blob: 03c5005989e743e6867582259ce1eca1dfaa4e29 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000073#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000074#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Support/ConstantRange.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000078#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000079#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000083#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000084using namespace llvm;
85
Chris Lattner3b27d682006-12-19 22:30:33 +000086STATISTIC(NumArrayLenItCounts,
87 "Number of trip counts computed with array length");
88STATISTIC(NumTripCountsComputed,
89 "Number of loops with predictable loop counts");
90STATISTIC(NumTripCountsNotComputed,
91 "Number of loops without predictable loop counts");
92STATISTIC(NumBruteForceTripCountsComputed,
93 "Number of loops with trip counts computed by force");
94
Dan Gohman844731a2008-05-13 00:00:25 +000095static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +000096MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97 cl::desc("Maximum number of iterations SCEV will "
98 "symbolically execute a constant derived loop"),
99 cl::init(100));
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static RegisterPass<ScalarEvolution>
102R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000103char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000104
105//===----------------------------------------------------------------------===//
106// SCEV class definitions
107//===----------------------------------------------------------------------===//
108
109//===----------------------------------------------------------------------===//
110// Implementation of the SCEV class.
111//
Chris Lattner53e677a2004-04-02 20:23:17 +0000112SCEV::~SCEV() {}
113void SCEV::dump() const {
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000114 print(errs());
115 errs() << '\n';
116}
117
118void SCEV::print(std::ostream &o) const {
119 raw_os_ostream OS(o);
120 print(OS);
Chris Lattner53e677a2004-04-02 20:23:17 +0000121}
122
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000123bool SCEV::isZero() const {
124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125 return SC->getValue()->isZero();
126 return false;
127}
128
Dan Gohman70a1fe72009-05-18 15:22:39 +0000129bool SCEV::isOne() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isOne();
132 return false;
133}
Chris Lattner53e677a2004-04-02 20:23:17 +0000134
135SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanf8a8be82009-04-21 23:15:49 +0000136SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Chris Lattner53e677a2004-04-02 20:23:17 +0000137
138bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000140 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000141}
142
143const Type *SCEVCouldNotCompute::getType() const {
144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000145 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000146}
147
148bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
149 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
150 return false;
151}
152
Chris Lattner4dc534c2005-02-13 04:37:18 +0000153SCEVHandle SCEVCouldNotCompute::
154replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000155 const SCEVHandle &Conc,
156 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000157 return this;
158}
159
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000160void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000161 OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165 return S->getSCEVType() == scCouldNotCompute;
166}
167
168
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value. Don't use a SCEVHandle here, or else the object will
171// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000173
Chris Lattner53e677a2004-04-02 20:23:17 +0000174
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000175SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000176 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000177}
Chris Lattner53e677a2004-04-02 20:23:17 +0000178
Dan Gohman246b2562007-10-22 18:31:58 +0000179SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000180 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000181 if (R == 0) R = new SCEVConstant(V);
182 return R;
183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman246b2562007-10-22 18:31:58 +0000185SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
186 return getConstant(ConstantInt::get(Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000189const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000190
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000191void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000192 WriteAsOperand(OS, V, false);
193}
Chris Lattner53e677a2004-04-02 20:23:17 +0000194
Dan Gohman84923602009-04-21 01:25:57 +0000195SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
196 const SCEVHandle &op, const Type *ty)
197 : SCEV(SCEVTy), Op(op), Ty(ty) {}
198
199SCEVCastExpr::~SCEVCastExpr() {}
200
201bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
202 return Op->dominates(BB, DT);
203}
204
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000205// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
206// particular input. Don't use a SCEVHandle here, or else the object will
207// never be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000208static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Chris Lattnerb3364092006-10-04 21:49:37 +0000209 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000210
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000211SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000212 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000213 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
214 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000215 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000216}
Chris Lattner53e677a2004-04-02 20:23:17 +0000217
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000219 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000220}
Chris Lattner53e677a2004-04-02 20:23:17 +0000221
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000222void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224}
225
226// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
227// particular input. Don't use a SCEVHandle here, or else the object will never
228// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000229static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Chris Lattnerb3364092006-10-04 21:49:37 +0000230 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231
232SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000233 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000234 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
235 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000237}
238
239SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000240 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000241}
242
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000243void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000244 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000245}
246
Dan Gohmand19534a2007-06-15 14:38:12 +0000247// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000250static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmand19534a2007-06-15 14:38:12 +0000251 SCEVSignExtendExpr*> > SCEVSignExtends;
252
253SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000254 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000255 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
256 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000257 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000258}
259
260SCEVSignExtendExpr::~SCEVSignExtendExpr() {
261 SCEVSignExtends->erase(std::make_pair(Op, Ty));
262}
263
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000264void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000265 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000266}
267
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000268// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
269// particular input. Don't use a SCEVHandle here, or else the object will never
270// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000271static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Chris Lattnerb3364092006-10-04 21:49:37 +0000272 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000273
274SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohman35738ac2009-05-04 22:30:44 +0000275 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
276 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000277}
278
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr = getOperationStr();
282 OS << "(" << *Operands[0];
283 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284 OS << OpStr << *Operands[i];
285 OS << ")";
286}
287
Chris Lattner4dc534c2005-02-13 04:37:18 +0000288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000290 const SCEVHandle &Conc,
291 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000293 SCEVHandle H =
294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000295 if (H != getOperand(i)) {
296 std::vector<SCEVHandle> NewOps;
297 NewOps.reserve(getNumOperands());
298 for (unsigned j = 0; j != i; ++j)
299 NewOps.push_back(getOperand(j));
300 NewOps.push_back(H);
301 for (++i; i != e; ++i)
302 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Chris Lattner4dc534c2005-02-13 04:37:18 +0000304
305 if (isa<SCEVAddExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000306 return SE.getAddExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000307 else if (isa<SCEVMulExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000308 return SE.getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +0000309 else if (isa<SCEVSMaxExpr>(this))
310 return SE.getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +0000311 else if (isa<SCEVUMaxExpr>(this))
312 return SE.getUMaxExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000313 else
314 assert(0 && "Unknown commutative expr!");
315 }
316 }
317 return this;
318}
319
Dan Gohmanecb403a2009-05-07 14:00:19 +0000320bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322 if (!getOperand(i)->dominates(BB, DT))
323 return false;
324 }
325 return true;
326}
327
Chris Lattner4dc534c2005-02-13 04:37:18 +0000328
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330// input. Don't use a SCEVHandle here, or else the object will never be
331// deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000332static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000333 SCEVUDivExpr*> > SCEVUDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000335SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
338
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000343void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000344 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000347const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000348 // In most cases the types of LHS and RHS will be the same, but in some
349 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
350 // depend on the type for correctness, but handling types carefully can
351 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
352 // a pointer type than the RHS, so use the RHS' type here.
353 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000354}
355
356// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
357// particular input. Don't use a SCEVHandle here, or else the object will never
358// be deleted!
Dan Gohman35738ac2009-05-04 22:30:44 +0000359static ManagedStatic<std::map<std::pair<const Loop *,
360 std::vector<const SCEV*> >,
Chris Lattnerb3364092006-10-04 21:49:37 +0000361 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362
363SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohman35738ac2009-05-04 22:30:44 +0000364 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
365 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000366}
367
Chris Lattner4dc534c2005-02-13 04:37:18 +0000368SCEVHandle SCEVAddRecExpr::
369replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000370 const SCEVHandle &Conc,
371 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000372 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000373 SCEVHandle H =
374 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000375 if (H != getOperand(i)) {
376 std::vector<SCEVHandle> NewOps;
377 NewOps.reserve(getNumOperands());
378 for (unsigned j = 0; j != i; ++j)
379 NewOps.push_back(getOperand(j));
380 NewOps.push_back(H);
381 for (++i; i != e; ++i)
382 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000383 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000384
Dan Gohman246b2562007-10-22 18:31:58 +0000385 return SE.getAddRecExpr(NewOps, L);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000386 }
387 }
388 return this;
389}
390
391
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000392bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
393 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000394 // contain L and if the start is invariant.
Dan Gohmana3035a62009-05-20 01:01:24 +0000395 // Add recurrences are never invariant in the function-body (null loop).
396 return QueryLoop &&
397 !QueryLoop->contains(L->getHeader()) &&
Chris Lattnerff2006a2005-08-16 00:37:01 +0000398 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000399}
400
401
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000402void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000403 OS << "{" << *Operands[0];
404 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
405 OS << ",+," << *Operands[i];
406 OS << "}<" << L->getHeader()->getName() + ">";
407}
Chris Lattner53e677a2004-04-02 20:23:17 +0000408
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000409// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
410// value. Don't use a SCEVHandle here, or else the object will never be
411// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000412static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000413
Chris Lattnerb3364092006-10-04 21:49:37 +0000414SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000415
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000416bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
417 // All non-instruction values are loop invariant. All instructions are loop
418 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000419 // Instructions are never considered invariant in the function body
420 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000421 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmana3035a62009-05-20 01:01:24 +0000422 return L && !L->contains(I->getParent());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000423 return true;
424}
Chris Lattner53e677a2004-04-02 20:23:17 +0000425
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427 if (Instruction *I = dyn_cast<Instruction>(getValue()))
428 return DT->dominates(I->getParent(), BB);
429 return true;
430}
431
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000432const Type *SCEVUnknown::getType() const {
433 return V->getType();
434}
Chris Lattner53e677a2004-04-02 20:23:17 +0000435
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000436void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000437 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000438}
439
Chris Lattner8d741b82004-06-20 06:23:15 +0000440//===----------------------------------------------------------------------===//
441// SCEV Utilities
442//===----------------------------------------------------------------------===//
443
444namespace {
445 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
446 /// than the complexity of the RHS. This comparator is used to canonicalize
447 /// expressions.
Dan Gohman72861302009-05-07 14:39:04 +0000448 class VISIBILITY_HIDDEN SCEVComplexityCompare {
449 LoopInfo *LI;
450 public:
451 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
452
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000453 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman72861302009-05-07 14:39:04 +0000454 // Primarily, sort the SCEVs by their getSCEVType().
455 if (LHS->getSCEVType() != RHS->getSCEVType())
456 return LHS->getSCEVType() < RHS->getSCEVType();
457
458 // Aside from the getSCEVType() ordering, the particular ordering
459 // isn't very important except that it's beneficial to be consistent,
460 // so that (a + b) and (b + a) don't end up as different expressions.
461
462 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
463 // not as complete as it could be.
464 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
465 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
466
Dan Gohman5be18e82009-05-19 02:15:55 +0000467 // Order pointer values after integer values. This helps SCEVExpander
468 // form GEPs.
469 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
470 return false;
471 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
472 return true;
473
Dan Gohman72861302009-05-07 14:39:04 +0000474 // Compare getValueID values.
475 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
476 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
477
478 // Sort arguments by their position.
479 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
480 const Argument *RA = cast<Argument>(RU->getValue());
481 return LA->getArgNo() < RA->getArgNo();
482 }
483
484 // For instructions, compare their loop depth, and their opcode.
485 // This is pretty loose.
486 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
487 Instruction *RV = cast<Instruction>(RU->getValue());
488
489 // Compare loop depths.
490 if (LI->getLoopDepth(LV->getParent()) !=
491 LI->getLoopDepth(RV->getParent()))
492 return LI->getLoopDepth(LV->getParent()) <
493 LI->getLoopDepth(RV->getParent());
494
495 // Compare opcodes.
496 if (LV->getOpcode() != RV->getOpcode())
497 return LV->getOpcode() < RV->getOpcode();
498
499 // Compare the number of operands.
500 if (LV->getNumOperands() != RV->getNumOperands())
501 return LV->getNumOperands() < RV->getNumOperands();
502 }
503
504 return false;
505 }
506
507 // Constant sorting doesn't matter since they'll be folded.
508 if (isa<SCEVConstant>(LHS))
509 return false;
510
511 // Lexicographically compare n-ary expressions.
512 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
513 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
514 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
515 if (i >= RC->getNumOperands())
516 return false;
517 if (operator()(LC->getOperand(i), RC->getOperand(i)))
518 return true;
519 if (operator()(RC->getOperand(i), LC->getOperand(i)))
520 return false;
521 }
522 return LC->getNumOperands() < RC->getNumOperands();
523 }
524
Dan Gohmana6b35e22009-05-07 19:23:21 +0000525 // Lexicographically compare udiv expressions.
526 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
527 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
528 if (operator()(LC->getLHS(), RC->getLHS()))
529 return true;
530 if (operator()(RC->getLHS(), LC->getLHS()))
531 return false;
532 if (operator()(LC->getRHS(), RC->getRHS()))
533 return true;
534 if (operator()(RC->getRHS(), LC->getRHS()))
535 return false;
536 return false;
537 }
538
Dan Gohman72861302009-05-07 14:39:04 +0000539 // Compare cast expressions by operand.
540 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
541 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
542 return operator()(LC->getOperand(), RC->getOperand());
543 }
544
545 assert(0 && "Unknown SCEV kind!");
546 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000547 }
548 };
549}
550
551/// GroupByComplexity - Given a list of SCEV objects, order them by their
552/// complexity, and group objects of the same complexity together by value.
553/// When this routine is finished, we know that any duplicates in the vector are
554/// consecutive and that complexity is monotonically increasing.
555///
556/// Note that we go take special precautions to ensure that we get determinstic
557/// results from this routine. In other words, we don't want the results of
558/// this to depend on where the addresses of various SCEV objects happened to
559/// land in memory.
560///
Dan Gohman72861302009-05-07 14:39:04 +0000561static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
562 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000563 if (Ops.size() < 2) return; // Noop
564 if (Ops.size() == 2) {
565 // This is the common case, which also happens to be trivially simple.
566 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000567 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000568 std::swap(Ops[0], Ops[1]);
569 return;
570 }
571
572 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000573 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000574
575 // Now that we are sorted by complexity, group elements of the same
576 // complexity. Note that this is, at worst, N^2, but the vector is likely to
577 // be extremely short in practice. Note that we take this approach because we
578 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000579 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000580 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000581 unsigned Complexity = S->getSCEVType();
582
583 // If there are any objects of the same complexity and same value as this
584 // one, group them.
585 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
586 if (Ops[j] == S) { // Found a duplicate.
587 // Move it to immediately after i'th element.
588 std::swap(Ops[i+1], Ops[j]);
589 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000590 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000591 }
592 }
593 }
594}
595
Chris Lattner53e677a2004-04-02 20:23:17 +0000596
Chris Lattner53e677a2004-04-02 20:23:17 +0000597
598//===----------------------------------------------------------------------===//
599// Simple SCEV method implementations
600//===----------------------------------------------------------------------===//
601
Eli Friedmanb42a6262008-08-04 23:49:06 +0000602/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000603/// Assume, K > 0.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000604static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedmanb42a6262008-08-04 23:49:06 +0000605 ScalarEvolution &SE,
Dan Gohman2d1be872009-04-16 03:18:22 +0000606 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000607 // Handle the simplest case efficiently.
608 if (K == 1)
609 return SE.getTruncateOrZeroExtend(It, ResultTy);
610
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000611 // We are using the following formula for BC(It, K):
612 //
613 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
614 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000615 // Suppose, W is the bitwidth of the return value. We must be prepared for
616 // overflow. Hence, we must assure that the result of our computation is
617 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
618 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000619 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000620 // However, this code doesn't use exactly that formula; the formula it uses
621 // is something like the following, where T is the number of factors of 2 in
622 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
623 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000624 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000625 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000626 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000627 // This formula is trivially equivalent to the previous formula. However,
628 // this formula can be implemented much more efficiently. The trick is that
629 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
630 // arithmetic. To do exact division in modular arithmetic, all we have
631 // to do is multiply by the inverse. Therefore, this step can be done at
632 // width W.
633 //
634 // The next issue is how to safely do the division by 2^T. The way this
635 // is done is by doing the multiplication step at a width of at least W + T
636 // bits. This way, the bottom W+T bits of the product are accurate. Then,
637 // when we perform the division by 2^T (which is equivalent to a right shift
638 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
639 // truncated out after the division by 2^T.
640 //
641 // In comparison to just directly using the first formula, this technique
642 // is much more efficient; using the first formula requires W * K bits,
643 // but this formula less than W + K bits. Also, the first formula requires
644 // a division step, whereas this formula only requires multiplies and shifts.
645 //
646 // It doesn't matter whether the subtraction step is done in the calculation
647 // width or the input iteration count's width; if the subtraction overflows,
648 // the result must be zero anyway. We prefer here to do it in the width of
649 // the induction variable because it helps a lot for certain cases; CodeGen
650 // isn't smart enough to ignore the overflow, which leads to much less
651 // efficient code if the width of the subtraction is wider than the native
652 // register width.
653 //
654 // (It's possible to not widen at all by pulling out factors of 2 before
655 // the multiplication; for example, K=2 can be calculated as
656 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
657 // extra arithmetic, so it's not an obvious win, and it gets
658 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000659
Eli Friedmanb42a6262008-08-04 23:49:06 +0000660 // Protection from insane SCEVs; this bound is conservative,
661 // but it probably doesn't matter.
662 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000663 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000664
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000665 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000666
Eli Friedmanb42a6262008-08-04 23:49:06 +0000667 // Calculate K! / 2^T and T; we divide out the factors of two before
668 // multiplying for calculating K! / 2^T to avoid overflow.
669 // Other overflow doesn't matter because we only care about the bottom
670 // W bits of the result.
671 APInt OddFactorial(W, 1);
672 unsigned T = 1;
673 for (unsigned i = 3; i <= K; ++i) {
674 APInt Mult(W, i);
675 unsigned TwoFactors = Mult.countTrailingZeros();
676 T += TwoFactors;
677 Mult = Mult.lshr(TwoFactors);
678 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000679 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000680
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000682 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683
684 // Calcuate 2^T, at width T+W.
685 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
686
687 // Calculate the multiplicative inverse of K! / 2^T;
688 // this multiplication factor will perform the exact division by
689 // K! / 2^T.
690 APInt Mod = APInt::getSignedMinValue(W+1);
691 APInt MultiplyFactor = OddFactorial.zext(W+1);
692 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
693 MultiplyFactor = MultiplyFactor.trunc(W);
694
695 // Calculate the product, at width T+W
696 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
697 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
698 for (unsigned i = 1; i != K; ++i) {
699 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
700 Dividend = SE.getMulExpr(Dividend,
701 SE.getTruncateOrZeroExtend(S, CalculationTy));
702 }
703
704 // Divide by 2^T
705 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
706
707 // Truncate the result, and divide by K! / 2^T.
708
709 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
710 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000711}
712
Chris Lattner53e677a2004-04-02 20:23:17 +0000713/// evaluateAtIteration - Return the value of this chain of recurrences at
714/// the specified iteration number. We can evaluate this recurrence by
715/// multiplying each element in the chain by the binomial coefficient
716/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
717///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000718/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000719///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000720/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000721///
Dan Gohman246b2562007-10-22 18:31:58 +0000722SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
723 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000724 SCEVHandle Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000726 // The computation is correct in the face of overflow provided that the
727 // multiplication is performed _after_ the evaluation of the binomial
728 // coefficient.
Dan Gohman2d1be872009-04-16 03:18:22 +0000729 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000730 if (isa<SCEVCouldNotCompute>(Coeff))
731 return Coeff;
732
733 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000734 }
735 return Result;
736}
737
Chris Lattner53e677a2004-04-02 20:23:17 +0000738//===----------------------------------------------------------------------===//
739// SCEV Expression folder implementations
740//===----------------------------------------------------------------------===//
741
Dan Gohman99243b32009-05-01 16:44:56 +0000742SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
743 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000744 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000745 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000746 assert(isSCEVable(Ty) &&
747 "This is not a conversion to a SCEVable type!");
748 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000749
Dan Gohman622ed672009-05-04 22:02:23 +0000750 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000751 return getUnknown(
Reid Spencer315d0552006-12-05 22:39:58 +0000752 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000753
Dan Gohman20900ca2009-04-22 16:20:48 +0000754 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000755 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000756 return getTruncateExpr(ST->getOperand(), Ty);
757
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000758 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000759 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000760 return getTruncateOrSignExtend(SS->getOperand(), Ty);
761
762 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000763 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000764 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
765
Chris Lattner53e677a2004-04-02 20:23:17 +0000766 // If the input value is a chrec scev made out of constants, truncate
767 // all of the constants.
Dan Gohman622ed672009-05-04 22:02:23 +0000768 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000769 std::vector<SCEVHandle> Operands;
770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000771 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
772 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000773 }
774
Chris Lattnerb3364092006-10-04 21:49:37 +0000775 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000776 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
777 return Result;
778}
779
Dan Gohman8170a682009-04-16 19:25:55 +0000780SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
781 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000782 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000783 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000784 assert(isSCEVable(Ty) &&
785 "This is not a conversion to a SCEVable type!");
786 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000787
Dan Gohman622ed672009-05-04 22:02:23 +0000788 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000789 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000790 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
791 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
792 return getUnknown(C);
793 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000794
Dan Gohman20900ca2009-04-22 16:20:48 +0000795 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000796 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000797 return getZeroExtendExpr(SZ->getOperand(), Ty);
798
Dan Gohman01ecca22009-04-27 20:16:15 +0000799 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000800 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000801 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000802 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000804 if (AR->isAffine()) {
805 // Check whether the backedge-taken count is SCEVCouldNotCompute.
806 // Note that this serves two purposes: It filters out loops that are
807 // simply not analyzable, and it covers the case where this code is
808 // being called from within backedge-taken count analysis, such that
809 // attempting to ask for the backedge-taken count would likely result
810 // in infinite recursion. In the later case, the analysis code will
811 // cope with a conservative value, and it will take care to purge
812 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000813 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
814 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000815 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000816 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000817 SCEVHandle Start = AR->getStart();
818 SCEVHandle Step = AR->getStepRecurrence(*this);
819
820 // Check whether the backedge-taken count can be losslessly casted to
821 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000822 SCEVHandle CastedMaxBECount =
823 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman5183cae2009-05-18 15:58:39 +0000824 SCEVHandle RecastedMaxBECount =
825 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
826 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000827 const Type *WideTy =
828 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000829 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000830 SCEVHandle ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000831 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000832 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000833 SCEVHandle Add = getAddExpr(Start, ZMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000834 SCEVHandle OperandExtendedAdd =
835 getAddExpr(getZeroExtendExpr(Start, WideTy),
836 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837 getZeroExtendExpr(Step, WideTy)));
838 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000839 // Return the expression with the addrec on the outside.
840 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841 getZeroExtendExpr(Step, Ty),
842 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000843
844 // Similar to above, only this time treat the step value as signed.
845 // This covers loops that count down.
846 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000847 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000848 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000849 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000850 OperandExtendedAdd =
851 getAddExpr(getZeroExtendExpr(Start, WideTy),
852 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853 getSignExtendExpr(Step, WideTy)));
854 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000855 // Return the expression with the addrec on the outside.
856 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857 getSignExtendExpr(Step, Ty),
858 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000859 }
860 }
861 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000862
Chris Lattnerb3364092006-10-04 21:49:37 +0000863 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000864 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
865 return Result;
866}
867
Dan Gohman01ecca22009-04-27 20:16:15 +0000868SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
869 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000870 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000871 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000872 assert(isSCEVable(Ty) &&
873 "This is not a conversion to a SCEVable type!");
874 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000875
Dan Gohman622ed672009-05-04 22:02:23 +0000876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000877 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000878 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
879 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
880 return getUnknown(C);
881 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000882
Dan Gohman20900ca2009-04-22 16:20:48 +0000883 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000884 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000885 return getSignExtendExpr(SS->getOperand(), Ty);
886
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000888 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000889 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000890 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000892 if (AR->isAffine()) {
893 // Check whether the backedge-taken count is SCEVCouldNotCompute.
894 // Note that this serves two purposes: It filters out loops that are
895 // simply not analyzable, and it covers the case where this code is
896 // being called from within backedge-taken count analysis, such that
897 // attempting to ask for the backedge-taken count would likely result
898 // in infinite recursion. In the later case, the analysis code will
899 // cope with a conservative value, and it will take care to purge
900 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000901 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
902 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000903 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000904 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000905 SCEVHandle Start = AR->getStart();
906 SCEVHandle Step = AR->getStepRecurrence(*this);
907
908 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000909 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000910 SCEVHandle CastedMaxBECount =
911 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman5183cae2009-05-18 15:58:39 +0000912 SCEVHandle RecastedMaxBECount =
913 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
914 if (MaxBECount == RecastedMaxBECount) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000915 const Type *WideTy =
916 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000917 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000918 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000919 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000920 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000921 SCEVHandle Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000922 SCEVHandle OperandExtendedAdd =
923 getAddExpr(getSignExtendExpr(Start, WideTy),
924 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
925 getSignExtendExpr(Step, WideTy)));
926 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000927 // Return the expression with the addrec on the outside.
928 return getAddRecExpr(getSignExtendExpr(Start, Ty),
929 getSignExtendExpr(Step, Ty),
930 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 }
932 }
933 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000934
935 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
936 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
937 return Result;
938}
939
Dan Gohman6c0866c2009-05-24 23:45:28 +0000940/// getAddExpr - Get a canonical add expression, or something simpler if
941/// possible.
Dan Gohman246b2562007-10-22 18:31:58 +0000942SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000943 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000944 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +0000945#ifndef NDEBUG
946 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
947 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
948 getEffectiveSCEVType(Ops[0]->getType()) &&
949 "SCEVAddExpr operand types don't match!");
950#endif
Chris Lattner53e677a2004-04-02 20:23:17 +0000951
952 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +0000953 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +0000954
955 // If there are any constants, fold them together.
956 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +0000957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000958 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000959 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +0000960 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000961 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +0000962 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
963 RHSC->getValue()->getValue());
964 Ops[0] = getConstant(Fold);
965 Ops.erase(Ops.begin()+1); // Erase the folded element
966 if (Ops.size() == 1) return Ops[0];
967 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000968 }
969
970 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +0000971 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000972 Ops.erase(Ops.begin());
973 --Idx;
974 }
975 }
976
Chris Lattner627018b2004-04-07 16:16:11 +0000977 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000978
Chris Lattner53e677a2004-04-02 20:23:17 +0000979 // Okay, check to see if the same value occurs in the operand list twice. If
980 // so, merge them together into an multiply expression. Since we sorted the
981 // list, these values are required to be adjacent.
982 const Type *Ty = Ops[0]->getType();
983 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
984 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
985 // Found a match, merge the two values into a multiply, and add any
986 // remaining values to the result.
Dan Gohman246b2562007-10-22 18:31:58 +0000987 SCEVHandle Two = getIntegerSCEV(2, Ty);
988 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +0000989 if (Ops.size() == 2)
990 return Mul;
991 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
992 Ops.push_back(Mul);
Dan Gohman246b2562007-10-22 18:31:58 +0000993 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000994 }
995
Dan Gohman728c7f32009-05-08 21:03:19 +0000996 // Check for truncates. If all the operands are truncated from the same
997 // type, see if factoring out the truncate would permit the result to be
998 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
999 // if the contents of the resulting outer trunc fold to something simple.
1000 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1001 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1002 const Type *DstType = Trunc->getType();
1003 const Type *SrcType = Trunc->getOperand()->getType();
1004 std::vector<SCEVHandle> LargeOps;
1005 bool Ok = true;
1006 // Check all the operands to see if they can be represented in the
1007 // source type of the truncate.
1008 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1009 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1010 if (T->getOperand()->getType() != SrcType) {
1011 Ok = false;
1012 break;
1013 }
1014 LargeOps.push_back(T->getOperand());
1015 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1016 // This could be either sign or zero extension, but sign extension
1017 // is much more likely to be foldable here.
1018 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1019 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1020 std::vector<SCEVHandle> LargeMulOps;
1021 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1022 if (const SCEVTruncateExpr *T =
1023 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1024 if (T->getOperand()->getType() != SrcType) {
1025 Ok = false;
1026 break;
1027 }
1028 LargeMulOps.push_back(T->getOperand());
1029 } else if (const SCEVConstant *C =
1030 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1031 // This could be either sign or zero extension, but sign extension
1032 // is much more likely to be foldable here.
1033 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1034 } else {
1035 Ok = false;
1036 break;
1037 }
1038 }
1039 if (Ok)
1040 LargeOps.push_back(getMulExpr(LargeMulOps));
1041 } else {
1042 Ok = false;
1043 break;
1044 }
1045 }
1046 if (Ok) {
1047 // Evaluate the expression in the larger type.
1048 SCEVHandle Fold = getAddExpr(LargeOps);
1049 // If it folds to something simple, use it. Otherwise, don't.
1050 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1051 return getTruncateExpr(Fold, DstType);
1052 }
1053 }
1054
1055 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001056 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1057 ++Idx;
1058
1059 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001060 if (Idx < Ops.size()) {
1061 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001062 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001063 // If we have an add, expand the add operands onto the end of the operands
1064 // list.
1065 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1066 Ops.erase(Ops.begin()+Idx);
1067 DeletedAdd = true;
1068 }
1069
1070 // If we deleted at least one add, we added operands to the end of the list,
1071 // and they are not necessarily sorted. Recurse to resort and resimplify
1072 // any operands we just aquired.
1073 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001074 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001075 }
1076
1077 // Skip over the add expression until we get to a multiply.
1078 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1079 ++Idx;
1080
1081 // If we are adding something to a multiply expression, make sure the
1082 // something is not already an operand of the multiply. If so, merge it into
1083 // the multiply.
1084 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001085 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001086 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001087 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001088 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +00001089 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001090 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1091 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1092 if (Mul->getNumOperands() != 2) {
1093 // If the multiply has more than two operands, we must get the
1094 // Y*Z term.
1095 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1096 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001097 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001098 }
Dan Gohman246b2562007-10-22 18:31:58 +00001099 SCEVHandle One = getIntegerSCEV(1, Ty);
1100 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1101 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001102 if (Ops.size() == 2) return OuterMul;
1103 if (AddOp < Idx) {
1104 Ops.erase(Ops.begin()+AddOp);
1105 Ops.erase(Ops.begin()+Idx-1);
1106 } else {
1107 Ops.erase(Ops.begin()+Idx);
1108 Ops.erase(Ops.begin()+AddOp-1);
1109 }
1110 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001111 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001112 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001113
Chris Lattner53e677a2004-04-02 20:23:17 +00001114 // Check this multiply against other multiplies being added together.
1115 for (unsigned OtherMulIdx = Idx+1;
1116 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1117 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001118 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001119 // If MulOp occurs in OtherMul, we can fold the two multiplies
1120 // together.
1121 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1122 OMulOp != e; ++OMulOp)
1123 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1124 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1125 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1126 if (Mul->getNumOperands() != 2) {
1127 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1128 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001129 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001130 }
1131 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1132 if (OtherMul->getNumOperands() != 2) {
1133 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1134 OtherMul->op_end());
1135 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001136 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001137 }
Dan Gohman246b2562007-10-22 18:31:58 +00001138 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1139 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001140 if (Ops.size() == 2) return OuterMul;
1141 Ops.erase(Ops.begin()+Idx);
1142 Ops.erase(Ops.begin()+OtherMulIdx-1);
1143 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001144 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001145 }
1146 }
1147 }
1148 }
1149
1150 // If there are any add recurrences in the operands list, see if any other
1151 // added values are loop invariant. If so, we can fold them into the
1152 // recurrence.
1153 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1154 ++Idx;
1155
1156 // Scan over all recurrences, trying to fold loop invariants into them.
1157 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1158 // Scan all of the other operands to this add and add them to the vector if
1159 // they are loop invariant w.r.t. the recurrence.
1160 std::vector<SCEVHandle> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001161 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001162 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1163 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1164 LIOps.push_back(Ops[i]);
1165 Ops.erase(Ops.begin()+i);
1166 --i; --e;
1167 }
1168
1169 // If we found some loop invariants, fold them into the recurrence.
1170 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001171 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001172 LIOps.push_back(AddRec->getStart());
1173
1174 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001175 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001176
Dan Gohman246b2562007-10-22 18:31:58 +00001177 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001178 // If all of the other operands were loop invariant, we are done.
1179 if (Ops.size() == 1) return NewRec;
1180
1181 // Otherwise, add the folded AddRec by the non-liv parts.
1182 for (unsigned i = 0;; ++i)
1183 if (Ops[i] == AddRec) {
1184 Ops[i] = NewRec;
1185 break;
1186 }
Dan Gohman246b2562007-10-22 18:31:58 +00001187 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001188 }
1189
1190 // Okay, if there weren't any loop invariants to be folded, check to see if
1191 // there are multiple AddRec's with the same loop induction variable being
1192 // added together. If so, we can fold them.
1193 for (unsigned OtherIdx = Idx+1;
1194 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1195 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001196 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001197 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1198 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1199 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1200 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1201 if (i >= NewOps.size()) {
1202 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1203 OtherAddRec->op_end());
1204 break;
1205 }
Dan Gohman246b2562007-10-22 18:31:58 +00001206 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001207 }
Dan Gohman246b2562007-10-22 18:31:58 +00001208 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001209
1210 if (Ops.size() == 2) return NewAddRec;
1211
1212 Ops.erase(Ops.begin()+Idx);
1213 Ops.erase(Ops.begin()+OtherIdx-1);
1214 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001215 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001216 }
1217 }
1218
1219 // Otherwise couldn't fold anything into this recurrence. Move onto the
1220 // next one.
1221 }
1222
1223 // Okay, it looks like we really DO need an add expr. Check to see if we
1224 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001225 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001226 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1227 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +00001228 if (Result == 0) Result = new SCEVAddExpr(Ops);
1229 return Result;
1230}
1231
1232
Dan Gohman6c0866c2009-05-24 23:45:28 +00001233/// getMulExpr - Get a canonical multiply expression, or something simpler if
1234/// possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001235SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001236 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001237#ifndef NDEBUG
1238 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1239 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1240 getEffectiveSCEVType(Ops[0]->getType()) &&
1241 "SCEVMulExpr operand types don't match!");
1242#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001243
1244 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001245 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001246
1247 // If there are any constants, fold them together.
1248 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001250
1251 // C1*(C2+V) -> C1*C2 + C1*V
1252 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001253 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001254 if (Add->getNumOperands() == 2 &&
1255 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001256 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1257 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001258
1259
1260 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001261 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001262 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001263 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1264 RHSC->getValue()->getValue());
1265 Ops[0] = getConstant(Fold);
1266 Ops.erase(Ops.begin()+1); // Erase the folded element
1267 if (Ops.size() == 1) return Ops[0];
1268 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001269 }
1270
1271 // If we are left with a constant one being multiplied, strip it off.
1272 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1273 Ops.erase(Ops.begin());
1274 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001275 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001276 // If we have a multiply of zero, it will always be zero.
1277 return Ops[0];
1278 }
1279 }
1280
1281 // Skip over the add expression until we get to a multiply.
1282 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1283 ++Idx;
1284
1285 if (Ops.size() == 1)
1286 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001287
Chris Lattner53e677a2004-04-02 20:23:17 +00001288 // If there are mul operands inline them all into this expression.
1289 if (Idx < Ops.size()) {
1290 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001291 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001292 // If we have an mul, expand the mul operands onto the end of the operands
1293 // list.
1294 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1295 Ops.erase(Ops.begin()+Idx);
1296 DeletedMul = true;
1297 }
1298
1299 // If we deleted at least one mul, we added operands to the end of the list,
1300 // and they are not necessarily sorted. Recurse to resort and resimplify
1301 // any operands we just aquired.
1302 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001303 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 }
1305
1306 // If there are any add recurrences in the operands list, see if any other
1307 // added values are loop invariant. If so, we can fold them into the
1308 // recurrence.
1309 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1310 ++Idx;
1311
1312 // Scan over all recurrences, trying to fold loop invariants into them.
1313 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1314 // Scan all of the other operands to this mul and add them to the vector if
1315 // they are loop invariant w.r.t. the recurrence.
1316 std::vector<SCEVHandle> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001317 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001318 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1319 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1320 LIOps.push_back(Ops[i]);
1321 Ops.erase(Ops.begin()+i);
1322 --i; --e;
1323 }
1324
1325 // If we found some loop invariants, fold them into the recurrence.
1326 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001327 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001328 std::vector<SCEVHandle> NewOps;
1329 NewOps.reserve(AddRec->getNumOperands());
1330 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001331 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001332 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001333 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 } else {
1335 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1336 std::vector<SCEVHandle> MulOps(LIOps);
1337 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001338 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001339 }
1340 }
1341
Dan Gohman246b2562007-10-22 18:31:58 +00001342 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001343
1344 // If all of the other operands were loop invariant, we are done.
1345 if (Ops.size() == 1) return NewRec;
1346
1347 // Otherwise, multiply the folded AddRec by the non-liv parts.
1348 for (unsigned i = 0;; ++i)
1349 if (Ops[i] == AddRec) {
1350 Ops[i] = NewRec;
1351 break;
1352 }
Dan Gohman246b2562007-10-22 18:31:58 +00001353 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001354 }
1355
1356 // Okay, if there weren't any loop invariants to be folded, check to see if
1357 // there are multiple AddRec's with the same loop induction variable being
1358 // multiplied together. If so, we can fold them.
1359 for (unsigned OtherIdx = Idx+1;
1360 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1361 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001362 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1364 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001365 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman246b2562007-10-22 18:31:58 +00001366 SCEVHandle NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001367 G->getStart());
Dan Gohman246b2562007-10-22 18:31:58 +00001368 SCEVHandle B = F->getStepRecurrence(*this);
1369 SCEVHandle D = G->getStepRecurrence(*this);
1370 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1371 getMulExpr(G, B),
1372 getMulExpr(B, D));
1373 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1374 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001375 if (Ops.size() == 2) return NewAddRec;
1376
1377 Ops.erase(Ops.begin()+Idx);
1378 Ops.erase(Ops.begin()+OtherIdx-1);
1379 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001380 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001381 }
1382 }
1383
1384 // Otherwise couldn't fold anything into this recurrence. Move onto the
1385 // next one.
1386 }
1387
1388 // Okay, it looks like we really DO need an mul expr. Check to see if we
1389 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001390 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001391 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1392 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +00001393 if (Result == 0)
1394 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001395 return Result;
1396}
1397
Dan Gohman6c0866c2009-05-24 23:45:28 +00001398/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1399/// possible.
Dan Gohmanbf2176a2009-05-04 22:23:18 +00001400SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1401 const SCEVHandle &RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001402 assert(getEffectiveSCEVType(LHS->getType()) ==
1403 getEffectiveSCEVType(RHS->getType()) &&
1404 "SCEVUDivExpr operand types don't match!");
1405
Dan Gohman622ed672009-05-04 22:02:23 +00001406 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001407 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky789558d2009-01-13 09:18:58 +00001408 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001409 if (RHSC->isZero())
1410 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001411
Dan Gohman185cf032009-05-08 20:18:49 +00001412 // Determine if the division can be folded into the operands of
1413 // its operands.
1414 // TODO: Generalize this to non-constants by using known-bits information.
1415 const Type *Ty = LHS->getType();
1416 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1417 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1418 // For non-power-of-two values, effectively round the value up to the
1419 // nearest power of two.
1420 if (!RHSC->getValue()->getValue().isPowerOf2())
1421 ++MaxShiftAmt;
1422 const IntegerType *ExtTy =
1423 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1424 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1425 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1426 if (const SCEVConstant *Step =
1427 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1428 if (!Step->getValue()->getValue()
1429 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001430 getZeroExtendExpr(AR, ExtTy) ==
1431 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1432 getZeroExtendExpr(Step, ExtTy),
1433 AR->getLoop())) {
Dan Gohman185cf032009-05-08 20:18:49 +00001434 std::vector<SCEVHandle> Operands;
1435 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1436 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1437 return getAddRecExpr(Operands, AR->getLoop());
1438 }
1439 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001440 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1441 std::vector<SCEVHandle> Operands;
1442 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1443 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1444 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001445 // Find an operand that's safely divisible.
1446 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1447 SCEVHandle Op = M->getOperand(i);
1448 SCEVHandle Div = getUDivExpr(Op, RHSC);
1449 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohmanb0285932009-05-08 23:11:16 +00001450 Operands = M->getOperands();
Dan Gohman185cf032009-05-08 20:18:49 +00001451 Operands[i] = Div;
1452 return getMulExpr(Operands);
1453 }
1454 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001455 }
Dan Gohman185cf032009-05-08 20:18:49 +00001456 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001457 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1458 std::vector<SCEVHandle> Operands;
1459 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1460 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1461 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1462 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001463 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1464 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1465 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1466 break;
1467 Operands.push_back(Op);
1468 }
1469 if (Operands.size() == A->getNumOperands())
1470 return getAddExpr(Operands);
1471 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001472 }
Dan Gohman185cf032009-05-08 20:18:49 +00001473
1474 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 Constant *LHSCV = LHSC->getValue();
1477 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001478 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +00001479 }
1480 }
1481
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001482 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1483 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 return Result;
1485}
1486
1487
Dan Gohman6c0866c2009-05-24 23:45:28 +00001488/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1489/// Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001490SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 const SCEVHandle &Step, const Loop *L) {
1492 std::vector<SCEVHandle> Operands;
1493 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001494 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 if (StepChrec->getLoop() == L) {
1496 Operands.insert(Operands.end(), StepChrec->op_begin(),
1497 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001498 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 }
1500
1501 Operands.push_back(Step);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503}
1504
Dan Gohman6c0866c2009-05-24 23:45:28 +00001505/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1506/// Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001507SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001508 const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001510#ifndef NDEBUG
1511 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1512 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1513 getEffectiveSCEVType(Operands[0]->getType()) &&
1514 "SCEVAddRecExpr operand types don't match!");
1515#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001516
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001517 if (Operands.back()->isZero()) {
1518 Operands.pop_back();
Dan Gohman8dae1382008-09-14 17:21:12 +00001519 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001520 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001521
Dan Gohmand9cc7492008-08-08 18:33:12 +00001522 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001523 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmand9cc7492008-08-08 18:33:12 +00001524 const Loop* NestedLoop = NestedAR->getLoop();
1525 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1526 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1527 NestedAR->op_end());
1528 SCEVHandle NestedARHandle(NestedAR);
1529 Operands[0] = NestedAR->getStart();
1530 NestedOperands[0] = getAddRecExpr(Operands, L);
1531 return getAddRecExpr(NestedOperands, NestedLoop);
1532 }
1533 }
1534
Dan Gohman35738ac2009-05-04 22:30:44 +00001535 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1536 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1538 return Result;
1539}
1540
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001541SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1542 const SCEVHandle &RHS) {
1543 std::vector<SCEVHandle> Ops;
1544 Ops.push_back(LHS);
1545 Ops.push_back(RHS);
1546 return getSMaxExpr(Ops);
1547}
1548
1549SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1550 assert(!Ops.empty() && "Cannot get empty smax!");
1551 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001552#ifndef NDEBUG
1553 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1554 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1555 getEffectiveSCEVType(Ops[0]->getType()) &&
1556 "SCEVSMaxExpr operand types don't match!");
1557#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001558
1559 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001560 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001561
1562 // If there are any constants, fold them together.
1563 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001564 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001565 ++Idx;
1566 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001567 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001568 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001569 ConstantInt *Fold = ConstantInt::get(
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001570 APIntOps::smax(LHSC->getValue()->getValue(),
1571 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001572 Ops[0] = getConstant(Fold);
1573 Ops.erase(Ops.begin()+1); // Erase the folded element
1574 if (Ops.size() == 1) return Ops[0];
1575 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001576 }
1577
1578 // If we are left with a constant -inf, strip it off.
1579 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1580 Ops.erase(Ops.begin());
1581 --Idx;
1582 }
1583 }
1584
1585 if (Ops.size() == 1) return Ops[0];
1586
1587 // Find the first SMax
1588 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1589 ++Idx;
1590
1591 // Check to see if one of the operands is an SMax. If so, expand its operands
1592 // onto our operand list, and recurse to simplify.
1593 if (Idx < Ops.size()) {
1594 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001595 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001596 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1597 Ops.erase(Ops.begin()+Idx);
1598 DeletedSMax = true;
1599 }
1600
1601 if (DeletedSMax)
1602 return getSMaxExpr(Ops);
1603 }
1604
1605 // Okay, check to see if the same value occurs in the operand list twice. If
1606 // so, delete one. Since we sorted the list, these values are required to
1607 // be adjacent.
1608 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1609 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1610 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1611 --i; --e;
1612 }
1613
1614 if (Ops.size() == 1) return Ops[0];
1615
1616 assert(!Ops.empty() && "Reduced smax down to nothing!");
1617
Nick Lewycky3e630762008-02-20 06:48:22 +00001618 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001619 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001620 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001621 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1622 SCEVOps)];
1623 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1624 return Result;
1625}
1626
Nick Lewycky3e630762008-02-20 06:48:22 +00001627SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1628 const SCEVHandle &RHS) {
1629 std::vector<SCEVHandle> Ops;
1630 Ops.push_back(LHS);
1631 Ops.push_back(RHS);
1632 return getUMaxExpr(Ops);
1633}
1634
1635SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1636 assert(!Ops.empty() && "Cannot get empty umax!");
1637 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001638#ifndef NDEBUG
1639 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1640 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1641 getEffectiveSCEVType(Ops[0]->getType()) &&
1642 "SCEVUMaxExpr operand types don't match!");
1643#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00001644
1645 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001646 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00001647
1648 // If there are any constants, fold them together.
1649 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001650 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001651 ++Idx;
1652 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001653 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001654 // We found two constants, fold them together!
1655 ConstantInt *Fold = ConstantInt::get(
1656 APIntOps::umax(LHSC->getValue()->getValue(),
1657 RHSC->getValue()->getValue()));
1658 Ops[0] = getConstant(Fold);
1659 Ops.erase(Ops.begin()+1); // Erase the folded element
1660 if (Ops.size() == 1) return Ops[0];
1661 LHSC = cast<SCEVConstant>(Ops[0]);
1662 }
1663
1664 // If we are left with a constant zero, strip it off.
1665 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1666 Ops.erase(Ops.begin());
1667 --Idx;
1668 }
1669 }
1670
1671 if (Ops.size() == 1) return Ops[0];
1672
1673 // Find the first UMax
1674 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1675 ++Idx;
1676
1677 // Check to see if one of the operands is a UMax. If so, expand its operands
1678 // onto our operand list, and recurse to simplify.
1679 if (Idx < Ops.size()) {
1680 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001681 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001682 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1683 Ops.erase(Ops.begin()+Idx);
1684 DeletedUMax = true;
1685 }
1686
1687 if (DeletedUMax)
1688 return getUMaxExpr(Ops);
1689 }
1690
1691 // Okay, check to see if the same value occurs in the operand list twice. If
1692 // so, delete one. Since we sorted the list, these values are required to
1693 // be adjacent.
1694 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1695 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1696 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1697 --i; --e;
1698 }
1699
1700 if (Ops.size() == 1) return Ops[0];
1701
1702 assert(!Ops.empty() && "Reduced umax down to nothing!");
1703
1704 // Okay, it looks like we really DO need a umax expr. Check to see if we
1705 // already have one, otherwise create a new one.
Dan Gohman35738ac2009-05-04 22:30:44 +00001706 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky3e630762008-02-20 06:48:22 +00001707 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1708 SCEVOps)];
1709 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1710 return Result;
1711}
1712
Dan Gohman246b2562007-10-22 18:31:58 +00001713SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001714 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman246b2562007-10-22 18:31:58 +00001715 return getConstant(CI);
Dan Gohman2d1be872009-04-16 03:18:22 +00001716 if (isa<ConstantPointerNull>(V))
1717 return getIntegerSCEV(0, V->getType());
Chris Lattnerb3364092006-10-04 21:49:37 +00001718 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001719 if (Result == 0) Result = new SCEVUnknown(V);
1720 return Result;
1721}
1722
Chris Lattner53e677a2004-04-02 20:23:17 +00001723//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001724// Basic SCEV Analysis and PHI Idiom Recognition Code
1725//
1726
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001727/// isSCEVable - Test if values of the given type are analyzable within
1728/// the SCEV framework. This primarily includes integer types, and it
1729/// can optionally include pointer types if the ScalarEvolution class
1730/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001731bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001732 // Integers are always SCEVable.
1733 if (Ty->isInteger())
1734 return true;
1735
1736 // Pointers are SCEVable if TargetData information is available
1737 // to provide pointer size information.
1738 if (isa<PointerType>(Ty))
1739 return TD != NULL;
1740
1741 // Otherwise it's not SCEVable.
1742 return false;
1743}
1744
1745/// getTypeSizeInBits - Return the size in bits of the specified type,
1746/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001747uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001748 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1749
1750 // If we have a TargetData, use it!
1751 if (TD)
1752 return TD->getTypeSizeInBits(Ty);
1753
1754 // Otherwise, we support only integer types.
1755 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1756 return Ty->getPrimitiveSizeInBits();
1757}
1758
1759/// getEffectiveSCEVType - Return a type with the same bitwidth as
1760/// the given type and which represents how SCEV will treat the given
1761/// type, for which isSCEVable must return true. For pointer types,
1762/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001763const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001764 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1765
1766 if (Ty->isInteger())
1767 return Ty;
1768
1769 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1770 return TD->getIntPtrType();
Dan Gohman2d1be872009-04-16 03:18:22 +00001771}
Chris Lattner53e677a2004-04-02 20:23:17 +00001772
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001773SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00001774 return UnknownValue;
1775}
1776
Dan Gohman92fa56e2009-05-04 22:20:30 +00001777/// hasSCEV - Return true if the SCEV for this value has already been
Torok Edwine3d12852009-05-01 08:33:47 +00001778/// computed.
1779bool ScalarEvolution::hasSCEV(Value *V) const {
1780 return Scalars.count(V);
1781}
1782
Chris Lattner53e677a2004-04-02 20:23:17 +00001783/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1784/// expression and create a new one.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001785SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001786 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00001787
Dan Gohman35738ac2009-05-04 22:30:44 +00001788 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 if (I != Scalars.end()) return I->second;
1790 SCEVHandle S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00001791 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 return S;
1793}
1794
Dan Gohman2d1be872009-04-16 03:18:22 +00001795/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1796/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001797SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1798 Ty = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001799 Constant *C;
1800 if (Val == 0)
1801 C = Constant::getNullValue(Ty);
1802 else if (Ty->isFloatingPoint())
1803 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1804 APFloat::IEEEdouble, Val));
1805 else
1806 C = ConstantInt::get(Ty, Val);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001807 return getUnknown(C);
Dan Gohman2d1be872009-04-16 03:18:22 +00001808}
1809
1810/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1811///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001812SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00001813 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001814 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00001815
1816 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001817 Ty = getEffectiveSCEVType(Ty);
1818 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00001819}
1820
1821/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001822SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00001823 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001824 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00001825
1826 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001827 Ty = getEffectiveSCEVType(Ty);
1828 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman2d1be872009-04-16 03:18:22 +00001829 return getMinusSCEV(AllOnes, V);
1830}
1831
1832/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1833///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001834SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001835 const SCEVHandle &RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001836 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001837 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00001838}
1839
1840/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1841/// input value to the specified type. If the type must be extended, it is zero
1842/// extended.
1843SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001844ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001845 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001846 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001847 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1848 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00001849 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001850 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00001851 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001852 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001853 return getTruncateExpr(V, Ty);
1854 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001855}
1856
1857/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1858/// input value to the specified type. If the type must be extended, it is sign
1859/// extended.
1860SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001861ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001862 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001863 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001864 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1865 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00001866 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001867 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00001868 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001869 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001870 return getTruncateExpr(V, Ty);
1871 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001872}
1873
Dan Gohman467c4302009-05-13 03:46:30 +00001874/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1875/// input value to the specified type. If the type must be extended, it is zero
1876/// extended. The conversion must not be narrowing.
1877SCEVHandle
1878ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1879 const Type *SrcTy = V->getType();
1880 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1881 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1882 "Cannot noop or zero extend with non-integer arguments!");
1883 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1884 "getNoopOrZeroExtend cannot truncate!");
1885 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1886 return V; // No conversion
1887 return getZeroExtendExpr(V, Ty);
1888}
1889
1890/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1891/// input value to the specified type. If the type must be extended, it is sign
1892/// extended. The conversion must not be narrowing.
1893SCEVHandle
1894ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1895 const Type *SrcTy = V->getType();
1896 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1897 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1898 "Cannot noop or sign extend with non-integer arguments!");
1899 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1900 "getNoopOrSignExtend cannot truncate!");
1901 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1902 return V; // No conversion
1903 return getSignExtendExpr(V, Ty);
1904}
1905
1906/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1907/// input value to the specified type. The conversion must not be widening.
1908SCEVHandle
1909ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1910 const Type *SrcTy = V->getType();
1911 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1912 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1913 "Cannot truncate or noop with non-integer arguments!");
1914 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1915 "getTruncateOrNoop cannot extend!");
1916 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1917 return V; // No conversion
1918 return getTruncateExpr(V, Ty);
1919}
1920
Chris Lattner4dc534c2005-02-13 04:37:18 +00001921/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1922/// the specified instruction and replaces any references to the symbolic value
1923/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001924void ScalarEvolution::
Chris Lattner4dc534c2005-02-13 04:37:18 +00001925ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1926 const SCEVHandle &NewVal) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001927 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1928 Scalars.find(SCEVCallbackVH(I, this));
Chris Lattner4dc534c2005-02-13 04:37:18 +00001929 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001930
Chris Lattner4dc534c2005-02-13 04:37:18 +00001931 SCEVHandle NV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001932 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001933 if (NV == SI->second) return; // No change.
1934
1935 SI->second = NV; // Update the scalars map!
1936
1937 // Any instruction values that use this instruction might also need to be
1938 // updated!
1939 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1940 UI != E; ++UI)
1941 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1942}
Chris Lattner53e677a2004-04-02 20:23:17 +00001943
1944/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1945/// a loop header, making it a potential recurrence, or it doesn't.
1946///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001947SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001948 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001949 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 if (L->getHeader() == PN->getParent()) {
1951 // If it lives in the loop header, it has two incoming values, one
1952 // from outside the loop, and one from inside.
1953 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1954 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001955
Chris Lattner53e677a2004-04-02 20:23:17 +00001956 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001957 SCEVHandle SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 assert(Scalars.find(PN) == Scalars.end() &&
1959 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00001960 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00001961
1962 // Using this symbolic name for the PHI, analyze the value coming around
1963 // the back-edge.
1964 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1965
1966 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1967 // has a special value for the first iteration of the loop.
1968
1969 // If the value coming around the backedge is an add with the symbolic
1970 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00001971 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 // If there is a single occurrence of the symbolic value, replace it
1973 // with a recurrence.
1974 unsigned FoundIndex = Add->getNumOperands();
1975 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1976 if (Add->getOperand(i) == SymbolicName)
1977 if (FoundIndex == e) {
1978 FoundIndex = i;
1979 break;
1980 }
1981
1982 if (FoundIndex != Add->getNumOperands()) {
1983 // Create an add with everything but the specified operand.
1984 std::vector<SCEVHandle> Ops;
1985 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1986 if (i != FoundIndex)
1987 Ops.push_back(Add->getOperand(i));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001988 SCEVHandle Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001989
1990 // This is not a valid addrec if the step amount is varying each
1991 // loop iteration, but is not itself an addrec in this loop.
1992 if (Accum->isLoopInvariant(L) ||
1993 (isa<SCEVAddRecExpr>(Accum) &&
1994 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1995 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001996 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001997
1998 // Okay, for the entire analysis of this edge we assumed the PHI
1999 // to be symbolic. We now need to go back and update all of the
2000 // entries for the scalars that use the PHI (except for the PHI
2001 // itself) to use the new analyzed value instead of the "symbolic"
2002 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00002003 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002004 return PHISCEV;
2005 }
2006 }
Dan Gohman622ed672009-05-04 22:02:23 +00002007 } else if (const SCEVAddRecExpr *AddRec =
2008 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002009 // Otherwise, this could be a loop like this:
2010 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2011 // In this case, j = {1,+,1} and BEValue is j.
2012 // Because the other in-value of i (0) fits the evolution of BEValue
2013 // i really is an addrec evolution.
2014 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2015 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2016
2017 // If StartVal = j.start - j.stride, we can use StartVal as the
2018 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002019 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002020 AddRec->getOperand(1))) {
Chris Lattner97156e72006-04-26 18:34:07 +00002021 SCEVHandle PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002022 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002023
2024 // Okay, for the entire analysis of this edge we assumed the PHI
2025 // to be symbolic. We now need to go back and update all of the
2026 // entries for the scalars that use the PHI (except for the PHI
2027 // itself) to use the new analyzed value instead of the "symbolic"
2028 // value.
2029 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2030 return PHISCEV;
2031 }
2032 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002033 }
2034
2035 return SymbolicName;
2036 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002037
Chris Lattner53e677a2004-04-02 20:23:17 +00002038 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002039 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002040}
2041
Dan Gohman26466c02009-05-08 20:26:55 +00002042/// createNodeForGEP - Expand GEP instructions into add and multiply
2043/// operations. This allows them to be analyzed by regular SCEV code.
2044///
Dan Gohmanfb791602009-05-08 20:58:38 +00002045SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002046
2047 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmane810b0d2009-05-08 20:36:47 +00002048 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002049 // Don't attempt to analyze GEPs over unsized objects.
2050 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2051 return getUnknown(GEP);
Dan Gohman26466c02009-05-08 20:26:55 +00002052 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002053 gep_type_iterator GTI = gep_type_begin(GEP);
2054 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2055 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002056 I != E; ++I) {
2057 Value *Index = *I;
2058 // Compute the (potentially symbolic) offset in bytes for this index.
2059 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2060 // For a struct, add the member offset.
2061 const StructLayout &SL = *TD->getStructLayout(STy);
2062 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2063 uint64_t Offset = SL.getElementOffset(FieldNo);
2064 TotalOffset = getAddExpr(TotalOffset,
2065 getIntegerSCEV(Offset, IntPtrTy));
2066 } else {
2067 // For an array, add the element offset, explicitly scaled.
2068 SCEVHandle LocalOffset = getSCEV(Index);
2069 if (!isa<PointerType>(LocalOffset->getType()))
2070 // Getelementptr indicies are signed.
2071 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2072 IntPtrTy);
2073 LocalOffset =
2074 getMulExpr(LocalOffset,
Duncan Sands777d2302009-05-09 07:06:46 +00002075 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman26466c02009-05-08 20:26:55 +00002076 IntPtrTy));
2077 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2078 }
2079 }
2080 return getAddExpr(getSCEV(Base), TotalOffset);
2081}
2082
Nick Lewycky83bb0052007-11-22 07:59:40 +00002083/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2084/// guaranteed to end in (at every loop iteration). It is, at the same time,
2085/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2086/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002087static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohman622ed672009-05-04 22:02:23 +00002088 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002089 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002090
Dan Gohman622ed672009-05-04 22:02:23 +00002091 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002092 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2093 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002094
Dan Gohman622ed672009-05-04 22:02:23 +00002095 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002096 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2097 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohman42a58752009-05-12 01:23:18 +00002098 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002099 }
2100
Dan Gohman622ed672009-05-04 22:02:23 +00002101 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002102 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2103 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohman42a58752009-05-12 01:23:18 +00002104 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002105 }
2106
Dan Gohman622ed672009-05-04 22:02:23 +00002107 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002108 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002109 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky83bb0052007-11-22 07:59:40 +00002110 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002111 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002112 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002113 }
2114
Dan Gohman622ed672009-05-04 22:02:23 +00002115 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002116 // The result is the sum of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002117 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2118 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002119 for (unsigned i = 1, e = M->getNumOperands();
2120 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002121 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002122 BitWidth);
2123 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002124 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002125
Dan Gohman622ed672009-05-04 22:02:23 +00002126 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002127 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002128 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky83bb0052007-11-22 07:59:40 +00002129 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002130 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002131 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002132 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002133
Dan Gohman622ed672009-05-04 22:02:23 +00002134 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002135 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002136 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002137 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002138 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002139 return MinOpRes;
2140 }
2141
Dan Gohman622ed672009-05-04 22:02:23 +00002142 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002143 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002144 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky3e630762008-02-20 06:48:22 +00002145 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002146 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky3e630762008-02-20 06:48:22 +00002147 return MinOpRes;
2148 }
2149
Nick Lewycky789558d2009-01-13 09:18:58 +00002150 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky83bb0052007-11-22 07:59:40 +00002151 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002152}
Chris Lattner53e677a2004-04-02 20:23:17 +00002153
2154/// createSCEV - We know that there is no SCEV for the specified value.
2155/// Analyze the expression.
2156///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002157SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002158 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002159 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00002160
Dan Gohman6c459a22008-06-22 19:56:46 +00002161 unsigned Opcode = Instruction::UserOp1;
2162 if (Instruction *I = dyn_cast<Instruction>(V))
2163 Opcode = I->getOpcode();
2164 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2165 Opcode = CE->getOpcode();
2166 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002167 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00002168
Dan Gohman6c459a22008-06-22 19:56:46 +00002169 User *U = cast<User>(V);
2170 switch (Opcode) {
2171 case Instruction::Add:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002172 return getAddExpr(getSCEV(U->getOperand(0)),
2173 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002174 case Instruction::Mul:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002175 return getMulExpr(getSCEV(U->getOperand(0)),
2176 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002177 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002178 return getUDivExpr(getSCEV(U->getOperand(0)),
2179 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002180 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002181 return getMinusSCEV(getSCEV(U->getOperand(0)),
2182 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002183 case Instruction::And:
2184 // For an expression like x&255 that merely masks off the high bits,
2185 // use zext(trunc(x)) as the SCEV expression.
2186 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002187 if (CI->isNullValue())
2188 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00002189 if (CI->isAllOnesValue())
2190 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002191 const APInt &A = CI->getValue();
2192 unsigned Ones = A.countTrailingOnes();
2193 if (APIntOps::isMask(Ones, A))
2194 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002195 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2196 IntegerType::get(Ones)),
2197 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00002198 }
2199 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00002200 case Instruction::Or:
2201 // If the RHS of the Or is a constant, we may have something like:
2202 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2203 // optimizations will transparently handle this case.
2204 //
2205 // In order for this transformation to be safe, the LHS must be of the
2206 // form X*(2^n) and the Or constant must be less than 2^n.
2207 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2208 SCEVHandle LHS = getSCEV(U->getOperand(0));
2209 const APInt &CIVal = CI->getValue();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002210 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman6c459a22008-06-22 19:56:46 +00002211 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002212 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002213 }
Dan Gohman6c459a22008-06-22 19:56:46 +00002214 break;
2215 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00002216 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00002217 // If the RHS of the xor is a signbit, then this is just an add.
2218 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00002219 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002220 return getAddExpr(getSCEV(U->getOperand(0)),
2221 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00002222
2223 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00002224 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002225 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00002226
2227 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2228 // This is a variant of the check for xor with -1, and it handles
2229 // the case where instcombine has trimmed non-demanded bits out
2230 // of an xor with -1.
2231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2232 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2233 if (BO->getOpcode() == Instruction::And &&
2234 LCI->getValue() == CI->getValue())
2235 if (const SCEVZeroExtendExpr *Z =
2236 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0))))
2237 return getZeroExtendExpr(getNotSCEV(Z->getOperand()),
2238 U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002239 }
2240 break;
2241
2242 case Instruction::Shl:
2243 // Turn shift left of a constant amount into a multiply.
2244 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2245 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2246 Constant *X = ConstantInt::get(
2247 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002248 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00002249 }
2250 break;
2251
Nick Lewycky01eaf802008-07-07 06:15:49 +00002252 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00002253 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00002254 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2255 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2256 Constant *X = ConstantInt::get(
2257 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002258 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00002259 }
2260 break;
2261
Dan Gohman4ee29af2009-04-21 02:26:00 +00002262 case Instruction::AShr:
2263 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2264 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2265 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2266 if (L->getOpcode() == Instruction::Shl &&
2267 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002268 unsigned BitWidth = getTypeSizeInBits(U->getType());
2269 uint64_t Amt = BitWidth - CI->getZExtValue();
2270 if (Amt == BitWidth)
2271 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2272 if (Amt > BitWidth)
2273 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00002274 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002275 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002276 IntegerType::get(Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00002277 U->getType());
2278 }
2279 break;
2280
Dan Gohman6c459a22008-06-22 19:56:46 +00002281 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002282 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002283
2284 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002285 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002286
2287 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002288 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00002289
2290 case Instruction::BitCast:
2291 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002292 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00002293 return getSCEV(U->getOperand(0));
2294 break;
2295
Dan Gohman2d1be872009-04-16 03:18:22 +00002296 case Instruction::IntToPtr:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002297 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00002298 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002299 TD->getIntPtrType());
Dan Gohman2d1be872009-04-16 03:18:22 +00002300
2301 case Instruction::PtrToInt:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002302 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00002303 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2304 U->getType());
2305
Dan Gohman26466c02009-05-08 20:26:55 +00002306 case Instruction::GetElementPtr:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002307 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanfb791602009-05-08 20:58:38 +00002308 return createNodeForGEP(U);
Dan Gohman2d1be872009-04-16 03:18:22 +00002309
Dan Gohman6c459a22008-06-22 19:56:46 +00002310 case Instruction::PHI:
2311 return createNodeForPHI(cast<PHINode>(U));
2312
2313 case Instruction::Select:
2314 // This could be a smax or umax that was lowered earlier.
2315 // Try to recover it.
2316 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2317 Value *LHS = ICI->getOperand(0);
2318 Value *RHS = ICI->getOperand(1);
2319 switch (ICI->getPredicate()) {
2320 case ICmpInst::ICMP_SLT:
2321 case ICmpInst::ICMP_SLE:
2322 std::swap(LHS, RHS);
2323 // fall through
2324 case ICmpInst::ICMP_SGT:
2325 case ICmpInst::ICMP_SGE:
2326 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002327 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002328 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman1fbffe02008-07-30 04:36:32 +00002329 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002330 return getNotSCEV(getSMaxExpr(
2331 getNotSCEV(getSCEV(LHS)),
2332 getNotSCEV(getSCEV(RHS))));
Dan Gohman6c459a22008-06-22 19:56:46 +00002333 break;
2334 case ICmpInst::ICMP_ULT:
2335 case ICmpInst::ICMP_ULE:
2336 std::swap(LHS, RHS);
2337 // fall through
2338 case ICmpInst::ICMP_UGT:
2339 case ICmpInst::ICMP_UGE:
2340 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002341 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002342 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2343 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002344 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2345 getNotSCEV(getSCEV(RHS))));
Dan Gohman6c459a22008-06-22 19:56:46 +00002346 break;
2347 default:
2348 break;
2349 }
2350 }
2351
2352 default: // We cannot analyze this expression.
2353 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002354 }
2355
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002356 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002357}
2358
2359
2360
2361//===----------------------------------------------------------------------===//
2362// Iteration Count Computation Code
2363//
2364
Dan Gohman46bdfb02009-02-24 18:55:53 +00002365/// getBackedgeTakenCount - If the specified loop has a predictable
2366/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2367/// object. The backedge-taken count is the number of times the loop header
2368/// will be branched to from within the loop. This is one less than the
2369/// trip count of the loop, since it doesn't count the first iteration,
2370/// when the header is branched to from outside the loop.
2371///
2372/// Note that it is not valid to call this method on a loop without a
2373/// loop-invariant backedge-taken count (see
2374/// hasLoopInvariantBackedgeTakenCount).
2375///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002376SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002377 return getBackedgeTakenInfo(L).Exact;
2378}
2379
2380/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2381/// return the least SCEV value that is known never to be less than the
2382/// actual backedge taken count.
2383SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2384 return getBackedgeTakenInfo(L).Max;
2385}
2386
2387const ScalarEvolution::BackedgeTakenInfo &
2388ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00002389 // Initially insert a CouldNotCompute for this loop. If the insertion
2390 // succeeds, procede to actually compute a backedge-taken count and
2391 // update the value. The temporary CouldNotCompute value tells SCEV
2392 // code elsewhere that it shouldn't attempt to request a new
2393 // backedge-taken count, which could result in infinite recursion.
Dan Gohmana1af7572009-04-30 20:47:05 +00002394 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00002395 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2396 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002397 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2398 if (ItCount.Exact != UnknownValue) {
2399 assert(ItCount.Exact->isLoopInvariant(L) &&
2400 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002401 "Computed trip count isn't loop invariant for loop!");
2402 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00002403
Dan Gohman01ecca22009-04-27 20:16:15 +00002404 // Update the value in the map.
2405 Pair.first->second = ItCount;
Chris Lattner53e677a2004-04-02 20:23:17 +00002406 } else if (isa<PHINode>(L->getHeader()->begin())) {
2407 // Only count loops that have phi nodes as not being computable.
2408 ++NumTripCountsNotComputed;
2409 }
Dan Gohmana1af7572009-04-30 20:47:05 +00002410
2411 // Now that we know more about the trip count for this loop, forget any
2412 // existing SCEV values for PHI nodes in this loop since they are only
2413 // conservative estimates made without the benefit
2414 // of trip count information.
2415 if (ItCount.hasAnyInfo())
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002416 forgetLoopPHIs(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002417 }
Dan Gohman01ecca22009-04-27 20:16:15 +00002418 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00002419}
2420
Dan Gohman46bdfb02009-02-24 18:55:53 +00002421/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohman60f8a632009-02-17 20:49:49 +00002422/// client when it has changed a loop in a way that may effect
Dan Gohman46bdfb02009-02-24 18:55:53 +00002423/// ScalarEvolution's ability to compute a trip count, or if the loop
2424/// is deleted.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002425void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00002426 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002427 forgetLoopPHIs(L);
2428}
2429
2430/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2431/// PHI nodes in the given loop. This is used when the trip count of
2432/// the loop may have changed.
2433void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohman35738ac2009-05-04 22:30:44 +00002434 BasicBlock *Header = L->getHeader();
2435
Dan Gohmanefb9fbf2009-05-12 01:27:58 +00002436 // Push all Loop-header PHIs onto the Worklist stack, except those
2437 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2438 // a PHI either means that it has an unrecognized structure, or it's
2439 // a PHI that's in the progress of being computed by createNodeForPHI.
2440 // In the former case, additional loop trip count information isn't
2441 // going to change anything. In the later case, createNodeForPHI will
2442 // perform the necessary updates on its own when it gets to that point.
Dan Gohman35738ac2009-05-04 22:30:44 +00002443 SmallVector<Instruction *, 16> Worklist;
2444 for (BasicBlock::iterator I = Header->begin();
Dan Gohmanefb9fbf2009-05-12 01:27:58 +00002445 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2446 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2447 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2448 Worklist.push_back(PN);
2449 }
Dan Gohman35738ac2009-05-04 22:30:44 +00002450
2451 while (!Worklist.empty()) {
2452 Instruction *I = Worklist.pop_back_val();
2453 if (Scalars.erase(I))
2454 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2455 UI != UE; ++UI)
2456 Worklist.push_back(cast<Instruction>(UI));
2457 }
Dan Gohman60f8a632009-02-17 20:49:49 +00002458}
2459
Dan Gohman46bdfb02009-02-24 18:55:53 +00002460/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2461/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00002462ScalarEvolution::BackedgeTakenInfo
2463ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002464 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel5c06f612009-06-05 23:08:56 +00002465 BasicBlock *ExitBlock = L->getExitBlock();
2466 if (!ExitBlock)
2467 return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002468
2469 // Okay, there is one exit block. Try to find the condition that causes the
2470 // loop to be exited.
Devang Patel5c06f612009-06-05 23:08:56 +00002471 BasicBlock *ExitingBlock = L->getExitingBlock();
2472 if (!ExitingBlock)
2473 return UnknownValue; // More than one block exiting!
Chris Lattner53e677a2004-04-02 20:23:17 +00002474
2475 // Okay, we've computed the exiting block. See what condition causes us to
2476 // exit.
2477 //
2478 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00002479 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2480 if (ExitBr == 0) return UnknownValue;
2481 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00002482
2483 // At this point, we know we have a conditional branch that determines whether
2484 // the loop is exited. However, we don't know if the branch is executed each
2485 // time through the loop. If not, then the execution count of the branch will
2486 // not be equal to the trip count of the loop.
2487 //
2488 // Currently we check for this by checking to see if the Exit branch goes to
2489 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00002490 // times as the loop. We also handle the case where the exit block *is* the
2491 // loop header. This is common for un-rotated loops. More extensive analysis
2492 // could be done to handle more cases here.
Chris Lattner8b0e3602007-01-07 02:24:26 +00002493 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00002494 ExitBr->getSuccessor(1) != L->getHeader() &&
2495 ExitBr->getParent() != L->getHeader())
Chris Lattner8b0e3602007-01-07 02:24:26 +00002496 return UnknownValue;
2497
Reid Spencere4d87aa2006-12-23 06:05:41 +00002498 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2499
Eli Friedman361e54d2009-05-09 12:32:42 +00002500 // If it's not an integer or pointer comparison then compute it the hard way.
2501 if (ExitCond == 0)
Dan Gohman46bdfb02009-02-24 18:55:53 +00002502 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Chris Lattner7980fb92004-04-17 18:36:24 +00002503 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00002504
Reid Spencere4d87aa2006-12-23 06:05:41 +00002505 // If the condition was exit on true, convert the condition to exit on false
2506 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00002507 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00002508 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00002509 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00002510 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00002511
2512 // Handle common loops like: for (X = "string"; *X; ++X)
2513 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2514 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2515 SCEVHandle ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00002516 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Chris Lattner673e02b2004-10-12 01:49:27 +00002517 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2518 }
2519
Chris Lattner53e677a2004-04-02 20:23:17 +00002520 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2521 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2522
2523 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00002524 LHS = getSCEVAtScope(LHS, L);
2525 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002526
Reid Spencere4d87aa2006-12-23 06:05:41 +00002527 // At this point, we would like to compute how many iterations of the
2528 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00002529 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2530 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00002531 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002532 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00002533 }
2534
Chris Lattner53e677a2004-04-02 20:23:17 +00002535 // If we have a comparison of a chrec against a constant, try to use value
2536 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00002537 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2538 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00002539 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00002540 // Form the constant range.
2541 ConstantRange CompRange(
2542 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002543
Eli Friedman361e54d2009-05-09 12:32:42 +00002544 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2545 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00002546 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002547
Chris Lattner53e677a2004-04-02 20:23:17 +00002548 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002549 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00002550 // Convert to: while (X-Y != 0)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002551 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002552 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00002553 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002554 }
2555 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00002556 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002557 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002558 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00002559 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002560 }
2561 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002562 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2563 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002564 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002565 }
2566 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002567 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2568 getNotSCEV(RHS), L, true);
2569 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00002570 break;
2571 }
2572 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002573 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2574 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00002575 break;
2576 }
2577 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002578 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2579 getNotSCEV(RHS), L, false);
2580 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002581 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002582 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002583 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002584#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002585 errs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002586 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002587 errs() << "[unsigned] ";
2588 errs() << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00002589 << Instruction::getOpcodeName(Instruction::ICmp)
2590 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002591#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00002592 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002593 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00002594 return
2595 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2596 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00002597}
2598
Chris Lattner673e02b2004-10-12 01:49:27 +00002599static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00002600EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2601 ScalarEvolution &SE) {
2602 SCEVHandle InVal = SE.getConstant(C);
2603 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00002604 assert(isa<SCEVConstant>(Val) &&
2605 "Evaluation of SCEV at constant didn't fold correctly?");
2606 return cast<SCEVConstant>(Val)->getValue();
2607}
2608
2609/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2610/// and a GEP expression (missing the pointer index) indexing into it, return
2611/// the addressed element of the initializer or null if the index expression is
2612/// invalid.
2613static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002614GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00002615 const std::vector<ConstantInt*> &Indices) {
2616 Constant *Init = GV->getInitializer();
2617 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002618 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00002619 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2620 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2621 Init = cast<Constant>(CS->getOperand(Idx));
2622 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2623 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2624 Init = cast<Constant>(CA->getOperand(Idx));
2625 } else if (isa<ConstantAggregateZero>(Init)) {
2626 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2627 assert(Idx < STy->getNumElements() && "Bad struct index!");
2628 Init = Constant::getNullValue(STy->getElementType(Idx));
2629 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2630 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2631 Init = Constant::getNullValue(ATy->getElementType());
2632 } else {
2633 assert(0 && "Unknown constant aggregate type!");
2634 }
2635 return 0;
2636 } else {
2637 return 0; // Unknown initializer type
2638 }
2639 }
2640 return Init;
2641}
2642
Dan Gohman46bdfb02009-02-24 18:55:53 +00002643/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2644/// 'icmp op load X, cst', try to see if we can compute the backedge
2645/// execution count.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002646SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002647ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2648 const Loop *L,
2649 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002650 if (LI->isVolatile()) return UnknownValue;
2651
2652 // Check to see if the loaded pointer is a getelementptr of a global.
2653 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2654 if (!GEP) return UnknownValue;
2655
2656 // Make sure that it is really a constant global we are gepping, with an
2657 // initializer, and make sure the first IDX is really 0.
2658 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2659 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2660 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2661 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2662 return UnknownValue;
2663
2664 // Okay, we allow one non-constant index into the GEP instruction.
2665 Value *VarIdx = 0;
2666 std::vector<ConstantInt*> Indexes;
2667 unsigned VarIdxNum = 0;
2668 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2669 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2670 Indexes.push_back(CI);
2671 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2672 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2673 VarIdx = GEP->getOperand(i);
2674 VarIdxNum = i-2;
2675 Indexes.push_back(0);
2676 }
2677
2678 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2679 // Check to see if X is a loop variant variable value now.
2680 SCEVHandle Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00002681 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00002682
2683 // We can only recognize very limited forms of loop index expressions, in
2684 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00002685 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00002686 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2687 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2688 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2689 return UnknownValue;
2690
2691 unsigned MaxSteps = MaxBruteForceIterations;
2692 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002693 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00002694 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002695 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00002696
2697 // Form the GEP offset.
2698 Indexes[VarIdxNum] = Val;
2699
2700 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2701 if (Result == 0) break; // Cannot compute!
2702
2703 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002704 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002705 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00002706 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002707#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002708 errs() << "\n***\n*** Computed loop count " << *ItCst
2709 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2710 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00002711#endif
2712 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002713 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00002714 }
2715 }
2716 return UnknownValue;
2717}
2718
2719
Chris Lattner3221ad02004-04-17 22:58:41 +00002720/// CanConstantFold - Return true if we can constant fold an instruction of the
2721/// specified type, assuming that all operands were constants.
2722static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00002723 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00002724 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2725 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002726
Chris Lattner3221ad02004-04-17 22:58:41 +00002727 if (const CallInst *CI = dyn_cast<CallInst>(I))
2728 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00002729 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00002730 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00002731}
2732
Chris Lattner3221ad02004-04-17 22:58:41 +00002733/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2734/// in the loop that V is derived from. We allow arbitrary operations along the
2735/// way, but the operands of an operation must either be constants or a value
2736/// derived from a constant PHI. If this expression does not fit with these
2737/// constraints, return null.
2738static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2739 // If this is not an instruction, or if this is an instruction outside of the
2740 // loop, it can't be derived from a loop PHI.
2741 Instruction *I = dyn_cast<Instruction>(V);
2742 if (I == 0 || !L->contains(I->getParent())) return 0;
2743
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002744 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002745 if (L->getHeader() == I->getParent())
2746 return PN;
2747 else
2748 // We don't currently keep track of the control flow needed to evaluate
2749 // PHIs, so we cannot handle PHIs inside of loops.
2750 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002751 }
Chris Lattner3221ad02004-04-17 22:58:41 +00002752
2753 // If we won't be able to constant fold this expression even if the operands
2754 // are constants, return early.
2755 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002756
Chris Lattner3221ad02004-04-17 22:58:41 +00002757 // Otherwise, we can evaluate this instruction if all of its operands are
2758 // constant or derived from a PHI node themselves.
2759 PHINode *PHI = 0;
2760 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2761 if (!(isa<Constant>(I->getOperand(Op)) ||
2762 isa<GlobalValue>(I->getOperand(Op)))) {
2763 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2764 if (P == 0) return 0; // Not evolving from PHI
2765 if (PHI == 0)
2766 PHI = P;
2767 else if (PHI != P)
2768 return 0; // Evolving from multiple different PHIs.
2769 }
2770
2771 // This is a expression evolving from a constant PHI!
2772 return PHI;
2773}
2774
2775/// EvaluateExpression - Given an expression that passes the
2776/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2777/// in the loop has the value PHIVal. If we can't fold this expression for some
2778/// reason, return null.
2779static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2780 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00002781 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00002782 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00002783 Instruction *I = cast<Instruction>(V);
2784
2785 std::vector<Constant*> Operands;
2786 Operands.resize(I->getNumOperands());
2787
2788 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2789 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2790 if (Operands[i] == 0) return 0;
2791 }
2792
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002793 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2794 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2795 &Operands[0], Operands.size());
2796 else
2797 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2798 &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00002799}
2800
2801/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2802/// in the header of its containing loop, we know the loop executes a
2803/// constant number of times, and the PHI node is just a recurrence
2804/// involving constants, fold it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002805Constant *ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002806getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Chris Lattner3221ad02004-04-17 22:58:41 +00002807 std::map<PHINode*, Constant*>::iterator I =
2808 ConstantEvolutionLoopExitValue.find(PN);
2809 if (I != ConstantEvolutionLoopExitValue.end())
2810 return I->second;
2811
Dan Gohman46bdfb02009-02-24 18:55:53 +00002812 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00002813 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2814
2815 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2816
2817 // Since the loop is canonicalized, the PHI node must have two entries. One
2818 // entry must be a constant (coming in from outside of the loop), and the
2819 // second must be derived from the same PHI.
2820 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2821 Constant *StartCST =
2822 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2823 if (StartCST == 0)
2824 return RetVal = 0; // Must be a constant.
2825
2826 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2827 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2828 if (PN2 != PN)
2829 return RetVal = 0; // Not derived from same PHI.
2830
2831 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00002832 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00002833 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00002834
Dan Gohman46bdfb02009-02-24 18:55:53 +00002835 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00002836 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00002837 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2838 if (IterationNum == NumIterations)
2839 return RetVal = PHIVal; // Got exit value!
2840
2841 // Compute the value of the PHI node for the next iteration.
2842 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2843 if (NextPHI == PHIVal)
2844 return RetVal = NextPHI; // Stopped evolving!
2845 if (NextPHI == 0)
2846 return 0; // Couldn't evaluate!
2847 PHIVal = NextPHI;
2848 }
2849}
2850
Dan Gohman46bdfb02009-02-24 18:55:53 +00002851/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00002852/// constant number of times (the condition evolves only from constants),
2853/// try to evaluate a few iterations of the loop until we get the exit
2854/// condition gets a value of ExitWhen (true or false). If we cannot
2855/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002856SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002857ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00002858 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2859 if (PN == 0) return UnknownValue;
2860
2861 // Since the loop is canonicalized, the PHI node must have two entries. One
2862 // entry must be a constant (coming in from outside of the loop), and the
2863 // second must be derived from the same PHI.
2864 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2865 Constant *StartCST =
2866 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2867 if (StartCST == 0) return UnknownValue; // Must be a constant.
2868
2869 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2870 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2871 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2872
2873 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2874 // the loop symbolically to determine when the condition gets a value of
2875 // "ExitWhen".
2876 unsigned IterationNum = 0;
2877 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2878 for (Constant *PHIVal = StartCST;
2879 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002880 ConstantInt *CondVal =
2881 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00002882
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002883 // Couldn't symbolically evaluate.
Chris Lattneref3baf02007-01-12 18:28:58 +00002884 if (!CondVal) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002885
Reid Spencere8019bb2007-03-01 07:25:48 +00002886 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002887 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00002888 ++NumBruteForceTripCountsComputed;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002889 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00002890 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002891
Chris Lattner3221ad02004-04-17 22:58:41 +00002892 // Compute the value of the PHI node for the next iteration.
2893 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2894 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00002895 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00002896 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00002897 }
2898
2899 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00002900 return UnknownValue;
2901}
2902
Dan Gohman66a7e852009-05-08 20:38:54 +00002903/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2904/// at the specified scope in the program. The L value specifies a loop
2905/// nest to evaluate the expression at, where null is the top-level or a
2906/// specified loop is immediately inside of the loop.
2907///
2908/// This method can be used to compute the exit value for a variable defined
2909/// in a loop by querying what the value will hold in the parent loop.
2910///
Dan Gohmand594e6f2009-05-24 23:25:42 +00002911/// In the case that a relevant loop exit value cannot be computed, the
2912/// original value V is returned.
Dan Gohman35738ac2009-05-04 22:30:44 +00002913SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002914 // FIXME: this should be turned into a virtual method on SCEV!
2915
Chris Lattner3221ad02004-04-17 22:58:41 +00002916 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002917
Nick Lewycky3e630762008-02-20 06:48:22 +00002918 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00002919 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00002920 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002921 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002922 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00002923 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2924 if (PHINode *PN = dyn_cast<PHINode>(I))
2925 if (PN->getParent() == LI->getHeader()) {
2926 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00002927 // to see if the loop that contains it has a known backedge-taken
2928 // count. If so, we may be able to force computation of the exit
2929 // value.
2930 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00002931 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00002932 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002933 // Okay, we know how many times the containing loop executes. If
2934 // this is a constant evolving PHI node, get the final value at
2935 // the specified iteration number.
2936 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00002937 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00002938 LI);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002939 if (RV) return getUnknown(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00002940 }
2941 }
2942
Reid Spencer09906f32006-12-04 21:33:23 +00002943 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00002944 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00002945 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00002946 // result. This is particularly useful for computing loop exit values.
2947 if (CanConstantFold(I)) {
Dan Gohman6bce6432009-05-08 20:47:27 +00002948 // Check to see if we've folded this instruction at this loop before.
2949 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2950 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2951 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2952 if (!Pair.second)
2953 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2954
Chris Lattner3221ad02004-04-17 22:58:41 +00002955 std::vector<Constant*> Operands;
2956 Operands.reserve(I->getNumOperands());
2957 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2958 Value *Op = I->getOperand(i);
2959 if (Constant *C = dyn_cast<Constant>(Op)) {
2960 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00002961 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00002962 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00002963 // non-integer and non-pointer, don't even try to analyze them
2964 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00002965 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00002966 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00002967
Chris Lattner3221ad02004-04-17 22:58:41 +00002968 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohman622ed672009-05-04 22:02:23 +00002969 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00002970 Constant *C = SC->getValue();
2971 if (C->getType() != Op->getType())
2972 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2973 Op->getType(),
2974 false),
2975 C, Op->getType());
2976 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00002977 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00002978 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2979 if (C->getType() != Op->getType())
2980 C =
2981 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2982 Op->getType(),
2983 false),
2984 C, Op->getType());
2985 Operands.push_back(C);
2986 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00002987 return V;
2988 } else {
2989 return V;
2990 }
2991 }
2992 }
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002993
2994 Constant *C;
2995 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2996 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2997 &Operands[0], Operands.size());
2998 else
2999 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3000 &Operands[0], Operands.size());
Dan Gohman6bce6432009-05-08 20:47:27 +00003001 Pair.first->second = C;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003002 return getUnknown(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00003003 }
3004 }
3005
3006 // This is some other type of SCEVUnknown, just return it.
3007 return V;
3008 }
3009
Dan Gohman622ed672009-05-04 22:02:23 +00003010 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003011 // Avoid performing the look-up in the common case where the specified
3012 // expression has no loop-variant portions.
3013 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3014 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3015 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003016 // Okay, at least one of these operands is loop variant but might be
3017 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00003018 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00003019 NewOps.push_back(OpAtScope);
3020
3021 for (++i; i != e; ++i) {
3022 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003023 NewOps.push_back(OpAtScope);
3024 }
3025 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003026 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003027 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003028 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003029 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003030 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00003031 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003032 return getUMaxExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003033 assert(0 && "Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003034 }
3035 }
3036 // If we got here, all operands are loop invariant.
3037 return Comm;
3038 }
3039
Dan Gohman622ed672009-05-04 22:02:23 +00003040 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky789558d2009-01-13 09:18:58 +00003041 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00003042 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00003043 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3044 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003045 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00003046 }
3047
3048 // If this is a loop recurrence for a loop that does not contain L, then we
3049 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00003050 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003051 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3052 // To evaluate this recurrence, we need to know how many times the AddRec
3053 // loop iterates. Compute this now.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003054 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00003055 if (BackedgeTakenCount == UnknownValue) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003056
Eli Friedmanb42a6262008-08-04 23:49:06 +00003057 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003058 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003059 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00003060 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00003061 }
3062
Dan Gohman622ed672009-05-04 22:02:23 +00003063 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003064 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003065 if (Op == Cast->getOperand())
3066 return Cast; // must be loop invariant
3067 return getZeroExtendExpr(Op, Cast->getType());
3068 }
3069
Dan Gohman622ed672009-05-04 22:02:23 +00003070 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003071 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003072 if (Op == Cast->getOperand())
3073 return Cast; // must be loop invariant
3074 return getSignExtendExpr(Op, Cast->getType());
3075 }
3076
Dan Gohman622ed672009-05-04 22:02:23 +00003077 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003078 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00003079 if (Op == Cast->getOperand())
3080 return Cast; // must be loop invariant
3081 return getTruncateExpr(Op, Cast->getType());
3082 }
3083
3084 assert(0 && "Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00003085 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00003086}
3087
Dan Gohman66a7e852009-05-08 20:38:54 +00003088/// getSCEVAtScope - This is a convenience function which does
3089/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003090SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3091 return getSCEVAtScope(getSCEV(V), L);
3092}
3093
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003094/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3095/// following equation:
3096///
3097/// A * X = B (mod N)
3098///
3099/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3100/// A and B isn't important.
3101///
3102/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3103static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3104 ScalarEvolution &SE) {
3105 uint32_t BW = A.getBitWidth();
3106 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3107 assert(A != 0 && "A must be non-zero.");
3108
3109 // 1. D = gcd(A, N)
3110 //
3111 // The gcd of A and N may have only one prime factor: 2. The number of
3112 // trailing zeros in A is its multiplicity
3113 uint32_t Mult2 = A.countTrailingZeros();
3114 // D = 2^Mult2
3115
3116 // 2. Check if B is divisible by D.
3117 //
3118 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3119 // is not less than multiplicity of this prime factor for D.
3120 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003121 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003122
3123 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3124 // modulo (N / D).
3125 //
3126 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3127 // bit width during computations.
3128 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3129 APInt Mod(BW + 1, 0);
3130 Mod.set(BW - Mult2); // Mod = N / D
3131 APInt I = AD.multiplicativeInverse(Mod);
3132
3133 // 4. Compute the minimum unsigned root of the equation:
3134 // I * (B / D) mod (N / D)
3135 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3136
3137 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3138 // bits.
3139 return SE.getConstant(Result.trunc(BW));
3140}
Chris Lattner53e677a2004-04-02 20:23:17 +00003141
3142/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3143/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3144/// might be the same) or two SCEVCouldNotCompute objects.
3145///
3146static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman246b2562007-10-22 18:31:58 +00003147SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003148 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00003149 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3150 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3151 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003152
Chris Lattner53e677a2004-04-02 20:23:17 +00003153 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00003154 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00003155 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003156 return std::make_pair(CNC, CNC);
3157 }
3158
Reid Spencere8019bb2007-03-01 07:25:48 +00003159 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00003160 const APInt &L = LC->getValue()->getValue();
3161 const APInt &M = MC->getValue()->getValue();
3162 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00003163 APInt Two(BitWidth, 2);
3164 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003165
Reid Spencere8019bb2007-03-01 07:25:48 +00003166 {
3167 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00003168 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00003169 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3170 // The B coefficient is M-N/2
3171 APInt B(M);
3172 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003173
Reid Spencere8019bb2007-03-01 07:25:48 +00003174 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00003175 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00003176
Reid Spencere8019bb2007-03-01 07:25:48 +00003177 // Compute the B^2-4ac term.
3178 APInt SqrtTerm(B);
3179 SqrtTerm *= B;
3180 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00003181
Reid Spencere8019bb2007-03-01 07:25:48 +00003182 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3183 // integer value or else APInt::sqrt() will assert.
3184 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003185
Reid Spencere8019bb2007-03-01 07:25:48 +00003186 // Compute the two solutions for the quadratic formula.
3187 // The divisions must be performed as signed divisions.
3188 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00003189 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00003190 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00003191 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00003192 return std::make_pair(CNC, CNC);
3193 }
3194
Reid Spencere8019bb2007-03-01 07:25:48 +00003195 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3196 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003197
Dan Gohman246b2562007-10-22 18:31:58 +00003198 return std::make_pair(SE.getConstant(Solution1),
3199 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00003200 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00003201}
3202
3203/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman6c0866c2009-05-24 23:45:28 +00003204/// value to zero will execute. If not computable, return UnknownValue.
Dan Gohman35738ac2009-05-04 22:30:44 +00003205SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003206 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00003207 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003208 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00003209 if (C->getValue()->isZero()) return C;
Chris Lattner53e677a2004-04-02 20:23:17 +00003210 return UnknownValue; // Otherwise it will loop infinitely.
3211 }
3212
Dan Gohman35738ac2009-05-04 22:30:44 +00003213 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003214 if (!AddRec || AddRec->getLoop() != L)
3215 return UnknownValue;
3216
3217 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003218 // If this is an affine expression, the execution count of this branch is
3219 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00003220 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003221 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00003222 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003223 // equivalent to:
3224 //
3225 // Step*N = -Start (mod 2^BW)
3226 //
3227 // where BW is the common bit width of Start and Step.
3228
Chris Lattner53e677a2004-04-02 20:23:17 +00003229 // Get the initial value for the loop.
3230 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003231 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003232
Dan Gohman622ed672009-05-04 22:02:23 +00003233 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003234 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00003235
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003236 // First, handle unitary steps.
3237 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003238 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003239 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3240 return Start; // N = Start (as unsigned)
3241
3242 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00003243 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00003244 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003245 -StartC->getValue()->getValue(),
3246 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003247 }
Chris Lattner42a75512007-01-15 02:27:26 +00003248 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003249 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3250 // the quadratic equation to solve it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003251 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3252 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00003253 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3254 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00003255 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003256#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003257 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3258 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003259#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00003260 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003261 if (ConstantInt *CB =
3262 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003263 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00003264 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00003265 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003266
Chris Lattner53e677a2004-04-02 20:23:17 +00003267 // We can only use this value if the chrec ends up with an exact zero
3268 // value at this index. When solving for "X*X != 5", for example, we
3269 // should not accept a root of 2.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003270 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00003271 if (Val->isZero())
3272 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00003273 }
3274 }
3275 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003276
Chris Lattner53e677a2004-04-02 20:23:17 +00003277 return UnknownValue;
3278}
3279
3280/// HowFarToNonZero - Return the number of times a backedge checking the
3281/// specified value for nonzero will execute. If not computable, return
3282/// UnknownValue
Dan Gohman35738ac2009-05-04 22:30:44 +00003283SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003284 // Loops that look like: while (X == 0) are very strange indeed. We don't
3285 // handle them yet except for the trivial case. This could be expanded in the
3286 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003287
Chris Lattner53e677a2004-04-02 20:23:17 +00003288 // If the value is a constant, check to see if it is known to be non-zero
3289 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00003290 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00003291 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003292 return getIntegerSCEV(0, C->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00003293 return UnknownValue; // Otherwise it will loop infinitely.
3294 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003295
Chris Lattner53e677a2004-04-02 20:23:17 +00003296 // We could implement others, but I really doubt anyone writes loops like
3297 // this, and if they did, they would already be constant folded.
3298 return UnknownValue;
3299}
3300
Dan Gohman859b4822009-05-18 15:36:09 +00003301/// getLoopPredecessor - If the given loop's header has exactly one unique
3302/// predecessor outside the loop, return it. Otherwise return null.
3303///
3304BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3305 BasicBlock *Header = L->getHeader();
3306 BasicBlock *Pred = 0;
3307 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3308 PI != E; ++PI)
3309 if (!L->contains(*PI)) {
3310 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3311 Pred = *PI;
3312 }
3313 return Pred;
3314}
3315
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003316/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3317/// (which may not be an immediate predecessor) which has exactly one
3318/// successor from which BB is reachable, or null if no such block is
3319/// found.
3320///
3321BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003322ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00003323 // If the block has a unique predecessor, then there is no path from the
3324 // predecessor to the block that does not go through the direct edge
3325 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003326 if (BasicBlock *Pred = BB->getSinglePredecessor())
3327 return Pred;
3328
3329 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00003330 // If the header has a unique predecessor outside the loop, it must be
3331 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003332 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00003333 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003334
3335 return 0;
3336}
3337
Dan Gohmanc2390b12009-02-12 22:19:27 +00003338/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman3d739fe2009-04-30 20:48:53 +00003339/// a conditional between LHS and RHS. This is used to help avoid max
3340/// expressions in loop trip counts.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003341bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman3d739fe2009-04-30 20:48:53 +00003342 ICmpInst::Predicate Pred,
Dan Gohman35738ac2009-05-04 22:30:44 +00003343 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00003344 // Interpret a null as meaning no loop, where there is obviously no guard
3345 // (interprocedural conditions notwithstanding).
3346 if (!L) return false;
3347
Dan Gohman859b4822009-05-18 15:36:09 +00003348 BasicBlock *Predecessor = getLoopPredecessor(L);
3349 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00003350
Dan Gohman859b4822009-05-18 15:36:09 +00003351 // Starting at the loop predecessor, climb up the predecessor chain, as long
3352 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003353 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00003354 for (; Predecessor;
3355 PredecessorDest = Predecessor,
3356 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00003357
3358 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00003359 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00003360 if (!LoopEntryPredicate ||
3361 LoopEntryPredicate->isUnconditional())
3362 continue;
3363
3364 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3365 if (!ICI) continue;
3366
3367 // Now that we found a conditional branch that dominates the loop, check to
3368 // see if it is the comparison we are looking for.
3369 Value *PreCondLHS = ICI->getOperand(0);
3370 Value *PreCondRHS = ICI->getOperand(1);
3371 ICmpInst::Predicate Cond;
Dan Gohman859b4822009-05-18 15:36:09 +00003372 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohman38372182008-08-12 20:17:31 +00003373 Cond = ICI->getPredicate();
3374 else
3375 Cond = ICI->getInversePredicate();
3376
Dan Gohmanc2390b12009-02-12 22:19:27 +00003377 if (Cond == Pred)
3378 ; // An exact match.
3379 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3380 ; // The actual condition is beyond sufficient.
3381 else
3382 // Check a few special cases.
3383 switch (Cond) {
3384 case ICmpInst::ICMP_UGT:
3385 if (Pred == ICmpInst::ICMP_ULT) {
3386 std::swap(PreCondLHS, PreCondRHS);
3387 Cond = ICmpInst::ICMP_ULT;
3388 break;
3389 }
3390 continue;
3391 case ICmpInst::ICMP_SGT:
3392 if (Pred == ICmpInst::ICMP_SLT) {
3393 std::swap(PreCondLHS, PreCondRHS);
3394 Cond = ICmpInst::ICMP_SLT;
3395 break;
3396 }
3397 continue;
3398 case ICmpInst::ICMP_NE:
3399 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3400 // so check for this case by checking if the NE is comparing against
3401 // a minimum or maximum constant.
3402 if (!ICmpInst::isTrueWhenEqual(Pred))
3403 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3404 const APInt &A = CI->getValue();
3405 switch (Pred) {
3406 case ICmpInst::ICMP_SLT:
3407 if (A.isMaxSignedValue()) break;
3408 continue;
3409 case ICmpInst::ICMP_SGT:
3410 if (A.isMinSignedValue()) break;
3411 continue;
3412 case ICmpInst::ICMP_ULT:
3413 if (A.isMaxValue()) break;
3414 continue;
3415 case ICmpInst::ICMP_UGT:
3416 if (A.isMinValue()) break;
3417 continue;
3418 default:
3419 continue;
3420 }
3421 Cond = ICmpInst::ICMP_NE;
3422 // NE is symmetric but the original comparison may not be. Swap
3423 // the operands if necessary so that they match below.
3424 if (isa<SCEVConstant>(LHS))
3425 std::swap(PreCondLHS, PreCondRHS);
3426 break;
3427 }
3428 continue;
3429 default:
3430 // We weren't able to reconcile the condition.
3431 continue;
3432 }
Dan Gohman38372182008-08-12 20:17:31 +00003433
3434 if (!PreCondLHS->getType()->isInteger()) continue;
3435
3436 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3437 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3438 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003439 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3440 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohman38372182008-08-12 20:17:31 +00003441 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00003442 }
3443
Dan Gohman38372182008-08-12 20:17:31 +00003444 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00003445}
3446
Chris Lattnerdb25de42005-08-15 23:33:51 +00003447/// HowManyLessThans - Return the number of times a backedge containing the
3448/// specified less-than comparison will execute. If not computable, return
3449/// UnknownValue.
Dan Gohmana1af7572009-04-30 20:47:05 +00003450ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohman35738ac2009-05-04 22:30:44 +00003451HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3452 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00003453 // Only handle: "ADDREC < LoopInvariant".
3454 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3455
Dan Gohman35738ac2009-05-04 22:30:44 +00003456 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00003457 if (!AddRec || AddRec->getLoop() != L)
3458 return UnknownValue;
3459
3460 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00003461 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00003462 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3463 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3464 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3465
3466 // TODO: handle non-constant strides.
3467 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3468 if (!CStep || CStep->isZero())
3469 return UnknownValue;
Dan Gohman70a1fe72009-05-18 15:22:39 +00003470 if (CStep->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003471 // With unit stride, the iteration never steps past the limit value.
3472 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3473 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3474 // Test whether a positive iteration iteration can step past the limit
3475 // value and past the maximum value for its type in a single step.
3476 if (isSigned) {
3477 APInt Max = APInt::getSignedMaxValue(BitWidth);
3478 if ((Max - CStep->getValue()->getValue())
3479 .slt(CLimit->getValue()->getValue()))
3480 return UnknownValue;
3481 } else {
3482 APInt Max = APInt::getMaxValue(BitWidth);
3483 if ((Max - CStep->getValue()->getValue())
3484 .ult(CLimit->getValue()->getValue()))
3485 return UnknownValue;
3486 }
3487 } else
3488 // TODO: handle non-constant limit values below.
3489 return UnknownValue;
3490 } else
3491 // TODO: handle negative strides below.
Chris Lattnerdb25de42005-08-15 23:33:51 +00003492 return UnknownValue;
3493
Dan Gohmana1af7572009-04-30 20:47:05 +00003494 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3495 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3496 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00003497 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00003498
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00003499 // First, we get the value of the LHS in the first iteration: n
3500 SCEVHandle Start = AddRec->getOperand(0);
3501
Dan Gohmana1af7572009-04-30 20:47:05 +00003502 // Determine the minimum constant start value.
3503 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3504 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3505 APInt::getMinValue(BitWidth));
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00003506
Dan Gohmana1af7572009-04-30 20:47:05 +00003507 // If we know that the condition is true in order to enter the loop,
3508 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00003509 // only know that it will execute (max(m,n)-n)/s times. In both cases,
3510 // the division must round up.
Dan Gohmana1af7572009-04-30 20:47:05 +00003511 SCEVHandle End = RHS;
3512 if (!isLoopGuardedByCond(L,
3513 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3514 getMinusSCEV(Start, Step), RHS))
3515 End = isSigned ? getSMaxExpr(RHS, Start)
3516 : getUMaxExpr(RHS, Start);
3517
3518 // Determine the maximum constant end value.
3519 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3520 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3521 APInt::getMaxValue(BitWidth));
3522
3523 // Finally, we subtract these two values and divide, rounding up, to get
3524 // the number of times the backedge is executed.
3525 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3526 getAddExpr(Step, NegOne)),
3527 Step);
3528
3529 // The maximum backedge count is similar, except using the minimum start
3530 // value and the maximum end value.
3531 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3532 MinStart),
3533 getAddExpr(Step, NegOne)),
3534 Step);
3535
3536 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00003537 }
3538
3539 return UnknownValue;
3540}
3541
Chris Lattner53e677a2004-04-02 20:23:17 +00003542/// getNumIterationsInRange - Return the number of iterations of this loop that
3543/// produce values in the specified constant range. Another way of looking at
3544/// this is that it returns the first iteration number where the value is not in
3545/// the condition, thus computing the exit count. If the iteration count can't
3546/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman246b2562007-10-22 18:31:58 +00003547SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3548 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00003549 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003550 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003551
3552 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00003553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00003554 if (!SC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003555 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00003556 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3557 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00003558 if (const SCEVAddRecExpr *ShiftedAddRec =
3559 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00003560 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00003561 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00003562 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003563 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003564 }
3565
3566 // The only time we can solve this is when we have all constant indices.
3567 // Otherwise, we cannot determine the overflow conditions.
3568 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3569 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003570 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003571
3572
3573 // Okay at this point we know that all elements of the chrec are constants and
3574 // that the start element is zero.
3575
3576 // First check to see if the range contains zero. If not, the first
3577 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003578 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00003579 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman246b2562007-10-22 18:31:58 +00003580 return SE.getConstant(ConstantInt::get(getType(),0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003581
Chris Lattner53e677a2004-04-02 20:23:17 +00003582 if (isAffine()) {
3583 // If this is an affine expression then we have this situation:
3584 // Solve {0,+,A} in Range === Ax in Range
3585
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003586 // We know that zero is in the range. If A is positive then we know that
3587 // the upper value of the range must be the first possible exit value.
3588 // If A is negative then the lower of the range is the last possible loop
3589 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00003590 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003591 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3592 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00003593
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003594 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00003595 APInt ExitVal = (End + A).udiv(A);
Reid Spencerc7cd7a02007-03-01 19:32:33 +00003596 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00003597
3598 // Evaluate at the exit value. If we really did fall out of the valid
3599 // range, then we computed our trip count, otherwise wrap around or other
3600 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00003601 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003602 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003603 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003604
3605 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00003606 assert(Range.contains(
3607 EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00003608 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003609 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00003610 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00003611 } else if (isQuadratic()) {
3612 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3613 // quadratic equation to solve it. To do this, we must frame our problem in
3614 // terms of figuring out when zero is crossed, instead of when
3615 // Range.getUpper() is crossed.
3616 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00003617 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3618 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003619
3620 // Next, solve the constructed addrec
3621 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00003622 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00003623 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3624 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00003625 if (R1) {
3626 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003627 if (ConstantInt *CB =
3628 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003629 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00003630 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00003631 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003632
Chris Lattner53e677a2004-04-02 20:23:17 +00003633 // Make sure the root is not off by one. The returned iteration should
3634 // not be in the range, but the previous one should be. When solving
3635 // for "X*X < 5", for example, we should not return a root of 2.
3636 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00003637 R1->getValue(),
3638 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003639 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003640 // The next iteration must be out of the range...
Dan Gohman9a6ae962007-07-09 15:25:17 +00003641 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003642
Dan Gohman246b2562007-10-22 18:31:58 +00003643 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003644 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00003645 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003646 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003647 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003648
Chris Lattner53e677a2004-04-02 20:23:17 +00003649 // If R1 was not in the range, then it is a good return value. Make
3650 // sure that R1-1 WAS in the range though, just in case.
Dan Gohman9a6ae962007-07-09 15:25:17 +00003651 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00003652 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003653 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00003654 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003655 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003656 }
3657 }
3658 }
3659
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003660 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003661}
3662
3663
3664
3665//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00003666// SCEVCallbackVH Class Implementation
3667//===----------------------------------------------------------------------===//
3668
Dan Gohman1959b752009-05-19 19:22:47 +00003669void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohman35738ac2009-05-04 22:30:44 +00003670 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3671 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3672 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00003673 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3674 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00003675 SE->Scalars.erase(getValPtr());
3676 // this now dangles!
3677}
3678
Dan Gohman1959b752009-05-19 19:22:47 +00003679void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohman35738ac2009-05-04 22:30:44 +00003680 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3681
3682 // Forget all the expressions associated with users of the old value,
3683 // so that future queries will recompute the expressions using the new
3684 // value.
3685 SmallVector<User *, 16> Worklist;
3686 Value *Old = getValPtr();
3687 bool DeleteOld = false;
3688 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3689 UI != UE; ++UI)
3690 Worklist.push_back(*UI);
3691 while (!Worklist.empty()) {
3692 User *U = Worklist.pop_back_val();
3693 // Deleting the Old value will cause this to dangle. Postpone
3694 // that until everything else is done.
3695 if (U == Old) {
3696 DeleteOld = true;
3697 continue;
3698 }
3699 if (PHINode *PN = dyn_cast<PHINode>(U))
3700 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00003701 if (Instruction *I = dyn_cast<Instruction>(U))
3702 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00003703 if (SE->Scalars.erase(U))
3704 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3705 UI != UE; ++UI)
3706 Worklist.push_back(*UI);
3707 }
3708 if (DeleteOld) {
3709 if (PHINode *PN = dyn_cast<PHINode>(Old))
3710 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman6bce6432009-05-08 20:47:27 +00003711 if (Instruction *I = dyn_cast<Instruction>(Old))
3712 SE->ValuesAtScopes.erase(I);
Dan Gohman35738ac2009-05-04 22:30:44 +00003713 SE->Scalars.erase(Old);
3714 // this now dangles!
3715 }
3716 // this may dangle!
3717}
3718
Dan Gohman1959b752009-05-19 19:22:47 +00003719ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00003720 : CallbackVH(V), SE(se) {}
3721
3722//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00003723// ScalarEvolution Class Implementation
3724//===----------------------------------------------------------------------===//
3725
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003726ScalarEvolution::ScalarEvolution()
3727 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3728}
3729
Chris Lattner53e677a2004-04-02 20:23:17 +00003730bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003731 this->F = &F;
3732 LI = &getAnalysis<LoopInfo>();
3733 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00003734 return false;
3735}
3736
3737void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003738 Scalars.clear();
3739 BackedgeTakenCounts.clear();
3740 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00003741 ValuesAtScopes.clear();
Chris Lattner53e677a2004-04-02 20:23:17 +00003742}
3743
3744void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3745 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00003746 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00003747}
3748
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003749bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00003750 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00003751}
3752
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003753static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00003754 const Loop *L) {
3755 // Print all inner loops first
3756 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3757 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003758
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003759 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00003760
Devang Patelb7211a22007-08-21 00:31:24 +00003761 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00003762 L->getExitBlocks(ExitBlocks);
3763 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003764 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003765
Dan Gohman46bdfb02009-02-24 18:55:53 +00003766 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3767 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003768 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00003769 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003770 }
3771
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003772 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00003773}
3774
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003775void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003776 // ScalarEvolution's implementaiton of the print method is to print
3777 // out SCEV values of all instructions that are interesting. Doing
3778 // this potentially causes it to create new SCEV objects though,
3779 // which technically conflicts with the const qualifier. This isn't
3780 // observable from outside the class though (the hasSCEV function
3781 // notwithstanding), so casting away the const isn't dangerous.
3782 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003783
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003784 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00003785 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00003786 if (isSCEVable(I->getType())) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00003787 OS << *I;
Dan Gohman8dae1382008-09-14 17:21:12 +00003788 OS << " --> ";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003789 SCEVHandle SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00003790 SV->print(OS);
3791 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003792
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003793 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003794 OS << "Exits: ";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003795 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00003796 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003797 OS << "<<Unknown>>";
3798 } else {
3799 OS << *ExitValue;
3800 }
3801 }
3802
Chris Lattner53e677a2004-04-02 20:23:17 +00003803 OS << "\n";
3804 }
3805
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003806 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3807 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3808 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00003809}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003810
3811void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3812 raw_os_ostream OS(o);
3813 print(OS, M);
3814}