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
448 (DemandedMask & (~KnownZero2)))
449 return TLO.CombineTo(Op, Op.getOperand(1));
450 // If the RHS is a constant, see if we can simplify it.
451 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
452 return true;
453
454 // Output known-0 bits are only known if clear in both the LHS & RHS.
455 KnownZero &= KnownZero2;
456 // Output known-1 are known to be set if set in either the LHS | RHS.
457 KnownOne |= KnownOne2;
458 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000459 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000460 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
461 KnownOne, TLO, Depth+1))
462 return true;
463 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
464 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
465 KnownOne2, TLO, Depth+1))
466 return true;
467 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
468
469 // If all of the demanded bits are known zero on one side, return the other.
470 // These bits cannot contribute to the result of the 'xor'.
471 if ((DemandedMask & KnownZero) == DemandedMask)
472 return TLO.CombineTo(Op, Op.getOperand(0));
473 if ((DemandedMask & KnownZero2) == DemandedMask)
474 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000475
476 // If all of the unknown bits are known to be zero on one side or the other
477 // (but not both) turn this into an *inclusive* or.
478 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
479 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
480 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
481 Op.getOperand(0),
482 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000483
484 // Output known-0 bits are known if clear or set in both the LHS & RHS.
485 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
486 // Output known-1 are known to be set if set in only one of the LHS, RHS.
487 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
488
Nate Begeman368e18d2006-02-16 21:11:51 +0000489 // If all of the demanded bits on one side are known, and all of the set
490 // bits on that side are also known to be set on the other side, turn this
491 // into an AND, as we know the bits will be cleared.
492 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
493 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
494 if ((KnownOne & KnownOne2) == KnownOne) {
495 MVT::ValueType VT = Op.getValueType();
496 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
497 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
498 ANDC));
499 }
500 }
501
502 // If the RHS is a constant, see if we can simplify it.
503 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
504 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
505 return true;
506
507 KnownZero = KnownZeroOut;
508 KnownOne = KnownOneOut;
509 break;
510 case ISD::SETCC:
511 // If we know the result of a setcc has the top bits zero, use this info.
512 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
513 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
514 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000515 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000516 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
517 KnownOne, TLO, Depth+1))
518 return true;
519 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
520 KnownOne2, TLO, Depth+1))
521 return true;
522 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
523 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
524
525 // If the operands are constants, see if we can simplify them.
526 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
527 return true;
528
529 // Only known if known in both the LHS and RHS.
530 KnownOne &= KnownOne2;
531 KnownZero &= KnownZero2;
532 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000533 case ISD::SELECT_CC:
534 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
535 KnownOne, TLO, Depth+1))
536 return true;
537 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
538 KnownOne2, TLO, Depth+1))
539 return true;
540 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
541 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
542
543 // If the operands are constants, see if we can simplify them.
544 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
545 return true;
546
547 // Only known if known in both the LHS and RHS.
548 KnownOne &= KnownOne2;
549 KnownZero &= KnownZero2;
550 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000551 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000552 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000553 unsigned ShAmt = SA->getValue();
554 SDOperand InOp = Op.getOperand(0);
555
556 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
557 // single shift. We can do this if the bottom bits (which are shifted
558 // out) are never demanded.
559 if (InOp.getOpcode() == ISD::SRL &&
560 isa<ConstantSDNode>(InOp.getOperand(1))) {
561 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
562 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
563 unsigned Opc = ISD::SHL;
564 int Diff = ShAmt-C1;
565 if (Diff < 0) {
566 Diff = -Diff;
567 Opc = ISD::SRL;
568 }
569
570 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000571 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000572 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000573 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000574 InOp.getOperand(0), NewSA));
575 }
576 }
577
578 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000579 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000580 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000581 KnownZero <<= SA->getValue();
582 KnownOne <<= SA->getValue();
583 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000584 }
585 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000586 case ISD::SRL:
587 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
588 MVT::ValueType VT = Op.getValueType();
589 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000590 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
591 unsigned VTSize = MVT::getSizeInBits(VT);
592 SDOperand InOp = Op.getOperand(0);
593
594 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
595 // single shift. We can do this if the top bits (which are shifted out)
596 // are never demanded.
597 if (InOp.getOpcode() == ISD::SHL &&
598 isa<ConstantSDNode>(InOp.getOperand(1))) {
599 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
600 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
601 unsigned Opc = ISD::SRL;
602 int Diff = ShAmt-C1;
603 if (Diff < 0) {
604 Diff = -Diff;
605 Opc = ISD::SHL;
606 }
607
608 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000609 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000610 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
611 InOp.getOperand(0), NewSA));
612 }
613 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000614
615 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000616 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000617 KnownZero, KnownOne, TLO, Depth+1))
618 return true;
619 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
620 KnownZero &= TypeMask;
621 KnownOne &= TypeMask;
622 KnownZero >>= ShAmt;
623 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000624
625 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000626 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000627 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000628 }
629 break;
630 case ISD::SRA:
631 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
632 MVT::ValueType VT = Op.getValueType();
633 unsigned ShAmt = SA->getValue();
634
635 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000636 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
637
Chris Lattner1b737132006-05-08 17:22:53 +0000638 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
639
640 // If any of the demanded bits are produced by the sign extension, we also
641 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000642 uint64_t HighBits = (1ULL << ShAmt)-1;
643 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000644 if (HighBits & DemandedMask)
645 InDemandedMask |= MVT::getIntVTSignBit(VT);
646
647 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000648 KnownZero, KnownOne, TLO, Depth+1))
649 return true;
650 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
651 KnownZero &= TypeMask;
652 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000653 KnownZero >>= ShAmt;
654 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000655
656 // Handle the sign bits.
657 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000658 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000659
660 // If the input sign bit is known to be zero, or if none of the top bits
661 // are demanded, turn this into an unsigned shift right.
662 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
663 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
664 Op.getOperand(1)));
665 } else if (KnownOne & SignBit) { // New bits are known one.
666 KnownOne |= HighBits;
667 }
668 }
669 break;
670 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000671 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
672
Chris Lattnerec665152006-02-26 23:36:02 +0000673 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000674 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000675 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000676
Chris Lattnerec665152006-02-26 23:36:02 +0000677 // If none of the extended bits are demanded, eliminate the sextinreg.
678 if (NewBits == 0)
679 return TLO.CombineTo(Op, Op.getOperand(0));
680
Nate Begeman368e18d2006-02-16 21:11:51 +0000681 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
682 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
683
Chris Lattnerec665152006-02-26 23:36:02 +0000684 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000685 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000686 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000687
688 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
689 KnownZero, KnownOne, TLO, Depth+1))
690 return true;
691 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
692
693 // If the sign bit of the input is known set or clear, then we know the
694 // top bits of the result.
695
Chris Lattnerec665152006-02-26 23:36:02 +0000696 // If the input sign bit is known zero, convert this into a zero extension.
697 if (KnownZero & InSignBit)
698 return TLO.CombineTo(Op,
699 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
700
701 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000702 KnownOne |= NewBits;
703 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000704 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000705 KnownZero &= ~NewBits;
706 KnownOne &= ~NewBits;
707 }
708 break;
709 }
Chris Lattnerec665152006-02-26 23:36:02 +0000710 case ISD::CTTZ:
711 case ISD::CTLZ:
712 case ISD::CTPOP: {
713 MVT::ValueType VT = Op.getValueType();
714 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
715 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
716 KnownOne = 0;
717 break;
718 }
Evan Cheng466685d2006-10-09 20:57:25 +0000719 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000720 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000721 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000722 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000723 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
724 }
Chris Lattnerec665152006-02-26 23:36:02 +0000725 break;
726 }
727 case ISD::ZERO_EXTEND: {
728 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
729
730 // If none of the top bits are demanded, convert this into an any_extend.
731 uint64_t NewBits = (~InMask) & DemandedMask;
732 if (NewBits == 0)
733 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
734 Op.getValueType(),
735 Op.getOperand(0)));
736
737 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
738 KnownZero, KnownOne, TLO, Depth+1))
739 return true;
740 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
741 KnownZero |= NewBits;
742 break;
743 }
744 case ISD::SIGN_EXTEND: {
745 MVT::ValueType InVT = Op.getOperand(0).getValueType();
746 uint64_t InMask = MVT::getIntVTBitMask(InVT);
747 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
748 uint64_t NewBits = (~InMask) & DemandedMask;
749
750 // If none of the top bits are demanded, convert this into an any_extend.
751 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000752 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000753 Op.getOperand(0)));
754
755 // Since some of the sign extended bits are demanded, we know that the sign
756 // bit is demanded.
757 uint64_t InDemandedBits = DemandedMask & InMask;
758 InDemandedBits |= InSignBit;
759
760 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
761 KnownOne, TLO, Depth+1))
762 return true;
763
764 // If the sign bit is known zero, convert this to a zero extend.
765 if (KnownZero & InSignBit)
766 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
767 Op.getValueType(),
768 Op.getOperand(0)));
769
770 // If the sign bit is known one, the top bits match.
771 if (KnownOne & InSignBit) {
772 KnownOne |= NewBits;
773 KnownZero &= ~NewBits;
774 } else { // Otherwise, top bits aren't known.
775 KnownOne &= ~NewBits;
776 KnownZero &= ~NewBits;
777 }
778 break;
779 }
780 case ISD::ANY_EXTEND: {
781 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
782 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
783 KnownZero, KnownOne, TLO, Depth+1))
784 return true;
785 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
786 break;
787 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000788 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000789 // Simplify the input, using demanded bit information, and compute the known
790 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000791 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
792 KnownZero, KnownOne, TLO, Depth+1))
793 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000794
795 // If the input is only used by this truncate, see if we can shrink it based
796 // on the known demanded bits.
797 if (Op.getOperand(0).Val->hasOneUse()) {
798 SDOperand In = Op.getOperand(0);
799 switch (In.getOpcode()) {
800 default: break;
801 case ISD::SRL:
802 // Shrink SRL by a constant if none of the high bits shifted in are
803 // demanded.
804 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
805 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
806 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
807 HighBits >>= ShAmt->getValue();
808
809 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
810 (DemandedMask & HighBits) == 0) {
811 // None of the shifted in bits are needed. Add a truncate of the
812 // shift input, then shift it.
813 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
814 Op.getValueType(),
815 In.getOperand(0));
816 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
817 NewTrunc, In.getOperand(1)));
818 }
819 }
820 break;
821 }
822 }
823
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000824 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
825 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
826 KnownZero &= OutMask;
827 KnownOne &= OutMask;
828 break;
829 }
Chris Lattnerec665152006-02-26 23:36:02 +0000830 case ISD::AssertZext: {
831 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
832 uint64_t InMask = MVT::getIntVTBitMask(VT);
833 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
834 KnownZero, KnownOne, TLO, Depth+1))
835 return true;
836 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
837 KnownZero |= ~InMask & DemandedMask;
838 break;
839 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000840 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000841 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000842 case ISD::INTRINSIC_WO_CHAIN:
843 case ISD::INTRINSIC_W_CHAIN:
844 case ISD::INTRINSIC_VOID:
845 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000846 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000847 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000848 }
Chris Lattnerec665152006-02-26 23:36:02 +0000849
850 // If we know the value of all of the demanded bits, return this as a
851 // constant.
852 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
853 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
854
Nate Begeman368e18d2006-02-16 21:11:51 +0000855 return false;
856}
857
Nate Begeman368e18d2006-02-16 21:11:51 +0000858/// computeMaskedBitsForTargetNode - Determine which of the bits specified
859/// in Mask are known to be either zero or one and return them in the
860/// KnownZero/KnownOne bitsets.
861void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
862 uint64_t Mask,
863 uint64_t &KnownZero,
864 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000865 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000866 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000867 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
868 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
869 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
870 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000871 "Should use MaskedValueIsZero if you don't know whether Op"
872 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000873 KnownZero = 0;
874 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000875}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000876
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000877/// ComputeNumSignBitsForTargetNode - This method can be implemented by
878/// targets that want to expose additional information about sign bits to the
879/// DAG Combiner.
880unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
881 unsigned Depth) const {
882 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
883 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
884 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
885 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
886 "Should use ComputeNumSignBits if you don't know whether Op"
887 " is a target node!");
888 return 1;
889}
890
891
Evan Chengfa1eb272007-02-08 22:13:59 +0000892/// SimplifySetCC - Try to simplify a setcc built with the specified operands
893/// and cc. If it is unable to simplify it, return a null SDOperand.
894SDOperand
895TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
896 ISD::CondCode Cond, bool foldBooleans,
897 DAGCombinerInfo &DCI) const {
898 SelectionDAG &DAG = DCI.DAG;
899
900 // These setcc operations always fold.
901 switch (Cond) {
902 default: break;
903 case ISD::SETFALSE:
904 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
905 case ISD::SETTRUE:
906 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
907 }
908
909 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
910 uint64_t C1 = N1C->getValue();
911 if (isa<ConstantSDNode>(N0.Val)) {
912 return DAG.FoldSetCC(VT, N0, N1, Cond);
913 } else {
914 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
915 // equality comparison, then we're just comparing whether X itself is
916 // zero.
917 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
918 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
919 N0.getOperand(1).getOpcode() == ISD::Constant) {
920 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
921 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
922 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
923 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
924 // (srl (ctlz x), 5) == 0 -> X != 0
925 // (srl (ctlz x), 5) != 1 -> X != 0
926 Cond = ISD::SETNE;
927 } else {
928 // (srl (ctlz x), 5) != 0 -> X == 0
929 // (srl (ctlz x), 5) == 1 -> X == 0
930 Cond = ISD::SETEQ;
931 }
932 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
933 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
934 Zero, Cond);
935 }
936 }
937
938 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
939 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
940 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
941
942 // If the comparison constant has bits in the upper part, the
943 // zero-extended value could never match.
944 if (C1 & (~0ULL << InSize)) {
945 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
946 switch (Cond) {
947 case ISD::SETUGT:
948 case ISD::SETUGE:
949 case ISD::SETEQ: return DAG.getConstant(0, VT);
950 case ISD::SETULT:
951 case ISD::SETULE:
952 case ISD::SETNE: return DAG.getConstant(1, VT);
953 case ISD::SETGT:
954 case ISD::SETGE:
955 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000956 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000957 case ISD::SETLT:
958 case ISD::SETLE:
959 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000960 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000961 default:
962 break;
963 }
964 }
965
966 // Otherwise, we can perform the comparison with the low bits.
967 switch (Cond) {
968 case ISD::SETEQ:
969 case ISD::SETNE:
970 case ISD::SETUGT:
971 case ISD::SETUGE:
972 case ISD::SETULT:
973 case ISD::SETULE:
974 return DAG.getSetCC(VT, N0.getOperand(0),
975 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
976 Cond);
977 default:
978 break; // todo, be more careful with signed comparisons
979 }
980 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
981 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
982 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
983 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
984 MVT::ValueType ExtDstTy = N0.getValueType();
985 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
986
987 // If the extended part has any inconsistent bits, it cannot ever
988 // compare equal. In other words, they have to be all ones or all
989 // zeros.
990 uint64_t ExtBits =
991 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
992 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
993 return DAG.getConstant(Cond == ISD::SETNE, VT);
994
995 SDOperand ZextOp;
996 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
997 if (Op0Ty == ExtSrcTy) {
998 ZextOp = N0.getOperand(0);
999 } else {
1000 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1001 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1002 DAG.getConstant(Imm, Op0Ty));
1003 }
1004 if (!DCI.isCalledByLegalizer())
1005 DCI.AddToWorklist(ZextOp.Val);
1006 // Otherwise, make this a use of a zext.
1007 return DAG.getSetCC(VT, ZextOp,
1008 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1009 ExtDstTy),
1010 Cond);
1011 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1012 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1013
1014 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1015 if (N0.getOpcode() == ISD::SETCC) {
1016 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1017 if (TrueWhenTrue)
1018 return N0;
1019
1020 // Invert the condition.
1021 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1022 CC = ISD::getSetCCInverse(CC,
1023 MVT::isInteger(N0.getOperand(0).getValueType()));
1024 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1025 }
1026
1027 if ((N0.getOpcode() == ISD::XOR ||
1028 (N0.getOpcode() == ISD::AND &&
1029 N0.getOperand(0).getOpcode() == ISD::XOR &&
1030 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1031 isa<ConstantSDNode>(N0.getOperand(1)) &&
1032 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1033 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1034 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001035 if (DAG.MaskedValueIsZero(N0,
1036 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001037 // Okay, get the un-inverted input value.
1038 SDOperand Val;
1039 if (N0.getOpcode() == ISD::XOR)
1040 Val = N0.getOperand(0);
1041 else {
1042 assert(N0.getOpcode() == ISD::AND &&
1043 N0.getOperand(0).getOpcode() == ISD::XOR);
1044 // ((X^1)&1)^1 -> X & 1
1045 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1046 N0.getOperand(0).getOperand(0),
1047 N0.getOperand(1));
1048 }
1049 return DAG.getSetCC(VT, Val, N1,
1050 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1051 }
1052 }
1053 }
1054
1055 uint64_t MinVal, MaxVal;
1056 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1057 if (ISD::isSignedIntSetCC(Cond)) {
1058 MinVal = 1ULL << (OperandBitSize-1);
1059 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1060 MaxVal = ~0ULL >> (65-OperandBitSize);
1061 else
1062 MaxVal = 0;
1063 } else {
1064 MinVal = 0;
1065 MaxVal = ~0ULL >> (64-OperandBitSize);
1066 }
1067
1068 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1069 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1070 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1071 --C1; // X >= C0 --> X > (C0-1)
1072 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1073 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1074 }
1075
1076 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1077 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1078 ++C1; // X <= C0 --> X < (C0+1)
1079 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1080 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1081 }
1082
1083 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1084 return DAG.getConstant(0, VT); // X < MIN --> false
1085 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1086 return DAG.getConstant(1, VT); // X >= MIN --> true
1087 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1088 return DAG.getConstant(0, VT); // X > MAX --> false
1089 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1090 return DAG.getConstant(1, VT); // X <= MAX --> true
1091
1092 // Canonicalize setgt X, Min --> setne X, Min
1093 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1094 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1095 // Canonicalize setlt X, Max --> setne X, Max
1096 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1097 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1098
1099 // If we have setult X, 1, turn it into seteq X, 0
1100 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1101 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1102 ISD::SETEQ);
1103 // If we have setugt X, Max-1, turn it into seteq X, Max
1104 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1105 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1106 ISD::SETEQ);
1107
1108 // If we have "setcc X, C0", check to see if we can shrink the immediate
1109 // by changing cc.
1110
1111 // SETUGT X, SINTMAX -> SETLT X, 0
1112 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1113 C1 == (~0ULL >> (65-OperandBitSize)))
1114 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1115 ISD::SETLT);
1116
1117 // FIXME: Implement the rest of these.
1118
1119 // Fold bit comparisons when we can.
1120 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1121 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1122 if (ConstantSDNode *AndRHS =
1123 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1124 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1125 // Perform the xform if the AND RHS is a single bit.
1126 if (isPowerOf2_64(AndRHS->getValue())) {
1127 return DAG.getNode(ISD::SRL, VT, N0,
1128 DAG.getConstant(Log2_64(AndRHS->getValue()),
1129 getShiftAmountTy()));
1130 }
1131 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1132 // (X & 8) == 8 --> (X & 8) >> 3
1133 // Perform the xform if C1 is a single bit.
1134 if (isPowerOf2_64(C1)) {
1135 return DAG.getNode(ISD::SRL, VT, N0,
1136 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1137 }
1138 }
1139 }
1140 }
1141 } else if (isa<ConstantSDNode>(N0.Val)) {
1142 // Ensure that the constant occurs on the RHS.
1143 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1144 }
1145
1146 if (isa<ConstantFPSDNode>(N0.Val)) {
1147 // Constant fold or commute setcc.
1148 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1149 if (O.Val) return O;
1150 }
1151
1152 if (N0 == N1) {
1153 // We can always fold X == X for integer setcc's.
1154 if (MVT::isInteger(N0.getValueType()))
1155 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1156 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1157 if (UOF == 2) // FP operators that are undefined on NaNs.
1158 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1159 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1160 return DAG.getConstant(UOF, VT);
1161 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1162 // if it is not already.
1163 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1164 if (NewCond != Cond)
1165 return DAG.getSetCC(VT, N0, N1, NewCond);
1166 }
1167
1168 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1169 MVT::isInteger(N0.getValueType())) {
1170 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1171 N0.getOpcode() == ISD::XOR) {
1172 // Simplify (X+Y) == (X+Z) --> Y == Z
1173 if (N0.getOpcode() == N1.getOpcode()) {
1174 if (N0.getOperand(0) == N1.getOperand(0))
1175 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1176 if (N0.getOperand(1) == N1.getOperand(1))
1177 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1178 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1179 // If X op Y == Y op X, try other combinations.
1180 if (N0.getOperand(0) == N1.getOperand(1))
1181 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1182 if (N0.getOperand(1) == N1.getOperand(0))
1183 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1184 }
1185 }
1186
1187 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1188 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1189 // Turn (X+C1) == C2 --> X == C2-C1
1190 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1191 return DAG.getSetCC(VT, N0.getOperand(0),
1192 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1193 N0.getValueType()), Cond);
1194 }
1195
1196 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1197 if (N0.getOpcode() == ISD::XOR)
1198 // If we know that all of the inverted bits are zero, don't bother
1199 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001200 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001201 return DAG.getSetCC(VT, N0.getOperand(0),
1202 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1203 N0.getValueType()), Cond);
1204 }
1205
1206 // Turn (C1-X) == C2 --> X == C1-C2
1207 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1208 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1209 return DAG.getSetCC(VT, N0.getOperand(1),
1210 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1211 N0.getValueType()), Cond);
1212 }
1213 }
1214 }
1215
1216 // Simplify (X+Z) == X --> Z == 0
1217 if (N0.getOperand(0) == N1)
1218 return DAG.getSetCC(VT, N0.getOperand(1),
1219 DAG.getConstant(0, N0.getValueType()), Cond);
1220 if (N0.getOperand(1) == N1) {
1221 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1222 return DAG.getSetCC(VT, N0.getOperand(0),
1223 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001224 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001225 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1226 // (Z-X) == X --> Z == X<<1
1227 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1228 N1,
1229 DAG.getConstant(1, getShiftAmountTy()));
1230 if (!DCI.isCalledByLegalizer())
1231 DCI.AddToWorklist(SH.Val);
1232 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1233 }
1234 }
1235 }
1236
1237 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1238 N1.getOpcode() == ISD::XOR) {
1239 // Simplify X == (X+Z) --> Z == 0
1240 if (N1.getOperand(0) == N0) {
1241 return DAG.getSetCC(VT, N1.getOperand(1),
1242 DAG.getConstant(0, N1.getValueType()), Cond);
1243 } else if (N1.getOperand(1) == N0) {
1244 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1245 return DAG.getSetCC(VT, N1.getOperand(0),
1246 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001247 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001248 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1249 // X == (Z-X) --> X<<1 == Z
1250 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1251 DAG.getConstant(1, getShiftAmountTy()));
1252 if (!DCI.isCalledByLegalizer())
1253 DCI.AddToWorklist(SH.Val);
1254 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1255 }
1256 }
1257 }
1258 }
1259
1260 // Fold away ALL boolean setcc's.
1261 SDOperand Temp;
1262 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1263 switch (Cond) {
1264 default: assert(0 && "Unknown integer setcc!");
1265 case ISD::SETEQ: // X == Y -> (X^Y)^1
1266 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1267 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1268 if (!DCI.isCalledByLegalizer())
1269 DCI.AddToWorklist(Temp.Val);
1270 break;
1271 case ISD::SETNE: // X != Y --> (X^Y)
1272 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1273 break;
1274 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1275 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1276 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1277 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1278 if (!DCI.isCalledByLegalizer())
1279 DCI.AddToWorklist(Temp.Val);
1280 break;
1281 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1282 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1283 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1284 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1285 if (!DCI.isCalledByLegalizer())
1286 DCI.AddToWorklist(Temp.Val);
1287 break;
1288 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1289 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1290 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1291 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1292 if (!DCI.isCalledByLegalizer())
1293 DCI.AddToWorklist(Temp.Val);
1294 break;
1295 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1296 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1297 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1298 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1299 break;
1300 }
1301 if (VT != MVT::i1) {
1302 if (!DCI.isCalledByLegalizer())
1303 DCI.AddToWorklist(N0.Val);
1304 // FIXME: If running after legalize, we probably can't do this.
1305 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1306 }
1307 return N0;
1308 }
1309
1310 // Could not fold it.
1311 return SDOperand();
1312}
1313
Chris Lattner00ffed02006-03-01 04:52:55 +00001314SDOperand TargetLowering::
1315PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1316 // Default implementation: no optimization.
1317 return SDOperand();
1318}
1319
Chris Lattnereb8146b2006-02-04 02:13:02 +00001320//===----------------------------------------------------------------------===//
1321// Inline Assembler Implementation Methods
1322//===----------------------------------------------------------------------===//
1323
1324TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001325TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001326 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001327 if (Constraint.size() == 1) {
1328 switch (Constraint[0]) {
1329 default: break;
1330 case 'r': return C_RegisterClass;
1331 case 'm': // memory
1332 case 'o': // offsetable
1333 case 'V': // not offsetable
1334 return C_Memory;
1335 case 'i': // Simple Integer or Relocatable Constant
1336 case 'n': // Simple Integer
1337 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001338 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001339 case 'I': // Target registers.
1340 case 'J':
1341 case 'K':
1342 case 'L':
1343 case 'M':
1344 case 'N':
1345 case 'O':
1346 case 'P':
1347 return C_Other;
1348 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001349 }
Chris Lattner065421f2007-03-25 02:18:14 +00001350
1351 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1352 Constraint[Constraint.size()-1] == '}')
1353 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001354 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001355}
1356
Chris Lattner48884cd2007-08-25 00:47:38 +00001357/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1358/// vector. If it is invalid, don't add anything to Ops.
1359void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1360 char ConstraintLetter,
1361 std::vector<SDOperand> &Ops,
1362 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001363 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001364 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001365 case 'i': // Simple Integer or Relocatable Constant
1366 case 'n': // Simple Integer
1367 case 's': // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001368 case 'X': { // Allows any operand.
1369 // These operands are interested in values of the form (GV+C), where C may
1370 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1371 // is possible and fine if either GV or C are missing.
1372 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1373 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1374
1375 // If we have "(add GV, C)", pull out GV/C
1376 if (Op.getOpcode() == ISD::ADD) {
1377 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1378 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1379 if (C == 0 || GA == 0) {
1380 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1381 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1382 }
1383 if (C == 0 || GA == 0)
1384 C = 0, GA = 0;
1385 }
1386
1387 // If we find a valid operand, map to the TargetXXX version so that the
1388 // value itself doesn't get selected.
1389 if (GA) { // Either &GV or &GV+C
1390 if (ConstraintLetter != 'n') {
1391 int64_t Offs = GA->getOffset();
1392 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001393 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1394 Op.getValueType(), Offs));
1395 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001396 }
1397 }
1398 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001399 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001400 if (ConstraintLetter != 's') {
1401 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1402 return;
1403 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001404 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001405 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001406 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001407 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001408}
1409
Chris Lattner4ccb0702006-01-26 20:37:03 +00001410std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001411getRegClassForInlineAsmConstraint(const std::string &Constraint,
1412 MVT::ValueType VT) const {
1413 return std::vector<unsigned>();
1414}
1415
1416
1417std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001418getRegForInlineAsmConstraint(const std::string &Constraint,
1419 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001420 if (Constraint[0] != '{')
1421 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001422 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1423
1424 // Remove the braces from around the name.
1425 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001426
1427 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001428 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001429 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1430 E = RI->regclass_end(); RCI != E; ++RCI) {
1431 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001432
1433 // If none of the the value types for this register class are valid, we
1434 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1435 bool isLegal = false;
1436 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1437 I != E; ++I) {
1438 if (isTypeLegal(*I)) {
1439 isLegal = true;
1440 break;
1441 }
1442 }
1443
1444 if (!isLegal) continue;
1445
Chris Lattner1efa40f2006-02-22 00:56:39 +00001446 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1447 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001448 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001449 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001450 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001451 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001452
Chris Lattner1efa40f2006-02-22 00:56:39 +00001453 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001454}
Evan Cheng30b37b52006-03-13 23:18:16 +00001455
1456//===----------------------------------------------------------------------===//
1457// Loop Strength Reduction hooks
1458//===----------------------------------------------------------------------===//
1459
Chris Lattner1436bb62007-03-30 23:14:50 +00001460/// isLegalAddressingMode - Return true if the addressing mode represented
1461/// by AM is legal for this target, for a load/store of the specified type.
1462bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1463 const Type *Ty) const {
1464 // The default implementation of this implements a conservative RISCy, r+r and
1465 // r+i addr mode.
1466
1467 // Allows a sign-extended 16-bit immediate field.
1468 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1469 return false;
1470
1471 // No global is ever allowed as a base.
1472 if (AM.BaseGV)
1473 return false;
1474
1475 // Only support r+r,
1476 switch (AM.Scale) {
1477 case 0: // "r+i" or just "i", depending on HasBaseReg.
1478 break;
1479 case 1:
1480 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1481 return false;
1482 // Otherwise we have r+r or r+i.
1483 break;
1484 case 2:
1485 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1486 return false;
1487 // Allow 2*r as r+r.
1488 break;
1489 }
1490
1491 return true;
1492}
1493
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001494// Magic for divide replacement
1495
1496struct ms {
1497 int64_t m; // magic number
1498 int64_t s; // shift amount
1499};
1500
1501struct mu {
1502 uint64_t m; // magic number
1503 int64_t a; // add indicator
1504 int64_t s; // shift amount
1505};
1506
1507/// magic - calculate the magic numbers required to codegen an integer sdiv as
1508/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1509/// or -1.
1510static ms magic32(int32_t d) {
1511 int32_t p;
1512 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1513 const uint32_t two31 = 0x80000000U;
1514 struct ms mag;
1515
1516 ad = abs(d);
1517 t = two31 + ((uint32_t)d >> 31);
1518 anc = t - 1 - t%ad; // absolute value of nc
1519 p = 31; // initialize p
1520 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1521 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1522 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1523 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1524 do {
1525 p = p + 1;
1526 q1 = 2*q1; // update q1 = 2p/abs(nc)
1527 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1528 if (r1 >= anc) { // must be unsigned comparison
1529 q1 = q1 + 1;
1530 r1 = r1 - anc;
1531 }
1532 q2 = 2*q2; // update q2 = 2p/abs(d)
1533 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1534 if (r2 >= ad) { // must be unsigned comparison
1535 q2 = q2 + 1;
1536 r2 = r2 - ad;
1537 }
1538 delta = ad - r2;
1539 } while (q1 < delta || (q1 == delta && r1 == 0));
1540
1541 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1542 if (d < 0) mag.m = -mag.m; // resulting magic number
1543 mag.s = p - 32; // resulting shift
1544 return mag;
1545}
1546
1547/// magicu - calculate the magic numbers required to codegen an integer udiv as
1548/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1549static mu magicu32(uint32_t d) {
1550 int32_t p;
1551 uint32_t nc, delta, q1, r1, q2, r2;
1552 struct mu magu;
1553 magu.a = 0; // initialize "add" indicator
1554 nc = - 1 - (-d)%d;
1555 p = 31; // initialize p
1556 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1557 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1558 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1559 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1560 do {
1561 p = p + 1;
1562 if (r1 >= nc - r1 ) {
1563 q1 = 2*q1 + 1; // update q1
1564 r1 = 2*r1 - nc; // update r1
1565 }
1566 else {
1567 q1 = 2*q1; // update q1
1568 r1 = 2*r1; // update r1
1569 }
1570 if (r2 + 1 >= d - r2) {
1571 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1572 q2 = 2*q2 + 1; // update q2
1573 r2 = 2*r2 + 1 - d; // update r2
1574 }
1575 else {
1576 if (q2 >= 0x80000000) magu.a = 1;
1577 q2 = 2*q2; // update q2
1578 r2 = 2*r2 + 1; // update r2
1579 }
1580 delta = d - 1 - r2;
1581 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1582 magu.m = q2 + 1; // resulting magic number
1583 magu.s = p - 32; // resulting shift
1584 return magu;
1585}
1586
1587/// magic - calculate the magic numbers required to codegen an integer sdiv as
1588/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1589/// or -1.
1590static ms magic64(int64_t d) {
1591 int64_t p;
1592 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1593 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1594 struct ms mag;
1595
1596 ad = d >= 0 ? d : -d;
1597 t = two63 + ((uint64_t)d >> 63);
1598 anc = t - 1 - t%ad; // absolute value of nc
1599 p = 63; // initialize p
1600 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1601 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1602 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1603 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1604 do {
1605 p = p + 1;
1606 q1 = 2*q1; // update q1 = 2p/abs(nc)
1607 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1608 if (r1 >= anc) { // must be unsigned comparison
1609 q1 = q1 + 1;
1610 r1 = r1 - anc;
1611 }
1612 q2 = 2*q2; // update q2 = 2p/abs(d)
1613 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1614 if (r2 >= ad) { // must be unsigned comparison
1615 q2 = q2 + 1;
1616 r2 = r2 - ad;
1617 }
1618 delta = ad - r2;
1619 } while (q1 < delta || (q1 == delta && r1 == 0));
1620
1621 mag.m = q2 + 1;
1622 if (d < 0) mag.m = -mag.m; // resulting magic number
1623 mag.s = p - 64; // resulting shift
1624 return mag;
1625}
1626
1627/// magicu - calculate the magic numbers required to codegen an integer udiv as
1628/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1629static mu magicu64(uint64_t d)
1630{
1631 int64_t p;
1632 uint64_t nc, delta, q1, r1, q2, r2;
1633 struct mu magu;
1634 magu.a = 0; // initialize "add" indicator
1635 nc = - 1 - (-d)%d;
1636 p = 63; // initialize p
1637 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1638 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1639 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1640 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1641 do {
1642 p = p + 1;
1643 if (r1 >= nc - r1 ) {
1644 q1 = 2*q1 + 1; // update q1
1645 r1 = 2*r1 - nc; // update r1
1646 }
1647 else {
1648 q1 = 2*q1; // update q1
1649 r1 = 2*r1; // update r1
1650 }
1651 if (r2 + 1 >= d - r2) {
1652 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1653 q2 = 2*q2 + 1; // update q2
1654 r2 = 2*r2 + 1 - d; // update r2
1655 }
1656 else {
1657 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1658 q2 = 2*q2; // update q2
1659 r2 = 2*r2 + 1; // update r2
1660 }
1661 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001662 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001663 magu.m = q2 + 1; // resulting magic number
1664 magu.s = p - 64; // resulting shift
1665 return magu;
1666}
1667
1668/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1669/// return a DAG expression to select that will generate the same value by
1670/// multiplying by a magic number. See:
1671/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1672SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001673 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001674 MVT::ValueType VT = N->getValueType(0);
1675
1676 // Check to see if we can do this.
1677 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1678 return SDOperand(); // BuildSDIV only operates on i32 or i64
1679 if (!isOperationLegal(ISD::MULHS, VT))
1680 return SDOperand(); // Make sure the target supports MULHS.
1681
1682 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1683 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1684
1685 // Multiply the numerator (operand 0) by the magic value
1686 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1687 DAG.getConstant(magics.m, VT));
1688 // If d > 0 and m < 0, add the numerator
1689 if (d > 0 && magics.m < 0) {
1690 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1691 if (Created)
1692 Created->push_back(Q.Val);
1693 }
1694 // If d < 0 and m > 0, subtract the numerator.
1695 if (d < 0 && magics.m > 0) {
1696 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1697 if (Created)
1698 Created->push_back(Q.Val);
1699 }
1700 // Shift right algebraic if shift value is nonzero
1701 if (magics.s > 0) {
1702 Q = DAG.getNode(ISD::SRA, VT, Q,
1703 DAG.getConstant(magics.s, getShiftAmountTy()));
1704 if (Created)
1705 Created->push_back(Q.Val);
1706 }
1707 // Extract the sign bit and add it to the quotient
1708 SDOperand T =
1709 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1710 getShiftAmountTy()));
1711 if (Created)
1712 Created->push_back(T.Val);
1713 return DAG.getNode(ISD::ADD, VT, Q, T);
1714}
1715
1716/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1717/// return a DAG expression to select that will generate the same value by
1718/// multiplying by a magic number. See:
1719/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1720SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001721 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001722 MVT::ValueType VT = N->getValueType(0);
1723
1724 // Check to see if we can do this.
1725 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1726 return SDOperand(); // BuildUDIV only operates on i32 or i64
1727 if (!isOperationLegal(ISD::MULHU, VT))
1728 return SDOperand(); // Make sure the target supports MULHU.
1729
1730 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1731 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1732
1733 // Multiply the numerator (operand 0) by the magic value
1734 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1735 DAG.getConstant(magics.m, VT));
1736 if (Created)
1737 Created->push_back(Q.Val);
1738
1739 if (magics.a == 0) {
1740 return DAG.getNode(ISD::SRL, VT, Q,
1741 DAG.getConstant(magics.s, getShiftAmountTy()));
1742 } else {
1743 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1744 if (Created)
1745 Created->push_back(NPQ.Val);
1746 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1747 DAG.getConstant(1, getShiftAmountTy()));
1748 if (Created)
1749 Created->push_back(NPQ.Val);
1750 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1751 if (Created)
1752 Created->push_back(NPQ.Val);
1753 return DAG.getNode(ISD::SRL, VT, NPQ,
1754 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1755 }
1756}