blob: b1a2ceb79c56af24a19e71496e86954b49f3a6fc [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattnercb533582003-08-03 21:14:38 +000031#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Chris Lattner847df252004-01-30 22:25:18 +000040#include "llvm/Function.h" // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h" // FIXME: remove when using MBB CFG!
Chris Lattnera11136b2003-08-01 22:21:34 +000042#include "Support/Debug.h"
Chris Lattner847df252004-01-30 22:25:18 +000043#include "Support/DepthFirstIterator.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include "Support/Statistic.h"
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000045#include "Support/STLExtras.h"
Chris Lattnera960d952003-01-13 01:01:59 +000046#include <algorithm>
Chris Lattner847df252004-01-30 22:25:18 +000047#include <set>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000048using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000049
Chris Lattnera960d952003-01-13 01:01:59 +000050namespace {
51 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
53
54 struct FPS : public MachineFunctionPass {
55 virtual bool runOnMachineFunction(MachineFunction &MF);
56
57 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60 AU.addRequired<LiveVariables>();
61 MachineFunctionPass::getAnalysisUsage(AU);
62 }
63 private:
64 LiveVariables *LV; // Live variable info for current function...
65 MachineBasicBlock *MBB; // Current basic block
66 unsigned Stack[8]; // FP<n> Registers in each stack slot...
67 unsigned RegMap[8]; // Track which stack slot contains each register
68 unsigned StackTop; // The current top of the FP stack.
69
70 void dumpStack() const {
71 std::cerr << "Stack contents:";
72 for (unsigned i = 0; i != StackTop; ++i) {
73 std::cerr << " FP" << Stack[i];
74 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75 }
76 std::cerr << "\n";
77 }
78 private:
79 // getSlot - Return the stack slot number a particular register number is
80 // in...
81 unsigned getSlot(unsigned RegNo) const {
82 assert(RegNo < 8 && "Regno out of range!");
83 return RegMap[RegNo];
84 }
85
86 // getStackEntry - Return the X86::FP<n> register in register ST(i)
87 unsigned getStackEntry(unsigned STi) const {
88 assert(STi < StackTop && "Access past stack top!");
89 return Stack[StackTop-1-STi];
90 }
91
92 // getSTReg - Return the X86::ST(i) register which contains the specified
93 // FP<RegNo> register
94 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000095 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000096 }
97
Chris Lattner4a06f352004-02-02 19:23:15 +000098 // pushReg - Push the specified FP<n> register onto the stack
Chris Lattnera960d952003-01-13 01:01:59 +000099 void pushReg(unsigned Reg) {
100 assert(Reg < 8 && "Register number out of range!");
101 assert(StackTop < 8 && "Stack overflow!");
102 Stack[StackTop] = Reg;
103 RegMap[Reg] = StackTop++;
104 }
105
106 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108 if (!isAtTop(RegNo)) {
109 unsigned Slot = getSlot(RegNo);
110 unsigned STReg = getSTReg(RegNo);
111 unsigned RegOnTop = getStackEntry(0);
112
113 // Swap the slots the regs are in
114 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116 // Swap stack slot contents
117 assert(RegMap[RegOnTop] < StackTop);
118 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120 // Emit an fxch to update the runtime processors version of the state
Chris Lattner0526f012004-04-01 04:06:09 +0000121 BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000122 NumFXCH++;
123 }
124 }
125
Chris Lattner0526f012004-04-01 04:06:09 +0000126 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Chris Lattnera960d952003-01-13 01:01:59 +0000127 unsigned STReg = getSTReg(RegNo);
128 pushReg(AsReg); // New register on top of stack
129
Chris Lattner0526f012004-04-01 04:06:09 +0000130 BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000131 }
132
133 // popStackAfter - Pop the current value off of the top of the FP stack
134 // after the specified instruction.
135 void popStackAfter(MachineBasicBlock::iterator &I);
136
Chris Lattner0526f012004-04-01 04:06:09 +0000137 // freeStackSlotAfter - Free the specified register from the register stack,
138 // so that it is no longer in a register. If the register is currently at
139 // the top of the stack, we just pop the current instruction, otherwise we
140 // store the current top-of-stack into the specified slot, then pop the top
141 // of stack.
142 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
143
Chris Lattnera960d952003-01-13 01:01:59 +0000144 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
145
146 void handleZeroArgFP(MachineBasicBlock::iterator &I);
147 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000148 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000149 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000150 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000151 void handleSpecialFP(MachineBasicBlock::iterator &I);
152 };
153}
154
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000155FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000156
157/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
158/// register references into FP stack references.
159///
160bool FPS::runOnMachineFunction(MachineFunction &MF) {
161 LV = &getAnalysis<LiveVariables>();
162 StackTop = 0;
163
Chris Lattner847df252004-01-30 22:25:18 +0000164 // Figure out the mapping of MBB's to BB's.
165 //
166 // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
167 // we will need to extend this when one llvm basic block can codegen to
168 // multiple MBBs.
169 //
170 // FIXME again: Just use the mapping established by LiveVariables!
171 //
172 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
Chris Lattnera960d952003-01-13 01:01:59 +0000173 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Chris Lattner847df252004-01-30 22:25:18 +0000174 MBBMap[I->getBasicBlock()] = I;
175
176 // Process the function in depth first order so that we process at least one
177 // of the predecessors for every reachable block in the function.
178 std::set<const BasicBlock*> Processed;
179 const BasicBlock *Entry = MF.getFunction()->begin();
180
181 bool Changed = false;
182 for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
183 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
184 I != E; ++I)
185 Changed |= processBasicBlock(MF, *MBBMap[*I]);
186
187 assert(MBBMap.size() == Processed.size() &&
188 "Doesn't handle unreachable code yet!");
189
Chris Lattnera960d952003-01-13 01:01:59 +0000190 return Changed;
191}
192
193/// processBasicBlock - Loop over all of the instructions in the basic block,
194/// transforming FP instructions into their stack form.
195///
196bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
197 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
198 bool Changed = false;
199 MBB = &BB;
200
201 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000202 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000203 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
Chris Lattner847df252004-01-30 22:25:18 +0000204 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
205 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000206
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000207 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000208 if (I != BB.begin())
209 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000210
211 ++NumFP; // Keep track of # of pseudo instrs
212 DEBUG(std::cerr << "\nFPInst:\t";
213 MI->print(std::cerr, MF.getTarget()));
214
215 // Get dead variables list now because the MI pointer may be deleted as part
216 // of processing!
217 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
218 LiveVariables::killed_iterator IE = LV->dead_end(MI);
219
220 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
221 LiveVariables::killed_iterator I = LV->killed_begin(MI);
222 LiveVariables::killed_iterator E = LV->killed_end(MI);
223 if (I != E) {
224 std::cerr << "Killed Operands:";
225 for (; I != E; ++I)
226 std::cerr << " %" << MRI->getName(I->second);
227 std::cerr << "\n";
228 });
229
230 switch (Flags & X86II::FPTypeMask) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000231 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000232 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000233 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
234 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000235 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000236 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000237 default: assert(0 && "Unknown FP Type!");
238 }
239
240 // Check to see if any of the values defined by this instruction are dead
241 // after definition. If so, pop them.
242 for (; IB != IE; ++IB) {
243 unsigned Reg = IB->second;
244 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
245 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
246 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000247 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000248 --I; // Move to fxch or old instruction
249 popStackAfter(I); // Pop the top of the stack, killing value
250 }
251 }
252
253 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000254 DEBUG(
255 MachineBasicBlock::iterator PrevI(PrevMI);
256 if (I == PrevI) {
Chris Lattner0526f012004-04-01 04:06:09 +0000257 std::cerr << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000258 } else {
259 MachineBasicBlock::iterator Start = I;
260 // Rewind to first instruction newly inserted.
261 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
262 std::cerr << "Inserted instructions:\n\t";
263 Start->print(std::cerr, MF.getTarget());
264 while (++Start != next(I));
265 }
266 dumpStack();
267 );
Chris Lattnera960d952003-01-13 01:01:59 +0000268
269 Changed = true;
270 }
271
272 assert(StackTop == 0 && "Stack not empty at end of basic block?");
273 return Changed;
274}
275
276//===----------------------------------------------------------------------===//
277// Efficient Lookup Table Support
278//===----------------------------------------------------------------------===//
279
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000280namespace {
281 struct TableEntry {
282 unsigned from;
283 unsigned to;
284 bool operator<(const TableEntry &TE) const { return from < TE.from; }
285 bool operator<(unsigned V) const { return from < V; }
286 };
287}
Chris Lattnera960d952003-01-13 01:01:59 +0000288
289static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
290 for (unsigned i = 0; i != NumEntries-1; ++i)
291 if (!(Table[i] < Table[i+1])) return false;
292 return true;
293}
294
295static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
296 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
297 if (I != Table+N && I->from == Opcode)
298 return I->to;
299 return -1;
300}
301
302#define ARRAY_SIZE(TABLE) \
303 (sizeof(TABLE)/sizeof(TABLE[0]))
304
305#ifdef NDEBUG
306#define ASSERT_SORTED(TABLE)
307#else
308#define ASSERT_SORTED(TABLE) \
309 { static bool TABLE##Checked = false; \
310 if (!TABLE##Checked) \
311 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
312 "All lookup tables must be sorted for efficient access!"); \
313 }
314#endif
315
316
317//===----------------------------------------------------------------------===//
318// Helper Methods
319//===----------------------------------------------------------------------===//
320
321// PopTable - Sorted map of instructions to their popping version. The first
322// element is an instruction, the second is the version which pops.
323//
324static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000325 { X86::FADDrST0 , X86::FADDPrST0 },
326
327 { X86::FDIVRrST0, X86::FDIVRPrST0 },
328 { X86::FDIVrST0 , X86::FDIVPrST0 },
329
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000330 { X86::FIST16m , X86::FISTP16m },
331 { X86::FIST32m , X86::FISTP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000332
Chris Lattnera960d952003-01-13 01:01:59 +0000333 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000334
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000335 { X86::FST32m , X86::FSTP32m },
336 { X86::FST64m , X86::FSTP64m },
Chris Lattner113455b2003-08-03 21:56:36 +0000337 { X86::FSTrr , X86::FSTPrr },
338
339 { X86::FSUBRrST0, X86::FSUBRPrST0 },
340 { X86::FSUBrST0 , X86::FSUBPrST0 },
341
Chris Lattnera960d952003-01-13 01:01:59 +0000342 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000343 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000344};
345
346/// popStackAfter - Pop the current value off of the top of the FP stack after
347/// the specified instruction. This attempts to be sneaky and combine the pop
348/// into the instruction itself if possible. The iterator is left pointing to
349/// the last instruction, be it a new pop instruction inserted, or the old
350/// instruction if it was modified in place.
351///
352void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
353 ASSERT_SORTED(PopTable);
354 assert(StackTop > 0 && "Cannot pop empty stack!");
355 RegMap[Stack[--StackTop]] = ~0; // Update state
356
357 // Check to see if there is a popping version of this instruction...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000358 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000359 if (Opcode != -1) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000360 I->setOpcode(Opcode);
Chris Lattnera960d952003-01-13 01:01:59 +0000361 if (Opcode == X86::FUCOMPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000362 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000363
364 } else { // Insert an explicit pop
Chris Lattner0526f012004-04-01 04:06:09 +0000365 I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000366 }
367}
368
Chris Lattner0526f012004-04-01 04:06:09 +0000369/// freeStackSlotAfter - Free the specified register from the register stack, so
370/// that it is no longer in a register. If the register is currently at the top
371/// of the stack, we just pop the current instruction, otherwise we store the
372/// current top-of-stack into the specified slot, then pop the top of stack.
373void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
374 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
375 popStackAfter(I);
376 return;
377 }
378
379 // Otherwise, store the top of stack into the dead slot, killing the operand
380 // without having to add in an explicit xchg then pop.
381 //
382 unsigned STReg = getSTReg(FPRegNo);
383 unsigned OldSlot = getSlot(FPRegNo);
384 unsigned TopReg = Stack[StackTop-1];
385 Stack[OldSlot] = TopReg;
386 RegMap[TopReg] = OldSlot;
387 RegMap[FPRegNo] = ~0;
388 Stack[--StackTop] = ~0;
389 I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
390}
391
392
Chris Lattnera960d952003-01-13 01:01:59 +0000393static unsigned getFPReg(const MachineOperand &MO) {
Chris Lattner6d215182004-02-10 20:31:28 +0000394 assert(MO.isRegister() && "Expected an FP register!");
Chris Lattnera960d952003-01-13 01:01:59 +0000395 unsigned Reg = MO.getReg();
396 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
397 return Reg - X86::FP0;
398}
399
400
401//===----------------------------------------------------------------------===//
402// Instruction transformation implementation
403//===----------------------------------------------------------------------===//
404
405/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000406///
Chris Lattnera960d952003-01-13 01:01:59 +0000407void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000408 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000409 unsigned DestReg = getFPReg(MI->getOperand(0));
410 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
411
412 // Result gets pushed on the stack...
413 pushReg(DestReg);
414}
415
Chris Lattner4a06f352004-02-02 19:23:15 +0000416/// handleOneArgFP - fst <mem>, ST(0)
417///
Chris Lattnera960d952003-01-13 01:01:59 +0000418void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000419 MachineInstr *MI = I;
Chris Lattnerb97046a2004-02-03 07:27:34 +0000420 assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
421 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000422
Chris Lattner4a06f352004-02-02 19:23:15 +0000423 // Is this the last use of the source register?
Chris Lattnerb97046a2004-02-03 07:27:34 +0000424 unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
Chris Lattnera960d952003-01-13 01:01:59 +0000425 bool KillsSrc = false;
426 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
427 E = LV->killed_end(MI); KI != E; ++KI)
428 KillsSrc |= KI->second == X86::FP0+Reg;
429
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000430 // FSTP80r and FISTP64r are strange because there are no non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000431 // If we have one _and_ we don't want to pop the operand, duplicate the value
432 // on the stack instead of moving it. This ensure that popping the value is
433 // always ok.
434 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000435 if ((MI->getOpcode() == X86::FSTP80m ||
436 MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
Chris Lattnera960d952003-01-13 01:01:59 +0000437 duplicateToTop(Reg, 7 /*temp register*/, I);
438 } else {
439 moveToTop(Reg, I); // Move to the top of the stack...
440 }
Chris Lattnerb97046a2004-02-03 07:27:34 +0000441 MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
Chris Lattnera960d952003-01-13 01:01:59 +0000442
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000443 if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000444 assert(StackTop > 0 && "Stack empty??");
445 --StackTop;
446 } else if (KillsSrc) { // Last use of operand?
447 popStackAfter(I);
448 }
449}
450
Chris Lattner4a06f352004-02-02 19:23:15 +0000451
452/// handleOneArgFPRW - fchs - ST(0) = -ST(0)
453///
454void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000455 MachineInstr *MI = I;
Chris Lattner4a06f352004-02-02 19:23:15 +0000456 assert(MI->getNumOperands() == 2 && "Can only handle fst* instructions!");
457
458 // Is this the last use of the source register?
459 unsigned Reg = getFPReg(MI->getOperand(1));
460 bool KillsSrc = false;
461 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
462 E = LV->killed_end(MI); KI != E; ++KI)
463 KillsSrc |= KI->second == X86::FP0+Reg;
464
465 if (KillsSrc) {
466 // If this is the last use of the source register, just make sure it's on
467 // the top of the stack.
468 moveToTop(Reg, I);
469 assert(StackTop > 0 && "Stack cannot be empty!");
470 --StackTop;
471 pushReg(getFPReg(MI->getOperand(0)));
472 } else {
473 // If this is not the last use of the source register, _copy_ it to the top
474 // of the stack.
475 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
476 }
477
478 MI->RemoveOperand(1); // Drop the source operand.
479 MI->RemoveOperand(0); // Drop the destination operand.
480}
481
482
Chris Lattnera960d952003-01-13 01:01:59 +0000483//===----------------------------------------------------------------------===//
484// Define tables of various ways to map pseudo instructions
485//
486
487// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
488static const TableEntry ForwardST0Table[] = {
489 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000490 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000491 { X86::FpMUL, X86::FMULST0r },
492 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000493 { X86::FpUCOM, X86::FUCOMr },
494};
495
496// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
497static const TableEntry ReverseST0Table[] = {
498 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000499 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000500 { X86::FpMUL, X86::FMULST0r }, // commutative
501 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000502 { X86::FpUCOM, ~0 },
503};
504
505// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
506static const TableEntry ForwardSTiTable[] = {
507 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000508 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000509 { X86::FpMUL, X86::FMULrST0 }, // commutative
510 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000511 { X86::FpUCOM, X86::FUCOMr },
512};
513
514// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
515static const TableEntry ReverseSTiTable[] = {
516 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000517 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000518 { X86::FpMUL, X86::FMULrST0 },
519 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000520 { X86::FpUCOM, ~0 },
521};
522
523
524/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
525/// instructions which need to be simplified and possibly transformed.
526///
527/// Result: ST(0) = fsub ST(0), ST(i)
528/// ST(i) = fsub ST(0), ST(i)
529/// ST(0) = fsubr ST(0), ST(i)
530/// ST(i) = fsubr ST(0), ST(i)
531///
532/// In addition to three address instructions, this also handles the FpUCOM
533/// instruction which only has two operands, but no destination. This
534/// instruction is also annoying because there is no "reverse" form of it
535/// available.
536///
537void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
538 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
539 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000540 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000541
542 unsigned NumOperands = MI->getNumOperands();
543 assert(NumOperands == 3 ||
544 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
545 "Illegal TwoArgFP instruction!");
546 unsigned Dest = getFPReg(MI->getOperand(0));
547 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
548 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
549 bool KillsOp0 = false, KillsOp1 = false;
550
551 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
552 E = LV->killed_end(MI); KI != E; ++KI) {
553 KillsOp0 |= (KI->second == X86::FP0+Op0);
554 KillsOp1 |= (KI->second == X86::FP0+Op1);
555 }
556
557 // If this is an FpUCOM instruction, we must make sure the first operand is on
558 // the top of stack, the other one can be anywhere...
559 if (MI->getOpcode() == X86::FpUCOM)
560 moveToTop(Op0, I);
561
562 unsigned TOS = getStackEntry(0);
563
564 // One of our operands must be on the top of the stack. If neither is yet, we
565 // need to move one.
566 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
567 // We can choose to move either operand to the top of the stack. If one of
568 // the operands is killed by this instruction, we want that one so that we
569 // can update right on top of the old version.
570 if (KillsOp0) {
571 moveToTop(Op0, I); // Move dead operand to TOS.
572 TOS = Op0;
573 } else if (KillsOp1) {
574 moveToTop(Op1, I);
575 TOS = Op1;
576 } else {
577 // All of the operands are live after this instruction executes, so we
578 // cannot update on top of any operand. Because of this, we must
579 // duplicate one of the stack elements to the top. It doesn't matter
580 // which one we pick.
581 //
582 duplicateToTop(Op0, Dest, I);
583 Op0 = TOS = Dest;
584 KillsOp0 = true;
585 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000586 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
Chris Lattnera960d952003-01-13 01:01:59 +0000587 // If we DO have one of our operands at the top of the stack, but we don't
588 // have a dead operand, we must duplicate one of the operands to a new slot
589 // on the stack.
590 duplicateToTop(Op0, Dest, I);
591 Op0 = TOS = Dest;
592 KillsOp0 = true;
593 }
594
595 // Now we know that one of our operands is on the top of the stack, and at
596 // least one of our operands is killed by this instruction.
597 assert((TOS == Op0 || TOS == Op1) &&
Chris Lattnerc1bab322004-03-31 22:02:36 +0000598 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
Chris Lattnera960d952003-01-13 01:01:59 +0000599 "Stack conditions not set up right!");
600
601 // We decide which form to use based on what is on the top of the stack, and
602 // which operand is killed by this instruction.
603 const TableEntry *InstTable;
604 bool isForward = TOS == Op0;
605 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
606 if (updateST0) {
607 if (isForward)
608 InstTable = ForwardST0Table;
609 else
610 InstTable = ReverseST0Table;
611 } else {
612 if (isForward)
613 InstTable = ForwardSTiTable;
614 else
615 InstTable = ReverseSTiTable;
616 }
617
618 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
619 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
620
621 // NotTOS - The register which is not on the top of stack...
622 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
623
624 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000625 MBB->remove(I++);
Chris Lattner0526f012004-04-01 04:06:09 +0000626 I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000627
628 // If both operands are killed, pop one off of the stack in addition to
629 // overwriting the other one.
630 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
631 assert(!updateST0 && "Should have updated other operand!");
632 popStackAfter(I); // Pop the top of stack
633 }
634
635 // Insert an explicit pop of the "updated" operand for FUCOM
636 if (MI->getOpcode() == X86::FpUCOM) {
637 if (KillsOp0 && !KillsOp1)
638 popStackAfter(I); // If we kill the first operand, pop it!
Chris Lattner0526f012004-04-01 04:06:09 +0000639 else if (KillsOp1 && Op0 != Op1)
640 freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000641 }
642
643 // Update stack information so that we know the destination register is now on
644 // the stack.
645 if (MI->getOpcode() != X86::FpUCOM) {
646 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
647 assert(UpdatedSlot < StackTop && Dest < 7);
648 Stack[UpdatedSlot] = Dest;
649 RegMap[Dest] = UpdatedSlot;
650 }
651 delete MI; // Remove the old instruction
652}
653
Chris Lattnerc1bab322004-03-31 22:02:36 +0000654/// handleCondMovFP - Handle two address conditional move instructions. These
655/// instructions move a st(i) register to st(0) iff a condition is true. These
656/// instructions require that the first operand is at the top of the stack, but
657/// otherwise don't modify the stack at all.
658void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
659 MachineInstr *MI = I;
660
661 unsigned Op0 = getFPReg(MI->getOperand(0));
662 unsigned Op1 = getFPReg(MI->getOperand(1));
663
664 // The first operand *must* be on the top of the stack.
665 moveToTop(Op0, I);
666
667 // Change the second operand to the stack register that the operand is in.
668 MI->RemoveOperand(0);
669 MI->getOperand(0).setReg(getSTReg(Op1));
670
671 // If we kill the second operand, make sure to pop it from the stack.
672 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
673 E = LV->killed_end(MI); KI != E; ++KI)
674 if (KI->second == X86::FP0+Op1) {
Chris Lattner0526f012004-04-01 04:06:09 +0000675 // Get this value off of the register stack.
676 freeStackSlotAfter(I, Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000677 break;
678 }
679}
680
Chris Lattnera960d952003-01-13 01:01:59 +0000681
682/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000683/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000684/// instructions.
685///
686void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000687 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000688 switch (MI->getOpcode()) {
689 default: assert(0 && "Unknown SpecialFP instruction!");
690 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
691 assert(StackTop == 0 && "Stack should be empty after a call!");
692 pushReg(getFPReg(MI->getOperand(0)));
693 break;
694 case X86::FpSETRESULT:
695 assert(StackTop == 1 && "Stack should have one element on it to return!");
696 --StackTop; // "Forget" we have something on the top of stack!
697 break;
698 case X86::FpMOV: {
699 unsigned SrcReg = getFPReg(MI->getOperand(1));
700 unsigned DestReg = getFPReg(MI->getOperand(0));
701 bool KillsSrc = false;
702 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
703 E = LV->killed_end(MI); KI != E; ++KI)
704 KillsSrc |= KI->second == X86::FP0+SrcReg;
705
706 if (KillsSrc) {
707 // If the input operand is killed, we can just change the owner of the
708 // incoming stack slot into the result.
709 unsigned Slot = getSlot(SrcReg);
710 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
711 Stack[Slot] = DestReg;
712 RegMap[DestReg] = Slot;
713
714 } else {
715 // For FMOV we just duplicate the specified value to a new stack slot.
716 // This could be made better, but would require substantial changes.
717 duplicateToTop(SrcReg, DestReg, I);
718 }
719 break;
720 }
721 }
722
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000723 I = MBB->erase(I); // Remove the pseudo instruction
724 --I;
Chris Lattnera960d952003-01-13 01:01:59 +0000725}