blob: 3650825e2b54ea2267cbd91e066f3d29d2e16c09 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
52
53namespace {
54 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55 static char ID;
56 FPS() : MachineFunctionPass((intptr_t)&ID) {}
57
58 virtual bool runOnMachineFunction(MachineFunction &MF);
59
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 private:
63 const TargetInstrInfo *TII; // Machine instruction info.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 cerr << "\n";
76 }
77 private:
78 // getSlot - Return the stack slot number a particular register number is
79 // in...
80 unsigned getSlot(unsigned RegNo) const {
81 assert(RegNo < 8 && "Regno out of range!");
82 return RegMap[RegNo];
83 }
84
85 // getStackEntry - Return the X86::FP<n> register in register ST(i)
86 unsigned getStackEntry(unsigned STi) const {
87 assert(STi < StackTop && "Access past stack top!");
88 return Stack[StackTop-1-STi];
89 }
90
91 // getSTReg - Return the X86::ST(i) register which contains the specified
92 // FP<RegNo> register
93 unsigned getSTReg(unsigned RegNo) const {
94 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
95 }
96
97 // pushReg - Push the specified FP<n> register onto the stack
98 void pushReg(unsigned Reg) {
99 assert(Reg < 8 && "Register number out of range!");
100 assert(StackTop < 8 && "Stack overflow!");
101 Stack[StackTop] = Reg;
102 RegMap[Reg] = StackTop++;
103 }
104
105 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
106 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
107 if (!isAtTop(RegNo)) {
108 unsigned STReg = getSTReg(RegNo);
109 unsigned RegOnTop = getStackEntry(0);
110
111 // Swap the slots the regs are in
112 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
113
114 // Swap stack slot contents
115 assert(RegMap[RegOnTop] < StackTop);
116 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
117
118 // Emit an fxch to update the runtime processors version of the state
119 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
120 NumFXCH++;
121 }
122 }
123
124 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
125 unsigned STReg = getSTReg(RegNo);
126 pushReg(AsReg); // New register on top of stack
127
128 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
129 }
130
131 // popStackAfter - Pop the current value off of the top of the FP stack
132 // after the specified instruction.
133 void popStackAfter(MachineBasicBlock::iterator &I);
134
135 // freeStackSlotAfter - Free the specified register from the register stack,
136 // so that it is no longer in a register. If the register is currently at
137 // the top of the stack, we just pop the current instruction, otherwise we
138 // store the current top-of-stack into the specified slot, then pop the top
139 // of stack.
140 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
141
142 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
143
144 void handleZeroArgFP(MachineBasicBlock::iterator &I);
145 void handleOneArgFP(MachineBasicBlock::iterator &I);
146 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
147 void handleTwoArgFP(MachineBasicBlock::iterator &I);
148 void handleCompareFP(MachineBasicBlock::iterator &I);
149 void handleCondMovFP(MachineBasicBlock::iterator &I);
150 void handleSpecialFP(MachineBasicBlock::iterator &I);
151 };
152 char FPS::ID = 0;
153}
154
155FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
156
Chris Lattner4b7054f2008-01-14 06:41:29 +0000157/// getFPReg - Return the X86::FPx register number for the specified operand.
158/// For example, this returns 3 for X86::FP3.
159static unsigned getFPReg(const MachineOperand &MO) {
160 assert(MO.isRegister() && "Expected an FP register!");
161 unsigned Reg = MO.getReg();
162 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
163 return Reg - X86::FP0;
164}
165
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
168/// register references into FP stack references.
169///
170bool FPS::runOnMachineFunction(MachineFunction &MF) {
171 // We only need to run this pass if there are any FP registers used in this
172 // function. If it is all integer, there is nothing for us to do!
173 bool FPIsUsed = false;
174
175 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
176 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner1b989192007-12-31 04:13:23 +0000177 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000178 FPIsUsed = true;
179 break;
180 }
181
182 // Early exit.
183 if (!FPIsUsed) return false;
184
185 TII = MF.getTarget().getInstrInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186 StackTop = 0;
187
188 // Process the function in depth first order so that we process at least one
189 // of the predecessors for every reachable block in the function.
190 std::set<MachineBasicBlock*> Processed;
191 MachineBasicBlock *Entry = MF.begin();
192
193 bool Changed = false;
194 for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
195 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
196 I != E; ++I)
197 Changed |= processBasicBlock(MF, **I);
198
199 return Changed;
200}
201
202/// processBasicBlock - Loop over all of the instructions in the basic block,
203/// transforming FP instructions into their stack form.
204///
205bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
206 bool Changed = false;
207 MBB = &BB;
208
209 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
210 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000211 unsigned Flags = MI->getDesc().TSFlags;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
213 continue; // Efficiently ignore non-fp insts!
214
215 MachineInstr *PrevMI = 0;
216 if (I != BB.begin())
217 PrevMI = prior(I);
218
219 ++NumFP; // Keep track of # of pseudo instrs
220 DOUT << "\nFPInst:\t" << *MI;
221
222 // Get dead variables list now because the MI pointer may be deleted as part
223 // of processing!
224 SmallVector<unsigned, 8> DeadRegs;
225 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
226 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman38a9a9f2007-09-14 20:33:02 +0000227 if (MO.isRegister() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 DeadRegs.push_back(MO.getReg());
229 }
230
231 switch (Flags & X86II::FPTypeMask) {
232 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
233 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
234 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
235 case X86II::TwoArgFP: handleTwoArgFP(I); break;
236 case X86II::CompareFP: handleCompareFP(I); break;
237 case X86II::CondMovFP: handleCondMovFP(I); break;
238 case X86II::SpecialFP: handleSpecialFP(I); break;
239 default: assert(0 && "Unknown FP Type!");
240 }
241
242 // Check to see if any of the values defined by this instruction are dead
243 // after definition. If so, pop them.
244 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
245 unsigned Reg = DeadRegs[i];
246 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
247 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
248 freeStackSlotAfter(I, Reg-X86::FP0);
249 }
250 }
251
252 // Print out all of the instructions expanded to if -debug
253 DEBUG(
254 MachineBasicBlock::iterator PrevI(PrevMI);
255 if (I == PrevI) {
256 cerr << "Just deleted pseudo instruction\n";
257 } else {
258 MachineBasicBlock::iterator Start = I;
259 // Rewind to first instruction newly inserted.
260 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
261 cerr << "Inserted instructions:\n\t";
262 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000263 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000264 }
265 dumpStack();
266 );
267
268 Changed = true;
269 }
270
271 assert(StackTop == 0 && "Stack not empty at end of basic block?");
272 return Changed;
273}
274
275//===----------------------------------------------------------------------===//
276// Efficient Lookup Table Support
277//===----------------------------------------------------------------------===//
278
279namespace {
280 struct TableEntry {
281 unsigned from;
282 unsigned to;
283 bool operator<(const TableEntry &TE) const { return from < TE.from; }
284 friend bool operator<(const TableEntry &TE, unsigned V) {
285 return TE.from < V;
286 }
287 friend bool operator<(unsigned V, const TableEntry &TE) {
288 return V < TE.from;
289 }
290 };
291}
292
293static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
294 for (unsigned i = 0; i != NumEntries-1; ++i)
295 if (!(Table[i] < Table[i+1])) return false;
296 return true;
297}
298
299static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
300 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
301 if (I != Table+N && I->from == Opcode)
302 return I->to;
303 return -1;
304}
305
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306#ifdef NDEBUG
307#define ASSERT_SORTED(TABLE)
308#else
309#define ASSERT_SORTED(TABLE) \
310 { static bool TABLE##Checked = false; \
311 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000312 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 "All lookup tables must be sorted for efficient access!"); \
314 TABLE##Checked = true; \
315 } \
316 }
317#endif
318
319//===----------------------------------------------------------------------===//
320// Register File -> Register Stack Mapping Methods
321//===----------------------------------------------------------------------===//
322
323// OpcodeTable - Sorted map of register instructions to their stack version.
324// The first element is an register file pseudo instruction, the second is the
325// concrete X86 instruction which uses the register stack.
326//
327static const TableEntry OpcodeTable[] = {
328 { X86::ABS_Fp32 , X86::ABS_F },
329 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000330 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 { X86::ADD_Fp32m , X86::ADD_F32m },
332 { X86::ADD_Fp64m , X86::ADD_F64m },
333 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000334 { X86::ADD_Fp80m32 , X86::ADD_F32m },
335 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
337 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000338 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
340 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000341 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 { X86::CHS_Fp32 , X86::CHS_F },
343 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000344 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
346 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000347 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000348 { X86::CMOVB_Fp32 , X86::CMOVB_F },
349 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000350 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 { X86::CMOVE_Fp32 , X86::CMOVE_F },
352 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000353 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
355 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000356 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
358 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000359 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
361 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000362 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
364 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000365 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 { X86::CMOVP_Fp32 , X86::CMOVP_F },
367 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000368 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369 { X86::COS_Fp32 , X86::COS_F },
370 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000371 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000372 { X86::DIVR_Fp32m , X86::DIVR_F32m },
373 { X86::DIVR_Fp64m , X86::DIVR_F64m },
374 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000375 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
376 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
378 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000379 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
381 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000382 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 { X86::DIV_Fp32m , X86::DIV_F32m },
384 { X86::DIV_Fp64m , X86::DIV_F64m },
385 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000386 { X86::DIV_Fp80m32 , X86::DIV_F32m },
387 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
389 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000390 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
392 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000393 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 { X86::ILD_Fp16m32 , X86::ILD_F16m },
395 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000396 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 { X86::ILD_Fp32m32 , X86::ILD_F32m },
398 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000399 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 { X86::ILD_Fp64m32 , X86::ILD_F64m },
401 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000402 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
404 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000405 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
407 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000408 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
410 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000411 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412 { X86::IST_Fp16m32 , X86::IST_F16m },
413 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000414 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 { X86::IST_Fp32m32 , X86::IST_F32m },
416 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000417 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 { X86::IST_Fp64m32 , X86::IST_FP64m },
419 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000420 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000421 { X86::LD_Fp032 , X86::LD_F0 },
422 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000423 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 { X86::LD_Fp132 , X86::LD_F1 },
425 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000426 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000428 { X86::LD_Fp32m64 , X86::LD_F32m },
429 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000431 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000432 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 { X86::MUL_Fp32m , X86::MUL_F32m },
434 { X86::MUL_Fp64m , X86::MUL_F64m },
435 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000436 { X86::MUL_Fp80m32 , X86::MUL_F32m },
437 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
439 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000440 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
442 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000443 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444 { X86::SIN_Fp32 , X86::SIN_F },
445 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000446 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 { X86::SQRT_Fp32 , X86::SQRT_F },
448 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000449 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 { X86::ST_Fp32m , X86::ST_F32m },
451 { X86::ST_Fp64m , X86::ST_F64m },
452 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000453 { X86::ST_Fp80m32 , X86::ST_F32m },
454 { X86::ST_Fp80m64 , X86::ST_F64m },
455 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 { X86::SUBR_Fp32m , X86::SUBR_F32m },
457 { X86::SUBR_Fp64m , X86::SUBR_F64m },
458 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000459 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
460 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
462 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000463 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
465 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000466 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 { X86::SUB_Fp32m , X86::SUB_F32m },
468 { X86::SUB_Fp64m , X86::SUB_F64m },
469 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000470 { X86::SUB_Fp80m32 , X86::SUB_F32m },
471 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
473 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000474 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
476 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000477 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000478 { X86::TST_Fp32 , X86::TST_F },
479 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000480 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
482 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000483 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
485 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000486 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487};
488
489static unsigned getConcreteOpcode(unsigned Opcode) {
490 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000491 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000492 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
493 return Opc;
494}
495
496//===----------------------------------------------------------------------===//
497// Helper Methods
498//===----------------------------------------------------------------------===//
499
500// PopTable - Sorted map of instructions to their popping version. The first
501// element is an instruction, the second is the version which pops.
502//
503static const TableEntry PopTable[] = {
504 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
505
506 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
507 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
508
509 { X86::IST_F16m , X86::IST_FP16m },
510 { X86::IST_F32m , X86::IST_FP32m },
511
512 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
513
514 { X86::ST_F32m , X86::ST_FP32m },
515 { X86::ST_F64m , X86::ST_FP64m },
516 { X86::ST_Frr , X86::ST_FPrr },
517
518 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
519 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
520
521 { X86::UCOM_FIr , X86::UCOM_FIPr },
522
523 { X86::UCOM_FPr , X86::UCOM_FPPr },
524 { X86::UCOM_Fr , X86::UCOM_FPr },
525};
526
527/// popStackAfter - Pop the current value off of the top of the FP stack after
528/// the specified instruction. This attempts to be sneaky and combine the pop
529/// into the instruction itself if possible. The iterator is left pointing to
530/// the last instruction, be it a new pop instruction inserted, or the old
531/// instruction if it was modified in place.
532///
533void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
534 ASSERT_SORTED(PopTable);
535 assert(StackTop > 0 && "Cannot pop empty stack!");
536 RegMap[Stack[--StackTop]] = ~0; // Update state
537
538 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000539 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540 if (Opcode != -1) {
Chris Lattner86bb02f2008-01-11 18:10:50 +0000541 I->setDesc(TII->get(Opcode));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000542 if (Opcode == X86::UCOM_FPPr)
543 I->RemoveOperand(0);
544 } else { // Insert an explicit pop
545 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
546 }
547}
548
549/// freeStackSlotAfter - Free the specified register from the register stack, so
550/// that it is no longer in a register. If the register is currently at the top
551/// of the stack, we just pop the current instruction, otherwise we store the
552/// current top-of-stack into the specified slot, then pop the top of stack.
553void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
554 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
555 popStackAfter(I);
556 return;
557 }
558
559 // Otherwise, store the top of stack into the dead slot, killing the operand
560 // without having to add in an explicit xchg then pop.
561 //
562 unsigned STReg = getSTReg(FPRegNo);
563 unsigned OldSlot = getSlot(FPRegNo);
564 unsigned TopReg = Stack[StackTop-1];
565 Stack[OldSlot] = TopReg;
566 RegMap[TopReg] = OldSlot;
567 RegMap[FPRegNo] = ~0;
568 Stack[--StackTop] = ~0;
569 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
570}
571
572
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000573//===----------------------------------------------------------------------===//
574// Instruction transformation implementation
575//===----------------------------------------------------------------------===//
576
577/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
578///
579void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
580 MachineInstr *MI = I;
581 unsigned DestReg = getFPReg(MI->getOperand(0));
582
583 // Change from the pseudo instruction to the concrete instruction.
584 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000585 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000586
587 // Result gets pushed on the stack.
588 pushReg(DestReg);
589}
590
591/// handleOneArgFP - fst <mem>, ST(0)
592///
593void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
594 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000595 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000596 assert((NumOps == 5 || NumOps == 1) &&
597 "Can only handle fst* & ftst instructions!");
598
599 // Is this the last use of the source register?
600 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000601 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602
603 // FISTP64m is strange because there isn't a non-popping versions.
604 // If we have one _and_ we don't want to pop the operand, duplicate the value
605 // on the stack instead of moving it. This ensure that popping the value is
606 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000607 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608 //
609 if (!KillsSrc &&
610 (MI->getOpcode() == X86::IST_Fp64m32 ||
611 MI->getOpcode() == X86::ISTT_Fp16m32 ||
612 MI->getOpcode() == X86::ISTT_Fp32m32 ||
613 MI->getOpcode() == X86::ISTT_Fp64m32 ||
614 MI->getOpcode() == X86::IST_Fp64m64 ||
615 MI->getOpcode() == X86::ISTT_Fp16m64 ||
616 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000617 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000618 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000619 MI->getOpcode() == X86::ISTT_Fp16m80 ||
620 MI->getOpcode() == X86::ISTT_Fp32m80 ||
621 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000622 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000623 duplicateToTop(Reg, 7 /*temp register*/, I);
624 } else {
625 moveToTop(Reg, I); // Move to the top of the stack...
626 }
627
628 // Convert from the pseudo instruction to the concrete instruction.
629 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000630 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631
632 if (MI->getOpcode() == X86::IST_FP64m ||
633 MI->getOpcode() == X86::ISTT_FP16m ||
634 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000635 MI->getOpcode() == X86::ISTT_FP64m ||
636 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000637 assert(StackTop > 0 && "Stack empty??");
638 --StackTop;
639 } else if (KillsSrc) { // Last use of operand?
640 popStackAfter(I);
641 }
642}
643
644
645/// handleOneArgFPRW: Handle instructions that read from the top of stack and
646/// replace the value with a newly computed value. These instructions may have
647/// non-fp operands after their FP operands.
648///
649/// Examples:
650/// R1 = fchs R2
651/// R1 = fadd R2, [mem]
652///
653void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
654 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000655 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000656 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
657
658 // Is this the last use of the source register?
659 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000660 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000661
662 if (KillsSrc) {
663 // If this is the last use of the source register, just make sure it's on
664 // the top of the stack.
665 moveToTop(Reg, I);
666 assert(StackTop > 0 && "Stack cannot be empty!");
667 --StackTop;
668 pushReg(getFPReg(MI->getOperand(0)));
669 } else {
670 // If this is not the last use of the source register, _copy_ it to the top
671 // of the stack.
672 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
673 }
674
675 // Change from the pseudo instruction to the concrete instruction.
676 MI->RemoveOperand(1); // Drop the source operand.
677 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner86bb02f2008-01-11 18:10:50 +0000678 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679}
680
681
682//===----------------------------------------------------------------------===//
683// Define tables of various ways to map pseudo instructions
684//
685
686// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
687static const TableEntry ForwardST0Table[] = {
688 { X86::ADD_Fp32 , X86::ADD_FST0r },
689 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000690 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 { X86::DIV_Fp32 , X86::DIV_FST0r },
692 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000693 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694 { X86::MUL_Fp32 , X86::MUL_FST0r },
695 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000696 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697 { X86::SUB_Fp32 , X86::SUB_FST0r },
698 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000699 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700};
701
702// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
703static const TableEntry ReverseST0Table[] = {
704 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
705 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000706 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 { X86::DIV_Fp32 , X86::DIVR_FST0r },
708 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000709 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
711 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000712 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 { X86::SUB_Fp32 , X86::SUBR_FST0r },
714 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000715 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716};
717
718// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
719static const TableEntry ForwardSTiTable[] = {
720 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
721 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000722 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
724 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000725 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
727 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000728 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
730 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000731 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732};
733
734// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
735static const TableEntry ReverseSTiTable[] = {
736 { X86::ADD_Fp32 , X86::ADD_FrST0 },
737 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000738 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 { X86::DIV_Fp32 , X86::DIV_FrST0 },
740 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000741 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 { X86::MUL_Fp32 , X86::MUL_FrST0 },
743 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000744 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 { X86::SUB_Fp32 , X86::SUB_FrST0 },
746 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000747 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748};
749
750
751/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
752/// instructions which need to be simplified and possibly transformed.
753///
754/// Result: ST(0) = fsub ST(0), ST(i)
755/// ST(i) = fsub ST(0), ST(i)
756/// ST(0) = fsubr ST(0), ST(i)
757/// ST(i) = fsubr ST(0), ST(i)
758///
759void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
760 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
761 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
762 MachineInstr *MI = I;
763
Chris Lattner5b930372008-01-07 07:27:27 +0000764 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
766 unsigned Dest = getFPReg(MI->getOperand(0));
767 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
768 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000769 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
770 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771
772 unsigned TOS = getStackEntry(0);
773
774 // One of our operands must be on the top of the stack. If neither is yet, we
775 // need to move one.
776 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
777 // We can choose to move either operand to the top of the stack. If one of
778 // the operands is killed by this instruction, we want that one so that we
779 // can update right on top of the old version.
780 if (KillsOp0) {
781 moveToTop(Op0, I); // Move dead operand to TOS.
782 TOS = Op0;
783 } else if (KillsOp1) {
784 moveToTop(Op1, I);
785 TOS = Op1;
786 } else {
787 // All of the operands are live after this instruction executes, so we
788 // cannot update on top of any operand. Because of this, we must
789 // duplicate one of the stack elements to the top. It doesn't matter
790 // which one we pick.
791 //
792 duplicateToTop(Op0, Dest, I);
793 Op0 = TOS = Dest;
794 KillsOp0 = true;
795 }
796 } else if (!KillsOp0 && !KillsOp1) {
797 // If we DO have one of our operands at the top of the stack, but we don't
798 // have a dead operand, we must duplicate one of the operands to a new slot
799 // on the stack.
800 duplicateToTop(Op0, Dest, I);
801 Op0 = TOS = Dest;
802 KillsOp0 = true;
803 }
804
805 // Now we know that one of our operands is on the top of the stack, and at
806 // least one of our operands is killed by this instruction.
807 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
808 "Stack conditions not set up right!");
809
810 // We decide which form to use based on what is on the top of the stack, and
811 // which operand is killed by this instruction.
812 const TableEntry *InstTable;
813 bool isForward = TOS == Op0;
814 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
815 if (updateST0) {
816 if (isForward)
817 InstTable = ForwardST0Table;
818 else
819 InstTable = ReverseST0Table;
820 } else {
821 if (isForward)
822 InstTable = ForwardSTiTable;
823 else
824 InstTable = ReverseSTiTable;
825 }
826
Owen Anderson1636de92007-09-07 04:06:50 +0000827 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
828 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000829 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
830
831 // NotTOS - The register which is not on the top of stack...
832 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
833
834 // Replace the old instruction with a new instruction
835 MBB->remove(I++);
836 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
837
838 // If both operands are killed, pop one off of the stack in addition to
839 // overwriting the other one.
840 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
841 assert(!updateST0 && "Should have updated other operand!");
842 popStackAfter(I); // Pop the top of stack
843 }
844
845 // Update stack information so that we know the destination register is now on
846 // the stack.
847 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
848 assert(UpdatedSlot < StackTop && Dest < 7);
849 Stack[UpdatedSlot] = Dest;
850 RegMap[Dest] = UpdatedSlot;
851 delete MI; // Remove the old instruction
852}
853
854/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
855/// register arguments and no explicit destinations.
856///
857void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
858 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
859 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
860 MachineInstr *MI = I;
861
Chris Lattner5b930372008-01-07 07:27:27 +0000862 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000863 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
864 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
865 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000866 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
867 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868
869 // Make sure the first operand is on the top of stack, the other one can be
870 // anywhere.
871 moveToTop(Op0, I);
872
873 // Change from the pseudo instruction to the concrete instruction.
874 MI->getOperand(0).setReg(getSTReg(Op1));
875 MI->RemoveOperand(1);
Chris Lattner86bb02f2008-01-11 18:10:50 +0000876 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877
878 // If any of the operands are killed by this instruction, free them.
879 if (KillsOp0) freeStackSlotAfter(I, Op0);
880 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
881}
882
883/// handleCondMovFP - Handle two address conditional move instructions. These
884/// instructions move a st(i) register to st(0) iff a condition is true. These
885/// instructions require that the first operand is at the top of the stack, but
886/// otherwise don't modify the stack at all.
887void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
888 MachineInstr *MI = I;
889
890 unsigned Op0 = getFPReg(MI->getOperand(0));
891 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000892 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893
894 // The first operand *must* be on the top of the stack.
895 moveToTop(Op0, I);
896
897 // Change the second operand to the stack register that the operand is in.
898 // Change from the pseudo instruction to the concrete instruction.
899 MI->RemoveOperand(0);
900 MI->RemoveOperand(1);
901 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner86bb02f2008-01-11 18:10:50 +0000902 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903
904 // If we kill the second operand, make sure to pop it from the stack.
905 if (Op0 != Op1 && KillsOp1) {
906 // Get this value off of the register stack.
907 freeStackSlotAfter(I, Op1);
908 }
909}
910
911
912/// handleSpecialFP - Handle special instructions which behave unlike other
913/// floating point instructions. This is primarily intended for use by pseudo
914/// instructions.
915///
916void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
917 MachineInstr *MI = I;
918 switch (MI->getOpcode()) {
919 default: assert(0 && "Unknown SpecialFP instruction!");
920 case X86::FpGETRESULT32: // Appears immediately after a call returning FP type!
921 case X86::FpGETRESULT64: // Appears immediately after a call returning FP type!
Dale Johannesen19f781d2007-08-06 21:31:06 +0000922 case X86::FpGETRESULT80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923 assert(StackTop == 0 && "Stack should be empty after a call!");
924 pushReg(getFPReg(MI->getOperand(0)));
925 break;
Evan Cheng931a8f42008-01-29 19:34:22 +0000926 case X86::FpGETRESULT80x2:
927 assert(StackTop == 0 && "Stack should be empty after a call!");
928 pushReg(getFPReg(MI->getOperand(0)));
929 pushReg(getFPReg(MI->getOperand(1)));
930 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000931 case X86::FpSETRESULT32:
932 case X86::FpSETRESULT64:
Dale Johannesen19f781d2007-08-06 21:31:06 +0000933 case X86::FpSETRESULT80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 assert(StackTop == 1 && "Stack should have one element on it to return!");
935 --StackTop; // "Forget" we have something on the top of stack!
936 break;
937 case X86::MOV_Fp3232:
938 case X86::MOV_Fp3264:
939 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000940 case X86::MOV_Fp6464:
941 case X86::MOV_Fp3280:
942 case X86::MOV_Fp6480:
943 case X86::MOV_Fp8032:
944 case X86::MOV_Fp8064:
945 case X86::MOV_Fp8080: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 unsigned SrcReg = getFPReg(MI->getOperand(1));
947 unsigned DestReg = getFPReg(MI->getOperand(0));
948
Evan Chengc7daf1f2008-03-05 00:59:57 +0000949 if (MI->killsRegister(X86::FP0+SrcReg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000950 // If the input operand is killed, we can just change the owner of the
951 // incoming stack slot into the result.
952 unsigned Slot = getSlot(SrcReg);
953 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
954 Stack[Slot] = DestReg;
955 RegMap[DestReg] = Slot;
956
957 } else {
958 // For FMOV we just duplicate the specified value to a new stack slot.
959 // This could be made better, but would require substantial changes.
960 duplicateToTop(SrcReg, DestReg, I);
961 }
962 break;
963 }
964 }
965
966 I = MBB->erase(I); // Remove the pseudo instruction
967 --I;
968}