blob: b297305048af2492ac8a154f2160f7849b56b838 [file] [log] [blame]
Misha Brukmanca9309f2004-08-11 23:42:15 +00001//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "isel"
11#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "PPC64TargetMachine.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
19#include "llvm/Pass.h"
20#include "llvm/CodeGen/IntrinsicLowering.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/Support/Debug.h"
30#include "llvm/ADT/Statistic.h"
Misha Brukmanca9309f2004-08-11 23:42:15 +000031#include <vector>
32using namespace llvm;
33
34namespace {
35 Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
36
37 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
39 ///
40 enum TypeClass {
41 cByte, cShort, cInt, cFP32, cFP64, cLong
42 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
49 switch (Ty->getTypeID()) {
50 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
Misha Brukmancc6b01b2004-08-12 02:53:01 +000055 case Type::UIntTyID: return cInt; // Ints are class #2
Misha Brukmanca9309f2004-08-11 23:42:15 +000056
57 case Type::FloatTyID: return cFP32; // Single float is #3
58 case Type::DoubleTyID: return cFP64; // Double Point is #4
59
Misha Brukmancc6b01b2004-08-12 02:53:01 +000060 case Type::PointerTyID:
Misha Brukmanca9309f2004-08-11 23:42:15 +000061 case Type::LongTyID:
Misha Brukmancc6b01b2004-08-12 02:53:01 +000062 case Type::ULongTyID: return cLong; // Longs and pointers are class #5
Misha Brukmanca9309f2004-08-11 23:42:15 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
71 if (Ty == Type::BoolTy) return cInt;
72 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
77 PPC64TargetMachine &TM;
78 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
81
82 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
83
84 // External functions used in the Module
Nate Begeman20136a22004-09-06 18:46:59 +000085 Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__fixsfdiFn, *__fixdfdiFn,
86 *__fixunssfdiFn, *__fixunsdfdiFn, *mallocFn, *freeFn;
Misha Brukmanca9309f2004-08-11 23:42:15 +000087
88 // MBBMap - Mapping between LLVM BB -> Machine BB
89 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
90
91 // AllocaMap - Mapping from fixed sized alloca instructions to the
92 // FrameIndex for the alloca.
93 std::map<AllocaInst*, unsigned> AllocaMap;
94
Misha Brukman4debafb2004-08-19 21:34:05 +000095 // Target configuration data
Misha Brukman1601d9c2004-08-19 21:51:19 +000096 const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace;
Misha Brukman4debafb2004-08-19 21:34:05 +000097
Misha Brukmanca9309f2004-08-11 23:42:15 +000098 ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
Misha Brukman1601d9c2004-08-19 21:51:19 +000099 F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {}
Misha Brukmanca9309f2004-08-11 23:42:15 +0000100
101 bool doInitialization(Module &M) {
102 // Add external functions that we may call
103 Type *i = Type::IntTy;
104 Type *d = Type::DoubleTy;
105 Type *f = Type::FloatTy;
106 Type *l = Type::LongTy;
107 Type *ul = Type::ULongTy;
108 Type *voidPtr = PointerType::get(Type::SByteTy);
109 // float fmodf(float, float);
110 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
111 // double fmod(double, double);
112 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
113 // int __cmpdi2(long, long);
114 __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
Misha Brukmanca9309f2004-08-11 23:42:15 +0000115 // long __fixsfdi(float)
116 __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
117 // long __fixdfdi(double)
118 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
119 // unsigned long __fixunssfdi(float)
120 __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
121 // unsigned long __fixunsdfdi(double)
122 __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
Misha Brukmanca9309f2004-08-11 23:42:15 +0000123 // void* malloc(size_t)
124 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
125 // void free(void*)
126 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
127 return false;
128 }
129
130 /// runOnFunction - Top level implementation of instruction selection for
131 /// the entire function.
132 ///
133 bool runOnFunction(Function &Fn) {
134 // First pass over the function, lower any unknown intrinsic functions
135 // with the IntrinsicLowering class.
136 LowerUnknownIntrinsicFunctionCalls(Fn);
137
138 F = &MachineFunction::construct(&Fn, TM);
139
140 // Create all of the machine basic blocks for the function...
141 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
142 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
143
144 BB = &F->front();
145
Misha Brukmanca9309f2004-08-11 23:42:15 +0000146 // Copy incoming arguments off of the stack...
147 LoadArgumentsToVirtualRegs(Fn);
148
149 // Instruction select everything except PHI nodes
150 visit(Fn);
151
152 // Select the PHI nodes
153 SelectPHINodes();
154
155 RegMap.clear();
156 MBBMap.clear();
157 AllocaMap.clear();
158 F = 0;
159 // We always build a machine code representation for the function
160 return true;
161 }
162
163 virtual const char *getPassName() const {
164 return "PowerPC Simple Instruction Selection";
165 }
166
167 /// visitBasicBlock - This method is called when we are visiting a new basic
168 /// block. This simply creates a new MachineBasicBlock to emit code into
169 /// and adds it to the current MachineFunction. Subsequent visit* for
170 /// instructions will be invoked for all instructions in the basic block.
171 ///
172 void visitBasicBlock(BasicBlock &LLVM_BB) {
173 BB = MBBMap[&LLVM_BB];
174 }
175
176 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
177 /// function, lowering any calls to unknown intrinsic functions into the
178 /// equivalent LLVM code.
179 ///
180 void LowerUnknownIntrinsicFunctionCalls(Function &F);
181
182 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
183 /// from the stack into virtual registers.
184 ///
185 void LoadArgumentsToVirtualRegs(Function &F);
186
187 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
188 /// because we have to generate our sources into the source basic blocks,
189 /// not the current one.
190 ///
191 void SelectPHINodes();
192
193 // Visitation methods for various instructions. These methods simply emit
194 // fixed PowerPC code for each instruction.
195
196 // Control flow operators
197 void visitReturnInst(ReturnInst &RI);
198 void visitBranchInst(BranchInst &BI);
199
200 struct ValueRecord {
201 Value *Val;
202 unsigned Reg;
203 const Type *Ty;
204 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
205 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
206 };
207
208 // This struct is for recording the necessary operations to emit the GEP
209 struct CollapsedGepOp {
210 bool isMul;
211 Value *index;
212 ConstantSInt *size;
213 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
214 isMul(mul), index(i), size(s) {}
215 };
216
217 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
218 const std::vector<ValueRecord> &Args, bool isVarArg);
219 void visitCallInst(CallInst &I);
220 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
221
222 // Arithmetic operators
223 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
224 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
225 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
226 void visitMul(BinaryOperator &B);
227
228 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
229 void visitRem(BinaryOperator &B) { visitDivRem(B); }
230 void visitDivRem(BinaryOperator &B);
231
232 // Bitwise operators
233 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
234 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
235 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
236
237 // Comparison operators...
238 void visitSetCondInst(SetCondInst &I);
239 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
240 MachineBasicBlock *MBB,
241 MachineBasicBlock::iterator MBBI);
242 void visitSelectInst(SelectInst &SI);
243
244
245 // Memory Instructions
246 void visitLoadInst(LoadInst &I);
247 void visitStoreInst(StoreInst &I);
248 void visitGetElementPtrInst(GetElementPtrInst &I);
249 void visitAllocaInst(AllocaInst &I);
250 void visitMallocInst(MallocInst &I);
251 void visitFreeInst(FreeInst &I);
252
253 // Other operators
254 void visitShiftInst(ShiftInst &I);
255 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
256 void visitCastInst(CastInst &I);
257 void visitVANextInst(VANextInst &I);
258 void visitVAArgInst(VAArgInst &I);
259
260 void visitInstruction(Instruction &I) {
261 std::cerr << "Cannot instruction select: " << I;
262 abort();
263 }
264
265 /// promote32 - Make a value 32-bits wide, and put it somewhere.
266 ///
267 void promote32(unsigned targetReg, const ValueRecord &VR);
268
269 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
270 /// constant expression GEP support.
271 ///
272 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
273 Value *Src, User::op_iterator IdxBegin,
274 User::op_iterator IdxEnd, unsigned TargetReg,
275 bool CollapseRemainder, ConstantSInt **Remainder,
276 unsigned *PendingAddReg);
277
278 /// emitCastOperation - Common code shared between visitCastInst and
279 /// constant expression cast support.
280 ///
281 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
282 Value *Src, const Type *DestTy, unsigned TargetReg);
283
284 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
285 /// and constant expression support.
286 ///
287 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
288 MachineBasicBlock::iterator IP,
289 Value *Op0, Value *Op1,
290 unsigned OperatorClass, unsigned TargetReg);
291
292 /// emitBinaryFPOperation - This method handles emission of floating point
293 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
294 void emitBinaryFPOperation(MachineBasicBlock *BB,
295 MachineBasicBlock::iterator IP,
296 Value *Op0, Value *Op1,
297 unsigned OperatorClass, unsigned TargetReg);
298
299 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
300 Value *Op0, Value *Op1, unsigned TargetReg);
301
302 void doMultiply(MachineBasicBlock *MBB,
303 MachineBasicBlock::iterator IP,
304 unsigned DestReg, Value *Op0, Value *Op1);
305
306 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
307 /// value of the ContantInt *CI
308 void doMultiplyConst(MachineBasicBlock *MBB,
309 MachineBasicBlock::iterator IP,
310 unsigned DestReg, Value *Op0, ConstantInt *CI);
311
312 void emitDivRemOperation(MachineBasicBlock *BB,
313 MachineBasicBlock::iterator IP,
314 Value *Op0, Value *Op1, bool isDiv,
315 unsigned TargetReg);
316
317 /// emitSetCCOperation - Common code shared between visitSetCondInst and
318 /// constant expression support.
319 ///
320 void emitSetCCOperation(MachineBasicBlock *BB,
321 MachineBasicBlock::iterator IP,
322 Value *Op0, Value *Op1, unsigned Opcode,
323 unsigned TargetReg);
324
325 /// emitShiftOperation - Common code shared between visitShiftInst and
326 /// constant expression support.
327 ///
328 void emitShiftOperation(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator IP,
330 Value *Op, Value *ShiftAmount, bool isLeftShift,
331 const Type *ResultTy, unsigned DestReg);
332
333 /// emitSelectOperation - Common code shared between visitSelectInst and the
334 /// constant expression support.
335 ///
336 void emitSelectOperation(MachineBasicBlock *MBB,
337 MachineBasicBlock::iterator IP,
338 Value *Cond, Value *TrueVal, Value *FalseVal,
339 unsigned DestReg);
340
Misha Brukmanca9309f2004-08-11 23:42:15 +0000341 /// copyConstantToRegister - Output the instructions required to put the
342 /// specified constant into the specified register.
343 ///
344 void copyConstantToRegister(MachineBasicBlock *MBB,
345 MachineBasicBlock::iterator MBBI,
346 Constant *C, unsigned Reg);
347
348 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
349 unsigned LHS, unsigned RHS);
350
351 /// makeAnotherReg - This method returns the next register number we haven't
352 /// yet used.
353 ///
354 unsigned makeAnotherReg(const Type *Ty) {
Misha Brukmanadde6992004-08-17 04:57:37 +0000355 assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) &&
Misha Brukmanca9309f2004-08-11 23:42:15 +0000356 "Current target doesn't have PPC reg info??");
Misha Brukmanadde6992004-08-17 04:57:37 +0000357 const PPC64RegisterInfo *PPCRI =
358 static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo());
Misha Brukmanca9309f2004-08-11 23:42:15 +0000359 // Add the mapping of regnumber => reg class to MachineFunction
360 const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
361 return F->getSSARegMap()->createVirtualRegister(RC);
362 }
363
364 /// getReg - This method turns an LLVM value into a register number.
365 ///
366 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
367 unsigned getReg(Value *V) {
368 // Just append to the end of the current bb.
369 MachineBasicBlock::iterator It = BB->end();
370 return getReg(V, BB, It);
371 }
372 unsigned getReg(Value *V, MachineBasicBlock *MBB,
373 MachineBasicBlock::iterator IPt);
374
375 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
376 /// is okay to use as an immediate argument to a certain binary operation
377 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
378
379 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
380 /// that is to be statically allocated with the initial stack frame
381 /// adjustment.
382 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
383 };
384}
385
386/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
387/// instruction in the entry block, return it. Otherwise, return a null
388/// pointer.
389static AllocaInst *dyn_castFixedAlloca(Value *V) {
390 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
391 BasicBlock *BB = AI->getParent();
392 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
393 return AI;
394 }
395 return 0;
396}
397
398/// getReg - This method turns an LLVM value into a register number.
399///
400unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
401 MachineBasicBlock::iterator IPt) {
402 if (Constant *C = dyn_cast<Constant>(V)) {
403 unsigned Reg = makeAnotherReg(V->getType());
404 copyConstantToRegister(MBB, IPt, C, Reg);
405 return Reg;
406 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
407 unsigned Reg = makeAnotherReg(V->getType());
408 unsigned FI = getFixedSizedAllocaFI(AI);
409 addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
410 return Reg;
411 }
412
413 unsigned &Reg = RegMap[V];
414 if (Reg == 0) {
415 Reg = makeAnotherReg(V->getType());
416 RegMap[V] = Reg;
417 }
418
419 return Reg;
420}
421
422/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
423/// is okay to use as an immediate argument to a certain binary operator.
424///
425/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
426bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
427 ConstantSInt *Op1Cs;
428 ConstantUInt *Op1Cu;
429
430 // ADDI, Compare, and non-indexed Load take SIMM
431 bool cond1 = (Operator == 0)
432 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
433 && (Op1Cs->getValue() <= 32767)
434 && (Op1Cs->getValue() >= -32768);
435
436 // SUBI takes -SIMM since it is a mnemonic for ADDI
437 bool cond2 = (Operator == 1)
438 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
439 && (Op1Cs->getValue() <= 32768)
440 && (Op1Cs->getValue() >= -32767);
441
442 // ANDIo, ORI, and XORI take unsigned values
443 bool cond3 = (Operator >= 2)
444 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
445 && (Op1Cs->getValue() >= 0)
446 && (Op1Cs->getValue() <= 32767);
447
448 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
449 bool cond4 = (Operator < 2)
450 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
451 && (Op1Cu->getValue() <= 32767);
452
453 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
454 bool cond5 = (Operator >= 2)
455 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
456 && (Op1Cu->getValue() <= 65535);
457
458 if (cond1 || cond2 || cond3 || cond4 || cond5)
459 return true;
460
461 return false;
462}
463
464/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
465/// that is to be statically allocated with the initial stack frame
466/// adjustment.
467unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
468 // Already computed this?
469 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
470 if (I != AllocaMap.end() && I->first == AI) return I->second;
471
472 const Type *Ty = AI->getAllocatedType();
473 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
474 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
475 TySize *= CUI->getValue(); // Get total allocated size...
476 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
477
478 // Create a new stack object using the frame manager...
479 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
480 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
481 return FrameIdx;
482}
483
484
Misha Brukmanca9309f2004-08-11 23:42:15 +0000485/// copyConstantToRegister - Output the instructions required to put the
486/// specified constant into the specified register.
487///
488void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
489 MachineBasicBlock::iterator IP,
490 Constant *C, unsigned R) {
491 if (C->getType()->isIntegral()) {
492 unsigned Class = getClassB(C->getType());
493
494 if (Class == cLong) {
495 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
496 uint64_t uval = CUI->getValue();
497 if (uval < (1LL << 32)) {
498 ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
499 copyConstantToRegister(MBB, IP, CU, R);
500 return;
501 }
502 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
503 int64_t val = CUI->getValue();
504 if (val < (1LL << 31)) {
505 ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
506 copyConstantToRegister(MBB, IP, CU, R);
507 return;
508 }
509 } else {
510 std::cerr << "Unhandled long constant type!\n";
511 abort();
512 }
513 // Spill long to the constant pool and load it
514 MachineConstantPool *CP = F->getConstantPool();
515 unsigned CPI = CP->getConstantPoolIndex(C);
516 BuildMI(*MBB, IP, PPC::LD, 1, R)
517 .addReg(PPC::R2).addConstantPoolIndex(CPI);
Misha Brukman1c514ec2004-08-19 16:29:25 +0000518 return;
Misha Brukmanca9309f2004-08-11 23:42:15 +0000519 }
520
521 assert(Class <= cInt && "Type not handled yet!");
522
523 // Handle bool
524 if (C->getType() == Type::BoolTy) {
525 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
526 return;
527 }
528
529 // Handle int
530 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
531 unsigned uval = CUI->getValue();
532 if (uval < 32768) {
533 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
534 } else {
535 unsigned Temp = makeAnotherReg(Type::IntTy);
536 BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
537 BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
538 }
539 return;
540 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
541 int sval = CSI->getValue();
542 if (sval < 32768 && sval >= -32768) {
543 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
544 } else {
545 unsigned Temp = makeAnotherReg(Type::IntTy);
546 BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
547 BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
548 }
549 return;
550 }
551 std::cerr << "Unhandled integer constant!\n";
552 abort();
553 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
554 // We need to spill the constant to memory...
555 MachineConstantPool *CP = F->getConstantPool();
556 unsigned CPI = CP->getConstantPoolIndex(CFP);
557 const Type *Ty = CFP->getType();
558 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
559 BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
560 } else if (isa<ConstantPointerNull>(C)) {
561 // Copy zero (null pointer) to the register.
562 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
563 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmancc6b01b2004-08-12 02:53:01 +0000564 static unsigned OpcodeTable[] = {
565 PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
566 };
567 unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
568 BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
Misha Brukmanca9309f2004-08-11 23:42:15 +0000569 } else {
570 std::cerr << "Offending constant: " << *C << "\n";
571 assert(0 && "Type not handled yet!");
572 }
573}
574
575/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
576/// the stack into virtual registers.
577void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukman4debafb2004-08-19 21:34:05 +0000578 unsigned ArgOffset = ParameterSaveAreaOffset;
Misha Brukmanca9309f2004-08-11 23:42:15 +0000579 unsigned GPR_remaining = 8;
580 unsigned FPR_remaining = 13;
581 unsigned GPR_idx = 0, FPR_idx = 0;
582 static const unsigned GPR[] = {
583 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
584 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
585 };
586 static const unsigned FPR[] = {
587 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
588 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
589 };
590
591 MachineFrameInfo *MFI = F->getFrameInfo();
592
593 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
594 bool ArgLive = !I->use_empty();
595 unsigned Reg = ArgLive ? getReg(*I) : 0;
596 int FI; // Frame object index
597
598 switch (getClassB(I->getType())) {
599 case cByte:
600 if (ArgLive) {
601 FI = MFI->CreateFixedObject(4, ArgOffset);
602 if (GPR_remaining > 0) {
603 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
604 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
605 .addReg(GPR[GPR_idx]);
606 } else {
607 addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
608 }
609 }
610 break;
611 case cShort:
612 if (ArgLive) {
613 FI = MFI->CreateFixedObject(4, ArgOffset);
614 if (GPR_remaining > 0) {
615 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
616 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
617 .addReg(GPR[GPR_idx]);
618 } else {
619 addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
620 }
621 }
622 break;
623 case cInt:
624 if (ArgLive) {
625 FI = MFI->CreateFixedObject(4, ArgOffset);
626 if (GPR_remaining > 0) {
627 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
628 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
629 .addReg(GPR[GPR_idx]);
630 } else {
631 addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
632 }
633 }
634 break;
635 case cLong:
636 if (ArgLive) {
637 FI = MFI->CreateFixedObject(8, ArgOffset);
638 if (GPR_remaining > 1) {
639 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
640 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
641 .addReg(GPR[GPR_idx]);
642 } else {
643 addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
644 }
645 }
646 // longs require 4 additional bytes
647 ArgOffset += 4;
648 break;
649 case cFP32:
650 if (ArgLive) {
651 FI = MFI->CreateFixedObject(4, ArgOffset);
652
653 if (FPR_remaining > 0) {
654 BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
655 BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
656 FPR_remaining--;
657 FPR_idx++;
658 } else {
659 addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
660 }
661 }
662 break;
663 case cFP64:
664 if (ArgLive) {
665 FI = MFI->CreateFixedObject(8, ArgOffset);
666
667 if (FPR_remaining > 0) {
668 BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
669 BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
670 FPR_remaining--;
671 FPR_idx++;
672 } else {
673 addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
674 }
675 }
676
677 // doubles require 4 additional bytes and use 2 GPRs of param space
678 ArgOffset += 4;
679 if (GPR_remaining > 0) {
680 GPR_remaining--;
681 GPR_idx++;
682 }
683 break;
684 default:
685 assert(0 && "Unhandled argument type!");
686 }
687 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
688 if (GPR_remaining > 0) {
689 GPR_remaining--; // uses up 2 GPRs
690 GPR_idx++;
691 }
692 }
693
694 // If the function takes variable number of arguments, add a frame offset for
695 // the start of the first vararg value... this is used to expand
696 // llvm.va_start.
697 if (Fn.getFunctionType()->isVarArg())
698 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
699}
700
701
702/// SelectPHINodes - Insert machine code to generate phis. This is tricky
703/// because we have to generate our sources into the source basic blocks, not
704/// the current one.
705///
706void ISel::SelectPHINodes() {
707 const TargetInstrInfo &TII = *TM.getInstrInfo();
708 const Function &LF = *F->getFunction(); // The LLVM function...
709 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
710 const BasicBlock *BB = I;
711 MachineBasicBlock &MBB = *MBBMap[I];
712
713 // Loop over all of the PHI nodes in the LLVM basic block...
714 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
715 for (BasicBlock::const_iterator I = BB->begin();
716 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
717
718 // Create a new machine instr PHI node, and insert it.
719 unsigned PHIReg = getReg(*PN);
720 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
721 PPC::PHI, PN->getNumOperands(), PHIReg);
722
723 // PHIValues - Map of blocks to incoming virtual registers. We use this
724 // so that we only initialize one incoming value for a particular block,
725 // even if the block has multiple entries in the PHI node.
726 //
727 std::map<MachineBasicBlock*, unsigned> PHIValues;
728
729 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
730 MachineBasicBlock *PredMBB = 0;
731 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
732 PE = MBB.pred_end (); PI != PE; ++PI)
733 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
734 PredMBB = *PI;
735 break;
736 }
737 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
738
739 unsigned ValReg;
740 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
741 PHIValues.lower_bound(PredMBB);
742
743 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
744 // We already inserted an initialization of the register for this
745 // predecessor. Recycle it.
746 ValReg = EntryIt->second;
747 } else {
748 // Get the incoming value into a virtual register.
749 //
750 Value *Val = PN->getIncomingValue(i);
751
752 // If this is a constant or GlobalValue, we may have to insert code
753 // into the basic block to compute it into a virtual register.
754 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
755 isa<GlobalValue>(Val)) {
756 // Simple constants get emitted at the end of the basic block,
757 // before any terminator instructions. We "know" that the code to
758 // move a constant into a register will never clobber any flags.
759 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
760 } else {
761 // Because we don't want to clobber any values which might be in
762 // physical registers with the computation of this constant (which
763 // might be arbitrarily complex if it is a constant expression),
764 // just insert the computation at the top of the basic block.
765 MachineBasicBlock::iterator PI = PredMBB->begin();
766
767 // Skip over any PHI nodes though!
768 while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
769 ++PI;
770
771 ValReg = getReg(Val, PredMBB, PI);
772 }
773
774 // Remember that we inserted a value for this PHI for this predecessor
775 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
776 }
777
778 PhiMI->addRegOperand(ValReg);
779 PhiMI->addMachineBasicBlockOperand(PredMBB);
780 }
781
782 // Now that we emitted all of the incoming values for the PHI node, make
783 // sure to reposition the InsertPoint after the PHI that we just added.
784 // This is needed because we might have inserted a constant into this
785 // block, right after the PHI's which is before the old insert point!
786 PHIInsertPoint = PhiMI;
787 ++PHIInsertPoint;
788 }
789 }
790}
791
792
793// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
794// it into the conditional branch or select instruction which is the only user
795// of the cc instruction. This is the case if the conditional branch is the
796// only user of the setcc, and if the setcc is in the same basic block as the
797// conditional branch.
798//
799static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
800 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
801 if (SCI->hasOneUse()) {
802 Instruction *User = cast<Instruction>(SCI->use_back());
803 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
804 SCI->getParent() == User->getParent())
805 return SCI;
806 }
807 return 0;
808}
809
810
811// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
812// the load or store instruction that is the only user of the GEP.
813//
814static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
815 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
816 if (GEPI->hasOneUse()) {
817 Instruction *User = cast<Instruction>(GEPI->use_back());
818 if (isa<StoreInst>(User) &&
819 GEPI->getParent() == User->getParent() &&
820 User->getOperand(0) != GEPI &&
821 User->getOperand(1) == GEPI) {
822 ++GEPFolds;
823 return GEPI;
824 }
825 if (isa<LoadInst>(User) &&
826 GEPI->getParent() == User->getParent() &&
827 User->getOperand(0) == GEPI) {
828 ++GEPFolds;
829 return GEPI;
830 }
831 }
832 return 0;
833}
834
835
836// Return a fixed numbering for setcc instructions which does not depend on the
837// order of the opcodes.
838//
839static unsigned getSetCCNumber(unsigned Opcode) {
840 switch (Opcode) {
841 default: assert(0 && "Unknown setcc instruction!");
842 case Instruction::SetEQ: return 0;
843 case Instruction::SetNE: return 1;
844 case Instruction::SetLT: return 2;
845 case Instruction::SetGE: return 3;
846 case Instruction::SetGT: return 4;
847 case Instruction::SetLE: return 5;
848 }
849}
850
851static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
852 switch (Opcode) {
853 default: assert(0 && "Unknown setcc instruction!");
854 case Instruction::SetEQ: return PPC::BEQ;
855 case Instruction::SetNE: return PPC::BNE;
856 case Instruction::SetLT: return PPC::BLT;
857 case Instruction::SetGE: return PPC::BGE;
858 case Instruction::SetGT: return PPC::BGT;
859 case Instruction::SetLE: return PPC::BLE;
860 }
861}
862
863/// emitUCOM - emits an unordered FP compare.
864void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
Misha Brukman1c514ec2004-08-19 16:29:25 +0000865 unsigned LHS, unsigned RHS) {
Misha Brukmanca9309f2004-08-11 23:42:15 +0000866 BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
867}
868
869/// EmitComparison - emits a comparison of the two operands, returning the
870/// extended setcc code to use. The result is in CR0.
871///
872unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
873 MachineBasicBlock *MBB,
874 MachineBasicBlock::iterator IP) {
875 // The arguments are already supposed to be of the same type.
876 const Type *CompTy = Op0->getType();
877 unsigned Class = getClassB(CompTy);
878 unsigned Op0r = getReg(Op0, MBB, IP);
879
880 // Before we do a comparison, we have to make sure that we're truncating our
881 // registers appropriately.
882 if (Class == cByte) {
883 unsigned TmpReg = makeAnotherReg(CompTy);
884 if (CompTy->isSigned())
885 BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
886 else
887 BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
888 .addImm(24).addImm(31);
889 Op0r = TmpReg;
890 } else if (Class == cShort) {
891 unsigned TmpReg = makeAnotherReg(CompTy);
892 if (CompTy->isSigned())
893 BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
894 else
895 BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
896 .addImm(16).addImm(31);
897 Op0r = TmpReg;
898 }
899
900 // Use crand for lt, gt and crandc for le, ge
901 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
902 unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
903 unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
904 if (Class == cLong) {
905 Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
906 OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
907 }
908
909 // Special case handling of: cmp R, i
910 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
911 unsigned Op1v = CI->getRawValue() & 0xFFFF;
912
913 // Treat compare like ADDI for the purposes of immediate suitability
914 if (canUseAsImmediateForOpcode(CI, 0)) {
915 BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
916 } else {
917 unsigned Op1r = getReg(Op1, MBB, IP);
918 BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
919 }
920 return OpNum;
921 }
922
923 unsigned Op1r = getReg(Op1, MBB, IP);
924
925 switch (Class) {
926 default: assert(0 && "Unknown type class!");
927 case cByte:
928 case cShort:
929 case cInt:
930 case cLong:
931 BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
932 break;
933
934 case cFP32:
935 case cFP64:
936 emitUCOM(MBB, IP, Op0r, Op1r);
937 break;
938 }
939
940 return OpNum;
941}
942
943/// visitSetCondInst - emit code to calculate the condition via
944/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
945///
946void ISel::visitSetCondInst(SetCondInst &I) {
947 if (canFoldSetCCIntoBranchOrSelect(&I))
948 return;
949
950 unsigned DestReg = getReg(I);
951 unsigned OpNum = I.getOpcode();
952 const Type *Ty = I.getOperand (0)->getType();
953
954 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
955
956 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
957 MachineBasicBlock *thisMBB = BB;
958 const BasicBlock *LLVM_BB = BB->getBasicBlock();
959 ilist<MachineBasicBlock>::iterator It = BB;
960 ++It;
961
962 // thisMBB:
963 // ...
964 // cmpTY cr0, r1, r2
965 // bCC copy1MBB
966 // b copy0MBB
967
968 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
969 // if we could insert other, non-terminator instructions after the
970 // bCC. But MBB->getFirstTerminator() can't understand this.
971 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
972 F->getBasicBlockList().insert(It, copy1MBB);
973 BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
974 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
975 F->getBasicBlockList().insert(It, copy0MBB);
976 BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
977 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
978 F->getBasicBlockList().insert(It, sinkMBB);
979 // Update machine-CFG edges
980 BB->addSuccessor(copy1MBB);
981 BB->addSuccessor(copy0MBB);
982
983 // copy1MBB:
984 // %TrueValue = li 1
985 // b sinkMBB
986 BB = copy1MBB;
987 unsigned TrueValue = makeAnotherReg(I.getType());
988 BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
989 BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
990 // Update machine-CFG edges
991 BB->addSuccessor(sinkMBB);
992
993 // copy0MBB:
994 // %FalseValue = li 0
995 // fallthrough
996 BB = copy0MBB;
997 unsigned FalseValue = makeAnotherReg(I.getType());
998 BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
999 // Update machine-CFG edges
1000 BB->addSuccessor(sinkMBB);
1001
1002 // sinkMBB:
1003 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1004 // ...
1005 BB = sinkMBB;
1006 BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
1007 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
1008}
1009
1010void ISel::visitSelectInst(SelectInst &SI) {
1011 unsigned DestReg = getReg(SI);
1012 MachineBasicBlock::iterator MII = BB->end();
1013 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1014 SI.getFalseValue(), DestReg);
1015}
1016
1017/// emitSelect - Common code shared between visitSelectInst and the constant
1018/// expression support.
1019/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1020/// no select instruction. FSEL only works for comparisons against zero.
1021void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1022 MachineBasicBlock::iterator IP,
1023 Value *Cond, Value *TrueVal, Value *FalseVal,
1024 unsigned DestReg) {
1025 unsigned SelectClass = getClassB(TrueVal->getType());
1026 unsigned Opcode;
1027
1028 // See if we can fold the setcc into the select instruction, or if we have
1029 // to get the register of the Cond value
1030 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1031 // We successfully folded the setcc into the select instruction.
1032 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1033 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
1034 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1035 } else {
1036 unsigned CondReg = getReg(Cond, MBB, IP);
1037 BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
1038 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
1039 }
1040
1041 // thisMBB:
1042 // ...
1043 // cmpTY cr0, r1, r2
1044 // bCC copy1MBB
1045 // b copy0MBB
1046
1047 MachineBasicBlock *thisMBB = BB;
1048 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1049 ilist<MachineBasicBlock>::iterator It = BB;
1050 ++It;
1051
1052 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1053 // if we could insert other, non-terminator instructions after the
1054 // bCC. But MBB->getFirstTerminator() can't understand this.
1055 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
1056 F->getBasicBlockList().insert(It, copy1MBB);
1057 BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
1058 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1059 F->getBasicBlockList().insert(It, copy0MBB);
1060 BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
1061 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1062 F->getBasicBlockList().insert(It, sinkMBB);
1063 // Update machine-CFG edges
1064 BB->addSuccessor(copy1MBB);
1065 BB->addSuccessor(copy0MBB);
1066
1067 // copy1MBB:
1068 // %TrueValue = ...
1069 // b sinkMBB
1070 BB = copy1MBB;
1071 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1072 BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
1073 // Update machine-CFG edges
1074 BB->addSuccessor(sinkMBB);
1075
1076 // copy0MBB:
1077 // %FalseValue = ...
1078 // fallthrough
1079 BB = copy0MBB;
1080 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1081 // Update machine-CFG edges
1082 BB->addSuccessor(sinkMBB);
1083
1084 // sinkMBB:
1085 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1086 // ...
1087 BB = sinkMBB;
1088 BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
1089 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
1090 return;
1091}
1092
1093
1094
1095/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1096/// operand, in the specified target register.
1097///
1098void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1099 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1100
1101 Value *Val = VR.Val;
1102 const Type *Ty = VR.Ty;
1103 if (Val) {
1104 if (Constant *C = dyn_cast<Constant>(Val)) {
1105 Val = ConstantExpr::getCast(C, Type::IntTy);
1106 if (isa<ConstantExpr>(Val)) // Could not fold
1107 Val = C;
1108 else
1109 Ty = Type::IntTy; // Folded!
1110 }
1111
1112 // If this is a simple constant, just emit a load directly to avoid the copy
1113 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1114 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1115
1116 if (TheVal < 32768 && TheVal >= -32768) {
1117 BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
1118 } else {
1119 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1120 BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
1121 BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
1122 .addImm(TheVal & 0xFFFF);
1123 }
1124 return;
1125 }
1126 }
1127
1128 // Make sure we have the register number for this value...
1129 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1130 switch (getClassB(Ty)) {
1131 case cByte:
1132 // Extend value into target register (8->32)
1133 if (isUnsigned)
1134 BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1135 .addZImm(24).addZImm(31);
1136 else
1137 BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
1138 break;
1139 case cShort:
1140 // Extend value into target register (16->32)
1141 if (isUnsigned)
1142 BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1143 .addZImm(16).addZImm(31);
1144 else
1145 BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
1146 break;
1147 case cInt:
1148 case cLong:
1149 // Move value into target register (32->32)
1150 BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
1151 break;
1152 default:
1153 assert(0 && "Unpromotable operand class in promote32");
1154 }
1155}
1156
1157/// visitReturnInst - implemented with BLR
1158///
1159void ISel::visitReturnInst(ReturnInst &I) {
1160 // Only do the processing if this is a non-void return
1161 if (I.getNumOperands() > 0) {
1162 Value *RetVal = I.getOperand(0);
1163 switch (getClassB(RetVal->getType())) {
1164 case cByte: // integral return values: extend or move into r3 and return
1165 case cShort:
1166 case cInt:
1167 case cLong:
1168 promote32(PPC::R3, ValueRecord(RetVal));
1169 break;
1170 case cFP32:
1171 case cFP64: { // Floats & Doubles: Return in f1
1172 unsigned RetReg = getReg(RetVal);
1173 BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
1174 break;
1175 }
1176 default:
1177 visitInstruction(I);
1178 }
1179 }
Misha Brukmana1b6ae92004-08-12 03:30:03 +00001180 BuildMI(BB, PPC::BLR, 1).addImm(1);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001181}
1182
1183// getBlockAfter - Return the basic block which occurs lexically after the
1184// specified one.
1185static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1186 Function::iterator I = BB; ++I; // Get iterator to next block
1187 return I != BB->getParent()->end() ? &*I : 0;
1188}
1189
1190/// visitBranchInst - Handle conditional and unconditional branches here. Note
1191/// that since code layout is frozen at this point, that if we are trying to
1192/// jump to a block that is the immediate successor of the current block, we can
1193/// just make a fall-through (but we don't currently).
1194///
1195void ISel::visitBranchInst(BranchInst &BI) {
1196 // Update machine-CFG edges
1197 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
1198 if (BI.isConditional())
1199 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
1200
1201 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1202
1203 if (!BI.isConditional()) { // Unconditional branch?
1204 if (BI.getSuccessor(0) != NextBB)
1205 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1206 return;
1207 }
1208
1209 // See if we can fold the setcc into the branch itself...
1210 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1211 if (SCI == 0) {
1212 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1213 // computed some other way...
1214 unsigned condReg = getReg(BI.getCondition());
1215 BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
1216 .addImm(0);
1217 if (BI.getSuccessor(1) == NextBB) {
1218 if (BI.getSuccessor(0) != NextBB)
1219 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
1220 .addMBB(MBBMap[BI.getSuccessor(0)])
1221 .addMBB(MBBMap[BI.getSuccessor(1)]);
1222 } else {
1223 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
1224 .addMBB(MBBMap[BI.getSuccessor(1)])
1225 .addMBB(MBBMap[BI.getSuccessor(0)]);
1226 if (BI.getSuccessor(0) != NextBB)
1227 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1228 }
1229 return;
1230 }
1231
1232 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1233 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1234 MachineBasicBlock::iterator MII = BB->end();
1235 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1236
1237 if (BI.getSuccessor(0) != NextBB) {
1238 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
1239 .addMBB(MBBMap[BI.getSuccessor(0)])
1240 .addMBB(MBBMap[BI.getSuccessor(1)]);
1241 if (BI.getSuccessor(1) != NextBB)
1242 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1243 } else {
1244 // Change to the inverse condition...
1245 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanadde6992004-08-17 04:57:37 +00001246 Opcode = PPC64InstrInfo::invertPPCBranchOpcode(Opcode);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001247 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
1248 .addMBB(MBBMap[BI.getSuccessor(1)])
1249 .addMBB(MBBMap[BI.getSuccessor(0)]);
1250 }
1251 }
1252}
1253
1254/// doCall - This emits an abstract call instruction, setting up the arguments
1255/// and the return value as appropriate. For the actual function call itself,
1256/// it inserts the specified CallMI instruction into the stream.
1257///
1258void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1259 const std::vector<ValueRecord> &Args, bool isVarArg) {
1260 // Count how many bytes are to be pushed on the stack, including the linkage
1261 // area, and parameter passing area.
Misha Brukman4debafb2004-08-19 21:34:05 +00001262 unsigned NumBytes = ParameterSaveAreaOffset;
1263 unsigned ArgOffset = ParameterSaveAreaOffset;
Misha Brukmanca9309f2004-08-11 23:42:15 +00001264
1265 if (!Args.empty()) {
1266 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1267 switch (getClassB(Args[i].Ty)) {
1268 case cByte: case cShort: case cInt:
1269 NumBytes += 4; break;
1270 case cLong:
1271 NumBytes += 8; break;
1272 case cFP32:
1273 NumBytes += 4; break;
1274 case cFP64:
1275 NumBytes += 8; break;
1276 break;
1277 default: assert(0 && "Unknown class!");
1278 }
1279
Misha Brukman1601d9c2004-08-19 21:51:19 +00001280 // Just to be safe, we'll always reserve the full argument passing space in
1281 // case any called code gets funky on us.
1282 if (NumBytes < ParameterSaveAreaOffset + MaxArgumentStackSpace)
1283 NumBytes = ParameterSaveAreaOffset + MaxArgumentStackSpace;
Misha Brukmanca9309f2004-08-11 23:42:15 +00001284
1285 // Adjust the stack pointer for the new arguments...
1286 // These functions are automatically eliminated by the prolog/epilog pass
1287 BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1288
1289 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukmanca9309f2004-08-11 23:42:15 +00001290 int GPR_remaining = 8, FPR_remaining = 13;
1291 unsigned GPR_idx = 0, FPR_idx = 0;
1292 static const unsigned GPR[] = {
1293 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1294 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1295 };
1296 static const unsigned FPR[] = {
1297 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
1298 PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
1299 PPC::F13
1300 };
1301
1302 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1303 unsigned ArgReg;
1304 switch (getClassB(Args[i].Ty)) {
1305 case cByte:
1306 case cShort:
1307 // Promote arg to 32 bits wide into a temporary register...
1308 ArgReg = makeAnotherReg(Type::UIntTy);
1309 promote32(ArgReg, Args[i]);
1310
1311 // Reg or stack?
1312 if (GPR_remaining > 0) {
1313 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1314 .addReg(ArgReg);
1315 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1316 }
1317 if (GPR_remaining <= 0 || isVarArg) {
1318 BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
1319 .addReg(PPC::R1);
1320 }
1321 break;
1322 case cInt:
1323 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1324
1325 // Reg or stack?
1326 if (GPR_remaining > 0) {
1327 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1328 .addReg(ArgReg);
1329 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1330 }
1331 if (GPR_remaining <= 0 || isVarArg) {
1332 BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
1333 .addReg(PPC::R1);
1334 }
1335 break;
1336 case cLong:
1337 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1338
1339 // Reg or stack?
1340 if (GPR_remaining > 0) {
1341 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1342 .addReg(ArgReg);
1343 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1344 }
1345 if (GPR_remaining <= 0 || isVarArg) {
1346 BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
1347 .addReg(PPC::R1);
1348 }
1349 ArgOffset += 4; // 8 byte entry, not 4.
1350 break;
1351 case cFP32:
1352 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1353 // Reg or stack?
1354 if (FPR_remaining > 0) {
1355 BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1356 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1357 FPR_remaining--;
1358 FPR_idx++;
1359
1360 // If this is a vararg function, and there are GPRs left, also
1361 // pass the float in an int. Otherwise, put it on the stack.
1362 if (isVarArg) {
1363 BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman1c514ec2004-08-19 16:29:25 +00001364 .addReg(PPC::R1);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001365 if (GPR_remaining > 0) {
1366 BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
1367 .addSImm(ArgOffset).addReg(ArgReg);
1368 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1369 }
1370 }
1371 } else {
1372 BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
1373 .addReg(PPC::R1);
1374 }
1375 break;
1376 case cFP64:
1377 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1378 // Reg or stack?
1379 if (FPR_remaining > 0) {
1380 BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1381 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1382 FPR_remaining--;
1383 FPR_idx++;
1384 // For vararg functions, must pass doubles via int regs as well
1385 if (isVarArg) {
1386 BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
1387 .addReg(PPC::R1);
1388
1389 if (GPR_remaining > 0) {
1390 BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
1391 .addReg(PPC::R1);
1392 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1393 }
1394 }
1395 } else {
1396 BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
1397 .addReg(PPC::R1);
1398 }
1399 // Doubles use 8 bytes
1400 ArgOffset += 4;
1401 break;
1402
1403 default: assert(0 && "Unknown class!");
1404 }
1405 ArgOffset += 4;
1406 GPR_remaining--;
1407 GPR_idx++;
1408 }
1409 } else {
1410 BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
1411 }
1412
1413 BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
1414 BB->push_back(CallMI);
Misha Brukmana1b6ae92004-08-12 03:30:03 +00001415 BuildMI(BB, PPC::NOP, 0);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001416
1417 // These functions are automatically eliminated by the prolog/epilog pass
1418 BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
1419
1420 // If there is a return value, scavenge the result from the location the call
1421 // leaves it in...
1422 //
1423 if (Ret.Ty != Type::VoidTy) {
1424 unsigned DestClass = getClassB(Ret.Ty);
1425 switch (DestClass) {
1426 case cByte:
1427 case cShort:
1428 case cInt:
1429 case cLong:
1430 // Integral results are in r3
1431 BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
1432 break;
1433 case cFP32: // Floating-point return values live in f1
1434 case cFP64:
1435 BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
1436 break;
1437 default: assert(0 && "Unknown class!");
1438 }
1439 }
1440}
1441
1442
1443/// visitCallInst - Push args on stack and do a procedure call instruction.
1444void ISel::visitCallInst(CallInst &CI) {
1445 MachineInstr *TheCall;
1446 Function *F = CI.getCalledFunction();
1447 if (F) {
1448 // Is it an intrinsic function call?
1449 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1450 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1451 return;
1452 }
1453 // Emit a CALL instruction with PC-relative displacement.
1454 TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001455 } else { // Emit an indirect call through the CTR
1456 unsigned Reg = getReg(CI.getCalledValue());
1457 BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
1458 TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
1459 }
1460
1461 std::vector<ValueRecord> Args;
1462 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1463 Args.push_back(ValueRecord(CI.getOperand(i)));
1464
1465 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1466 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1467 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
1468}
1469
1470
1471/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1472///
1473static Value *dyncastIsNan(Value *V) {
1474 if (CallInst *CI = dyn_cast<CallInst>(V))
1475 if (Function *F = CI->getCalledFunction())
1476 if (F->getIntrinsicID() == Intrinsic::isunordered)
1477 return CI->getOperand(1);
1478 return 0;
1479}
1480
1481/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1482/// or's whos operands are all calls to the isnan predicate.
1483static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1484 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1485
1486 // Check all uses, which will be or's of isnans if this predicate is true.
1487 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1488 Instruction *I = cast<Instruction>(*UI);
1489 if (I->getOpcode() != Instruction::Or) return false;
1490 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1491 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1492 }
1493
1494 return true;
1495}
1496
1497/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1498/// function, lowering any calls to unknown intrinsic functions into the
1499/// equivalent LLVM code.
1500///
1501void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1502 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1503 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1504 if (CallInst *CI = dyn_cast<CallInst>(I++))
1505 if (Function *F = CI->getCalledFunction())
1506 switch (F->getIntrinsicID()) {
1507 case Intrinsic::not_intrinsic:
1508 case Intrinsic::vastart:
1509 case Intrinsic::vacopy:
1510 case Intrinsic::vaend:
1511 case Intrinsic::returnaddress:
1512 case Intrinsic::frameaddress:
1513 // FIXME: should lower these ourselves
1514 // case Intrinsic::isunordered:
1515 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1516 // guaranteed to be faster than anything we generate ourselves
1517 // We directly implement these intrinsics
1518 break;
1519 case Intrinsic::readio: {
1520 // On PPC, memory operations are in-order. Lower this intrinsic
1521 // into a volatile load.
1522 Instruction *Before = CI->getPrev();
1523 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1524 CI->replaceAllUsesWith(LI);
1525 BB->getInstList().erase(CI);
1526 break;
1527 }
1528 case Intrinsic::writeio: {
1529 // On PPC, memory operations are in-order. Lower this intrinsic
1530 // into a volatile store.
1531 Instruction *Before = CI->getPrev();
1532 StoreInst *SI = new StoreInst(CI->getOperand(1),
1533 CI->getOperand(2), true, CI);
1534 CI->replaceAllUsesWith(SI);
1535 BB->getInstList().erase(CI);
1536 break;
1537 }
1538 default:
1539 // All other intrinsic calls we must lower.
1540 Instruction *Before = CI->getPrev();
1541 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1542 if (Before) { // Move iterator to instruction after call
1543 I = Before; ++I;
1544 } else {
1545 I = BB->begin();
1546 }
1547 }
1548}
1549
1550void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1551 unsigned TmpReg1, TmpReg2, TmpReg3;
1552 switch (ID) {
1553 case Intrinsic::vastart:
1554 // Get the address of the first vararg value...
1555 TmpReg1 = getReg(CI);
1556 addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1557 0, false);
1558 return;
1559
1560 case Intrinsic::vacopy:
1561 TmpReg1 = getReg(CI);
1562 TmpReg2 = getReg(CI.getOperand(1));
1563 BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1564 return;
1565 case Intrinsic::vaend: return;
1566
1567 case Intrinsic::returnaddress:
1568 TmpReg1 = getReg(CI);
1569 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1570 MachineFrameInfo *MFI = F->getFrameInfo();
1571 unsigned NumBytes = MFI->getStackSize();
1572
1573 BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
1574 .addReg(PPC::R1);
1575 } else {
1576 // Values other than zero are not implemented yet.
1577 BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
1578 }
1579 return;
1580
1581 case Intrinsic::frameaddress:
1582 TmpReg1 = getReg(CI);
1583 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1584 BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
1585 } else {
1586 // Values other than zero are not implemented yet.
1587 BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
1588 }
1589 return;
1590
1591#if 0
1592 // This may be useful for supporting isunordered
1593 case Intrinsic::isnan:
1594 // If this is only used by 'isunordered' style comparisons, don't emit it.
1595 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1596 TmpReg1 = getReg(CI.getOperand(1));
1597 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
1598 TmpReg2 = makeAnotherReg(Type::IntTy);
1599 BuildMI(BB, PPC::MFCR, TmpReg2);
1600 TmpReg3 = getReg(CI);
1601 BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1602 return;
1603#endif
1604
1605 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1606 }
1607}
1608
1609/// visitSimpleBinary - Implement simple binary operators for integral types...
1610/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1611/// Xor.
1612///
1613void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1614 unsigned DestReg = getReg(B);
1615 MachineBasicBlock::iterator MI = BB->end();
1616 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1617 unsigned Class = getClassB(B.getType());
1618
1619 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1620}
1621
1622/// emitBinaryFPOperation - This method handles emission of floating point
1623/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1624void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1625 MachineBasicBlock::iterator IP,
1626 Value *Op0, Value *Op1,
1627 unsigned OperatorClass, unsigned DestReg) {
1628
Nate Begeman81d265d2004-08-19 05:20:54 +00001629 static const unsigned OpcodeTab[][4] = {
1630 { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
1631 { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
1632 };
Misha Brukmanca9309f2004-08-11 23:42:15 +00001633
Misha Brukmanca9309f2004-08-11 23:42:15 +00001634 // Special case: R1 = op <const fp>, R2
1635 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1636 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
1637 // -0.0 - X === -X
1638 unsigned op1Reg = getReg(Op1, BB, IP);
1639 BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
1640 return;
Misha Brukmanca9309f2004-08-11 23:42:15 +00001641 }
1642
Nate Begeman81d265d2004-08-19 05:20:54 +00001643 unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
Misha Brukmanca9309f2004-08-11 23:42:15 +00001644 unsigned Op0r = getReg(Op0, BB, IP);
1645 unsigned Op1r = getReg(Op1, BB, IP);
1646 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1647}
1648
1649/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1650/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1651/// Or, 4 for Xor.
1652///
1653/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1654/// and constant expression support.
1655///
1656void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1657 MachineBasicBlock::iterator IP,
1658 Value *Op0, Value *Op1,
1659 unsigned OperatorClass, unsigned DestReg) {
1660 unsigned Class = getClassB(Op0->getType());
1661
1662 // Arithmetic and Bitwise operators
1663 static const unsigned OpcodeTab[] = {
1664 PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
1665 };
1666 static const unsigned ImmOpcodeTab[] = {
1667 PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
1668 };
1669 static const unsigned RImmOpcodeTab[] = {
1670 PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
1671 };
1672
1673 if (Class == cFP32 || Class == cFP64) {
1674 assert(OperatorClass < 2 && "No logical ops for FP!");
1675 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1676 return;
1677 }
1678
1679 if (Op0->getType() == Type::BoolTy) {
1680 if (OperatorClass == 3)
1681 // If this is an or of two isnan's, emit an FP comparison directly instead
1682 // of or'ing two isnan's together.
1683 if (Value *LHS = dyncastIsNan(Op0))
1684 if (Value *RHS = dyncastIsNan(Op1)) {
1685 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
1686 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1687 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
1688 BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
1689 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1690 .addImm(31).addImm(31);
1691 return;
1692 }
1693 }
1694
1695 // Special case: op <const int>, Reg
1696 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
1697 // sub 0, X -> subfic
1698 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
1699 unsigned Op1r = getReg(Op1, MBB, IP);
1700 int imm = CI->getRawValue() & 0xFFFF;
1701 BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
1702 return;
1703 }
1704
1705 // If it is easy to do, swap the operands and emit an immediate op
1706 if (Class != cLong && OperatorClass != 1 &&
1707 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1708 unsigned Op1r = getReg(Op1, MBB, IP);
1709 int imm = CI->getRawValue() & 0xFFFF;
1710
1711 if (OperatorClass < 2)
1712 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1713 .addSImm(imm);
1714 else
1715 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1716 .addZImm(imm);
1717 return;
1718 }
1719 }
1720
1721 // Special case: op Reg, <const int>
1722 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1723 unsigned Op0r = getReg(Op0, MBB, IP);
1724
1725 // xor X, -1 -> not X
1726 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1727 BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1728 return;
1729 }
1730
1731 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1732 int immediate = Op1C->getRawValue() & 0xFFFF;
1733
1734 if (OperatorClass < 2)
1735 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
1736 .addSImm(immediate);
1737 else
1738 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
1739 .addZImm(immediate);
1740 } else {
1741 unsigned Op1r = getReg(Op1, MBB, IP);
1742 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1743 .addReg(Op1r);
1744 }
1745 return;
1746 }
1747
1748 // We couldn't generate an immediate variant of the op, load both halves into
1749 // registers and emit the appropriate opcode.
1750 unsigned Op0r = getReg(Op0, MBB, IP);
1751 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001752 unsigned Opcode = OpcodeTab[OperatorClass];
1753 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001754}
1755
1756// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1757// returns zero when the input is not exactly a power of two.
1758static unsigned ExactLog2(unsigned Val) {
1759 if (Val == 0 || (Val & (Val-1))) return 0;
1760 unsigned Count = 0;
1761 while (Val != 1) {
1762 Val >>= 1;
1763 ++Count;
1764 }
1765 return Count;
1766}
1767
1768/// doMultiply - Emit appropriate instructions to multiply together the
1769/// Values Op0 and Op1, and put the result in DestReg.
1770///
1771void ISel::doMultiply(MachineBasicBlock *MBB,
1772 MachineBasicBlock::iterator IP,
1773 unsigned DestReg, Value *Op0, Value *Op1) {
1774 unsigned Class0 = getClass(Op0->getType());
1775 unsigned Class1 = getClass(Op1->getType());
1776
1777 unsigned Op0r = getReg(Op0, MBB, IP);
1778 unsigned Op1r = getReg(Op1, MBB, IP);
1779
1780 // 64 x 64 -> 64
1781 if (Class0 == cLong && Class1 == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00001782 BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001783 return;
1784 }
1785
1786 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
1787 if (Class0 == cLong && Class1 <= cInt) {
Nate Begeman5a104b02004-08-13 02:20:47 +00001788 // FIXME: CLEAR or SIGN EXTEND Op1
1789 BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001790 return;
1791 }
1792
1793 // 32 x 32 -> 32
1794 if (Class0 <= cInt && Class1 <= cInt) {
1795 BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
1796 return;
1797 }
1798
1799 assert(0 && "doMultiply cannot operate on unknown type!");
1800}
1801
1802/// doMultiplyConst - This method will multiply the value in Op0 by the
1803/// value of the ContantInt *CI
1804void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1805 MachineBasicBlock::iterator IP,
1806 unsigned DestReg, Value *Op0, ConstantInt *CI) {
1807 unsigned Class = getClass(Op0->getType());
1808
1809 // Mul op0, 0 ==> 0
1810 if (CI->isNullValue()) {
1811 BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
1812 return;
1813 }
1814
1815 // Mul op0, 1 ==> op0
1816 if (CI->equalsInt(1)) {
1817 unsigned Op0r = getReg(Op0, MBB, IP);
1818 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1819 return;
1820 }
1821
1822 // If the element size is exactly a power of 2, use a shift to get it.
1823 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
1824 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
1825 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
1826 return;
1827 }
1828
1829 // If 32 bits or less and immediate is in right range, emit mul by immediate
1830 if (Class == cByte || Class == cShort || Class == cInt) {
1831 if (canUseAsImmediateForOpcode(CI, 0)) {
1832 unsigned Op0r = getReg(Op0, MBB, IP);
1833 unsigned imm = CI->getRawValue() & 0xFFFF;
1834 BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
1835 return;
1836 }
1837 }
1838
1839 doMultiply(MBB, IP, DestReg, Op0, CI);
1840}
1841
1842void ISel::visitMul(BinaryOperator &I) {
1843 unsigned ResultReg = getReg(I);
1844
1845 Value *Op0 = I.getOperand(0);
1846 Value *Op1 = I.getOperand(1);
1847
1848 MachineBasicBlock::iterator IP = BB->end();
1849 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1850}
1851
1852void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1853 Value *Op0, Value *Op1, unsigned DestReg) {
1854 TypeClass Class = getClass(Op0->getType());
1855
1856 switch (Class) {
1857 case cByte:
1858 case cShort:
1859 case cInt:
1860 case cLong:
1861 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1862 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
1863 } else {
1864 doMultiply(MBB, IP, DestReg, Op0, Op1);
1865 }
1866 return;
1867 case cFP32:
1868 case cFP64:
1869 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1870 return;
1871 break;
1872 }
1873}
1874
1875
1876/// visitDivRem - Handle division and remainder instructions... these
1877/// instruction both require the same instructions to be generated, they just
1878/// select the result from a different register. Note that both of these
1879/// instructions work differently for signed and unsigned operands.
1880///
1881void ISel::visitDivRem(BinaryOperator &I) {
1882 unsigned ResultReg = getReg(I);
1883 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1884
1885 MachineBasicBlock::iterator IP = BB->end();
1886 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1887 ResultReg);
1888}
1889
1890void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1891 MachineBasicBlock::iterator IP,
1892 Value *Op0, Value *Op1, bool isDiv,
1893 unsigned ResultReg) {
1894 const Type *Ty = Op0->getType();
1895 unsigned Class = getClass(Ty);
1896 switch (Class) {
1897 case cFP32:
1898 if (isDiv) {
1899 // Floating point divide...
1900 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1901 return;
1902 } else {
1903 // Floating point remainder via fmodf(float x, float y);
1904 unsigned Op0Reg = getReg(Op0, BB, IP);
1905 unsigned Op1Reg = getReg(Op1, BB, IP);
1906 MachineInstr *TheCall =
1907 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
1908 std::vector<ValueRecord> Args;
1909 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
1910 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
1911 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001912 }
1913 return;
1914 case cFP64:
1915 if (isDiv) {
1916 // Floating point divide...
1917 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1918 return;
1919 } else {
1920 // Floating point remainder via fmod(double x, double y);
1921 unsigned Op0Reg = getReg(Op0, BB, IP);
1922 unsigned Op1Reg = getReg(Op1, BB, IP);
1923 MachineInstr *TheCall =
1924 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
1925 std::vector<ValueRecord> Args;
1926 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1927 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1928 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001929 }
1930 return;
Nate Begeman20136a22004-09-06 18:46:59 +00001931 case cLong: case cByte: case cShort: case cInt:
Misha Brukmanca9309f2004-08-11 23:42:15 +00001932 break; // Small integrals, handled below...
1933 default: assert(0 && "Unknown class!");
1934 }
1935
1936 // Special case signed division by power of 2.
1937 if (isDiv)
1938 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1939 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1940 int V = CI->getValue();
1941
1942 if (V == 1) { // X /s 1 => X
1943 unsigned Op0Reg = getReg(Op0, BB, IP);
1944 BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1945 return;
1946 }
1947
1948 if (V == -1) { // X /s -1 => -X
1949 unsigned Op0Reg = getReg(Op0, BB, IP);
1950 BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
1951 return;
1952 }
1953
1954 unsigned log2V = ExactLog2(V);
1955 if (log2V != 0 && Ty->isSigned()) {
1956 unsigned Op0Reg = getReg(Op0, BB, IP);
1957 unsigned TmpReg = makeAnotherReg(Op0->getType());
Nate Begeman20136a22004-09-06 18:46:59 +00001958 unsigned Opcode = Class == cLong ? PPC::SRADI : PPC::SRAWI;
Misha Brukmanca9309f2004-08-11 23:42:15 +00001959
Nate Begeman20136a22004-09-06 18:46:59 +00001960 BuildMI(*BB, IP, Opcode, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001961 BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
1962 return;
1963 }
1964 }
1965
Nate Begeman20136a22004-09-06 18:46:59 +00001966 static const unsigned DivOpcodes[] =
1967 { PPC::DIVWU, PPC::DIVW, PPC::DIVDU, PPC::DIVD };
1968
Misha Brukmanca9309f2004-08-11 23:42:15 +00001969 unsigned Op0Reg = getReg(Op0, BB, IP);
1970 unsigned Op1Reg = getReg(Op1, BB, IP);
Nate Begeman20136a22004-09-06 18:46:59 +00001971 unsigned Opcode = DivOpcodes[2*(Class == cLong) + Ty->isSigned()];
Misha Brukmanca9309f2004-08-11 23:42:15 +00001972
1973 if (isDiv) {
1974 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1975 } else { // Remainder
1976 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
1977 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Nate Begeman20136a22004-09-06 18:46:59 +00001978 unsigned MulOpcode = Class == cLong ? PPC::MULLD : PPC::MULLW;
Misha Brukmanca9309f2004-08-11 23:42:15 +00001979
1980 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Nate Begeman20136a22004-09-06 18:46:59 +00001981 BuildMI(*BB, IP, MulOpcode, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001982 BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
1983 }
1984}
1985
1986
1987/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1988/// for constant immediate shift values, and for constant immediate
1989/// shift values equal to 1. Even the general case is sort of special,
1990/// because the shift amount has to be in CL, not just any old register.
1991///
1992void ISel::visitShiftInst(ShiftInst &I) {
1993 MachineBasicBlock::iterator IP = BB->end();
1994 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
1995 I.getOpcode() == Instruction::Shl, I.getType(),
1996 getReg(I));
1997}
1998
1999/// emitShiftOperation - Common code shared between visitShiftInst and
2000/// constant expression support.
2001///
2002void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2003 MachineBasicBlock::iterator IP,
2004 Value *Op, Value *ShiftAmount, bool isLeftShift,
2005 const Type *ResultTy, unsigned DestReg) {
2006 unsigned SrcReg = getReg (Op, MBB, IP);
2007 bool isSigned = ResultTy->isSigned ();
2008 unsigned Class = getClass (ResultTy);
2009
2010 // Longs, as usual, are handled specially...
2011 if (Class == cLong) {
2012 // If we have a constant shift, we can generate much more efficient code
2013 // than otherwise...
2014 //
2015 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2016 unsigned Amount = CUI->getValue();
Nate Begeman5a104b02004-08-13 02:20:47 +00002017 assert(Amount < 64 && "Invalid immediate shift amount!");
2018 if (isLeftShift) {
2019 BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount)
2020 .addImm(63-Amount);
2021 } else {
2022 if (isSigned) {
2023 BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg)
2024 .addImm(Amount);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002025 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002026 BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg)
2027 .addImm(64-Amount).addImm(Amount);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002028 }
2029 }
2030 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002031 unsigned ShiftReg = getReg (ShiftAmount, MBB, IP);
2032
Misha Brukmanca9309f2004-08-11 23:42:15 +00002033 if (isLeftShift) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002034 BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002035 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002036 unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD;
2037 BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002038 }
2039 }
2040 return;
2041 }
2042
2043 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2044 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2045 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2046 unsigned Amount = CUI->getValue();
2047
2048 if (isLeftShift) {
2049 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2050 .addImm(Amount).addImm(0).addImm(31-Amount);
2051 } else {
2052 if (isSigned) {
2053 BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2054 } else {
2055 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2056 .addImm(32-Amount).addImm(Amount).addImm(31);
2057 }
2058 }
2059 } else { // The shift amount is non-constant.
Misha Brukman1c514ec2004-08-19 16:29:25 +00002060 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002061
2062 if (isLeftShift) {
2063 BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
2064 .addReg(ShiftAmountReg);
2065 } else {
2066 BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
2067 .addReg(SrcReg).addReg(ShiftAmountReg);
2068 }
2069 }
2070}
2071
2072
2073/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2074/// mapping of LLVM classes to PPC load instructions, with the exception of
2075/// signed byte loads, which need a sign extension following them.
2076///
2077void ISel::visitLoadInst(LoadInst &I) {
2078 // Immediate opcodes, for reg+imm addressing
2079 static const unsigned ImmOpcodes[] = {
2080 PPC::LBZ, PPC::LHZ, PPC::LWZ,
2081 PPC::LFS, PPC::LFD, PPC::LWZ
2082 };
2083 // Indexed opcodes, for reg+reg addressing
2084 static const unsigned IdxOpcodes[] = {
2085 PPC::LBZX, PPC::LHZX, PPC::LWZX,
2086 PPC::LFSX, PPC::LFDX, PPC::LWZX
2087 };
2088
2089 unsigned Class = getClassB(I.getType());
2090 unsigned ImmOpcode = ImmOpcodes[Class];
2091 unsigned IdxOpcode = IdxOpcodes[Class];
2092 unsigned DestReg = getReg(I);
2093 Value *SourceAddr = I.getOperand(0);
2094
2095 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
2096 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
2097
2098 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
2099 unsigned FI = getFixedSizedAllocaFI(AI);
2100 if (Class == cByte && I.getType()->isSigned()) {
2101 unsigned TmpReg = makeAnotherReg(I.getType());
2102 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
2103 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2104 } else {
2105 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2106 }
2107 return;
2108 }
2109
2110 // If this load is the only use of the GEP instruction that is its address,
2111 // then we can fold the GEP directly into the load instruction.
2112 // emitGEPOperation with a second to last arg of 'true' will place the
2113 // base register for the GEP into baseReg, and the constant offset from that
2114 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2115 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2116 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2117 unsigned baseReg = getReg(GEPI);
2118 unsigned pendingAdd;
2119 ConstantSInt *offset;
2120
2121 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2122 GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
2123
2124 if (pendingAdd == 0 && Class != cLong &&
2125 canUseAsImmediateForOpcode(offset, 0)) {
2126 if (Class == cByte && I.getType()->isSigned()) {
2127 unsigned TmpReg = makeAnotherReg(I.getType());
2128 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2129 .addReg(baseReg);
2130 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2131 } else {
2132 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2133 .addReg(baseReg);
2134 }
2135 return;
2136 }
2137
2138 unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
2139
2140 if (Class == cByte && I.getType()->isSigned()) {
2141 unsigned TmpReg = makeAnotherReg(I.getType());
2142 BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
2143 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2144 } else {
2145 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2146 }
2147 return;
2148 }
2149
2150 // The fallback case, where the load was from a source that could not be
2151 // folded into the load instruction.
2152 unsigned SrcAddrReg = getReg(SourceAddr);
2153
2154 if (Class == cByte && I.getType()->isSigned()) {
2155 unsigned TmpReg = makeAnotherReg(I.getType());
2156 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2157 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2158 } else {
2159 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2160 }
2161}
2162
2163/// visitStoreInst - Implement LLVM store instructions
2164///
2165void ISel::visitStoreInst(StoreInst &I) {
2166 // Immediate opcodes, for reg+imm addressing
2167 static const unsigned ImmOpcodes[] = {
2168 PPC::STB, PPC::STH, PPC::STW,
2169 PPC::STFS, PPC::STFD, PPC::STW
2170 };
2171 // Indexed opcodes, for reg+reg addressing
2172 static const unsigned IdxOpcodes[] = {
2173 PPC::STBX, PPC::STHX, PPC::STWX,
2174 PPC::STFSX, PPC::STFDX, PPC::STWX
2175 };
2176
2177 Value *SourceAddr = I.getOperand(1);
2178 const Type *ValTy = I.getOperand(0)->getType();
2179 unsigned Class = getClassB(ValTy);
2180 unsigned ImmOpcode = ImmOpcodes[Class];
2181 unsigned IdxOpcode = IdxOpcodes[Class];
2182 unsigned ValReg = getReg(I.getOperand(0));
2183
2184 // If this store is the only use of the GEP instruction that is its address,
2185 // then we can fold the GEP directly into the store instruction.
2186 // emitGEPOperation with a second to last arg of 'true' will place the
2187 // base register for the GEP into baseReg, and the constant offset from that
2188 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2189 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2190 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2191 unsigned baseReg = getReg(GEPI);
2192 unsigned pendingAdd;
2193 ConstantSInt *offset;
2194
2195 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2196 GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
2197
2198 if (0 == pendingAdd && Class != cLong &&
2199 canUseAsImmediateForOpcode(offset, 0)) {
2200 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2201 .addReg(baseReg);
2202 return;
2203 }
2204
2205 unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
2206 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2207 return;
2208 }
2209
2210 // If the store address wasn't the only use of a GEP, we fall back to the
2211 // standard path: store the ValReg at the value in AddressReg.
2212 unsigned AddressReg = getReg(I.getOperand(1));
2213 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2214}
2215
2216
2217/// visitCastInst - Here we have various kinds of copying with or without sign
2218/// extension going on.
2219///
2220void ISel::visitCastInst(CastInst &CI) {
2221 Value *Op = CI.getOperand(0);
2222
2223 unsigned SrcClass = getClassB(Op->getType());
2224 unsigned DestClass = getClassB(CI.getType());
2225
2226 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2227 // of the case are GEP instructions, then the cast does not need to be
2228 // generated explicitly, it will be folded into the GEP.
2229 if (DestClass == cLong && SrcClass == cInt) {
2230 bool AllUsesAreGEPs = true;
2231 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2232 if (!isa<GetElementPtrInst>(*I)) {
2233 AllUsesAreGEPs = false;
2234 break;
2235 }
2236
2237 // No need to codegen this cast if all users are getelementptr instrs...
2238 if (AllUsesAreGEPs) return;
2239 }
2240
2241 unsigned DestReg = getReg(CI);
2242 MachineBasicBlock::iterator MI = BB->end();
2243 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2244}
2245
2246/// emitCastOperation - Common code shared between visitCastInst and constant
2247/// expression cast support.
2248///
2249void ISel::emitCastOperation(MachineBasicBlock *MBB,
2250 MachineBasicBlock::iterator IP,
2251 Value *Src, const Type *DestTy,
2252 unsigned DestReg) {
2253 const Type *SrcTy = Src->getType();
2254 unsigned SrcClass = getClassB(SrcTy);
2255 unsigned DestClass = getClassB(DestTy);
2256 unsigned SrcReg = getReg(Src, MBB, IP);
2257
2258 // Implement casts to bool by using compare on the operand followed by set if
2259 // not zero on the result.
2260 if (DestTy == Type::BoolTy) {
2261 switch (SrcClass) {
2262 case cByte:
2263 case cShort:
2264 case cInt:
2265 case cLong: {
2266 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2267 BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
2268 BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
2269 break;
2270 }
2271 case cFP32:
2272 case cFP64:
2273 // FSEL perhaps?
2274 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
2275 abort();
2276 }
2277 return;
2278 }
2279
2280 // Handle cast of Float -> Double
2281 if (SrcClass == cFP32 && DestClass == cFP64) {
2282 BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
2283 return;
2284 }
2285
2286 // Handle cast of Double -> Float
2287 if (SrcClass == cFP64 && DestClass == cFP32) {
2288 BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
2289 return;
2290 }
2291
2292 // Handle casts from integer to floating point now...
2293 if (DestClass == cFP32 || DestClass == cFP64) {
2294
Misha Brukmanca9309f2004-08-11 23:42:15 +00002295 // Spill the integer to memory and reload it from there.
Nate Begemand332fd52004-08-29 22:02:43 +00002296 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002297 int ValueFrameIdx =
2298 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2299
Nate Begemand332fd52004-08-29 22:02:43 +00002300 if (SrcClass == cLong) {
2301 if (SrcTy->isSigned()) {
2302 addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(SrcReg),
2303 ValueFrameIdx);
2304 addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
2305 ValueFrameIdx);
2306 BuildMI(*MBB, IP, PPC::FCFID, 1, DestReg).addReg(TmpReg);
2307 } else {
2308 unsigned Scale = getReg(ConstantFP::get(Type::DoubleTy, 0x1p32));
2309 unsigned TmpHi = makeAnotherReg(Type::IntTy);
2310 unsigned TmpLo = makeAnotherReg(Type::IntTy);
2311 unsigned FPLow = makeAnotherReg(Type::DoubleTy);
2312 unsigned FPTmpHi = makeAnotherReg(Type::DoubleTy);
2313 unsigned FPTmpLo = makeAnotherReg(Type::DoubleTy);
2314 int OtherFrameIdx = F->getFrameInfo()->CreateStackObject(Type::DoubleTy,
2315 TM.getTargetData());
2316 BuildMI(*MBB, IP, PPC::RLDICL, 3, TmpHi).addReg(SrcReg).addImm(32)
2317 .addImm(32);
2318 BuildMI(*MBB, IP, PPC::RLDICL, 3, TmpLo).addReg(SrcReg).addImm(0)
2319 .addImm(32);
2320 addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(TmpHi),
2321 ValueFrameIdx);
2322 addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(TmpLo),
2323 OtherFrameIdx);
2324 addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
2325 ValueFrameIdx);
2326 addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, FPLow),
2327 OtherFrameIdx);
2328 BuildMI(*MBB, IP, PPC::FCFID, 1, FPTmpHi).addReg(TmpReg);
2329 BuildMI(*MBB, IP, PPC::FCFID, 1, FPTmpLo).addReg(FPLow);
2330 BuildMI(*MBB, IP, PPC::FMADD, 3, DestReg).addReg(Scale).addReg(FPTmpHi)
2331 .addReg(FPTmpLo);
2332 }
2333 return;
Misha Brukmanca9309f2004-08-11 23:42:15 +00002334 }
Nate Begemand332fd52004-08-29 22:02:43 +00002335
2336 // FIXME: really want a promote64
2337 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2338
2339 if (SrcTy->isSigned())
2340 BuildMI(*MBB, IP, PPC::EXTSW, 1, IntTmp).addReg(SrcReg);
2341 else
2342 BuildMI(*MBB, IP, PPC::RLDICL, 3, IntTmp).addReg(SrcReg).addImm(0)
2343 .addImm(32);
2344 addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(IntTmp),
2345 ValueFrameIdx);
2346 addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
2347 ValueFrameIdx);
2348 BuildMI(*MBB, IP, PPC::FCFID, 1, DestReg).addReg(TmpReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002349 return;
2350 }
2351
2352 // Handle casts from floating point to integer now...
2353 if (SrcClass == cFP32 || SrcClass == cFP64) {
2354 static Function* const Funcs[] =
2355 { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
2356 // emit library call
2357 if (DestClass == cLong) {
2358 bool isDouble = SrcClass == cFP64;
2359 unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
2360 std::vector<ValueRecord> Args;
2361 Args.push_back(ValueRecord(SrcReg, SrcTy));
2362 Function *floatFn = Funcs[nameIndex];
2363 MachineInstr *TheCall =
2364 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
2365 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002366 return;
2367 }
2368
2369 int ValueFrameIdx =
2370 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2371
2372 if (DestTy->isSigned()) {
2373 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2374
2375 // Convert to integer in the FP reg and store it to a stack slot
2376 BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
2377 addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
2378 .addReg(TempReg), ValueFrameIdx);
2379
2380 // There is no load signed byte opcode, so we must emit a sign extend for
2381 // that particular size. Make sure to source the new integer from the
2382 // correct offset.
2383 if (DestClass == cByte) {
2384 unsigned TempReg2 = makeAnotherReg(DestTy);
2385 addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
2386 ValueFrameIdx, 7);
2387 BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
2388 } else {
2389 int offset = (DestClass == cShort) ? 6 : 4;
2390 unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
2391 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
2392 ValueFrameIdx, offset);
2393 }
2394 } else {
2395 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2396 double maxInt = (1LL << 32) - 1;
2397 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2398 double border = 1LL << 31;
2399 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2400 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2401 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2402 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2403 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2404 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2405 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2406 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2407 unsigned XorReg = makeAnotherReg(Type::IntTy);
2408 int FrameIdx =
2409 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2410 // Update machine-CFG edges
2411 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2412 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2413 MachineBasicBlock *OldMBB = BB;
2414 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2415 F->getBasicBlockList().insert(It, XorMBB);
2416 F->getBasicBlockList().insert(It, PhiMBB);
2417 BB->addSuccessor(XorMBB);
2418 BB->addSuccessor(PhiMBB);
2419
2420 // Convert from floating point to unsigned 32-bit value
2421 // Use 0 if incoming value is < 0.0
2422 BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2423 .addReg(Zero);
2424 // Use 2**32 - 1 if incoming value is >= 2**32
2425 BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2426 BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
2427 .addReg(UseZero).addReg(MaxInt);
2428 // Subtract 2**31
2429 BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2430 // Use difference if >= 2**31
2431 BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
2432 .addReg(Border);
2433 BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2434 .addReg(UseChoice);
2435 // Convert to integer
2436 BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2437 addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
2438 FrameIdx);
2439 if (DestClass == cByte) {
2440 addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
2441 FrameIdx, 7);
2442 } else if (DestClass == cShort) {
2443 addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
2444 FrameIdx, 6);
2445 } if (DestClass == cInt) {
2446 addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
2447 FrameIdx, 4);
2448 BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
2449 BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
2450
2451 // XorMBB:
2452 // add 2**31 if input was >= 2**31
2453 BB = XorMBB;
2454 BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2455 XorMBB->addSuccessor(PhiMBB);
2456
2457 // PhiMBB:
2458 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2459 BB = PhiMBB;
Misha Brukman1c514ec2004-08-19 16:29:25 +00002460 BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
Misha Brukmanca9309f2004-08-11 23:42:15 +00002461 .addReg(XorReg).addMBB(XorMBB);
2462 }
2463 }
2464 return;
2465 }
2466
2467 // Check our invariants
2468 assert((SrcClass <= cInt || SrcClass == cLong) &&
2469 "Unhandled source class for cast operation!");
2470 assert((DestClass <= cInt || DestClass == cLong) &&
2471 "Unhandled destination class for cast operation!");
2472
2473 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2474 bool destUnsigned = DestTy->isUnsigned();
2475
2476 // Unsigned -> Unsigned, clear if larger
2477 if (sourceUnsigned && destUnsigned) {
2478 // handle long dest class now to keep switch clean
2479 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002480 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002481 return;
2482 }
2483
2484 // handle u{ byte, short, int } x u{ byte, short, int }
2485 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2486 switch (SrcClass) {
2487 case cByte:
2488 case cShort:
2489 if (SrcClass == DestClass)
2490 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2491 else
2492 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2493 .addImm(0).addImm(clearBits).addImm(31);
2494 break;
Misha Brukmanca9309f2004-08-11 23:42:15 +00002495 case cInt:
Misha Brukman5e9867e2004-08-19 18:49:58 +00002496 case cLong:
Misha Brukmanca9309f2004-08-11 23:42:15 +00002497 if (DestClass == cInt)
2498 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2499 else
2500 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2501 .addImm(0).addImm(clearBits).addImm(31);
2502 break;
2503 }
2504 return;
2505 }
2506
2507 // Signed -> Signed
2508 if (!sourceUnsigned && !destUnsigned) {
2509 // handle long dest class now to keep switch clean
2510 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002511 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002512 return;
2513 }
2514
2515 // handle { byte, short, int } x { byte, short, int }
2516 switch (SrcClass) {
2517 case cByte:
2518 if (DestClass == cByte)
2519 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2520 else
2521 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2522 break;
2523 case cShort:
2524 if (DestClass == cByte)
2525 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2526 else if (DestClass == cShort)
2527 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2528 else
2529 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2530 break;
Misha Brukmanca9309f2004-08-11 23:42:15 +00002531 case cInt:
Misha Brukmancc55ad52004-08-19 16:50:30 +00002532 case cLong:
Misha Brukmanca9309f2004-08-11 23:42:15 +00002533 if (DestClass == cByte)
2534 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2535 else if (DestClass == cShort)
2536 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2537 else
2538 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2539 break;
2540 }
2541 return;
2542 }
2543
2544 // Unsigned -> Signed
2545 if (sourceUnsigned && !destUnsigned) {
2546 // handle long dest class now to keep switch clean
2547 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002548 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002549 return;
2550 }
2551
2552 // handle u{ byte, short, int } -> { byte, short, int }
2553 switch (SrcClass) {
2554 case cByte:
2555 if (DestClass == cByte)
2556 // uByte 255 -> signed byte == -1
2557 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2558 else
2559 // uByte 255 -> signed short/int == 255
2560 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2561 .addImm(24).addImm(31);
2562 break;
2563 case cShort:
2564 if (DestClass == cByte)
2565 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2566 else if (DestClass == cShort)
2567 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2568 else
2569 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2570 .addImm(16).addImm(31);
2571 break;
Misha Brukmanca9309f2004-08-11 23:42:15 +00002572 case cInt:
Misha Brukman5e9867e2004-08-19 18:49:58 +00002573 case cLong:
Misha Brukmanca9309f2004-08-11 23:42:15 +00002574 if (DestClass == cByte)
2575 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2576 else if (DestClass == cShort)
2577 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2578 else
2579 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2580 break;
2581 }
2582 return;
2583 }
2584
2585 // Signed -> Unsigned
2586 if (!sourceUnsigned && destUnsigned) {
2587 // handle long dest class now to keep switch clean
2588 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002589 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002590 return;
2591 }
2592
2593 // handle { byte, short, int } -> u{ byte, short, int }
2594 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
2595 switch (SrcClass) {
2596 case cByte:
2597 case cShort:
2598 if (DestClass == cByte || DestClass == cShort)
2599 // sbyte -1 -> ubyte 0x000000FF
2600 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2601 .addImm(0).addImm(clearBits).addImm(31);
2602 else
2603 // sbyte -1 -> ubyte 0xFFFFFFFF
2604 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2605 break;
Misha Brukmanca9309f2004-08-11 23:42:15 +00002606 case cInt:
Misha Brukman1c514ec2004-08-19 16:29:25 +00002607 case cLong:
Misha Brukmanca9309f2004-08-11 23:42:15 +00002608 if (DestClass == cInt)
2609 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2610 else
2611 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2612 .addImm(0).addImm(clearBits).addImm(31);
2613 break;
2614 }
2615 return;
2616 }
2617
2618 // Anything we haven't handled already, we can't (yet) handle at all.
2619 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
2620 << "to " << DestTy->getDescription() << '\n';
2621 abort();
2622}
2623
2624/// visitVANextInst - Implement the va_next instruction...
2625///
2626void ISel::visitVANextInst(VANextInst &I) {
2627 unsigned VAList = getReg(I.getOperand(0));
2628 unsigned DestReg = getReg(I);
2629
2630 unsigned Size;
2631 switch (I.getArgType()->getTypeID()) {
2632 default:
2633 std::cerr << I;
2634 assert(0 && "Error: bad type for va_next instruction!");
2635 return;
2636 case Type::PointerTyID:
2637 case Type::UIntTyID:
2638 case Type::IntTyID:
2639 Size = 4;
2640 break;
2641 case Type::ULongTyID:
2642 case Type::LongTyID:
2643 case Type::DoubleTyID:
2644 Size = 8;
2645 break;
2646 }
2647
2648 // Increment the VAList pointer...
2649 BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
2650}
2651
2652void ISel::visitVAArgInst(VAArgInst &I) {
2653 unsigned VAList = getReg(I.getOperand(0));
2654 unsigned DestReg = getReg(I);
2655
2656 switch (I.getType()->getTypeID()) {
2657 default:
2658 std::cerr << I;
2659 assert(0 && "Error: bad type for va_next instruction!");
2660 return;
2661 case Type::PointerTyID:
2662 case Type::UIntTyID:
2663 case Type::IntTyID:
2664 BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
2665 break;
2666 case Type::ULongTyID:
2667 case Type::LongTyID:
2668 BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
2669 break;
2670 case Type::FloatTyID:
2671 BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
2672 break;
2673 case Type::DoubleTyID:
2674 BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
2675 break;
2676 }
2677}
2678
2679/// visitGetElementPtrInst - instruction-select GEP instructions
2680///
2681void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2682 if (canFoldGEPIntoLoadOrStore(&I))
2683 return;
2684
2685 unsigned outputReg = getReg(I);
2686 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2687 outputReg, false, 0, 0);
2688}
2689
2690/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
2691/// constant expression GEP support.
2692///
2693void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2694 MachineBasicBlock::iterator IP,
2695 Value *Src, User::op_iterator IdxBegin,
2696 User::op_iterator IdxEnd, unsigned TargetReg,
2697 bool GEPIsFolded, ConstantSInt **RemainderPtr,
2698 unsigned *PendingAddReg) {
2699 const TargetData &TD = TM.getTargetData();
2700 const Type *Ty = Src->getType();
2701 unsigned basePtrReg = getReg(Src, MBB, IP);
2702 int64_t constValue = 0;
2703
2704 // Record the operations to emit the GEP in a vector so that we can emit them
2705 // after having analyzed the entire instruction.
2706 std::vector<CollapsedGepOp> ops;
2707
2708 // GEPs have zero or more indices; we must perform a struct access
2709 // or array access for each one.
2710 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
2711 ++oi) {
2712 Value *idx = *oi;
2713 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2714 // It's a struct access. idx is the index into the structure,
2715 // which names the field. Use the TargetData structure to
2716 // pick out what the layout of the structure is in memory.
2717 // Use the (constant) structure index's value to find the
2718 // right byte offset from the StructLayout class's list of
2719 // structure member offsets.
2720 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
2721 unsigned memberOffset =
2722 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
2723
2724 // StructType member offsets are always constant values. Add it to the
2725 // running total.
2726 constValue += memberOffset;
2727
2728 // The next type is the member of the structure selected by the
2729 // index.
2730 Ty = StTy->getElementType (fieldIndex);
2731 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
2732 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2733 // operand. Handle this case directly now...
2734 if (CastInst *CI = dyn_cast<CastInst>(idx))
2735 if (CI->getOperand(0)->getType() == Type::IntTy ||
2736 CI->getOperand(0)->getType() == Type::UIntTy)
2737 idx = CI->getOperand(0);
2738
2739 // It's an array or pointer access: [ArraySize x ElementType].
2740 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
2741 // must find the size of the pointed-to type (Not coincidentally, the next
2742 // type is the type of the elements in the array).
2743 Ty = SqTy->getElementType();
2744 unsigned elementSize = TD.getTypeSize(Ty);
2745
2746 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
2747 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
2748 constValue += CS->getValue() * elementSize;
2749 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
2750 constValue += CU->getValue() * elementSize;
2751 else
2752 assert(0 && "Invalid ConstantInt GEP index type!");
2753 } else {
2754 // Push current gep state to this point as an add
2755 ops.push_back(CollapsedGepOp(false, 0,
2756 ConstantSInt::get(Type::IntTy,constValue)));
2757
2758 // Push multiply gep op and reset constant value
2759 ops.push_back(CollapsedGepOp(true, idx,
2760 ConstantSInt::get(Type::IntTy, elementSize)));
2761
2762 constValue = 0;
2763 }
2764 }
2765 }
2766 // Emit instructions for all the collapsed ops
2767 bool pendingAdd = false;
2768 unsigned pendingAddReg = 0;
2769
2770 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
2771 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
2772 CollapsedGepOp& cgo = *cgo_i;
2773 unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
2774
2775 // If we didn't emit an add last time through the loop, we need to now so
2776 // that the base reg is updated appropriately.
2777 if (pendingAdd) {
2778 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2779 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2780 .addReg(pendingAddReg);
2781 basePtrReg = nextBasePtrReg;
2782 nextBasePtrReg = makeAnotherReg(Type::IntTy);
2783 pendingAddReg = 0;
2784 pendingAdd = false;
2785 }
2786
2787 if (cgo.isMul) {
2788 // We know the elementSize is a constant, so we can emit a constant mul
2789 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2790 doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
2791 pendingAddReg = basePtrReg;
2792 pendingAdd = true;
2793 } else {
2794 // Try and generate an immediate addition if possible
2795 if (cgo.size->isNullValue()) {
2796 BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
2797 .addReg(basePtrReg);
2798 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
2799 BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
2800 .addSImm(cgo.size->getValue());
2801 } else {
2802 unsigned Op1r = getReg(cgo.size, MBB, IP);
2803 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2804 .addReg(Op1r);
2805 }
2806 }
2807
2808 basePtrReg = nextBasePtrReg;
2809 }
2810 // Add the current base register plus any accumulated constant value
2811 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
2812
2813 // If we are emitting this during a fold, copy the current base register to
2814 // the target, and save the current constant offset so the folding load or
2815 // store can try and use it as an immediate.
2816 if (GEPIsFolded) {
2817 // If this is a folded GEP and the last element was an index, then we need
2818 // to do some extra work to turn a shift/add/stw into a shift/stwx
2819 if (pendingAdd && 0 == remainder->getValue()) {
2820 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2821 *PendingAddReg = pendingAddReg;
2822 } else {
2823 *PendingAddReg = 0;
2824 if (pendingAdd) {
2825 unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
2826 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2827 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2828 .addReg(pendingAddReg);
2829 basePtrReg = nextBasePtrReg;
2830 }
2831 }
2832 BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
2833 .addReg(basePtrReg);
2834 *RemainderPtr = remainder;
2835 return;
2836 }
2837
2838 // If we still have a pending add at this point, emit it now
2839 if (pendingAdd) {
2840 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2841 BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
2842 .addReg(basePtrReg);
2843 basePtrReg = TmpReg;
2844 }
2845
2846 // After we have processed all the indices, the result is left in
2847 // basePtrReg. Move it to the register where we were expected to
2848 // put the answer.
2849 if (remainder->isNullValue()) {
2850 BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
2851 .addReg(basePtrReg);
2852 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
2853 BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
2854 .addSImm(remainder->getValue());
2855 } else {
2856 unsigned Op1r = getReg(remainder, MBB, IP);
2857 BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
2858 }
2859}
2860
2861/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2862/// frame manager, otherwise do it the hard way.
2863///
2864void ISel::visitAllocaInst(AllocaInst &I) {
2865 // If this is a fixed size alloca in the entry block for the function, we
2866 // statically stack allocate the space, so we don't need to do anything here.
2867 //
2868 if (dyn_castFixedAlloca(&I)) return;
2869
2870 // Find the data size of the alloca inst's getAllocatedType.
2871 const Type *Ty = I.getAllocatedType();
2872 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2873
2874 // Create a register to hold the temporary result of multiplying the type size
2875 // constant by the variable amount.
2876 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2877
2878 // TotalSizeReg = mul <numelements>, <TypeSize>
2879 MachineBasicBlock::iterator MBBI = BB->end();
2880 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
2881 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
2882
2883 // AddedSize = add <TotalSizeReg>, 15
2884 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2885 BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
2886
2887 // AlignedSize = and <AddedSize>, ~15
2888 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2889 BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2890 .addImm(0).addImm(27);
2891
2892 // Subtract size from stack pointer, thereby allocating some space.
2893 BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
2894
2895 // Put a pointer to the space into the result register, by copying
2896 // the stack pointer.
2897 BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
2898
2899 // Inform the Frame Information that we have just allocated a variable-sized
2900 // object.
2901 F->getFrameInfo()->CreateVariableSizedObject();
2902}
2903
2904/// visitMallocInst - Malloc instructions are code generated into direct calls
2905/// to the library malloc.
2906///
2907void ISel::visitMallocInst(MallocInst &I) {
2908 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2909 unsigned Arg;
2910
2911 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2912 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2913 } else {
2914 Arg = makeAnotherReg(Type::UIntTy);
2915 MachineBasicBlock::iterator MBBI = BB->end();
2916 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
2917 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
2918 }
2919
2920 std::vector<ValueRecord> Args;
2921 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2922 MachineInstr *TheCall =
2923 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
2924 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002925}
2926
2927
2928/// visitFreeInst - Free instructions are code gen'd to call the free libc
2929/// function.
2930///
2931void ISel::visitFreeInst(FreeInst &I) {
2932 std::vector<ValueRecord> Args;
2933 Args.push_back(ValueRecord(I.getOperand(0)));
2934 MachineInstr *TheCall =
2935 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
2936 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002937}
2938
2939/// createPPC64ISelSimple - This pass converts an LLVM function into a machine
2940/// code representation is a very simple peep-hole fashion.
2941///
2942FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
2943 return new ISel(TM);
2944}