blob: 50f4c325a161ad0da165b2e82da337934f7f93ad [file] [log] [blame]
Dan Gohman6277eb22009-11-23 17:16:22 +00001//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating functions from LLVM IR into
11// Machine IR.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "function-lowering-info"
16#include "FunctionLoweringInfo.h"
17#include "llvm/CallingConv.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
Dan Gohman5fca8b12009-11-23 18:12:11 +000021#include "llvm/IntrinsicInst.h"
Dan Gohman6277eb22009-11-23 17:16:22 +000022#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Compiler.h"
Dan Gohman6277eb22009-11-23 17:16:22 +000038#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43using namespace llvm;
44
45/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
46/// of insertvalue or extractvalue indices that identify a member, return
47/// the linearized index of the start of the member.
48///
49unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
50 const unsigned *Indices,
51 const unsigned *IndicesEnd,
52 unsigned CurIndex) {
53 // Base case: We're done.
54 if (Indices && Indices == IndicesEnd)
55 return CurIndex;
56
57 // Given a struct type, recursively traverse the elements.
58 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
59 for (StructType::element_iterator EB = STy->element_begin(),
60 EI = EB,
61 EE = STy->element_end();
62 EI != EE; ++EI) {
63 if (Indices && *Indices == unsigned(EI - EB))
64 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
65 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
66 }
67 return CurIndex;
68 }
69 // Given an array type, recursively traverse the elements.
70 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
71 const Type *EltTy = ATy->getElementType();
72 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
73 if (Indices && *Indices == i)
74 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
75 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
76 }
77 return CurIndex;
78 }
79 // We haven't found the type we're looking for, so keep searching.
80 return CurIndex + 1;
81}
82
83/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
84/// EVTs that represent all the individual underlying
85/// non-aggregate types that comprise it.
86///
87/// If Offsets is non-null, it points to a vector to be filled in
88/// with the in-memory offsets of each of the individual values.
89///
90void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
91 SmallVectorImpl<EVT> &ValueVTs,
92 SmallVectorImpl<uint64_t> *Offsets,
93 uint64_t StartingOffset) {
94 // Given a struct type, recursively traverse the elements.
95 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
96 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
97 for (StructType::element_iterator EB = STy->element_begin(),
98 EI = EB,
99 EE = STy->element_end();
100 EI != EE; ++EI)
101 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
102 StartingOffset + SL->getElementOffset(EI - EB));
103 return;
104 }
105 // Given an array type, recursively traverse the elements.
106 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107 const Type *EltTy = ATy->getElementType();
108 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
109 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
110 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
111 StartingOffset + i * EltSize);
112 return;
113 }
114 // Interpret void as zero return values.
Benjamin Kramerf0127052010-01-05 13:12:22 +0000115 if (Ty->isVoidTy())
Dan Gohman6277eb22009-11-23 17:16:22 +0000116 return;
117 // Base case: we can get an EVT for this LLVM IR type.
118 ValueVTs.push_back(TLI.getValueType(Ty));
119 if (Offsets)
120 Offsets->push_back(StartingOffset);
121}
122
123/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
124/// PHI nodes or outside of the basic block that defines it, or used by a
125/// switch or atomic instruction, which may expand to multiple basic blocks.
126static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
127 if (isa<PHINode>(I)) return true;
128 BasicBlock *BB = I->getParent();
129 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
130 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
131 return true;
132 return false;
133}
134
135/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
136/// entry block, return true. This includes arguments used by switches, since
137/// the switch may expand into multiple basic blocks.
138static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
139 // With FastISel active, we may be splitting blocks, so force creation
140 // of virtual registers for all non-dead arguments.
141 // Don't force virtual registers for byval arguments though, because
142 // fast-isel can't handle those in all cases.
143 if (EnableFastISel && !A->hasByValAttr())
144 return A->use_empty();
145
146 BasicBlock *Entry = A->getParent()->begin();
147 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
148 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
149 return false; // Use not in entry block.
150 return true;
151}
152
153FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
154 : TLI(tli) {
155}
156
157void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
158 bool EnableFastISel) {
159 Fn = &fn;
160 MF = &mf;
161 RegInfo = &MF->getRegInfo();
162
163 // Create a vreg for each argument register that is not dead and is used
164 // outside of the entry block for the function.
165 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
166 AI != E; ++AI)
167 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
168 InitializeRegForValue(AI);
169
170 // Initialize the mapping of values to registers. This is only set up for
171 // instruction values that are used outside of the block that defines
172 // them.
173 Function::iterator BB = Fn->begin(), EB = Fn->end();
174 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
175 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
176 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
177 const Type *Ty = AI->getAllocatedType();
178 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
179 unsigned Align =
180 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
181 AI->getAlignment());
182
183 TySize *= CUI->getZExtValue(); // Get total allocated size.
184 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
185 StaticAllocaMap[AI] =
186 MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
187 }
188
189 for (; BB != EB; ++BB)
190 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
191 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
192 if (!isa<AllocaInst>(I) ||
193 !StaticAllocaMap.count(cast<AllocaInst>(I)))
194 InitializeRegForValue(I);
195
196 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
197 // also creates the initial PHI MachineInstrs, though none of the input
198 // operands are populated.
199 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
200 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
201 MBBMap[BB] = MBB;
202 MF->push_back(MBB);
203
204 // Transfer the address-taken flag. This is necessary because there could
205 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
206 // the first one should be marked.
207 if (BB->hasAddressTaken())
208 MBB->setHasAddressTaken();
209
210 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
211 // appropriate.
212 PHINode *PN;
213 DebugLoc DL;
214 for (BasicBlock::iterator
215 I = BB->begin(), E = BB->end(); I != E; ++I) {
216
217 PN = dyn_cast<PHINode>(I);
218 if (!PN || PN->use_empty()) continue;
219
220 unsigned PHIReg = ValueMap[PN];
221 assert(PHIReg && "PHI node does not have an assigned virtual register!");
222
223 SmallVector<EVT, 4> ValueVTs;
224 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
225 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
226 EVT VT = ValueVTs[vti];
227 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
228 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
229 for (unsigned i = 0; i != NumRegisters; ++i)
Chris Lattner518bb532010-02-09 19:54:29 +0000230 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
Dan Gohman6277eb22009-11-23 17:16:22 +0000231 PHIReg += NumRegisters;
232 }
233 }
234 }
235}
236
237/// clear - Clear out all the function-specific state. This returns this
238/// FunctionLoweringInfo to an empty state, ready to be used for a
239/// different function.
240void FunctionLoweringInfo::clear() {
241 MBBMap.clear();
242 ValueMap.clear();
243 StaticAllocaMap.clear();
244#ifndef NDEBUG
245 CatchInfoLost.clear();
246 CatchInfoFound.clear();
247#endif
248 LiveOutRegInfo.clear();
249}
250
251unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
252 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
253}
254
255/// CreateRegForValue - Allocate the appropriate number of virtual registers of
256/// the correctly promoted or expanded types. Assign these registers
257/// consecutive vreg numbers and return the first assigned number.
258///
259/// In the case that the given value has struct or array type, this function
260/// will assign registers for each member or element.
261///
262unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
263 SmallVector<EVT, 4> ValueVTs;
264 ComputeValueVTs(TLI, V->getType(), ValueVTs);
265
266 unsigned FirstReg = 0;
267 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
268 EVT ValueVT = ValueVTs[Value];
269 EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
270
271 unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
272 for (unsigned i = 0; i != NumRegs; ++i) {
273 unsigned R = MakeReg(RegisterVT);
274 if (!FirstReg) FirstReg = R;
275 }
276 }
277 return FirstReg;
278}
Dan Gohman66336ed2009-11-23 17:42:46 +0000279
280/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
281GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
282 V = V->stripPointerCasts();
283 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
284 assert ((GV || isa<ConstantPointerNull>(V)) &&
285 "TypeInfo must be a global variable or NULL");
286 return GV;
287}
288
289/// AddCatchInfo - Extract the personality and type infos from an eh.selector
290/// call, and add them to the specified machine basic block.
291void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
292 MachineBasicBlock *MBB) {
293 // Inform the MachineModuleInfo of the personality for this landing pad.
294 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
295 assert(CE->getOpcode() == Instruction::BitCast &&
296 isa<Function>(CE->getOperand(0)) &&
297 "Personality should be a function");
298 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
299
300 // Gather all the type infos for this landing pad and pass them along to
301 // MachineModuleInfo.
302 std::vector<GlobalVariable *> TyInfo;
303 unsigned N = I.getNumOperands();
304
305 for (unsigned i = N - 1; i > 2; --i) {
306 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
307 unsigned FilterLength = CI->getZExtValue();
308 unsigned FirstCatch = i + FilterLength + !FilterLength;
309 assert (FirstCatch <= N && "Invalid filter length");
310
311 if (FirstCatch < N) {
312 TyInfo.reserve(N - FirstCatch);
313 for (unsigned j = FirstCatch; j < N; ++j)
314 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
315 MMI->addCatchTypeInfo(MBB, TyInfo);
316 TyInfo.clear();
317 }
318
319 if (!FilterLength) {
320 // Cleanup.
321 MMI->addCleanup(MBB);
322 } else {
323 // Filter.
324 TyInfo.reserve(FilterLength - 1);
325 for (unsigned j = i + 1; j < FirstCatch; ++j)
326 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
327 MMI->addFilterTypeInfo(MBB, TyInfo);
328 TyInfo.clear();
329 }
330
331 N = i;
332 }
333 }
334
335 if (N > 3) {
336 TyInfo.reserve(N - 3);
337 for (unsigned j = 3; j < N; ++j)
338 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
339 MMI->addCatchTypeInfo(MBB, TyInfo);
340 }
341}
342
Dan Gohman5fca8b12009-11-23 18:12:11 +0000343void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
344 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
345 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
346 if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
347 // Apply the catch info to DestBB.
348 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
349#ifndef NDEBUG
350 if (!FLI.MBBMap[SrcBB]->isLandingPad())
351 FLI.CatchInfoFound.insert(EHSel);
352#endif
353 }
354}