blob: d16cff81dc068cff8e9aafe76076a60a9a41aed6 [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000018 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
Chris Lattner61db4652004-12-08 19:05:44 +000023
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000024-->
Chris Lattner84b7f8d2003-08-01 22:20:59 +000025 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000026 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
Misha Brukman2c122ce2005-11-01 21:12:49 +000031 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
Chris Lattner261efe92003-11-25 01:02:51 +000032option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000039option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
Chris Lattnerf623a082005-10-17 01:36:23 +000044 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ul>
46 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000047 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000048 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
50 <ul>
51 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
52in a <tt>Function</tt></a> </li>
53 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
54in a <tt>BasicBlock</tt></a> </li>
55 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
56in a <tt>Function</tt></a> </li>
57 <li><a href="#iterate_convert">Turning an iterator into a
58class pointer</a> </li>
59 <li><a href="#iterate_complex">Finding call sites: a more
60complex example</a> </li>
61 <li><a href="#calls_and_invokes">Treating calls and invokes
62the same way</a> </li>
63 <li><a href="#iterate_chains">Iterating over def-use &amp;
64use-def chains</a> </li>
65 </ul>
66 </li>
67 <li><a href="#simplechanges">Making simple changes</a>
68 <ul>
69 <li><a href="#schanges_creating">Creating and inserting new
70 <tt>Instruction</tt>s</a> </li>
71 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
72 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
73with another <tt>Value</tt></a> </li>
74 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000075 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000076<!--
77 <li>Working with the Control Flow Graph
78 <ul>
79 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
80 <li>
81 <li>
82 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000083-->
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ul>
85 </li>
Chris Lattnerd9d6e102005-04-23 16:10:52 +000086
87 <li><a href="#advanced">Advanced Topics</a>
88 <ul>
Chris Lattnerf1b200b2005-04-23 17:27:36 +000089 <li><a href="#TypeResolve">LLVM Type Resolution</a>
90 <ul>
91 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
92 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
93 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
94 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
95 </ul></li>
96
Chris Lattnerd9d6e102005-04-23 16:10:52 +000097 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
98 </ul></li>
99
Joel Stanley9b96c442002-09-06 21:55:13 +0000100 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000101 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000102 <li><a href="#Value">The <tt>Value</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000103 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000104 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000106 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
107 <ul>
108 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
109 </ul>
110 </li>
111 <li><a href="#Module">The <tt>Module</tt> class</a></li>
112 <li><a href="#Constant">The <tt>Constant</tt> class</a>
113 <ul>
114 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
115 <ul>
116 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
117 <li><a href="#Function">The <tt>Function</tt> class</a></li>
118 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
119 </ul>
120 </li>
121 </ul>
122 </li>
Reid Spencer8b2da7a2004-07-18 13:10:31 +0000123 </ul>
124 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000126 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000127 </ul>
128 </li>
129 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000131</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000132
Chris Lattner69bf8a92004-05-23 21:06:58 +0000133<div class="doc_author">
134 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000135 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
136 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
137 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000138</div>
139
Chris Lattner9355b472002-09-06 02:50:58 +0000140<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000141<div class="doc_section">
142 <a name="introduction">Introduction </a>
143</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000144<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000145
146<div class="doc_text">
147
148<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000149interfaces available in the LLVM source-base. This manual is not
150intended to explain what LLVM is, how it works, and what LLVM code looks
151like. It assumes that you know the basics of LLVM and are interested
152in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000153code.</p>
154
155<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000156way in the continuously growing source code that makes up the LLVM
157infrastructure. Note that this manual is not intended to serve as a
158replacement for reading the source code, so if you think there should be
159a method in one of these classes to do something, but it's not listed,
160check the source. Links to the <a href="/doxygen/">doxygen</a> sources
161are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000162
163<p>The first section of this document describes general information that is
164useful to know when working in the LLVM infrastructure, and the second describes
165the Core LLVM classes. In the future this manual will be extended with
166information describing how to use extension libraries, such as dominator
167information, CFG traversal routines, and useful utilities like the <tt><a
168href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
169
170</div>
171
Chris Lattner9355b472002-09-06 02:50:58 +0000172<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000173<div class="doc_section">
174 <a name="general">General Information</a>
175</div>
176<!-- *********************************************************************** -->
177
178<div class="doc_text">
179
180<p>This section contains general information that is useful if you are working
181in the LLVM source-base, but that isn't specific to any particular API.</p>
182
183</div>
184
185<!-- ======================================================================= -->
186<div class="doc_subsection">
187 <a name="stl">The C++ Standard Template Library</a>
188</div>
189
190<div class="doc_text">
191
192<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000193perhaps much more than you are used to, or have seen before. Because of
194this, you might want to do a little background reading in the
195techniques used and capabilities of the library. There are many good
196pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000197can get, so it will not be discussed in this document.</p>
198
199<p>Here are some useful links:</p>
200
201<ol>
202
203<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
204reference</a> - an excellent reference for the STL and other parts of the
205standard C++ library.</li>
206
207<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Tanya Lattner09cf73c2004-06-22 04:24:55 +0000208O'Reilly book in the making. It has a decent
209Standard Library
210Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
Misha Brukman13fd15c2004-01-15 00:14:41 +0000211published.</li>
212
213<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
214Questions</a></li>
215
216<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
217Contains a useful <a
218href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
219STL</a>.</li>
220
221<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
222Page</a></li>
223
Tanya Lattner79445ba2004-12-08 18:34:56 +0000224<li><a href="http://64.78.49.204/">
Reid Spencer096603a2004-05-26 08:41:35 +0000225Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
226the book).</a></li>
227
Misha Brukman13fd15c2004-01-15 00:14:41 +0000228</ol>
229
230<p>You are also encouraged to take a look at the <a
231href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
232to write maintainable code more than where to put your curly braces.</p>
233
234</div>
235
236<!-- ======================================================================= -->
237<div class="doc_subsection">
238 <a name="stl">Other useful references</a>
239</div>
240
241<div class="doc_text">
242
Misha Brukman13fd15c2004-01-15 00:14:41 +0000243<ol>
244<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000245Branch and Tag Primer</a></li>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000246<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
247static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000248</ol>
249
250</div>
251
Chris Lattner9355b472002-09-06 02:50:58 +0000252<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000253<div class="doc_section">
254 <a name="apis">Important and useful LLVM APIs</a>
255</div>
256<!-- *********************************************************************** -->
257
258<div class="doc_text">
259
260<p>Here we highlight some LLVM APIs that are generally useful and good to
261know about when writing transformations.</p>
262
263</div>
264
265<!-- ======================================================================= -->
266<div class="doc_subsection">
Misha Brukman2c122ce2005-11-01 21:12:49 +0000267 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
268 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000269</div>
270
271<div class="doc_text">
272
273<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000274These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
275operator, but they don't have some drawbacks (primarily stemming from
276the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
277have a v-table). Because they are used so often, you must know what they
278do and how they work. All of these templates are defined in the <a
Chris Lattner695b78b2005-04-26 22:56:16 +0000279 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000280file (note that you very rarely have to include this file directly).</p>
281
282<dl>
283 <dt><tt>isa&lt;&gt;</tt>: </dt>
284
285 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
286 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
287 a reference or pointer points to an instance of the specified class. This can
288 be very useful for constraint checking of various sorts (example below).</dd>
289
290 <dt><tt>cast&lt;&gt;</tt>: </dt>
291
292 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
293 converts a pointer or reference from a base class to a derived cast, causing
294 an assertion failure if it is not really an instance of the right type. This
295 should be used in cases where you have some information that makes you believe
296 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
297 and <tt>cast&lt;&gt;</tt> template is:
298
Chris Lattner69bf8a92004-05-23 21:06:58 +0000299 <pre>
300 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
301 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
302 return true;
303
Chris Lattner53f72b32005-04-22 04:49:59 +0000304 <i>// Otherwise, it must be an instruction...</i>
305 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
306 }
Chris Lattner69bf8a92004-05-23 21:06:58 +0000307 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000308
309 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
310 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
311 operator.</p>
312
313 </dd>
314
315 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
316
317 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
318 checks to see if the operand is of the specified type, and if so, returns a
319 pointer to it (this operator does not work with references). If the operand is
320 not of the correct type, a null pointer is returned. Thus, this works very
Misha Brukman2c122ce2005-11-01 21:12:49 +0000321 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
322 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
323 operator is used in an <tt>if</tt> statement or some other flow control
324 statement like this:
Misha Brukman13fd15c2004-01-15 00:14:41 +0000325
Misha Brukman2c122ce2005-11-01 21:12:49 +0000326 <pre>
Chris Lattner69bf8a92004-05-23 21:06:58 +0000327 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
328 ...
329 }
Misha Brukman2c122ce2005-11-01 21:12:49 +0000330 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000331
Misha Brukman2c122ce2005-11-01 21:12:49 +0000332 <p>This form of the <tt>if</tt> statement effectively combines together a call
333 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
334 statement, which is very convenient.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000335
Misha Brukman2c122ce2005-11-01 21:12:49 +0000336 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
337 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
338 abused. In particular, you should not use big chained <tt>if/then/else</tt>
339 blocks to check for lots of different variants of classes. If you find
340 yourself wanting to do this, it is much cleaner and more efficient to use the
341 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000342
Misha Brukman2c122ce2005-11-01 21:12:49 +0000343 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000344
Misha Brukman2c122ce2005-11-01 21:12:49 +0000345 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
346
347 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
348 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
349 argument (which it then propagates). This can sometimes be useful, allowing
350 you to combine several null checks into one.</dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000351
Misha Brukman2c122ce2005-11-01 21:12:49 +0000352 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000353
Misha Brukman2c122ce2005-11-01 21:12:49 +0000354 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
355 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
356 as an argument (which it then propagates). This can sometimes be useful,
357 allowing you to combine several null checks into one.</dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000358
Misha Brukman2c122ce2005-11-01 21:12:49 +0000359</dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000360
361<p>These five templates can be used with any classes, whether they have a
362v-table or not. To add support for these templates, you simply need to add
363<tt>classof</tt> static methods to the class you are interested casting
364to. Describing this is currently outside the scope of this document, but there
365are lots of examples in the LLVM source base.</p>
366
367</div>
368
369<!-- ======================================================================= -->
370<div class="doc_subsection">
Misha Brukman2c122ce2005-11-01 21:12:49 +0000371 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000372</div>
373
374<div class="doc_text">
375
376<p>Often when working on your pass you will put a bunch of debugging printouts
377and other code into your pass. After you get it working, you want to remove
378it... but you may need it again in the future (to work out new bugs that you run
379across).</p>
380
381<p> Naturally, because of this, you don't want to delete the debug printouts,
382but you don't want them to always be noisy. A standard compromise is to comment
383them out, allowing you to enable them if you need them in the future.</p>
384
Chris Lattner695b78b2005-04-26 22:56:16 +0000385<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
Misha Brukman13fd15c2004-01-15 00:14:41 +0000386file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
387this problem. Basically, you can put arbitrary code into the argument of the
388<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
389tool) is run with the '<tt>-debug</tt>' command line argument:</p>
390
Chris Lattner261efe92003-11-25 01:02:51 +0000391 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000392
393<p>Then you can run your pass like this:</p>
394
Chris Lattner261efe92003-11-25 01:02:51 +0000395 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000396
397<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
398to not have to create "yet another" command line option for the debug output for
399your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
400so they do not cause a performance impact at all (for the same reason, they
401should also not contain side-effects!).</p>
402
403<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
404enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
405"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
406program hasn't been started yet, you can always just run it with
407<tt>-debug</tt>.</p>
408
409</div>
410
411<!-- _______________________________________________________________________ -->
412<div class="doc_subsubsection">
Chris Lattnerc9151082005-04-26 22:57:07 +0000413 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000414 the <tt>-debug-only</tt> option</a>
415</div>
416
417<div class="doc_text">
418
419<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
420just turns on <b>too much</b> information (such as when working on the code
421generator). If you want to enable debug information with more fine-grained
422control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
423option as follows:</p>
424
Chris Lattner261efe92003-11-25 01:02:51 +0000425 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000426
427<p>Then you can run your pass like this:</p>
428
Chris Lattner261efe92003-11-25 01:02:51 +0000429 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000430
431<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
432a file, to specify the debug type for the entire module (if you do this before
Chris Lattner695b78b2005-04-26 22:56:16 +0000433you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
Misha Brukman13fd15c2004-01-15 00:14:41 +0000434<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
435"bar", because there is no system in place to ensure that names do not
436conflict. If two different modules use the same string, they will all be turned
437on when the name is specified. This allows, for example, all debug information
438for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000439even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000440
441</div>
442
443<!-- ======================================================================= -->
444<div class="doc_subsection">
445 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
446 option</a>
447</div>
448
449<div class="doc_text">
450
451<p>The "<tt><a
Chris Lattner695b78b2005-04-26 22:56:16 +0000452href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
Misha Brukman13fd15c2004-01-15 00:14:41 +0000453provides a template named <tt>Statistic</tt> that is used as a unified way to
454keep track of what the LLVM compiler is doing and how effective various
455optimizations are. It is useful to see what optimizations are contributing to
456making a particular program run faster.</p>
457
458<p>Often you may run your pass on some big program, and you're interested to see
459how many times it makes a certain transformation. Although you can do this with
460hand inspection, or some ad-hoc method, this is a real pain and not very useful
461for big programs. Using the <tt>Statistic</tt> template makes it very easy to
462keep track of this information, and the calculated information is presented in a
463uniform manner with the rest of the passes being executed.</p>
464
465<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
466it are as follows:</p>
467
468<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000469 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000470 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000471
472 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
473 but if you do not specify a template argument, it defaults to acting like
474 an unsigned int counter (this is usually what you want).</p></li>
475
Chris Lattner261efe92003-11-25 01:02:51 +0000476 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000477 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000478 </li>
479 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000480
481 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
482 statistics gathered, use the '<tt>-stats</tt>' option:</p>
483
Chris Lattner261efe92003-11-25 01:02:51 +0000484 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000485
Chris Lattner261efe92003-11-25 01:02:51 +0000486 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
487suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000488
Chris Lattner261efe92003-11-25 01:02:51 +0000489 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000490
491<p>Obviously, with so many optimizations, having a unified framework for this
492stuff is very nice. Making your pass fit well into the framework makes it more
493maintainable and useful.</p>
494
495</div>
496
Chris Lattnerf623a082005-10-17 01:36:23 +0000497<!-- ======================================================================= -->
498<div class="doc_subsection">
499 <a name="ViewGraph">Viewing graphs while debugging code</a>
500</div>
501
502<div class="doc_text">
503
504<p>Several of the important data structures in LLVM are graphs: for example
505CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
506LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
507<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
508DAGs</a>. In many cases, while debugging various parts of the compiler, it is
509nice to instantly visualize these graphs.</p>
510
511<p>LLVM provides several callbacks that are available in a debug build to do
512exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
513the current LLVM tool will pop up a window containing the CFG for the function
514where each basic block is a node in the graph, and each node contains the
515instructions in the block. Similarly, there also exists
516<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
517<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
518and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
Jim Laskey543a0ee2006-10-02 12:28:07 +0000519you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
Chris Lattnerf623a082005-10-17 01:36:23 +0000520up a window. Alternatively, you can sprinkle calls to these functions in your
521code in places you want to debug.</p>
522
523<p>Getting this to work requires a small amount of configuration. On Unix
524systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
525toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
526Mac OS/X, download and install the Mac OS/X <a
527href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
528<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or whereever you install
529it) to your path. Once in your system and path are set up, rerun the LLVM
530configure script and rebuild LLVM to enable this functionality.</p>
531
Jim Laskey543a0ee2006-10-02 12:28:07 +0000532<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
533<i>interesting</i> nodes in large complex graphs. From gdb, if you
534<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
535next <tt>call DAG.viewGraph()</tt> would hilight the node in the
536specified color (choices of colors can be found at <a
537href="http://www.graphviz.org/doc/info/colors.html">Colors<a>.) More
538complex node attributes can be provided with <tt>call
539DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
540found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
541Attributes</a>.) If you want to restart and clear all the current graph
542attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
543
Chris Lattnerf623a082005-10-17 01:36:23 +0000544</div>
545
546
Misha Brukman13fd15c2004-01-15 00:14:41 +0000547<!-- *********************************************************************** -->
548<div class="doc_section">
549 <a name="common">Helpful Hints for Common Operations</a>
550</div>
551<!-- *********************************************************************** -->
552
553<div class="doc_text">
554
555<p>This section describes how to perform some very simple transformations of
556LLVM code. This is meant to give examples of common idioms used, showing the
557practical side of LLVM transformations. <p> Because this is a "how-to" section,
558you should also read about the main classes that you will be working with. The
559<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
560and descriptions of the main classes that you should know about.</p>
561
562</div>
563
564<!-- NOTE: this section should be heavy on example code -->
565<!-- ======================================================================= -->
566<div class="doc_subsection">
567 <a name="inspection">Basic Inspection and Traversal Routines</a>
568</div>
569
570<div class="doc_text">
571
572<p>The LLVM compiler infrastructure have many different data structures that may
573be traversed. Following the example of the C++ standard template library, the
574techniques used to traverse these various data structures are all basically the
575same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
576method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
577function returns an iterator pointing to one past the last valid element of the
578sequence, and there is some <tt>XXXiterator</tt> data type that is common
579between the two operations.</p>
580
581<p>Because the pattern for iteration is common across many different aspects of
582the program representation, the standard template library algorithms may be used
583on them, and it is easier to remember how to iterate. First we show a few common
584examples of the data structures that need to be traversed. Other data
585structures are traversed in very similar ways.</p>
586
587</div>
588
589<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000590<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000591 <a name="iterate_function">Iterating over the </a><a
592 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
593 href="#Function"><tt>Function</tt></a>
594</div>
595
596<div class="doc_text">
597
598<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
599transform in some way; in particular, you'd like to manipulate its
600<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
601the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
602an example that prints the name of a <tt>BasicBlock</tt> and the number of
603<tt>Instruction</tt>s it contains:</p>
604
Chris Lattnerac5bb692005-11-28 02:30:22 +0000605 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> std::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000606
607<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000608invoking member functions of the <tt>Instruction</tt> class. This is
609because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000610classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000611exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
612
613</div>
614
615<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000616<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000617 <a name="iterate_basicblock">Iterating over the </a><a
618 href="#Instruction"><tt>Instruction</tt></a>s in a <a
619 href="#BasicBlock"><tt>BasicBlock</tt></a>
620</div>
621
622<div class="doc_text">
623
624<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
625easy to iterate over the individual instructions that make up
626<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
627a <tt>BasicBlock</tt>:</p>
628
Chris Lattner55c04612005-03-06 06:00:13 +0000629<pre>
630 // blk is a pointer to a BasicBlock instance
631 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
632 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
633 // is overloaded for Instruction&amp;
634 std::cerr &lt;&lt; *i &lt;&lt; "\n";
635</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000636
637<p>However, this isn't really the best way to print out the contents of a
638<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
639anything you'll care about, you could have just invoked the print routine on the
Chris Lattner55c04612005-03-06 06:00:13 +0000640basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000641
642</div>
643
644<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000645<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000646 <a name="iterate_institer">Iterating over the </a><a
647 href="#Instruction"><tt>Instruction</tt></a>s in a <a
648 href="#Function"><tt>Function</tt></a>
649</div>
650
651<div class="doc_text">
652
653<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
654<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
655<tt>InstIterator</tt> should be used instead. You'll need to include <a
656href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
657and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000658small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000659
Chris Lattnerac5bb692005-11-28 02:30:22 +0000660 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> std::cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000661Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
662worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000663initialize a worklist to contain all instructions in a <tt>Function</tt>
664F, all you would need to do is something like:
665 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000666
667<p>The STL set <tt>worklist</tt> would now contain all instructions in the
668<tt>Function</tt> pointed to by F.</p>
669
670</div>
671
672<!-- _______________________________________________________________________ -->
673<div class="doc_subsubsection">
674 <a name="iterate_convert">Turning an iterator into a class pointer (and
675 vice-versa)</a>
676</div>
677
678<div class="doc_text">
679
680<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000681instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000682a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000683Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000684is a <tt>BasicBlock::const_iterator</tt>:</p>
685
Chris Lattner261efe92003-11-25 01:02:51 +0000686 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000687
688<p>However, the iterators you'll be working with in the LLVM framework are
689special: they will automatically convert to a ptr-to-instance type whenever they
690need to. Instead of dereferencing the iterator and then taking the address of
691the result, you can simply assign the iterator to the proper pointer type and
692you get the dereference and address-of operation as a result of the assignment
693(behind the scenes, this is a result of overloading casting mechanisms). Thus
694the last line of the last example,</p>
695
Chris Lattner261efe92003-11-25 01:02:51 +0000696 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000697
698<p>is semantically equivalent to</p>
699
Chris Lattner261efe92003-11-25 01:02:51 +0000700 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000701
Chris Lattner69bf8a92004-05-23 21:06:58 +0000702<p>It's also possible to turn a class pointer into the corresponding iterator,
703and this is a constant time operation (very efficient). The following code
704snippet illustrates use of the conversion constructors provided by LLVM
705iterators. By using these, you can explicitly grab the iterator of something
706without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000707
Chris Lattnerac5bb692005-11-28 02:30:22 +0000708 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) std::cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000709
Misha Brukman13fd15c2004-01-15 00:14:41 +0000710</div>
711
712<!--_______________________________________________________________________-->
713<div class="doc_subsubsection">
714 <a name="iterate_complex">Finding call sites: a slightly more complex
715 example</a>
716</div>
717
718<div class="doc_text">
719
720<p>Say that you're writing a FunctionPass and would like to count all the
721locations in the entire module (that is, across every <tt>Function</tt>) where a
722certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
723learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000724much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000725you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
726is what we want to do:</p>
727
Chris Lattner261efe92003-11-25 01:02:51 +0000728 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000729
730<p>And the actual code is (remember, since we're writing a
731<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
732override the <tt>runOnFunction</tt> method...):</p>
733
Chris Lattner261efe92003-11-25 01:02:51 +0000734 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
735 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
736 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000737
738</div>
739
Brian Gaekef1972c62003-11-07 19:25:45 +0000740<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000741<div class="doc_subsubsection">
742 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
743</div>
744
745<div class="doc_text">
746
747<p>You may have noticed that the previous example was a bit oversimplified in
748that it did not deal with call sites generated by 'invoke' instructions. In
749this, and in other situations, you may find that you want to treat
750<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
751most-specific common base class is <tt>Instruction</tt>, which includes lots of
752less closely-related things. For these cases, LLVM provides a handy wrapper
753class called <a
Reid Spencer05fe4b02006-03-14 05:39:39 +0000754href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +0000755It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
756methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000757<tt>InvokeInst</tt>s.</p>
758
Chris Lattner69bf8a92004-05-23 21:06:58 +0000759<p>This class has "value semantics": it should be passed by value, not by
760reference and it should not be dynamically allocated or deallocated using
761<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
762assignable and constructable, with costs equivalents to that of a bare pointer.
763If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000764
765</div>
766
Chris Lattner1a3105b2002-09-09 05:49:39 +0000767<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000768<div class="doc_subsubsection">
769 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
770</div>
771
772<div class="doc_text">
773
774<p>Frequently, we might have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000775href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
776determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
777<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
778For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
779particular function <tt>foo</tt>. Finding all of the instructions that
780<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
781of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000782
Chris Lattnerac5bb692005-11-28 02:30:22 +0000783 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> std::cerr &lt;&lt; "F is used in instruction:\n";<br> std::cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000784
785<p>Alternately, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000786href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +0000787<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
788<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
789<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
790all of the values that a particular instruction uses (that is, the operands of
791the particular <tt>Instruction</tt>):</p>
792
Chris Lattner261efe92003-11-25 01:02:51 +0000793 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000794
Chris Lattner1a3105b2002-09-09 05:49:39 +0000795<!--
796 def-use chains ("finding all users of"): Value::use_begin/use_end
797 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000798-->
799
800</div>
801
802<!-- ======================================================================= -->
803<div class="doc_subsection">
804 <a name="simplechanges">Making simple changes</a>
805</div>
806
807<div class="doc_text">
808
809<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000810infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000811transformations, it's fairly common to manipulate the contents of basic
812blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000813and gives example code.</p>
814
815</div>
816
Chris Lattner261efe92003-11-25 01:02:51 +0000817<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000818<div class="doc_subsubsection">
819 <a name="schanges_creating">Creating and inserting new
820 <tt>Instruction</tt>s</a>
821</div>
822
823<div class="doc_text">
824
825<p><i>Instantiating Instructions</i></p>
826
Chris Lattner69bf8a92004-05-23 21:06:58 +0000827<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000828constructor for the kind of instruction to instantiate and provide the necessary
829parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
830(const-ptr-to) <tt>Type</tt>. Thus:</p>
831
832<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
833
834<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
835one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
836subclass is likely to have varying default parameters which change the semantics
837of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +0000838href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +0000839Instruction</a> that you're interested in instantiating.</p>
840
841<p><i>Naming values</i></p>
842
843<p>It is very useful to name the values of instructions when you're able to, as
844this facilitates the debugging of your transformations. If you end up looking
845at generated LLVM machine code, you definitely want to have logical names
846associated with the results of instructions! By supplying a value for the
847<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
848associate a logical name with the result of the instruction's execution at
849runtime. For example, say that I'm writing a transformation that dynamically
850allocates space for an integer on the stack, and that integer is going to be
851used as some kind of index by some other code. To accomplish this, I place an
852<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
853<tt>Function</tt>, and I'm intending to use it within the same
854<tt>Function</tt>. I might do:</p>
855
856 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
857
858<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
859execution value, which is a pointer to an integer on the runtime stack.</p>
860
861<p><i>Inserting instructions</i></p>
862
863<p>There are essentially two ways to insert an <tt>Instruction</tt>
864into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
865
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000866<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000867 <li>Insertion into an explicit instruction list
868
869 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
870 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
871 before <tt>*pi</tt>, we do the following: </p>
872
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +0000873 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
874
875 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
876 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
877 classes provide constructors which take a pointer to a
878 <tt>BasicBlock</tt> to be appended to. For example code that
879 looked like: </p>
880
881 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
882
883 <p>becomes: </p>
884
885 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
886
887 <p>which is much cleaner, especially if you are creating
888 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000889
890 <li>Insertion into an implicit instruction list
891
892 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
893 are implicitly associated with an existing instruction list: the instruction
894 list of the enclosing basic block. Thus, we could have accomplished the same
895 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
896 </p>
897
898 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
899
900 <p>In fact, this sequence of steps occurs so frequently that the
901 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
902 constructors which take (as a default parameter) a pointer to an
903 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
904 precede. That is, <tt>Instruction</tt> constructors are capable of
905 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
906 provided instruction, immediately before that instruction. Using an
907 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
908 parameter, the above code becomes:</p>
909
910 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
911
912 <p>which is much cleaner, especially if you're creating a lot of
913instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
914</ul>
915
916</div>
917
918<!--_______________________________________________________________________-->
919<div class="doc_subsubsection">
920 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
921</div>
922
923<div class="doc_text">
924
925<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000926<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000927you must have a pointer to the instruction that you wish to delete. Second, you
928need to obtain the pointer to that instruction's basic block. You use the
929pointer to the basic block to get its list of instructions and then use the
930erase function to remove your instruction. For example:</p>
931
Chris Lattner261efe92003-11-25 01:02:51 +0000932 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
933 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000934
935</div>
936
937<!--_______________________________________________________________________-->
938<div class="doc_subsubsection">
939 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
940 <tt>Value</tt></a>
941</div>
942
943<div class="doc_text">
944
945<p><i>Replacing individual instructions</i></p>
946
947<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000948permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000949and <tt>ReplaceInstWithInst</tt>.</p>
950
Chris Lattner261efe92003-11-25 01:02:51 +0000951<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000952
Chris Lattner261efe92003-11-25 01:02:51 +0000953<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000954 <li><tt>ReplaceInstWithValue</tt>
955
956 <p>This function replaces all uses (within a basic block) of a given
957 instruction with a value, and then removes the original instruction. The
958 following example illustrates the replacement of the result of a particular
Chris Lattner58360822005-01-17 00:12:04 +0000959 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
Misha Brukman13fd15c2004-01-15 00:14:41 +0000960 pointer to an integer.</p>
961
962 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
963
964 <li><tt>ReplaceInstWithInst</tt>
965
966 <p>This function replaces a particular instruction with another
967 instruction. The following example illustrates the replacement of one
968 <tt>AllocaInst</tt> with another.</p>
969
970 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000971</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000972
973<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
974
975<p>You can use <tt>Value::replaceAllUsesWith</tt> and
976<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Misha Brukman384047f2004-06-03 23:29:12 +0000977doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
978and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +0000979information.</p>
980
981<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
982include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
983ReplaceInstWithValue, ReplaceInstWithInst -->
984
985</div>
986
Chris Lattner9355b472002-09-06 02:50:58 +0000987<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000988<div class="doc_section">
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000989 <a name="advanced">Advanced Topics</a>
990</div>
991<!-- *********************************************************************** -->
992
993<div class="doc_text">
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000994<p>
995This section describes some of the advanced or obscure API's that most clients
996do not need to be aware of. These API's tend manage the inner workings of the
997LLVM system, and only need to be accessed in unusual circumstances.
998</p>
999</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001000
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001001<!-- ======================================================================= -->
1002<div class="doc_subsection">
1003 <a name="TypeResolve">LLVM Type Resolution</a>
1004</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001005
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001006<div class="doc_text">
1007
1008<p>
1009The LLVM type system has a very simple goal: allow clients to compare types for
1010structural equality with a simple pointer comparison (aka a shallow compare).
1011This goal makes clients much simpler and faster, and is used throughout the LLVM
1012system.
1013</p>
1014
1015<p>
1016Unfortunately achieving this goal is not a simple matter. In particular,
1017recursive types and late resolution of opaque types makes the situation very
1018difficult to handle. Fortunately, for the most part, our implementation makes
1019most clients able to be completely unaware of the nasty internal details. The
1020primary case where clients are exposed to the inner workings of it are when
1021building a recursive type. In addition to this case, the LLVM bytecode reader,
1022assembly parser, and linker also have to be aware of the inner workings of this
1023system.
1024</p>
1025
Chris Lattner0f876db2005-04-25 15:47:57 +00001026<p>
1027For our purposes below, we need three concepts. First, an "Opaque Type" is
1028exactly as defined in the <a href="LangRef.html#t_opaque">language
1029reference</a>. Second an "Abstract Type" is any type which includes an
1030opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
1031Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int,
1032float }</tt>").
1033</p>
1034
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001035</div>
1036
1037<!-- ______________________________________________________________________ -->
1038<div class="doc_subsubsection">
1039 <a name="BuildRecType">Basic Recursive Type Construction</a>
1040</div>
1041
1042<div class="doc_text">
1043
1044<p>
1045Because the most common question is "how do I build a recursive type with LLVM",
1046we answer it now and explain it as we go. Here we include enough to cause this
1047to be emitted to an output .ll file:
1048</p>
1049
1050<pre>
1051 %mylist = type { %mylist*, int }
1052</pre>
1053
1054<p>
1055To build this, use the following LLVM APIs:
1056</p>
1057
1058<pre>
1059 //<i> Create the initial outer struct.</i>
1060 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
1061 std::vector&lt;const Type*&gt; Elts;
1062 Elts.push_back(PointerType::get(StructTy));
1063 Elts.push_back(Type::IntTy);
1064 StructType *NewSTy = StructType::get(Elts);
1065
1066 //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
1067 //<i> the struct and the opaque type are actually the same.</i>
1068 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
1069
1070 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
1071 // <i>kept up-to-date.</i>
1072 NewSTy = cast&lt;StructType&gt;(StructTy.get());
1073
1074 // <i>Add a name for the type to the module symbol table (optional).</i>
1075 MyModule-&gt;addTypeName("mylist", NewSTy);
1076</pre>
1077
1078<p>
1079This code shows the basic approach used to build recursive types: build a
1080non-recursive type using 'opaque', then use type unification to close the cycle.
1081The type unification step is performed by the <tt><a
1082ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
1083described next. After that, we describe the <a
1084href="#PATypeHolder">PATypeHolder class</a>.
1085</p>
1086
1087</div>
1088
1089<!-- ______________________________________________________________________ -->
1090<div class="doc_subsubsection">
1091 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
1092</div>
1093
1094<div class="doc_text">
1095<p>
1096The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
1097While this method is actually a member of the DerivedType class, it is most
1098often used on OpaqueType instances. Type unification is actually a recursive
1099process. After unification, types can become structurally isomorphic to
1100existing types, and all duplicates are deleted (to preserve pointer equality).
1101</p>
1102
1103<p>
1104In the example above, the OpaqueType object is definitely deleted.
1105Additionally, if there is an "{ \2*, int}" type already created in the system,
1106the pointer and struct type created are <b>also</b> deleted. Obviously whenever
1107a type is deleted, any "Type*" pointers in the program are invalidated. As
1108such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
1109live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
1110types can never move or be deleted). To deal with this, the <a
1111href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
1112reference to a possibly refined type, and the <a
1113href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
1114complex datastructures.
1115</p>
1116
1117</div>
1118
1119<!-- ______________________________________________________________________ -->
1120<div class="doc_subsubsection">
1121 <a name="PATypeHolder">The PATypeHolder Class</a>
1122</div>
1123
1124<div class="doc_text">
1125<p>
1126PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
1127happily goes about nuking types that become isomorphic to existing types, it
1128automatically updates all PATypeHolder objects to point to the new type. In the
1129example above, this allows the code to maintain a pointer to the resultant
1130resolved recursive type, even though the Type*'s are potentially invalidated.
1131</p>
1132
1133<p>
1134PATypeHolder is an extremely light-weight object that uses a lazy union-find
1135implementation to update pointers. For example the pointer from a Value to its
1136Type is maintained by PATypeHolder objects.
1137</p>
1138
1139</div>
1140
1141<!-- ______________________________________________________________________ -->
1142<div class="doc_subsubsection">
1143 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
1144</div>
1145
1146<div class="doc_text">
1147
1148<p>
1149Some data structures need more to perform more complex updates when types get
1150resolved. The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
1151move and potentially merge type planes in its representation when a pointer
1152changes.</p>
1153
1154<p>
1155To support this, a class can derive from the AbstractTypeUser class. This class
1156allows it to get callbacks when certain types are resolved. To register to get
1157callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
Chris Lattner0f876db2005-04-25 15:47:57 +00001158methods can be called on a type. Note that these methods only work for <i>
1159abstract</i> types. Concrete types (those that do not include an opaque objects
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001160somewhere) can never be refined.
1161</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001162</div>
1163
1164
1165<!-- ======================================================================= -->
1166<div class="doc_subsection">
1167 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1168</div>
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001169
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001170<div class="doc_text">
1171<p>This class provides a symbol table that the <a
1172href="#Function"><tt>Function</tt></a> and <a href="#Module">
1173<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1174provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
1175href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1176type. It hides the data it contains and provides access to it through a
1177controlled interface.</p>
1178
1179<p>Note that the symbol table class is should not be directly accessed by most
1180clients. It should only be used when iteration over the symbol table names
1181themselves are required, which is very special purpose. Note that not all LLVM
1182<a href="#Value">Value</a>s have names, and those without names (i.e. they have
1183an empty name) do not exist in the symbol table.
1184</p>
1185
1186<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1187structure of the information it holds. The class contains two
1188<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1189<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1190The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1191are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1192however, are stored in a single dimension and accessed only by name.</p>
1193
1194<p>The interface of this class provides three basic types of operations:
1195<ol>
1196 <li><em>Accessors</em>. Accessors provide read-only access to information
1197 such as finding a value for a name with the
1198 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1199 <li><em>Mutators</em>. Mutators allow the user to add information to the
1200 <tt>SymbolTable</tt> with methods like
1201 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1202 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1203 of the symbol table in well defined ways, such as the method
1204 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1205</ol>
1206
1207<h3>Accessors</h3>
1208<dl>
1209 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1210 </dt>
1211 <dd>The <tt>lookup</tt> method searches the type plane given by the
1212 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1213 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1214
1215 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1216 <dd>The <tt>lookupType</tt> method searches through the types for a
1217 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1218 is not found, null is returned.</dd>
1219
1220 <dt><tt>bool hasTypes() const</tt>:</dt>
1221 <dd>This function returns true if an entry has been made into the type
1222 map.</dd>
1223
1224 <dt><tt>bool isEmpty() const</tt>:</dt>
1225 <dd>This function returns true if both the value and types maps are
1226 empty</dd>
1227</dl>
1228
1229<h3>Mutators</h3>
1230<dl>
1231 <dt><tt>void insert(Value *Val)</tt>:</dt>
1232 <dd>This method adds the provided value to the symbol table. The Value must
1233 have both a name and a type which are extracted and used to place the value
1234 in the correct type plane under the value's name.</dd>
1235
1236 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1237 <dd> Inserts a constant or type into the symbol table with the specified
1238 name. There can be a many to one mapping between names and constants
1239 or types.</dd>
1240
1241 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1242 <dd> Inserts a type into the symbol table with the specified name. There
1243 can be a many-to-one mapping between names and types. This method
1244 allows a type with an existing entry in the symbol table to get
1245 a new name.</dd>
1246
1247 <dt><tt>void remove(Value* Val)</tt>:</dt>
1248 <dd> This method removes a named value from the symbol table. The
1249 type and name of the Value are extracted from \p N and used to
1250 lookup the Value in the correct type plane. If the Value is
1251 not in the symbol table, this method silently ignores the
1252 request.</dd>
1253
1254 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1255 <dd> This method removes a named type from the symbol table. The
1256 name of the type is extracted from \P T and used to look up
1257 the Type in the type map. If the Type is not in the symbol
1258 table, this method silently ignores the request.</dd>
1259
1260 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1261 <dd> Remove a constant or type with the specified name from the
1262 symbol table.</dd>
1263
1264 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1265 <dd> Remove a type with the specified name from the symbol table.
1266 Returns the removed Type.</dd>
1267
1268 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1269 <dd> Removes a specific value from the symbol table.
1270 Returns the removed value.</dd>
1271
1272 <dt><tt>bool strip()</tt>:</dt>
1273 <dd> This method will strip the symbol table of its names leaving
1274 the type and values. </dd>
1275
1276 <dt><tt>void clear()</tt>:</dt>
1277 <dd>Empty the symbol table completely.</dd>
1278</dl>
1279
1280<h3>Iteration</h3>
1281<p>The following functions describe three types of iterators you can obtain
1282the beginning or end of the sequence for both const and non-const. It is
1283important to keep track of the different kinds of iterators. There are
1284three idioms worth pointing out:</p>
1285<table>
1286 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1287 <tr>
1288 <td align="left">Planes Of name/Value maps</td><td>PI</td>
1289 <td align="left"><pre><tt>
1290for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
1291 PE = ST.plane_end(); PI != PE; ++PI ) {
1292 PI-&gt;first // This is the Type* of the plane
1293 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
1294 </tt></pre></td>
1295 </tr>
1296 <tr>
1297 <td align="left">All name/Type Pairs</td><td>TI</td>
1298 <td align="left"><pre><tt>
1299for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1300 TE = ST.type_end(); TI != TE; ++TI )
1301 TI-&gt;first // This is the name of the type
1302 TI-&gt;second // This is the Type* value associated with the name
1303 </tt></pre></td>
1304 </tr>
1305 <tr>
1306 <td align="left">name/Value pairs in a plane</td><td>VI</td>
1307 <td align="left"><pre><tt>
1308for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1309 VE = ST.value_end(SomeType); VI != VE; ++VI )
1310 VI-&gt;first // This is the name of the Value
1311 VI-&gt;second // This is the Value* value associated with the name
1312 </tt></pre></td>
1313 </tr>
1314</table>
1315
1316<p>Using the recommended iterator names and idioms will help you avoid
1317making mistakes. Of particular note, make sure that whenever you use
1318value_begin(SomeType) that you always compare the resulting iterator
1319with value_end(SomeType) not value_end(SomeOtherType) or else you
1320will loop infinitely.</p>
1321
1322<dl>
1323
1324 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1325 <dd>Get an iterator that starts at the beginning of the type planes.
1326 The iterator will iterate over the Type/ValueMap pairs in the
1327 type planes. </dd>
1328
1329 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1330 <dd>Get a const_iterator that starts at the beginning of the type
1331 planes. The iterator will iterate over the Type/ValueMap pairs
1332 in the type planes. </dd>
1333
1334 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1335 <dd>Get an iterator at the end of the type planes. This serves as
1336 the marker for end of iteration over the type planes.</dd>
1337
1338 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1339 <dd>Get a const_iterator at the end of the type planes. This serves as
1340 the marker for end of iteration over the type planes.</dd>
1341
1342 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1343 <dd>Get an iterator that starts at the beginning of a type plane.
1344 The iterator will iterate over the name/value pairs in the type plane.
1345 Note: The type plane must already exist before using this.</dd>
1346
1347 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
1348 <dd>Get a const_iterator that starts at the beginning of a type plane.
1349 The iterator will iterate over the name/value pairs in the type plane.
1350 Note: The type plane must already exist before using this.</dd>
1351
1352 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
1353 <dd>Get an iterator to the end of a type plane. This serves as the marker
1354 for end of iteration of the type plane.
1355 Note: The type plane must already exist before using this.</dd>
1356
1357 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
1358 <dd>Get a const_iterator to the end of a type plane. This serves as the
1359 marker for end of iteration of the type plane.
1360 Note: the type plane must already exist before using this.</dd>
1361
1362 <dt><tt>type_iterator type_begin()</tt>:</dt>
1363 <dd>Get an iterator to the start of the name/Type map.</dd>
1364
1365 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
1366 <dd> Get a const_iterator to the start of the name/Type map.</dd>
1367
1368 <dt><tt>type_iterator type_end()</tt>:</dt>
1369 <dd>Get an iterator to the end of the name/Type map. This serves as the
1370 marker for end of iteration of the types.</dd>
1371
1372 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
1373 <dd>Get a const-iterator to the end of the name/Type map. This serves
1374 as the marker for end of iteration of the types.</dd>
1375
1376 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
1377 <dd>This method returns a plane_const_iterator for iteration over
1378 the type planes starting at a specific plane, given by \p Ty.</dd>
1379
1380 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
1381 <dd>This method returns a plane_iterator for iteration over the
1382 type planes starting at a specific plane, given by \p Ty.</dd>
1383
1384</dl>
1385</div>
1386
1387
1388
1389<!-- *********************************************************************** -->
1390<div class="doc_section">
Misha Brukman13fd15c2004-01-15 00:14:41 +00001391 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
1392</div>
1393<!-- *********************************************************************** -->
1394
1395<div class="doc_text">
1396
1397<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +00001398being inspected or transformed. The core LLVM classes are defined in
1399header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +00001400the <tt>lib/VMCore</tt> directory.</p>
1401
1402</div>
1403
1404<!-- ======================================================================= -->
1405<div class="doc_subsection">
1406 <a name="Value">The <tt>Value</tt> class</a>
1407</div>
1408
1409<div>
1410
1411<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
1412<br>
Misha Brukman384047f2004-06-03 23:29:12 +00001413doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001414
1415<p>The <tt>Value</tt> class is the most important class in the LLVM Source
1416base. It represents a typed value that may be used (among other things) as an
1417operand to an instruction. There are many different types of <tt>Value</tt>s,
1418such as <a href="#Constant"><tt>Constant</tt></a>s,<a
1419href="#Argument"><tt>Argument</tt></a>s. Even <a
1420href="#Instruction"><tt>Instruction</tt></a>s and <a
1421href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
1422
1423<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
1424for a program. For example, an incoming argument to a function (represented
1425with an instance of the <a href="#Argument">Argument</a> class) is "used" by
1426every instruction in the function that references the argument. To keep track
1427of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
1428href="#User"><tt>User</tt></a>s that is using it (the <a
1429href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
1430graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
1431def-use information in the program, and is accessible through the <tt>use_</tt>*
1432methods, shown below.</p>
1433
1434<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
1435and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
1436method. In addition, all LLVM values can be named. The "name" of the
1437<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
1438
Chris Lattner261efe92003-11-25 01:02:51 +00001439 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001440
1441<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
1442that the name of any value may be missing (an empty string), so names should
1443<b>ONLY</b> be used for debugging (making the source code easier to read,
1444debugging printouts), they should not be used to keep track of values or map
1445between them. For this purpose, use a <tt>std::map</tt> of pointers to the
1446<tt>Value</tt> itself instead.</p>
1447
1448<p>One important aspect of LLVM is that there is no distinction between an SSA
1449variable and the operation that produces it. Because of this, any reference to
1450the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +00001451argument, for example) is represented as a direct pointer to the instance of
1452the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +00001453represents this value. Although this may take some getting used to, it
1454simplifies the representation and makes it easier to manipulate.</p>
1455
1456</div>
1457
1458<!-- _______________________________________________________________________ -->
1459<div class="doc_subsubsection">
1460 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
1461</div>
1462
1463<div class="doc_text">
1464
Chris Lattner261efe92003-11-25 01:02:51 +00001465<ul>
1466 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
1467use-list<br>
1468 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
1469the use-list<br>
1470 <tt>unsigned use_size()</tt> - Returns the number of users of the
1471value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001472 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001473 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
1474the use-list.<br>
1475 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
1476use-list.<br>
1477 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
1478element in the list.
1479 <p> These methods are the interface to access the def-use
1480information in LLVM. As with all other iterators in LLVM, the naming
1481conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001482 </li>
1483 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001484 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001485 </li>
1486 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001487 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001488 <tt>void setName(const std::string &amp;Name)</tt>
1489 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1490be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001491 </li>
1492 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001493
1494 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1495 href="#User"><tt>User</tt>s</a> of the current value to refer to
1496 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1497 produces a constant value (for example through constant folding), you can
1498 replace all uses of the instruction with the constant like this:</p>
1499
Chris Lattner261efe92003-11-25 01:02:51 +00001500 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001501</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001502
1503</div>
1504
1505<!-- ======================================================================= -->
1506<div class="doc_subsection">
1507 <a name="User">The <tt>User</tt> class</a>
1508</div>
1509
1510<div class="doc_text">
1511
1512<p>
1513<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001514doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001515Superclass: <a href="#Value"><tt>Value</tt></a></p>
1516
1517<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1518refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1519that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1520referring to. The <tt>User</tt> class itself is a subclass of
1521<tt>Value</tt>.</p>
1522
1523<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1524href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1525Single Assignment (SSA) form, there can only be one definition referred to,
1526allowing this direct connection. This connection provides the use-def
1527information in LLVM.</p>
1528
1529</div>
1530
1531<!-- _______________________________________________________________________ -->
1532<div class="doc_subsubsection">
1533 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1534</div>
1535
1536<div class="doc_text">
1537
1538<p>The <tt>User</tt> class exposes the operand list in two ways: through
1539an index access interface and through an iterator based interface.</p>
1540
Chris Lattner261efe92003-11-25 01:02:51 +00001541<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001542 <li><tt>Value *getOperand(unsigned i)</tt><br>
1543 <tt>unsigned getNumOperands()</tt>
1544 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001545convenient form for direct access.</p></li>
1546
Chris Lattner261efe92003-11-25 01:02:51 +00001547 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1548list<br>
Chris Lattner58360822005-01-17 00:12:04 +00001549 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
1550the operand list.<br>
1551 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
Chris Lattner261efe92003-11-25 01:02:51 +00001552operand list.
1553 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001554the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001555</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001556
1557</div>
1558
1559<!-- ======================================================================= -->
1560<div class="doc_subsection">
1561 <a name="Instruction">The <tt>Instruction</tt> class</a>
1562</div>
1563
1564<div class="doc_text">
1565
1566<p><tt>#include "</tt><tt><a
1567href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00001568doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001569Superclasses: <a href="#User"><tt>User</tt></a>, <a
1570href="#Value"><tt>Value</tt></a></p>
1571
1572<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1573instructions. It provides only a few methods, but is a very commonly used
1574class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1575opcode (instruction type) and the parent <a
1576href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1577into. To represent a specific type of instruction, one of many subclasses of
1578<tt>Instruction</tt> are used.</p>
1579
1580<p> Because the <tt>Instruction</tt> class subclasses the <a
1581href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1582way as for other <a href="#User"><tt>User</tt></a>s (with the
1583<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1584<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1585the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1586file contains some meta-data about the various different types of instructions
1587in LLVM. It describes the enum values that are used as opcodes (for example
1588<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1589concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1590example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1591href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1592this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00001593<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001594
1595</div>
1596
1597<!-- _______________________________________________________________________ -->
1598<div class="doc_subsubsection">
1599 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1600 class</a>
1601</div>
1602
1603<div class="doc_text">
1604
Chris Lattner261efe92003-11-25 01:02:51 +00001605<ul>
1606 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001607 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1608this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001609 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001610 <p>Returns true if the instruction writes to memory, i.e. it is a
1611 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001612 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001613 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001614 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001615 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001616in all ways to the original except that the instruction has no parent
1617(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001618and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001619</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001620
1621</div>
1622
1623<!-- ======================================================================= -->
1624<div class="doc_subsection">
1625 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1626</div>
1627
1628<div class="doc_text">
1629
Misha Brukman384047f2004-06-03 23:29:12 +00001630<p><tt>#include "<a
1631href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
1632doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
1633Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001634Superclass: <a href="#Value"><tt>Value</tt></a></p>
1635
1636<p>This class represents a single entry multiple exit section of the code,
1637commonly known as a basic block by the compiler community. The
1638<tt>BasicBlock</tt> class maintains a list of <a
1639href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1640Matching the language definition, the last element of this list of instructions
1641is always a terminator instruction (a subclass of the <a
1642href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1643
1644<p>In addition to tracking the list of instructions that make up the block, the
1645<tt>BasicBlock</tt> class also keeps track of the <a
1646href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1647
1648<p>Note that <tt>BasicBlock</tt>s themselves are <a
1649href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1650like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1651<tt>label</tt>.</p>
1652
1653</div>
1654
1655<!-- _______________________________________________________________________ -->
1656<div class="doc_subsubsection">
1657 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1658 class</a>
1659</div>
1660
1661<div class="doc_text">
1662
Chris Lattner261efe92003-11-25 01:02:51 +00001663<ul>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001664
1665<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
Chris Lattner261efe92003-11-25 01:02:51 +00001666 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001667
1668<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1669insertion into a function. The constructor optionally takes a name for the new
1670block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
1671the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
1672automatically inserted at the end of the specified <a
1673href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1674manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
1675
1676<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1677<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1678<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
Chris Lattner77d69242005-03-15 05:19:20 +00001679<tt>size()</tt>, <tt>empty()</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001680STL-style functions for accessing the instruction list.
1681
1682<p>These methods and typedefs are forwarding functions that have the same
1683semantics as the standard library methods of the same names. These methods
1684expose the underlying instruction list of a basic block in a way that is easy to
1685manipulate. To get the full complement of container operations (including
1686operations to update the list), you must use the <tt>getInstList()</tt>
1687method.</p></li>
1688
1689<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1690
1691<p>This method is used to get access to the underlying container that actually
1692holds the Instructions. This method must be used when there isn't a forwarding
1693function in the <tt>BasicBlock</tt> class for the operation that you would like
1694to perform. Because there are no forwarding functions for "updating"
1695operations, you need to use this if you want to update the contents of a
1696<tt>BasicBlock</tt>.</p></li>
1697
1698<li><tt><a href="#Function">Function</a> *getParent()</tt>
1699
1700<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1701embedded into, or a null pointer if it is homeless.</p></li>
1702
1703<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1704
1705<p> Returns a pointer to the terminator instruction that appears at the end of
1706the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1707instruction in the block is not a terminator, then a null pointer is
1708returned.</p></li>
1709
Chris Lattner261efe92003-11-25 01:02:51 +00001710</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001711
1712</div>
1713
1714<!-- ======================================================================= -->
1715<div class="doc_subsection">
1716 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1717</div>
1718
1719<div class="doc_text">
1720
1721<p><tt>#include "<a
1722href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001723doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
1724Class</a><br>
Reid Spencerbe5e85e2006-04-14 14:11:48 +00001725Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
1726<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001727
1728<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1729href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1730visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1731Because they are visible at global scope, they are also subject to linking with
1732other globals defined in different translation units. To control the linking
1733process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1734<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001735defined by the <tt>LinkageTypes</tt> enumeration.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001736
1737<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1738<tt>static</tt> in C), it is not visible to code outside the current translation
1739unit, and does not participate in linking. If it has external linkage, it is
1740visible to external code, and does participate in linking. In addition to
1741linkage information, <tt>GlobalValue</tt>s keep track of which <a
1742href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1743
1744<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1745by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1746global is always a pointer to its contents. It is important to remember this
1747when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1748be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1749subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1750int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1751the address of the first element of this array and the value of the
1752<tt>GlobalVariable</tt> are the same, they have different types. The
1753<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1754is <tt>int.</tt> Because of this, accessing a global value requires you to
1755dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1756can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1757Language Reference Manual</a>.</p>
1758
1759</div>
1760
1761<!-- _______________________________________________________________________ -->
1762<div class="doc_subsubsection">
1763 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1764 class</a>
1765</div>
1766
1767<div class="doc_text">
1768
Chris Lattner261efe92003-11-25 01:02:51 +00001769<ul>
1770 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001771 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001772 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1773 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1774 <p> </p>
1775 </li>
1776 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1777 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001778GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001779</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001780
1781</div>
1782
1783<!-- ======================================================================= -->
1784<div class="doc_subsection">
1785 <a name="Function">The <tt>Function</tt> class</a>
1786</div>
1787
1788<div class="doc_text">
1789
1790<p><tt>#include "<a
1791href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00001792info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
Reid Spencerbe5e85e2006-04-14 14:11:48 +00001793Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
1794<a href="#Constant"><tt>Constant</tt></a>,
1795<a href="#User"><tt>User</tt></a>,
1796<a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001797
1798<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1799actually one of the more complex classes in the LLVM heirarchy because it must
1800keep track of a large amount of data. The <tt>Function</tt> class keeps track
Reid Spencerbe5e85e2006-04-14 14:11:48 +00001801of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
1802<a href="#Argument"><tt>Argument</tt></a>s, and a
1803<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001804
1805<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1806commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1807ordering of the blocks in the function, which indicate how the code will be
1808layed out by the backend. Additionally, the first <a
1809href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1810<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1811block. There are no implicit exit nodes, and in fact there may be multiple exit
1812nodes from a single <tt>Function</tt>. If the <a
1813href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1814the <tt>Function</tt> is actually a function declaration: the actual body of the
1815function hasn't been linked in yet.</p>
1816
1817<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1818<tt>Function</tt> class also keeps track of the list of formal <a
1819href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1820container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1821nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1822the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1823
1824<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1825LLVM feature that is only used when you have to look up a value by name. Aside
1826from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1827internally to make sure that there are not conflicts between the names of <a
1828href="#Instruction"><tt>Instruction</tt></a>s, <a
1829href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1830href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1831
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001832<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
1833and therefore also a <a href="#Constant">Constant</a>. The value of the function
1834is its address (after linking) which is guaranteed to be constant.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001835</div>
1836
1837<!-- _______________________________________________________________________ -->
1838<div class="doc_subsubsection">
1839 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1840 class</a>
1841</div>
1842
1843<div class="doc_text">
1844
Chris Lattner261efe92003-11-25 01:02:51 +00001845<ul>
1846 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Chris Lattnerac479e52004-08-04 05:10:48 +00001847 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001848
1849 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1850 the the program. The constructor must specify the type of the function to
Chris Lattnerac479e52004-08-04 05:10:48 +00001851 create and what type of linkage the function should have. The <a
1852 href="#FunctionType"><tt>FunctionType</tt></a> argument
Misha Brukman13fd15c2004-01-15 00:14:41 +00001853 specifies the formal arguments and return value for the function. The same
1854 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1855 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1856 in which the function is defined. If this argument is provided, the function
1857 will automatically be inserted into that module's list of
1858 functions.</p></li>
1859
Chris Lattner261efe92003-11-25 01:02:51 +00001860 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001861
1862 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1863 function is "external", it does not have a body, and thus must be resolved
1864 by linking with a function defined in a different translation unit.</p></li>
1865
Chris Lattner261efe92003-11-25 01:02:51 +00001866 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001867 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001868
Chris Lattner77d69242005-03-15 05:19:20 +00001869 <tt>begin()</tt>, <tt>end()</tt>
1870 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001871
1872 <p>These are forwarding methods that make it easy to access the contents of
1873 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1874 list.</p></li>
1875
Chris Lattner261efe92003-11-25 01:02:51 +00001876 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001877
1878 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1879 is necessary to use when you need to update the list or perform a complex
1880 action that doesn't have a forwarding method.</p></li>
1881
Chris Lattner89cc2652005-03-15 04:48:32 +00001882 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
Chris Lattner261efe92003-11-25 01:02:51 +00001883iterator<br>
Chris Lattner89cc2652005-03-15 04:48:32 +00001884 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001885
Chris Lattner77d69242005-03-15 05:19:20 +00001886 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00001887 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001888
1889 <p>These are forwarding methods that make it easy to access the contents of
1890 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1891 list.</p></li>
1892
Chris Lattner261efe92003-11-25 01:02:51 +00001893 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001894
1895 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1896 necessary to use when you need to update the list or perform a complex
1897 action that doesn't have a forwarding method.</p></li>
1898
Chris Lattner261efe92003-11-25 01:02:51 +00001899 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001900
1901 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1902 function. Because the entry block for the function is always the first
1903 block, this returns the first block of the <tt>Function</tt>.</p></li>
1904
Chris Lattner261efe92003-11-25 01:02:51 +00001905 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1906 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001907
1908 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1909 <tt>Function</tt> and returns the return type of the function, or the <a
1910 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1911 function.</p></li>
1912
Chris Lattner261efe92003-11-25 01:02:51 +00001913 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001914
Chris Lattner261efe92003-11-25 01:02:51 +00001915 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001916 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001917</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001918
1919</div>
1920
1921<!-- ======================================================================= -->
1922<div class="doc_subsection">
1923 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1924</div>
1925
1926<div class="doc_text">
1927
1928<p><tt>#include "<a
1929href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1930<br>
Tanya Lattnera3da7772004-06-22 08:02:25 +00001931doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
Reid Spencerbe5e85e2006-04-14 14:11:48 +00001932 Class</a><br>
1933Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
1934<a href="#Constant"><tt>Constant</tt></a>,
1935<a href="#User"><tt>User</tt></a>,
1936<a href="#Value"><tt>Value</tt></a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001937
1938<p>Global variables are represented with the (suprise suprise)
1939<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1940subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1941always referenced by their address (global values must live in memory, so their
Reid Spencerbe5e85e2006-04-14 14:11:48 +00001942"name" refers to their constant address). See
1943<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
1944variables may have an initial value (which must be a
1945<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
1946they may be marked as "constant" themselves (indicating that their contents
1947never change at runtime).</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001948</div>
1949
1950<!-- _______________________________________________________________________ -->
1951<div class="doc_subsubsection">
1952 <a name="m_GlobalVariable">Important Public Members of the
1953 <tt>GlobalVariable</tt> class</a>
1954</div>
1955
1956<div class="doc_text">
1957
Chris Lattner261efe92003-11-25 01:02:51 +00001958<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001959 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1960 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1961 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1962
1963 <p>Create a new global variable of the specified type. If
1964 <tt>isConstant</tt> is true then the global variable will be marked as
1965 unchanging for the program. The Linkage parameter specifies the type of
1966 linkage (internal, external, weak, linkonce, appending) for the variable. If
1967 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1968 the resultant global variable will have internal linkage. AppendingLinkage
1969 concatenates together all instances (in different translation units) of the
1970 variable into a single variable but is only applicable to arrays. &nbsp;See
1971 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1972 further details on linkage types. Optionally an initializer, a name, and the
1973 module to put the variable into may be specified for the global variable as
1974 well.</p></li>
1975
Chris Lattner261efe92003-11-25 01:02:51 +00001976 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001977
1978 <p>Returns true if this is a global variable that is known not to
1979 be modified at runtime.</p></li>
1980
Chris Lattner261efe92003-11-25 01:02:51 +00001981 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001982
1983 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1984
Chris Lattner261efe92003-11-25 01:02:51 +00001985 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001986
1987 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1988 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001989</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001990
1991</div>
1992
1993<!-- ======================================================================= -->
1994<div class="doc_subsection">
1995 <a name="Module">The <tt>Module</tt> class</a>
1996</div>
1997
1998<div class="doc_text">
1999
2000<p><tt>#include "<a
2001href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
Tanya Lattnera3da7772004-06-22 08:02:25 +00002002<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002003
2004<p>The <tt>Module</tt> class represents the top level structure present in LLVM
2005programs. An LLVM module is effectively either a translation unit of the
2006original program or a combination of several translation units merged by the
2007linker. The <tt>Module</tt> class keeps track of a list of <a
2008href="#Function"><tt>Function</tt></a>s, a list of <a
2009href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
2010href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
2011helpful member functions that try to make common operations easy.</p>
2012
2013</div>
2014
2015<!-- _______________________________________________________________________ -->
2016<div class="doc_subsubsection">
2017 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2018</div>
2019
2020<div class="doc_text">
2021
Chris Lattner261efe92003-11-25 01:02:51 +00002022<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002023 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00002024</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002025
2026<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2027provide a name for it (probably based on the name of the translation unit).</p>
2028
Chris Lattner261efe92003-11-25 01:02:51 +00002029<ul>
2030 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00002031 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002032
Chris Lattner77d69242005-03-15 05:19:20 +00002033 <tt>begin()</tt>, <tt>end()</tt>
2034 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002035
2036 <p>These are forwarding methods that make it easy to access the contents of
2037 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2038 list.</p></li>
2039
Chris Lattner261efe92003-11-25 01:02:51 +00002040 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002041
2042 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
2043 necessary to use when you need to update the list or perform a complex
2044 action that doesn't have a forwarding method.</p>
2045
2046 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002047</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002048
2049<hr>
2050
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002051<ul>
Chris Lattner89cc2652005-03-15 04:48:32 +00002052 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002053
Chris Lattner89cc2652005-03-15 04:48:32 +00002054 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002055
Chris Lattner77d69242005-03-15 05:19:20 +00002056 <tt>global_begin()</tt>, <tt>global_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00002057 <tt>global_size()</tt>, <tt>global_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002058
2059 <p> These are forwarding methods that make it easy to access the contents of
2060 a <tt>Module</tt> object's <a
2061 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2062
2063 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2064
2065 <p>Returns the list of <a
2066 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
2067 use when you need to update the list or perform a complex action that
2068 doesn't have a forwarding method.</p>
2069
2070 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002071</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002072
2073<hr>
2074
2075<ul>
2076 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2077
2078 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2079 for this <tt>Module</tt>.</p>
2080
2081 <p><!-- Convenience methods --></p></li>
2082</ul>
2083
2084<hr>
2085
2086<ul>
2087 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2088 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2089
2090 <p>Look up the specified function in the <tt>Module</tt> <a
2091 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2092 <tt>null</tt>.</p></li>
2093
2094 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2095 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2096
2097 <p>Look up the specified function in the <tt>Module</tt> <a
2098 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2099 external declaration for the function and return it.</p></li>
2100
2101 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2102
2103 <p>If there is at least one entry in the <a
2104 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2105 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
2106 string.</p></li>
2107
2108 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2109 href="#Type">Type</a> *Ty)</tt>
2110
2111 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2112 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2113 name, true is returned and the <a
2114 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2115</ul>
2116
2117</div>
2118
2119<!-- ======================================================================= -->
2120<div class="doc_subsection">
2121 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
2122</div>
2123
2124<div class="doc_text">
2125
2126<p>Constant represents a base class for different types of constants. It
2127is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
2128ConstantArray etc for representing the various types of Constants.</p>
2129
2130</div>
2131
2132<!-- _______________________________________________________________________ -->
2133<div class="doc_subsubsection">
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002134 <a name="m_Constant">Important Public Methods</a>
2135</div>
2136<div class="doc_text">
Misha Brukman13fd15c2004-01-15 00:14:41 +00002137</div>
2138
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002139<!-- _______________________________________________________________________ -->
2140<div class="doc_subsubsection">Important Subclasses of Constant </div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002141<div class="doc_text">
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002142<ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002143 <li>ConstantSInt : This subclass of Constant represents a signed integer
2144 constant.
Chris Lattner261efe92003-11-25 01:02:51 +00002145 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002146 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
2147 this constant. </li>
Chris Lattner261efe92003-11-25 01:02:51 +00002148 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002149 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002150 <li>ConstantUInt : This class represents an unsigned integer.
2151 <ul>
2152 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of
2153 this constant. </li>
2154 </ul>
2155 </li>
2156 <li>ConstantFP : This class represents a floating point constant.
2157 <ul>
2158 <li><tt>double getValue() const</tt>: Returns the underlying value of
2159 this constant. </li>
2160 </ul>
2161 </li>
2162 <li>ConstantBool : This represents a boolean constant.
2163 <ul>
2164 <li><tt>bool getValue() const</tt>: Returns the underlying value of this
2165 constant. </li>
2166 </ul>
2167 </li>
2168 <li>ConstantArray : This represents a constant array.
2169 <ul>
2170 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002171 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002172 </ul>
2173 </li>
2174 <li>ConstantStruct : This represents a constant struct.
2175 <ul>
2176 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002177 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002178 </ul>
2179 </li>
2180 <li>GlobalValue : This represents either a global variable or a function. In
2181 either case, the value is a constant fixed address (after linking).
2182 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002183</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002184</div>
2185
2186<!-- ======================================================================= -->
2187<div class="doc_subsection">
2188 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2189</div>
2190
2191<div class="doc_text">
2192
2193<p>Type as noted earlier is also a subclass of a Value class. Any primitive
2194type (like int, short etc) in LLVM is an instance of Type Class. All other
2195types are instances of subclasses of type like FunctionType, ArrayType
2196etc. DerivedType is the interface for all such dervied types including
2197FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
2198be recursive (StructType). There exists exactly one instance of any type
2199structure at a time. This allows using pointer equality of Type *s for comparing
2200types.</p>
2201
2202</div>
2203
2204<!-- _______________________________________________________________________ -->
2205<div class="doc_subsubsection">
2206 <a name="m_Value">Important Public Methods</a>
2207</div>
2208
2209<div class="doc_text">
2210
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002211<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002212
Misha Brukman13fd15c2004-01-15 00:14:41 +00002213 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
2214 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
2215 not true for Float and Double. </li>
2216
2217 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
2218 unsigned. This is not quite the complement of isSigned... nonnumeric types
2219 return false as they do with isSigned. This returns true for UByteTy,
2220 UShortTy, UIntTy, and ULongTy. </li>
2221
Chris Lattner4573f1b2004-07-08 17:49:37 +00002222 <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002223
2224 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
2225 type, which is either Bool type or one of the Integer types.</li>
2226
2227 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2228 floating point types.</li>
2229
Misha Brukman13fd15c2004-01-15 00:14:41 +00002230 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
2231 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00002232 example, uint to int or one pointer type to another.</li>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002233</ul>
2234</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002235
Reid Spencerc7d1d822004-11-01 09:16:30 +00002236<!-- _______________________________________________________________________ -->
2237<div class="doc_subsubsection">
2238 <a name="m_Value">Important Derived Types</a>
2239</div>
2240<div class="doc_text">
2241<ul>
2242 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00002243 <ul>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002244 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2245 of the elements in the sequential type. </li>
2246 </ul>
2247 </li>
2248 <li>ArrayType : This is a subclass of SequentialType and defines interface for
2249 array types.
2250 <ul>
2251 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2252 elements in the array. </li>
2253 </ul>
2254 </li>
2255 <li>PointerType : Subclass of SequentialType for pointer types. </li>
2256 <li>StructType : subclass of DerivedTypes for struct types </li>
2257 <li>FunctionType : subclass of DerivedTypes for function types.
2258 <ul>
2259 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2260 function</li>
2261 <li><tt> const Type * getReturnType() const</tt>: Returns the
2262 return type of the function.</li>
2263 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2264 the type of the ith parameter.</li>
2265 <li><tt> const unsigned getNumParams() const</tt>: Returns the
2266 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00002267 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002268 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002269</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002270</div>
2271
2272<!-- ======================================================================= -->
2273<div class="doc_subsection">
2274 <a name="Argument">The <tt>Argument</tt> class</a>
2275</div>
2276
2277<div class="doc_text">
2278
2279<p>This subclass of Value defines the interface for incoming formal
Chris Lattner58360822005-01-17 00:12:04 +00002280arguments to a function. A Function maintains a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00002281arguments. An argument has a pointer to the parent Function.</p>
2282
2283</div>
2284
Chris Lattner9355b472002-09-06 02:50:58 +00002285<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002286<hr>
2287<address>
2288 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2289 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2290 <a href="http://validator.w3.org/check/referer"><img
2291 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2292
2293 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2294 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00002295 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002296 Last modified: $Date$
2297</address>
2298
Chris Lattner261efe92003-11-25 01:02:51 +00002299</body>
2300</html>