blob: bbabb795b4cc869cae3dc971f528b52f693bd80b [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
46// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
48// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000061#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000062#include "llvm/Support/Debug.h"
63#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000064#include <set>
65using namespace llvm;
66
67namespace {
68 Statistic<>
69 NumIters("anders-aa", "Number of iterations to reach convergence");
70 Statistic<>
71 NumConstraints("anders-aa", "Number of constraints");
72 Statistic<>
73 NumNodes("anders-aa", "Number of nodes");
74 Statistic<>
75 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
76 Statistic<>
77 NumIndirectCallees("anders-aa", "Number of indirect callees found");
78
Chris Lattnerb12914b2004-09-20 04:48:05 +000079 class Andersens : public ModulePass, public AliasAnalysis,
Chris Lattnere995a2a2004-05-23 21:00:47 +000080 private InstVisitor<Andersens> {
81 /// Node class - This class is used to represent a memory object in the
82 /// program, and is the primitive used to build the points-to graph.
83 class Node {
84 std::vector<Node*> Pointees;
85 Value *Val;
86 public:
87 Node() : Val(0) {}
88 Node *setValue(Value *V) {
89 assert(Val == 0 && "Value already set for this node!");
90 Val = V;
91 return this;
92 }
93
94 /// getValue - Return the LLVM value corresponding to this node.
95 Value *getValue() const { return Val; }
96
97 typedef std::vector<Node*>::const_iterator iterator;
98 iterator begin() const { return Pointees.begin(); }
99 iterator end() const { return Pointees.end(); }
100
101 /// addPointerTo - Add a pointer to the list of pointees of this node,
102 /// returning true if this caused a new pointer to be added, or false if
103 /// we already knew about the points-to relation.
104 bool addPointerTo(Node *N) {
105 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
106 Pointees.end(),
107 N);
108 if (I != Pointees.end() && *I == N)
109 return false;
110 Pointees.insert(I, N);
111 return true;
112 }
113
114 /// intersects - Return true if the points-to set of this node intersects
115 /// with the points-to set of the specified node.
116 bool intersects(Node *N) const;
117
118 /// intersectsIgnoring - Return true if the points-to set of this node
119 /// intersects with the points-to set of the specified node on any nodes
120 /// except for the specified node to ignore.
121 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
122
123 // Constraint application methods.
124 bool copyFrom(Node *N);
125 bool loadFrom(Node *N);
126 bool storeThrough(Node *N);
127 };
128
129 /// GraphNodes - This vector is populated as part of the object
130 /// identification stage of the analysis, which populates this vector with a
131 /// node for each memory object and fills in the ValueNodes map.
132 std::vector<Node> GraphNodes;
133
134 /// ValueNodes - This map indicates the Node that a particular Value* is
135 /// represented by. This contains entries for all pointers.
136 std::map<Value*, unsigned> ValueNodes;
137
138 /// ObjectNodes - This map contains entries for each memory object in the
139 /// program: globals, alloca's and mallocs.
140 std::map<Value*, unsigned> ObjectNodes;
141
142 /// ReturnNodes - This map contains an entry for each function in the
143 /// program that returns a value.
144 std::map<Function*, unsigned> ReturnNodes;
145
146 /// VarargNodes - This map contains the entry used to represent all pointers
147 /// passed through the varargs portion of a function call for a particular
148 /// function. An entry is not present in this map for functions that do not
149 /// take variable arguments.
150 std::map<Function*, unsigned> VarargNodes;
151
152 /// Constraint - Objects of this structure are used to represent the various
153 /// constraints identified by the algorithm. The constraints are 'copy',
154 /// for statements like "A = B", 'load' for statements like "A = *B", and
155 /// 'store' for statements like "*A = B".
156 struct Constraint {
157 enum ConstraintType { Copy, Load, Store } Type;
158 Node *Dest, *Src;
159
160 Constraint(ConstraintType Ty, Node *D, Node *S)
161 : Type(Ty), Dest(D), Src(S) {}
162 };
163
164 /// Constraints - This vector contains a list of all of the constraints
165 /// identified by the program.
166 std::vector<Constraint> Constraints;
167
168 /// EscapingInternalFunctions - This set contains all of the internal
169 /// functions that are found to escape from the program. If the address of
170 /// an internal function is passed to an external function or otherwise
171 /// escapes from the analyzed portion of the program, we must assume that
172 /// any pointer arguments can alias the universal node. This set keeps
173 /// track of those functions we are assuming to escape so far.
174 std::set<Function*> EscapingInternalFunctions;
175
176 /// IndirectCalls - This contains a list of all of the indirect call sites
177 /// in the program. Since the call graph is iteratively discovered, we may
178 /// need to add constraints to our graph as we find new targets of function
179 /// pointers.
180 std::vector<CallSite> IndirectCalls;
181
182 /// IndirectCallees - For each call site in the indirect calls list, keep
183 /// track of the callees that we have discovered so far. As the analysis
184 /// proceeds, more callees are discovered, until the call graph finally
185 /// stabilizes.
186 std::map<CallSite, std::vector<Function*> > IndirectCallees;
187
188 /// This enum defines the GraphNodes indices that correspond to important
189 /// fixed sets.
190 enum {
191 UniversalSet = 0,
192 NullPtr = 1,
193 NullObject = 2,
194 };
195
196 public:
Chris Lattnerb12914b2004-09-20 04:48:05 +0000197 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000198 InitializeAliasAnalysis(this);
199 IdentifyObjects(M);
200 CollectConstraints(M);
201 DEBUG(PrintConstraints());
202 SolveConstraints();
203 DEBUG(PrintPointsToGraph());
204
205 // Free the constraints list, as we don't need it to respond to alias
206 // requests.
207 ObjectNodes.clear();
208 ReturnNodes.clear();
209 VarargNodes.clear();
210 EscapingInternalFunctions.clear();
211 std::vector<Constraint>().swap(Constraints);
212 return false;
213 }
214
215 void releaseMemory() {
216 // FIXME: Until we have transitively required passes working correctly,
217 // this cannot be enabled! Otherwise, using -count-aa with the pass
218 // causes memory to be freed too early. :(
219#if 0
220 // The memory objects and ValueNodes data structures at the only ones that
221 // are still live after construction.
222 std::vector<Node>().swap(GraphNodes);
223 ValueNodes.clear();
224#endif
225 }
226
227 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
228 AliasAnalysis::getAnalysisUsage(AU);
229 AU.setPreservesAll(); // Does not transform code
230 }
231
232 //------------------------------------------------
233 // Implement the AliasAnalysis API
234 //
235 AliasResult alias(const Value *V1, unsigned V1Size,
236 const Value *V2, unsigned V2Size);
237 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
238 bool pointsToConstantMemory(const Value *P);
239
240 virtual void deleteValue(Value *V) {
241 ValueNodes.erase(V);
242 getAnalysis<AliasAnalysis>().deleteValue(V);
243 }
244
245 virtual void copyValue(Value *From, Value *To) {
246 ValueNodes[To] = ValueNodes[From];
247 getAnalysis<AliasAnalysis>().copyValue(From, To);
248 }
249
250 private:
251 /// getNode - Return the node corresponding to the specified pointer scalar.
252 ///
253 Node *getNode(Value *V) {
254 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000255 if (!isa<GlobalValue>(C))
256 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000257
258 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
259 if (I == ValueNodes.end()) {
260 V->dump();
261 assert(I != ValueNodes.end() &&
262 "Value does not have a node in the points-to graph!");
263 }
264 return &GraphNodes[I->second];
265 }
266
267 /// getObject - Return the node corresponding to the memory object for the
268 /// specified global or allocation instruction.
269 Node *getObject(Value *V) {
270 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
271 assert(I != ObjectNodes.end() &&
272 "Value does not have an object in the points-to graph!");
273 return &GraphNodes[I->second];
274 }
275
276 /// getReturnNode - Return the node representing the return value for the
277 /// specified function.
278 Node *getReturnNode(Function *F) {
279 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
280 assert(I != ReturnNodes.end() && "Function does not return a value!");
281 return &GraphNodes[I->second];
282 }
283
284 /// getVarargNode - Return the node representing the variable arguments
285 /// formal for the specified function.
286 Node *getVarargNode(Function *F) {
287 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
288 assert(I != VarargNodes.end() && "Function does not take var args!");
289 return &GraphNodes[I->second];
290 }
291
292 /// getNodeValue - Get the node for the specified LLVM value and set the
293 /// value for it to be the specified value.
294 Node *getNodeValue(Value &V) {
295 return getNode(&V)->setValue(&V);
296 }
297
298 void IdentifyObjects(Module &M);
299 void CollectConstraints(Module &M);
300 void SolveConstraints();
301
302 Node *getNodeForConstantPointer(Constant *C);
303 Node *getNodeForConstantPointerTarget(Constant *C);
304 void AddGlobalInitializerConstraints(Node *N, Constant *C);
305 void AddConstraintsForNonInternalLinkage(Function *F);
306 void AddConstraintsForCall(CallSite CS, Function *F);
307
308
309 void PrintNode(Node *N);
310 void PrintConstraints();
311 void PrintPointsToGraph();
312
313 //===------------------------------------------------------------------===//
314 // Instruction visitation methods for adding constraints
315 //
316 friend class InstVisitor<Andersens>;
317 void visitReturnInst(ReturnInst &RI);
318 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
319 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
320 void visitCallSite(CallSite CS);
321 void visitAllocationInst(AllocationInst &AI);
322 void visitLoadInst(LoadInst &LI);
323 void visitStoreInst(StoreInst &SI);
324 void visitGetElementPtrInst(GetElementPtrInst &GEP);
325 void visitPHINode(PHINode &PN);
326 void visitCastInst(CastInst &CI);
327 void visitSelectInst(SelectInst &SI);
328 void visitVANext(VANextInst &I);
329 void visitVAArg(VAArgInst &I);
330 void visitInstruction(Instruction &I);
331 };
332
333 RegisterOpt<Andersens> X("anders-aa",
334 "Andersen's Interprocedural Alias Analysis");
335 RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
336}
337
Jeff Cohen534927d2005-01-08 22:01:16 +0000338ModulePass *llvm::createAndersensPass() { return new Andersens(); }
339
Chris Lattnere995a2a2004-05-23 21:00:47 +0000340//===----------------------------------------------------------------------===//
341// AliasAnalysis Interface Implementation
342//===----------------------------------------------------------------------===//
343
344AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
345 const Value *V2, unsigned V2Size) {
346 Node *N1 = getNode((Value*)V1);
347 Node *N2 = getNode((Value*)V2);
348
349 // Check to see if the two pointers are known to not alias. They don't alias
350 // if their points-to sets do not intersect.
351 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
352 return NoAlias;
353
354 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
355}
356
357/// getMustAlias - We can provide must alias information if we know that a
358/// pointer can only point to a specific function or the null pointer.
359/// Unfortunately we cannot determine must-alias information for global
360/// variables or any other memory memory objects because we do not track whether
361/// a pointer points to the beginning of an object or a field of it.
362void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
363 Node *N = getNode(P);
364 Node::iterator I = N->begin();
365 if (I != N->end()) {
366 // If there is exactly one element in the points-to set for the object...
367 ++I;
368 if (I == N->end()) {
369 Node *Pointee = *N->begin();
370
371 // If a function is the only object in the points-to set, then it must be
372 // the destination. Note that we can't handle global variables here,
373 // because we don't know if the pointer is actually pointing to a field of
374 // the global or to the beginning of it.
375 if (Value *V = Pointee->getValue()) {
376 if (Function *F = dyn_cast<Function>(V))
377 RetVals.push_back(F);
378 } else {
379 // If the object in the points-to set is the null object, then the null
380 // pointer is a must alias.
381 if (Pointee == &GraphNodes[NullObject])
382 RetVals.push_back(Constant::getNullValue(P->getType()));
383 }
384 }
385 }
386
387 AliasAnalysis::getMustAliases(P, RetVals);
388}
389
390/// pointsToConstantMemory - If we can determine that this pointer only points
391/// to constant memory, return true. In practice, this means that if the
392/// pointer can only point to constant globals, functions, or the null pointer,
393/// return true.
394///
395bool Andersens::pointsToConstantMemory(const Value *P) {
396 Node *N = getNode((Value*)P);
397 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
398 if (Value *V = (*I)->getValue()) {
399 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
400 !cast<GlobalVariable>(V)->isConstant()))
401 return AliasAnalysis::pointsToConstantMemory(P);
402 } else {
403 if (*I != &GraphNodes[NullObject])
404 return AliasAnalysis::pointsToConstantMemory(P);
405 }
406 }
407
408 return true;
409}
410
411//===----------------------------------------------------------------------===//
412// Object Identification Phase
413//===----------------------------------------------------------------------===//
414
415/// IdentifyObjects - This stage scans the program, adding an entry to the
416/// GraphNodes list for each memory object in the program (global stack or
417/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
418///
419void Andersens::IdentifyObjects(Module &M) {
420 unsigned NumObjects = 0;
421
422 // Object #0 is always the universal set: the object that we don't know
423 // anything about.
424 assert(NumObjects == UniversalSet && "Something changed!");
425 ++NumObjects;
426
427 // Object #1 always represents the null pointer.
428 assert(NumObjects == NullPtr && "Something changed!");
429 ++NumObjects;
430
431 // Object #2 always represents the null object (the object pointed to by null)
432 assert(NumObjects == NullObject && "Something changed!");
433 ++NumObjects;
434
435 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000436 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
437 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000438 ObjectNodes[I] = NumObjects++;
439 ValueNodes[I] = NumObjects++;
440 }
441
442 // Add nodes for all of the functions and the instructions inside of them.
443 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
444 // The function itself is a memory object.
445 ValueNodes[F] = NumObjects++;
446 ObjectNodes[F] = NumObjects++;
447 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
448 ReturnNodes[F] = NumObjects++;
449 if (F->getFunctionType()->isVarArg())
450 VarargNodes[F] = NumObjects++;
451
452 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000453 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
454 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000455 if (isa<PointerType>(I->getType()))
456 ValueNodes[I] = NumObjects++;
457
458 // Scan the function body, creating a memory object for each heap/stack
459 // allocation in the body of the function and a node to represent all
460 // pointer values defined by instructions and used as operands.
461 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
462 // If this is an heap or stack allocation, create a node for the memory
463 // object.
464 if (isa<PointerType>(II->getType())) {
465 ValueNodes[&*II] = NumObjects++;
466 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
467 ObjectNodes[AI] = NumObjects++;
468 }
469 }
470 }
471
472 // Now that we know how many objects to create, make them all now!
473 GraphNodes.resize(NumObjects);
474 NumNodes += NumObjects;
475}
476
477//===----------------------------------------------------------------------===//
478// Constraint Identification Phase
479//===----------------------------------------------------------------------===//
480
481/// getNodeForConstantPointer - Return the node corresponding to the constant
482/// pointer itself.
483Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
484 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
485
Chris Lattner267a1b02005-03-27 18:58:23 +0000486 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000487 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000488 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
489 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000490 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
491 switch (CE->getOpcode()) {
492 case Instruction::GetElementPtr:
493 return getNodeForConstantPointer(CE->getOperand(0));
494 case Instruction::Cast:
495 if (isa<PointerType>(CE->getOperand(0)->getType()))
496 return getNodeForConstantPointer(CE->getOperand(0));
497 else
498 return &GraphNodes[UniversalSet];
499 default:
500 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
501 assert(0);
502 }
503 } else {
504 assert(0 && "Unknown constant pointer!");
505 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000506 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000507}
508
509/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
510/// specified constant pointer.
511Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
512 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
513
514 if (isa<ConstantPointerNull>(C))
515 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000516 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
517 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000518 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
519 switch (CE->getOpcode()) {
520 case Instruction::GetElementPtr:
521 return getNodeForConstantPointerTarget(CE->getOperand(0));
522 case Instruction::Cast:
523 if (isa<PointerType>(CE->getOperand(0)->getType()))
524 return getNodeForConstantPointerTarget(CE->getOperand(0));
525 else
526 return &GraphNodes[UniversalSet];
527 default:
528 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
529 assert(0);
530 }
531 } else {
532 assert(0 && "Unknown constant pointer!");
533 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000534 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000535}
536
537/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
538/// object N, which contains values indicated by C.
539void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
540 if (C->getType()->isFirstClassType()) {
541 if (isa<PointerType>(C->getType()))
542 N->addPointerTo(getNodeForConstantPointer(C));
543 } else if (C->isNullValue()) {
544 N->addPointerTo(&GraphNodes[NullObject]);
545 return;
546 } else {
547 // If this is an array or struct, include constraints for each element.
548 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
549 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
550 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
551 }
552}
553
554void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000555 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000556 if (isa<PointerType>(I->getType()))
557 // If this is an argument of an externally accessible function, the
558 // incoming pointer might point to anything.
559 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
560 &GraphNodes[UniversalSet]));
561}
562
563
564/// CollectConstraints - This stage scans the program, adding a constraint to
565/// the Constraints list for each instruction in the program that induces a
566/// constraint, and setting up the initial points-to graph.
567///
568void Andersens::CollectConstraints(Module &M) {
569 // First, the universal set points to itself.
570 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
571
572 // Next, the null pointer points to the null object.
573 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
574
575 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +0000576 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
577 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000578 // Associate the address of the global object as pointing to the memory for
579 // the global: &G = <G memory>
580 Node *Object = getObject(I);
581 Object->setValue(I);
582 getNodeValue(*I)->addPointerTo(Object);
583
584 if (I->hasInitializer()) {
585 AddGlobalInitializerConstraints(Object, I->getInitializer());
586 } else {
587 // If it doesn't have an initializer (i.e. it's defined in another
588 // translation unit), it points to the universal set.
589 Constraints.push_back(Constraint(Constraint::Copy, Object,
590 &GraphNodes[UniversalSet]));
591 }
592 }
593
594 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
595 // Make the function address point to the function object.
596 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
597
598 // Set up the return value node.
599 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
600 getReturnNode(F)->setValue(F);
601 if (F->getFunctionType()->isVarArg())
602 getVarargNode(F)->setValue(F);
603
604 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +0000605 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
606 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000607 if (isa<PointerType>(I->getType()))
608 getNodeValue(*I);
609
610 if (!F->hasInternalLinkage())
611 AddConstraintsForNonInternalLinkage(F);
612
613 if (!F->isExternal()) {
614 // Scan the function body, creating a memory object for each heap/stack
615 // allocation in the body of the function and a node to represent all
616 // pointer values defined by instructions and used as operands.
617 visit(F);
618 } else {
619 // External functions that return pointers return the universal set.
620 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
621 Constraints.push_back(Constraint(Constraint::Copy,
622 getReturnNode(F),
623 &GraphNodes[UniversalSet]));
624
625 // Any pointers that are passed into the function have the universal set
626 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +0000627 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
628 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000629 if (isa<PointerType>(I->getType())) {
630 // Pointers passed into external functions could have anything stored
631 // through them.
632 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
633 &GraphNodes[UniversalSet]));
634 // Memory objects passed into external function calls can have the
635 // universal set point to them.
636 Constraints.push_back(Constraint(Constraint::Copy,
637 &GraphNodes[UniversalSet],
638 getNode(I)));
639 }
640
641 // If this is an external varargs function, it can also store pointers
642 // into any pointers passed through the varargs section.
643 if (F->getFunctionType()->isVarArg())
644 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
645 &GraphNodes[UniversalSet]));
646 }
647 }
648 NumConstraints += Constraints.size();
649}
650
651
652void Andersens::visitInstruction(Instruction &I) {
653#ifdef NDEBUG
654 return; // This function is just a big assert.
655#endif
656 if (isa<BinaryOperator>(I))
657 return;
658 // Most instructions don't have any effect on pointer values.
659 switch (I.getOpcode()) {
660 case Instruction::Br:
661 case Instruction::Switch:
662 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +0000663 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +0000664 case Instruction::Free:
665 case Instruction::Shl:
666 case Instruction::Shr:
667 return;
668 default:
669 // Is this something we aren't handling yet?
670 std::cerr << "Unknown instruction: " << I;
671 abort();
672 }
673}
674
675void Andersens::visitAllocationInst(AllocationInst &AI) {
676 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
677}
678
679void Andersens::visitReturnInst(ReturnInst &RI) {
680 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
681 // return V --> <Copy/retval{F}/v>
682 Constraints.push_back(Constraint(Constraint::Copy,
683 getReturnNode(RI.getParent()->getParent()),
684 getNode(RI.getOperand(0))));
685}
686
687void Andersens::visitLoadInst(LoadInst &LI) {
688 if (isa<PointerType>(LI.getType()))
689 // P1 = load P2 --> <Load/P1/P2>
690 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
691 getNode(LI.getOperand(0))));
692}
693
694void Andersens::visitStoreInst(StoreInst &SI) {
695 if (isa<PointerType>(SI.getOperand(0)->getType()))
696 // store P1, P2 --> <Store/P2/P1>
697 Constraints.push_back(Constraint(Constraint::Store,
698 getNode(SI.getOperand(1)),
699 getNode(SI.getOperand(0))));
700}
701
702void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
703 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
704 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
705 getNode(GEP.getOperand(0))));
706}
707
708void Andersens::visitPHINode(PHINode &PN) {
709 if (isa<PointerType>(PN.getType())) {
710 Node *PNN = getNodeValue(PN);
711 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
712 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
713 Constraints.push_back(Constraint(Constraint::Copy, PNN,
714 getNode(PN.getIncomingValue(i))));
715 }
716}
717
718void Andersens::visitCastInst(CastInst &CI) {
719 Value *Op = CI.getOperand(0);
720 if (isa<PointerType>(CI.getType())) {
721 if (isa<PointerType>(Op->getType())) {
722 // P1 = cast P2 --> <Copy/P1/P2>
723 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
724 getNode(CI.getOperand(0))));
725 } else {
726 // P1 = cast int --> <Copy/P1/Univ>
727 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
728 &GraphNodes[UniversalSet]));
729 }
730 } else if (isa<PointerType>(Op->getType())) {
731 // int = cast P1 --> <Copy/Univ/P1>
732 Constraints.push_back(Constraint(Constraint::Copy,
733 &GraphNodes[UniversalSet],
734 getNode(CI.getOperand(0))));
735 }
736}
737
738void Andersens::visitSelectInst(SelectInst &SI) {
739 if (isa<PointerType>(SI.getType())) {
740 Node *SIN = getNodeValue(SI);
741 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
742 Constraints.push_back(Constraint(Constraint::Copy, SIN,
743 getNode(SI.getOperand(1))));
744 Constraints.push_back(Constraint(Constraint::Copy, SIN,
745 getNode(SI.getOperand(2))));
746 }
747}
748
749void Andersens::visitVANext(VANextInst &I) {
750 // FIXME: Implement
751 assert(0 && "vanext not handled yet!");
752}
753void Andersens::visitVAArg(VAArgInst &I) {
754 assert(0 && "vaarg not handled yet!");
755}
756
757/// AddConstraintsForCall - Add constraints for a call with actual arguments
758/// specified by CS to the function specified by F. Note that the types of
759/// arguments might not match up in the case where this is an indirect call and
760/// the function pointer has been casted. If this is the case, do something
761/// reasonable.
762void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
763 if (isa<PointerType>(CS.getType())) {
764 Node *CSN = getNode(CS.getInstruction());
765 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
766 Constraints.push_back(Constraint(Constraint::Copy, CSN,
767 getReturnNode(F)));
768 } else {
769 // If the function returns a non-pointer value, handle this just like we
770 // treat a nonpointer cast to pointer.
771 Constraints.push_back(Constraint(Constraint::Copy, CSN,
772 &GraphNodes[UniversalSet]));
773 }
774 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
775 Constraints.push_back(Constraint(Constraint::Copy,
776 &GraphNodes[UniversalSet],
777 getReturnNode(F)));
778 }
779
Chris Lattnere4d5c442005-03-15 04:54:21 +0000780 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000781 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
782 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
783 if (isa<PointerType>(AI->getType())) {
784 if (isa<PointerType>((*ArgI)->getType())) {
785 // Copy the actual argument into the formal argument.
786 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
787 getNode(*ArgI)));
788 } else {
789 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
790 &GraphNodes[UniversalSet]));
791 }
792 } else if (isa<PointerType>((*ArgI)->getType())) {
793 Constraints.push_back(Constraint(Constraint::Copy,
794 &GraphNodes[UniversalSet],
795 getNode(*ArgI)));
796 }
797
798 // Copy all pointers passed through the varargs section to the varargs node.
799 if (F->getFunctionType()->isVarArg())
800 for (; ArgI != ArgE; ++ArgI)
801 if (isa<PointerType>((*ArgI)->getType()))
802 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
803 getNode(*ArgI)));
804 // If more arguments are passed in than we track, just drop them on the floor.
805}
806
807void Andersens::visitCallSite(CallSite CS) {
808 if (isa<PointerType>(CS.getType()))
809 getNodeValue(*CS.getInstruction());
810
811 if (Function *F = CS.getCalledFunction()) {
812 AddConstraintsForCall(CS, F);
813 } else {
814 // We don't handle indirect call sites yet. Keep track of them for when we
815 // discover the call graph incrementally.
816 IndirectCalls.push_back(CS);
817 }
818}
819
820//===----------------------------------------------------------------------===//
821// Constraint Solving Phase
822//===----------------------------------------------------------------------===//
823
824/// intersects - Return true if the points-to set of this node intersects
825/// with the points-to set of the specified node.
826bool Andersens::Node::intersects(Node *N) const {
827 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
828 while (I1 != E1 && I2 != E2) {
829 if (*I1 == *I2) return true;
830 if (*I1 < *I2)
831 ++I1;
832 else
833 ++I2;
834 }
835 return false;
836}
837
838/// intersectsIgnoring - Return true if the points-to set of this node
839/// intersects with the points-to set of the specified node on any nodes
840/// except for the specified node to ignore.
841bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
842 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
843 while (I1 != E1 && I2 != E2) {
844 if (*I1 == *I2) {
845 if (*I1 != Ignoring) return true;
846 ++I1; ++I2;
847 } else if (*I1 < *I2)
848 ++I1;
849 else
850 ++I2;
851 }
852 return false;
853}
854
855// Copy constraint: all edges out of the source node get copied to the
856// destination node. This returns true if a change is made.
857bool Andersens::Node::copyFrom(Node *N) {
858 // Use a mostly linear-time merge since both of the lists are sorted.
859 bool Changed = false;
860 iterator I = N->begin(), E = N->end();
861 unsigned i = 0;
862 while (I != E && i != Pointees.size()) {
863 if (Pointees[i] < *I) {
864 ++i;
865 } else if (Pointees[i] == *I) {
866 ++i; ++I;
867 } else {
868 // We found a new element to copy over.
869 Changed = true;
870 Pointees.insert(Pointees.begin()+i, *I);
871 ++i; ++I;
872 }
873 }
874
875 if (I != E) {
876 Pointees.insert(Pointees.end(), I, E);
877 Changed = true;
878 }
879
880 return Changed;
881}
882
883bool Andersens::Node::loadFrom(Node *N) {
884 bool Changed = false;
885 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
886 Changed |= copyFrom(*I);
887 return Changed;
888}
889
890bool Andersens::Node::storeThrough(Node *N) {
891 bool Changed = false;
892 for (iterator I = begin(), E = end(); I != E; ++I)
893 Changed |= (*I)->copyFrom(N);
894 return Changed;
895}
896
897
898/// SolveConstraints - This stage iteratively processes the constraints list
899/// propagating constraints (adding edges to the Nodes in the points-to graph)
900/// until a fixed point is reached.
901///
902void Andersens::SolveConstraints() {
903 bool Changed = true;
904 unsigned Iteration = 0;
905 while (Changed) {
906 Changed = false;
907 ++NumIters;
908 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
909
910 // Loop over all of the constraints, applying them in turn.
911 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
912 Constraint &C = Constraints[i];
913 switch (C.Type) {
914 case Constraint::Copy:
915 Changed |= C.Dest->copyFrom(C.Src);
916 break;
917 case Constraint::Load:
918 Changed |= C.Dest->loadFrom(C.Src);
919 break;
920 case Constraint::Store:
921 Changed |= C.Dest->storeThrough(C.Src);
922 break;
923 default:
924 assert(0 && "Unknown constraint!");
925 }
926 }
927
928 if (Changed) {
929 // Check to see if any internal function's addresses have been passed to
930 // external functions. If so, we have to assume that their incoming
931 // arguments could be anything. If there are any internal functions in
932 // the universal node that we don't know about, we must iterate.
933 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
934 E = GraphNodes[UniversalSet].end(); I != E; ++I)
935 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
936 if (F->hasInternalLinkage() &&
937 EscapingInternalFunctions.insert(F).second) {
938 // We found a function that is just now escaping. Mark it as if it
939 // didn't have internal linkage.
940 AddConstraintsForNonInternalLinkage(F);
941 DEBUG(std::cerr << "Found escaping internal function: "
942 << F->getName() << "\n");
943 ++NumEscapingFunctions;
944 }
945
946 // Check to see if we have discovered any new callees of the indirect call
947 // sites. If so, add constraints to the analysis.
948 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
949 CallSite CS = IndirectCalls[i];
950 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
951 Node *CN = getNode(CS.getCalledValue());
952
953 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
954 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
955 std::vector<Function*>::iterator IP =
956 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
957 if (IP == KnownCallees.end() || *IP != F) {
958 // Add the constraints for the call now.
959 AddConstraintsForCall(CS, F);
960 DEBUG(std::cerr << "Found actual callee '"
961 << F->getName() << "' for call: "
962 << *CS.getInstruction() << "\n");
963 ++NumIndirectCallees;
964 KnownCallees.insert(IP, F);
965 }
966 }
967 }
968 }
969 }
970}
971
972
973
974//===----------------------------------------------------------------------===//
975// Debugging Output
976//===----------------------------------------------------------------------===//
977
978void Andersens::PrintNode(Node *N) {
979 if (N == &GraphNodes[UniversalSet]) {
980 std::cerr << "<universal>";
981 return;
982 } else if (N == &GraphNodes[NullPtr]) {
983 std::cerr << "<nullptr>";
984 return;
985 } else if (N == &GraphNodes[NullObject]) {
986 std::cerr << "<null>";
987 return;
988 }
989
990 assert(N->getValue() != 0 && "Never set node label!");
991 Value *V = N->getValue();
992 if (Function *F = dyn_cast<Function>(V)) {
993 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
994 N == getReturnNode(F)) {
995 std::cerr << F->getName() << ":retval";
996 return;
997 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
998 std::cerr << F->getName() << ":vararg";
999 return;
1000 }
1001 }
1002
1003 if (Instruction *I = dyn_cast<Instruction>(V))
1004 std::cerr << I->getParent()->getParent()->getName() << ":";
1005 else if (Argument *Arg = dyn_cast<Argument>(V))
1006 std::cerr << Arg->getParent()->getName() << ":";
1007
1008 if (V->hasName())
1009 std::cerr << V->getName();
1010 else
1011 std::cerr << "(unnamed)";
1012
1013 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1014 if (N == getObject(V))
1015 std::cerr << "<mem>";
1016}
1017
1018void Andersens::PrintConstraints() {
1019 std::cerr << "Constraints:\n";
1020 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1021 std::cerr << " #" << i << ": ";
1022 Constraint &C = Constraints[i];
1023 if (C.Type == Constraint::Store)
1024 std::cerr << "*";
1025 PrintNode(C.Dest);
1026 std::cerr << " = ";
1027 if (C.Type == Constraint::Load)
1028 std::cerr << "*";
1029 PrintNode(C.Src);
1030 std::cerr << "\n";
1031 }
1032}
1033
1034void Andersens::PrintPointsToGraph() {
1035 std::cerr << "Points-to graph:\n";
1036 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1037 Node *N = &GraphNodes[i];
1038 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1039 PrintNode(N);
1040 std::cerr << "\t--> ";
1041 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1042 if (I != N->begin()) std::cerr << ", ";
1043 PrintNode(*I);
1044 }
1045 std::cerr << "\n";
1046 }
1047}