Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
Owen Anderson | 07000c6 | 2006-05-12 06:33:49 +0000 | [diff] [blame] | 15 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 18 | #include "llvm/DerivedTypes.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 19 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 21 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 22 | using namespace llvm; |
| 23 | |
| 24 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 25 | : TM(tm), TD(TM.getTargetData()) { |
Evan Cheng | 33143dc | 2006-03-03 06:58:59 +0000 | [diff] [blame] | 26 | assert(ISD::BUILTIN_OP_END <= 156 && |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 27 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 28 | // All operations default to being supported. |
| 29 | memset(OpActions, 0, sizeof(OpActions)); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 30 | memset(LoadXActions, 0, sizeof(LoadXActions)); |
Evan Cheng | 8b2794a | 2006-10-13 21:14:26 +0000 | [diff] [blame] | 31 | memset(&StoreXActions, 0, sizeof(StoreXActions)); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 32 | |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 33 | IsLittleEndian = TD->isLittleEndian(); |
Chris Lattner | cf9668f | 2006-10-06 22:52:08 +0000 | [diff] [blame] | 34 | UsesGlobalOffsetTable = false; |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 35 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 36 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 37 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 38 | memset(TargetDAGCombineArray, 0, |
| 39 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 40 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 41 | allowUnalignedMemoryAccesses = false; |
Chris Lattner | 8e6be8b | 2005-09-27 22:13:56 +0000 | [diff] [blame] | 42 | UseUnderscoreSetJmpLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 43 | IntDivIsCheap = false; |
| 44 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 45 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 46 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 7acf5f3 | 2006-09-05 17:39:15 +0000 | [diff] [blame] | 47 | JumpBufSize = 0; |
Duraid Madina | 0c9e0ff | 2006-09-04 07:44:11 +0000 | [diff] [blame] | 48 | JumpBufAlignment = 0; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 49 | } |
| 50 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 51 | TargetLowering::~TargetLowering() {} |
| 52 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 53 | /// setValueTypeAction - Set the action for a particular value type. This |
| 54 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 55 | static void SetValueTypeAction(MVT::ValueType VT, |
| 56 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 57 | TargetLowering &TLI, |
| 58 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 59 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 60 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 61 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 62 | MVT::ValueType PromoteTo; |
| 63 | if (VT == MVT::f32) |
| 64 | PromoteTo = MVT::f64; |
| 65 | else { |
| 66 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 67 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 68 | ++LargerReg; |
| 69 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 70 | "Nothing to promote to??"); |
| 71 | } |
| 72 | PromoteTo = (MVT::ValueType)LargerReg; |
| 73 | } |
| 74 | |
| 75 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 76 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 77 | "Can only promote from int->int or fp->fp!"); |
| 78 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 79 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 80 | } else if (Action == TargetLowering::Expand) { |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 81 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 82 | "Cannot expand this type: target must support SOME integer reg!"); |
| 83 | // Expand to the next smaller integer type! |
| 84 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 89 | /// computeRegisterProperties - Once all of the register classes are added, |
| 90 | /// this allows us to compute derived properties we expose. |
| 91 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 92 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 93 | "Too many value types for ValueTypeActions to hold!"); |
| 94 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 95 | // Everything defaults to one. |
| 96 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 97 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 98 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 99 | // Find the largest integer register class. |
| 100 | unsigned LargestIntReg = MVT::i128; |
| 101 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 102 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 103 | |
| 104 | // Every integer value type larger than this largest register takes twice as |
| 105 | // many registers to represent as the previous ValueType. |
| 106 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 107 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 108 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 109 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 110 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 111 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 112 | // If we are expanding this type, expand it! |
| 113 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 114 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 115 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 116 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 117 | // Otherwise, if we don't have native support, we must promote to a |
| 118 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 119 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 120 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 121 | else |
| 122 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 123 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 124 | // If the target does not have native support for F32, promote it to F64. |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 125 | if (!isTypeLegal(MVT::f32)) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 126 | SetValueTypeAction(MVT::f32, Promote, *this, |
| 127 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 128 | else |
| 129 | TransformToType[MVT::f32] = MVT::f32; |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 130 | |
| 131 | // Set MVT::Vector to always be Expanded |
| 132 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 133 | ValueTypeActions); |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 134 | |
| 135 | // Loop over all of the legal vector value types, specifying an identity type |
| 136 | // transformation. |
| 137 | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
Evan Cheng | 677274b | 2006-03-23 23:24:51 +0000 | [diff] [blame] | 138 | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 139 | if (isTypeLegal((MVT::ValueType)i)) |
| 140 | TransformToType[i] = (MVT::ValueType)i; |
| 141 | } |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 142 | |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 143 | assert(isTypeLegal(MVT::f64) && "Target does not support FP?"); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 144 | TransformToType[MVT::f64] = MVT::f64; |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 145 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 146 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 147 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 148 | return NULL; |
| 149 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 150 | |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 151 | /// getPackedTypeBreakdown - Packed types are broken down into some number of |
Evan Cheng | 7e399c1 | 2006-05-17 18:22:14 +0000 | [diff] [blame] | 152 | /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32 |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 153 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| 154 | /// |
| 155 | /// This method returns the number and type of the resultant breakdown. |
| 156 | /// |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 157 | unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, |
| 158 | MVT::ValueType &PTyElementVT, |
| 159 | MVT::ValueType &PTyLegalElementVT) const { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 160 | // Figure out the right, legal destination reg to copy into. |
| 161 | unsigned NumElts = PTy->getNumElements(); |
| 162 | MVT::ValueType EltTy = getValueType(PTy->getElementType()); |
| 163 | |
| 164 | unsigned NumVectorRegs = 1; |
| 165 | |
| 166 | // Divide the input until we get to a supported size. This will always |
| 167 | // end with a scalar if the target doesn't support vectors. |
| 168 | while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) { |
| 169 | NumElts >>= 1; |
| 170 | NumVectorRegs <<= 1; |
| 171 | } |
| 172 | |
| 173 | MVT::ValueType VT; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 174 | if (NumElts == 1) { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 175 | VT = EltTy; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 176 | } else { |
| 177 | VT = getVectorType(EltTy, NumElts); |
| 178 | } |
| 179 | PTyElementVT = VT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 180 | |
| 181 | MVT::ValueType DestVT = getTypeToTransformTo(VT); |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 182 | PTyLegalElementVT = DestVT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 183 | if (DestVT < VT) { |
| 184 | // Value is expanded, e.g. i64 -> i16. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 185 | return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT)); |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 186 | } else { |
| 187 | // Otherwise, promotion or legal types use the same number of registers as |
| 188 | // the vector decimated to the appropriate level. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 189 | return NumVectorRegs; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 190 | } |
| 191 | |
Evan Cheng | e9b3da1 | 2006-05-17 18:10:06 +0000 | [diff] [blame] | 192 | return 1; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 193 | } |
| 194 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 195 | //===----------------------------------------------------------------------===// |
| 196 | // Optimization Methods |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 199 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 200 | /// specified instruction is a constant integer. If so, check to see if there |
| 201 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 202 | /// constant and return true. |
| 203 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 204 | uint64_t Demanded) { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 205 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 206 | switch(Op.getOpcode()) { |
| 207 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 208 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 209 | case ISD::OR: |
| 210 | case ISD::XOR: |
| 211 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 212 | if ((~Demanded & C->getValue()) != 0) { |
| 213 | MVT::ValueType VT = Op.getValueType(); |
| 214 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 215 | DAG.getConstant(Demanded & C->getValue(), |
| 216 | VT)); |
| 217 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 218 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 219 | break; |
| 220 | } |
| 221 | return false; |
| 222 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 223 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 224 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 225 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 226 | /// use this information to simplify Op, create a new simplified DAG node and |
| 227 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 228 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 229 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 230 | /// only be accurate for those bits in the DemandedMask. |
| 231 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 232 | uint64_t &KnownZero, |
| 233 | uint64_t &KnownOne, |
| 234 | TargetLoweringOpt &TLO, |
| 235 | unsigned Depth) const { |
| 236 | KnownZero = KnownOne = 0; // Don't know anything. |
| 237 | // Other users may use these bits. |
| 238 | if (!Op.Val->hasOneUse()) { |
| 239 | if (Depth != 0) { |
| 240 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 241 | // simplify things downstream. |
| 242 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 243 | return false; |
| 244 | } |
| 245 | // If this is the root being simplified, allow it to have multiple uses, |
| 246 | // just set the DemandedMask to all bits. |
| 247 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 248 | } else if (DemandedMask == 0) { |
| 249 | // Not demanding any bits from Op. |
| 250 | if (Op.getOpcode() != ISD::UNDEF) |
| 251 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 252 | return false; |
| 253 | } else if (Depth == 6) { // Limit search depth. |
| 254 | return false; |
| 255 | } |
| 256 | |
| 257 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 258 | switch (Op.getOpcode()) { |
| 259 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 260 | // We know all of the bits for a constant! |
| 261 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 262 | KnownZero = ~KnownOne & DemandedMask; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 263 | return false; // Don't fall through, will infinitely loop. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 264 | case ISD::AND: |
Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 265 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 266 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 267 | // simplify the LHS, here we're using information from the LHS to simplify |
| 268 | // the RHS. |
| 269 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 270 | uint64_t LHSZero, LHSOne; |
| 271 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, |
| 272 | LHSZero, LHSOne, Depth+1); |
| 273 | // If the LHS already has zeros where RHSC does, this and is dead. |
| 274 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) |
| 275 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 276 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 277 | // the constant. |
| 278 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) |
| 279 | return true; |
| 280 | } |
| 281 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 282 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 283 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 284 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 285 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 286 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 287 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 288 | return true; |
| 289 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 290 | |
| 291 | // If all of the demanded bits are known one on one side, return the other. |
| 292 | // These bits cannot contribute to the result of the 'and'. |
| 293 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 294 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 295 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 296 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 297 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 298 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 299 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 300 | // If the RHS is a constant, see if we can simplify it. |
| 301 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 302 | return true; |
Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 303 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 304 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 305 | KnownOne &= KnownOne2; |
| 306 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 307 | KnownZero |= KnownZero2; |
| 308 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 309 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 310 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 311 | KnownOne, TLO, Depth+1)) |
| 312 | return true; |
| 313 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 314 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 315 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 316 | return true; |
| 317 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 318 | |
| 319 | // If all of the demanded bits are known zero on one side, return the other. |
| 320 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 321 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 322 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 323 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 324 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 325 | // If all of the potentially set bits on one side are known to be set on |
| 326 | // the other side, just use the 'other' side. |
| 327 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 328 | (DemandedMask & (~KnownZero))) |
| 329 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 330 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 331 | (DemandedMask & (~KnownZero2))) |
| 332 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 333 | // If the RHS is a constant, see if we can simplify it. |
| 334 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 335 | return true; |
| 336 | |
| 337 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 338 | KnownZero &= KnownZero2; |
| 339 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 340 | KnownOne |= KnownOne2; |
| 341 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 342 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 343 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 344 | KnownOne, TLO, Depth+1)) |
| 345 | return true; |
| 346 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 347 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 348 | KnownOne2, TLO, Depth+1)) |
| 349 | return true; |
| 350 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 351 | |
| 352 | // If all of the demanded bits are known zero on one side, return the other. |
| 353 | // These bits cannot contribute to the result of the 'xor'. |
| 354 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 355 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 356 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 357 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 358 | |
| 359 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 360 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 361 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 362 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 363 | |
| 364 | // If all of the unknown bits are known to be zero on one side or the other |
| 365 | // (but not both) turn this into an *inclusive* or. |
| 366 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 367 | if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) |
| 368 | if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) |
| 369 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 370 | Op.getOperand(0), |
| 371 | Op.getOperand(1))); |
| 372 | // If all of the demanded bits on one side are known, and all of the set |
| 373 | // bits on that side are also known to be set on the other side, turn this |
| 374 | // into an AND, as we know the bits will be cleared. |
| 375 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 376 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 377 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 378 | MVT::ValueType VT = Op.getValueType(); |
| 379 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 380 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 381 | ANDC)); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | // If the RHS is a constant, see if we can simplify it. |
| 386 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 387 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 388 | return true; |
| 389 | |
| 390 | KnownZero = KnownZeroOut; |
| 391 | KnownOne = KnownOneOut; |
| 392 | break; |
| 393 | case ISD::SETCC: |
| 394 | // If we know the result of a setcc has the top bits zero, use this info. |
| 395 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 396 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 397 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 398 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 399 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 400 | KnownOne, TLO, Depth+1)) |
| 401 | return true; |
| 402 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 403 | KnownOne2, TLO, Depth+1)) |
| 404 | return true; |
| 405 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 406 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 407 | |
| 408 | // If the operands are constants, see if we can simplify them. |
| 409 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 410 | return true; |
| 411 | |
| 412 | // Only known if known in both the LHS and RHS. |
| 413 | KnownOne &= KnownOne2; |
| 414 | KnownZero &= KnownZero2; |
| 415 | break; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 416 | case ISD::SELECT_CC: |
| 417 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, |
| 418 | KnownOne, TLO, Depth+1)) |
| 419 | return true; |
| 420 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, |
| 421 | KnownOne2, TLO, Depth+1)) |
| 422 | return true; |
| 423 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 424 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 425 | |
| 426 | // If the operands are constants, see if we can simplify them. |
| 427 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 428 | return true; |
| 429 | |
| 430 | // Only known if known in both the LHS and RHS. |
| 431 | KnownOne &= KnownOne2; |
| 432 | KnownZero &= KnownZero2; |
| 433 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 434 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 435 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 436 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 437 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 438 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 439 | KnownZero <<= SA->getValue(); |
| 440 | KnownOne <<= SA->getValue(); |
| 441 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 442 | } |
| 443 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 444 | case ISD::SRL: |
| 445 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 446 | MVT::ValueType VT = Op.getValueType(); |
| 447 | unsigned ShAmt = SA->getValue(); |
| 448 | |
| 449 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 450 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 451 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 452 | (DemandedMask << ShAmt) & TypeMask, |
| 453 | KnownZero, KnownOne, TLO, Depth+1)) |
| 454 | return true; |
| 455 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 456 | KnownZero &= TypeMask; |
| 457 | KnownOne &= TypeMask; |
| 458 | KnownZero >>= ShAmt; |
| 459 | KnownOne >>= ShAmt; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 460 | |
| 461 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 462 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 463 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 464 | } |
| 465 | break; |
| 466 | case ISD::SRA: |
| 467 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 468 | MVT::ValueType VT = Op.getValueType(); |
| 469 | unsigned ShAmt = SA->getValue(); |
| 470 | |
| 471 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 472 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 473 | |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 474 | uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; |
| 475 | |
| 476 | // If any of the demanded bits are produced by the sign extension, we also |
| 477 | // demand the input sign bit. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 478 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 479 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 480 | if (HighBits & DemandedMask) |
| 481 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 482 | |
| 483 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 484 | KnownZero, KnownOne, TLO, Depth+1)) |
| 485 | return true; |
| 486 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 487 | KnownZero &= TypeMask; |
| 488 | KnownOne &= TypeMask; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 489 | KnownZero >>= ShAmt; |
| 490 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 491 | |
| 492 | // Handle the sign bits. |
| 493 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 494 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 495 | |
| 496 | // If the input sign bit is known to be zero, or if none of the top bits |
| 497 | // are demanded, turn this into an unsigned shift right. |
| 498 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 499 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 500 | Op.getOperand(1))); |
| 501 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 502 | KnownOne |= HighBits; |
| 503 | } |
| 504 | } |
| 505 | break; |
| 506 | case ISD::SIGN_EXTEND_INREG: { |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 507 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 508 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 509 | // Sign extension. Compute the demanded bits in the result that are not |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 510 | // present in the input. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 511 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 512 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 513 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 514 | if (NewBits == 0) |
| 515 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 516 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 517 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 518 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 519 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 520 | // Since the sign extended bits are demanded, we know that the sign |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 521 | // bit is demanded. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 522 | InputDemandedBits |= InSignBit; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 523 | |
| 524 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 525 | KnownZero, KnownOne, TLO, Depth+1)) |
| 526 | return true; |
| 527 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 528 | |
| 529 | // If the sign bit of the input is known set or clear, then we know the |
| 530 | // top bits of the result. |
| 531 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 532 | // If the input sign bit is known zero, convert this into a zero extension. |
| 533 | if (KnownZero & InSignBit) |
| 534 | return TLO.CombineTo(Op, |
| 535 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); |
| 536 | |
| 537 | if (KnownOne & InSignBit) { // Input sign bit known set |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 538 | KnownOne |= NewBits; |
| 539 | KnownZero &= ~NewBits; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 540 | } else { // Input sign bit unknown |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 541 | KnownZero &= ~NewBits; |
| 542 | KnownOne &= ~NewBits; |
| 543 | } |
| 544 | break; |
| 545 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 546 | case ISD::CTTZ: |
| 547 | case ISD::CTLZ: |
| 548 | case ISD::CTPOP: { |
| 549 | MVT::ValueType VT = Op.getValueType(); |
| 550 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 551 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 552 | KnownOne = 0; |
| 553 | break; |
| 554 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 555 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 556 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 557 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 558 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 559 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; |
| 560 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 561 | break; |
| 562 | } |
| 563 | case ISD::ZERO_EXTEND: { |
| 564 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 565 | |
| 566 | // If none of the top bits are demanded, convert this into an any_extend. |
| 567 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 568 | if (NewBits == 0) |
| 569 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, |
| 570 | Op.getValueType(), |
| 571 | Op.getOperand(0))); |
| 572 | |
| 573 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 574 | KnownZero, KnownOne, TLO, Depth+1)) |
| 575 | return true; |
| 576 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 577 | KnownZero |= NewBits; |
| 578 | break; |
| 579 | } |
| 580 | case ISD::SIGN_EXTEND: { |
| 581 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 582 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 583 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); |
| 584 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 585 | |
| 586 | // If none of the top bits are demanded, convert this into an any_extend. |
| 587 | if (NewBits == 0) |
| 588 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), |
| 589 | Op.getOperand(0))); |
| 590 | |
| 591 | // Since some of the sign extended bits are demanded, we know that the sign |
| 592 | // bit is demanded. |
| 593 | uint64_t InDemandedBits = DemandedMask & InMask; |
| 594 | InDemandedBits |= InSignBit; |
| 595 | |
| 596 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 597 | KnownOne, TLO, Depth+1)) |
| 598 | return true; |
| 599 | |
| 600 | // If the sign bit is known zero, convert this to a zero extend. |
| 601 | if (KnownZero & InSignBit) |
| 602 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, |
| 603 | Op.getValueType(), |
| 604 | Op.getOperand(0))); |
| 605 | |
| 606 | // If the sign bit is known one, the top bits match. |
| 607 | if (KnownOne & InSignBit) { |
| 608 | KnownOne |= NewBits; |
| 609 | KnownZero &= ~NewBits; |
| 610 | } else { // Otherwise, top bits aren't known. |
| 611 | KnownOne &= ~NewBits; |
| 612 | KnownZero &= ~NewBits; |
| 613 | } |
| 614 | break; |
| 615 | } |
| 616 | case ISD::ANY_EXTEND: { |
| 617 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 618 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 619 | KnownZero, KnownOne, TLO, Depth+1)) |
| 620 | return true; |
| 621 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 622 | break; |
| 623 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 624 | case ISD::TRUNCATE: { |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 625 | // Simplify the input, using demanded bit information, and compute the known |
| 626 | // zero/one bits live out. |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 627 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, |
| 628 | KnownZero, KnownOne, TLO, Depth+1)) |
| 629 | return true; |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 630 | |
| 631 | // If the input is only used by this truncate, see if we can shrink it based |
| 632 | // on the known demanded bits. |
| 633 | if (Op.getOperand(0).Val->hasOneUse()) { |
| 634 | SDOperand In = Op.getOperand(0); |
| 635 | switch (In.getOpcode()) { |
| 636 | default: break; |
| 637 | case ISD::SRL: |
| 638 | // Shrink SRL by a constant if none of the high bits shifted in are |
| 639 | // demanded. |
| 640 | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ |
| 641 | uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); |
| 642 | HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); |
| 643 | HighBits >>= ShAmt->getValue(); |
| 644 | |
| 645 | if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && |
| 646 | (DemandedMask & HighBits) == 0) { |
| 647 | // None of the shifted in bits are needed. Add a truncate of the |
| 648 | // shift input, then shift it. |
| 649 | SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, |
| 650 | Op.getValueType(), |
| 651 | In.getOperand(0)); |
| 652 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), |
| 653 | NewTrunc, In.getOperand(1))); |
| 654 | } |
| 655 | } |
| 656 | break; |
| 657 | } |
| 658 | } |
| 659 | |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 660 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 661 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 662 | KnownZero &= OutMask; |
| 663 | KnownOne &= OutMask; |
| 664 | break; |
| 665 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 666 | case ISD::AssertZext: { |
| 667 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 668 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 669 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 670 | KnownZero, KnownOne, TLO, Depth+1)) |
| 671 | return true; |
| 672 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 673 | KnownZero |= ~InMask & DemandedMask; |
| 674 | break; |
| 675 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 676 | case ISD::ADD: |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 677 | case ISD::SUB: |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 678 | case ISD::INTRINSIC_WO_CHAIN: |
| 679 | case ISD::INTRINSIC_W_CHAIN: |
| 680 | case ISD::INTRINSIC_VOID: |
| 681 | // Just use ComputeMaskedBits to compute output bits. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 682 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 683 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 684 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 685 | |
| 686 | // If we know the value of all of the demanded bits, return this as a |
| 687 | // constant. |
| 688 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 689 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); |
| 690 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 691 | return false; |
| 692 | } |
| 693 | |
| 694 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 695 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 696 | /// for bits that V cannot have. |
| 697 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 698 | unsigned Depth) const { |
| 699 | uint64_t KnownZero, KnownOne; |
| 700 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 701 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 702 | return (KnownZero & Mask) == Mask; |
| 703 | } |
| 704 | |
| 705 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 706 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 707 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 708 | /// processing. |
| 709 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 710 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 711 | unsigned Depth) const { |
| 712 | KnownZero = KnownOne = 0; // Don't know anything. |
| 713 | if (Depth == 6 || Mask == 0) |
| 714 | return; // Limit search depth. |
| 715 | |
| 716 | uint64_t KnownZero2, KnownOne2; |
| 717 | |
| 718 | switch (Op.getOpcode()) { |
| 719 | case ISD::Constant: |
| 720 | // We know all of the bits for a constant! |
| 721 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 722 | KnownZero = ~KnownOne & Mask; |
| 723 | return; |
| 724 | case ISD::AND: |
| 725 | // If either the LHS or the RHS are Zero, the result is zero. |
| 726 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 727 | Mask &= ~KnownZero; |
| 728 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 729 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 730 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 731 | |
| 732 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 733 | KnownOne &= KnownOne2; |
| 734 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 735 | KnownZero |= KnownZero2; |
| 736 | return; |
| 737 | case ISD::OR: |
| 738 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 739 | Mask &= ~KnownOne; |
| 740 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 741 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 742 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 743 | |
| 744 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 745 | KnownZero &= KnownZero2; |
| 746 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 747 | KnownOne |= KnownOne2; |
| 748 | return; |
| 749 | case ISD::XOR: { |
| 750 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 751 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 752 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 753 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 754 | |
| 755 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 756 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 757 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 758 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 759 | KnownZero = KnownZeroOut; |
| 760 | return; |
| 761 | } |
| 762 | case ISD::SELECT: |
| 763 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 764 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 765 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 766 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 767 | |
| 768 | // Only known if known in both the LHS and RHS. |
| 769 | KnownOne &= KnownOne2; |
| 770 | KnownZero &= KnownZero2; |
| 771 | return; |
| 772 | case ISD::SELECT_CC: |
| 773 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 774 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 775 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 776 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 777 | |
| 778 | // Only known if known in both the LHS and RHS. |
| 779 | KnownOne &= KnownOne2; |
| 780 | KnownZero &= KnownZero2; |
| 781 | return; |
| 782 | case ISD::SETCC: |
| 783 | // If we know the result of a setcc has the top bits zero, use this info. |
| 784 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 785 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 786 | return; |
| 787 | case ISD::SHL: |
| 788 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 789 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 790 | ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), |
| 791 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 792 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 793 | KnownZero <<= SA->getValue(); |
| 794 | KnownOne <<= SA->getValue(); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 795 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 796 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 797 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 798 | case ISD::SRL: |
| 799 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 800 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 801 | MVT::ValueType VT = Op.getValueType(); |
| 802 | unsigned ShAmt = SA->getValue(); |
| 803 | |
| 804 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 805 | ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, |
| 806 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 807 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 808 | KnownZero &= TypeMask; |
| 809 | KnownOne &= TypeMask; |
| 810 | KnownZero >>= ShAmt; |
| 811 | KnownOne >>= ShAmt; |
| 812 | |
| 813 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 814 | HighBits <<= MVT::getSizeInBits(VT)-ShAmt; |
| 815 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 816 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 817 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 818 | case ISD::SRA: |
| 819 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 820 | MVT::ValueType VT = Op.getValueType(); |
| 821 | unsigned ShAmt = SA->getValue(); |
| 822 | |
| 823 | // Compute the new bits that are at the top now. |
| 824 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 825 | |
| 826 | uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; |
| 827 | // If any of the demanded bits are produced by the sign extension, we also |
| 828 | // demand the input sign bit. |
| 829 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 830 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 831 | if (HighBits & Mask) |
| 832 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 833 | |
| 834 | ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, |
| 835 | Depth+1); |
| 836 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 837 | KnownZero &= TypeMask; |
| 838 | KnownOne &= TypeMask; |
| 839 | KnownZero >>= ShAmt; |
| 840 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 841 | |
| 842 | // Handle the sign bits. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 843 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 844 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 845 | |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 846 | if (KnownZero & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 847 | KnownZero |= HighBits; // New bits are known zero. |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 848 | } else if (KnownOne & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 849 | KnownOne |= HighBits; // New bits are known one. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 850 | } |
| 851 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 852 | return; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 853 | case ISD::SIGN_EXTEND_INREG: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 854 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 855 | |
| 856 | // Sign extension. Compute the demanded bits in the result that are not |
| 857 | // present in the input. |
| 858 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| 859 | |
| 860 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 861 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| 862 | |
| 863 | // If the sign extended bits are demanded, we know that the sign |
| 864 | // bit is demanded. |
| 865 | if (NewBits) |
| 866 | InputDemandedBits |= InSignBit; |
| 867 | |
| 868 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| 869 | KnownZero, KnownOne, Depth+1); |
| 870 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 871 | |
| 872 | // If the sign bit of the input is known set or clear, then we know the |
| 873 | // top bits of the result. |
| 874 | if (KnownZero & InSignBit) { // Input sign bit known clear |
| 875 | KnownZero |= NewBits; |
| 876 | KnownOne &= ~NewBits; |
| 877 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 878 | KnownOne |= NewBits; |
| 879 | KnownZero &= ~NewBits; |
| 880 | } else { // Input sign bit unknown |
| 881 | KnownZero &= ~NewBits; |
| 882 | KnownOne &= ~NewBits; |
| 883 | } |
| 884 | return; |
| 885 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 886 | case ISD::CTTZ: |
| 887 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 888 | case ISD::CTPOP: { |
| 889 | MVT::ValueType VT = Op.getValueType(); |
| 890 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 891 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 892 | KnownOne = 0; |
| 893 | return; |
| 894 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 895 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 896 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 897 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 898 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 899 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
| 900 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 901 | return; |
| 902 | } |
| 903 | case ISD::ZERO_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 904 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 905 | uint64_t NewBits = (~InMask) & Mask; |
| 906 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 907 | KnownOne, Depth+1); |
| 908 | KnownZero |= NewBits & Mask; |
| 909 | KnownOne &= ~NewBits; |
| 910 | return; |
| 911 | } |
| 912 | case ISD::SIGN_EXTEND: { |
| 913 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 914 | unsigned InBits = MVT::getSizeInBits(InVT); |
| 915 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 916 | uint64_t InSignBit = 1ULL << (InBits-1); |
| 917 | uint64_t NewBits = (~InMask) & Mask; |
| 918 | uint64_t InDemandedBits = Mask & InMask; |
| 919 | |
| 920 | // If any of the sign extended bits are demanded, we know that the sign |
| 921 | // bit is demanded. |
| 922 | if (NewBits & Mask) |
| 923 | InDemandedBits |= InSignBit; |
| 924 | |
| 925 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 926 | KnownOne, Depth+1); |
| 927 | // If the sign bit is known zero or one, the top bits match. |
| 928 | if (KnownZero & InSignBit) { |
| 929 | KnownZero |= NewBits; |
| 930 | KnownOne &= ~NewBits; |
| 931 | } else if (KnownOne & InSignBit) { |
| 932 | KnownOne |= NewBits; |
| 933 | KnownZero &= ~NewBits; |
| 934 | } else { // Otherwise, top bits aren't known. |
| 935 | KnownOne &= ~NewBits; |
| 936 | KnownZero &= ~NewBits; |
| 937 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 938 | return; |
| 939 | } |
| 940 | case ISD::ANY_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 941 | MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| 942 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| 943 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 944 | return; |
| 945 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 946 | case ISD::TRUNCATE: { |
| 947 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 948 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 949 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 950 | KnownZero &= OutMask; |
| 951 | KnownOne &= OutMask; |
| 952 | break; |
| 953 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 954 | case ISD::AssertZext: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 955 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 956 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 957 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 958 | KnownOne, Depth+1); |
| 959 | KnownZero |= (~InMask) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 960 | return; |
| 961 | } |
| 962 | case ISD::ADD: { |
| 963 | // If either the LHS or the RHS are Zero, the result is zero. |
| 964 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 965 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 966 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 967 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 968 | |
| 969 | // Output known-0 bits are known if clear or set in both the low clear bits |
Chris Lattner | b6b17ff | 2006-03-13 06:42:16 +0000 | [diff] [blame] | 970 | // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| 971 | // low 3 bits clear. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 972 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 973 | CountTrailingZeros_64(~KnownZero2)); |
| 974 | |
| 975 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 976 | KnownOne = 0; |
| 977 | return; |
| 978 | } |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 979 | case ISD::SUB: { |
| 980 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 981 | if (!CLHS) return; |
| 982 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 983 | // We know that the top bits of C-X are clear if X contains less bits |
| 984 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 985 | // positive if we can prove that X is >= 0 and < 16. |
| 986 | MVT::ValueType VT = CLHS->getValueType(0); |
| 987 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| 988 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| 989 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| 990 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| 991 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| 992 | |
| 993 | // If all of the MaskV bits are known to be zero, then we know the output |
| 994 | // top bits are zero, because we now know that the output is from [0-C]. |
| 995 | if ((KnownZero & MaskV) == MaskV) { |
| 996 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| 997 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| 998 | KnownOne = 0; // No one bits known. |
| 999 | } else { |
Evan Cheng | 42f75a9 | 2006-07-07 21:37:21 +0000 | [diff] [blame] | 1000 | KnownZero = KnownOne = 0; // Otherwise, nothing known. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1001 | } |
| 1002 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1003 | return; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1004 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1005 | default: |
| 1006 | // Allow the target to implement this method for its nodes. |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1007 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| 1008 | case ISD::INTRINSIC_WO_CHAIN: |
| 1009 | case ISD::INTRINSIC_W_CHAIN: |
| 1010 | case ISD::INTRINSIC_VOID: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1011 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1012 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1013 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1014 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1015 | } |
| 1016 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1017 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 1018 | /// in Mask are known to be either zero or one and return them in the |
| 1019 | /// KnownZero/KnownOne bitsets. |
| 1020 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 1021 | uint64_t Mask, |
| 1022 | uint64_t &KnownZero, |
| 1023 | uint64_t &KnownOne, |
| 1024 | unsigned Depth) const { |
Chris Lattner | 1b5232a | 2006-04-02 06:19:46 +0000 | [diff] [blame] | 1025 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1026 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1027 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1028 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1029 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 1030 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1031 | KnownZero = 0; |
| 1032 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 1033 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1034 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1035 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 1036 | /// register is replicated into the other bits. We know that at least 1 bit |
| 1037 | /// is always equal to the sign bit (itself), but other cases can give us |
| 1038 | /// information. For example, immediately after an "SRA X, 2", we know that |
| 1039 | /// the top 3 bits are all equal to each other, so we return 3. |
| 1040 | unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ |
| 1041 | MVT::ValueType VT = Op.getValueType(); |
| 1042 | assert(MVT::isInteger(VT) && "Invalid VT!"); |
| 1043 | unsigned VTBits = MVT::getSizeInBits(VT); |
| 1044 | unsigned Tmp, Tmp2; |
| 1045 | |
| 1046 | if (Depth == 6) |
| 1047 | return 1; // Limit search depth. |
| 1048 | |
| 1049 | switch (Op.getOpcode()) { |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1050 | default: break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1051 | case ISD::AssertSext: |
| 1052 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1053 | return VTBits-Tmp+1; |
| 1054 | case ISD::AssertZext: |
| 1055 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1056 | return VTBits-Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1057 | |
| 1058 | case ISD::Constant: { |
| 1059 | uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); |
| 1060 | // If negative, invert the bits, then look at it. |
| 1061 | if (Val & MVT::getIntVTSignBit(VT)) |
| 1062 | Val = ~Val; |
| 1063 | |
| 1064 | // Shift the bits so they are the leading bits in the int64_t. |
| 1065 | Val <<= 64-VTBits; |
| 1066 | |
| 1067 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1068 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1069 | return std::min(VTBits, CountLeadingZeros_64(Val)); |
| 1070 | } |
| 1071 | |
| 1072 | case ISD::SIGN_EXTEND: |
| 1073 | Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 1074 | return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| 1075 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1076 | case ISD::SIGN_EXTEND_INREG: |
| 1077 | // Max of the input and what this extends. |
| 1078 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1079 | Tmp = VTBits-Tmp+1; |
| 1080 | |
| 1081 | Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1082 | return std::max(Tmp, Tmp2); |
| 1083 | |
| 1084 | case ISD::SRA: |
| 1085 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1086 | // SRA X, C -> adds C sign bits. |
| 1087 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1088 | Tmp += C->getValue(); |
| 1089 | if (Tmp > VTBits) Tmp = VTBits; |
| 1090 | } |
| 1091 | return Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1092 | case ISD::SHL: |
| 1093 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1094 | // shl destroys sign bits. |
| 1095 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1096 | if (C->getValue() >= VTBits || // Bad shift. |
| 1097 | C->getValue() >= Tmp) break; // Shifted all sign bits out. |
| 1098 | return Tmp - C->getValue(); |
| 1099 | } |
| 1100 | break; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1101 | case ISD::AND: |
| 1102 | case ISD::OR: |
| 1103 | case ISD::XOR: // NOT is handled here. |
| 1104 | // Logical binary ops preserve the number of sign bits. |
| 1105 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1106 | if (Tmp == 1) return 1; // Early out. |
| 1107 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1108 | return std::min(Tmp, Tmp2); |
| 1109 | |
| 1110 | case ISD::SELECT: |
| 1111 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1112 | if (Tmp == 1) return 1; // Early out. |
| 1113 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1114 | return std::min(Tmp, Tmp2); |
| 1115 | |
| 1116 | case ISD::SETCC: |
| 1117 | // If setcc returns 0/-1, all bits are sign bits. |
| 1118 | if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult) |
| 1119 | return VTBits; |
| 1120 | break; |
Chris Lattner | e60351b | 2006-05-06 23:40:29 +0000 | [diff] [blame] | 1121 | case ISD::ROTL: |
| 1122 | case ISD::ROTR: |
| 1123 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1124 | unsigned RotAmt = C->getValue() & (VTBits-1); |
| 1125 | |
| 1126 | // Handle rotate right by N like a rotate left by 32-N. |
| 1127 | if (Op.getOpcode() == ISD::ROTR) |
| 1128 | RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| 1129 | |
| 1130 | // If we aren't rotating out all of the known-in sign bits, return the |
| 1131 | // number that are left. This handles rotl(sext(x), 1) for example. |
| 1132 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1133 | if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| 1134 | } |
| 1135 | break; |
| 1136 | case ISD::ADD: |
| 1137 | // Add can have at most one carry bit. Thus we know that the output |
| 1138 | // is, at worst, one more bit than the inputs. |
| 1139 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1140 | if (Tmp == 1) return 1; // Early out. |
| 1141 | |
| 1142 | // Special case decrementing a value (ADD X, -1): |
| 1143 | if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1144 | if (CRHS->isAllOnesValue()) { |
| 1145 | uint64_t KnownZero, KnownOne; |
| 1146 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1147 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1148 | |
| 1149 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1150 | // sign bits set. |
| 1151 | if ((KnownZero|1) == Mask) |
| 1152 | return VTBits; |
| 1153 | |
| 1154 | // If we are subtracting one from a positive number, there is no carry |
| 1155 | // out of the result. |
| 1156 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1157 | return Tmp; |
| 1158 | } |
| 1159 | |
| 1160 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1161 | if (Tmp2 == 1) return 1; |
| 1162 | return std::min(Tmp, Tmp2)-1; |
| 1163 | break; |
| 1164 | |
| 1165 | case ISD::SUB: |
| 1166 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1167 | if (Tmp2 == 1) return 1; |
| 1168 | |
| 1169 | // Handle NEG. |
| 1170 | if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1171 | if (CLHS->getValue() == 0) { |
| 1172 | uint64_t KnownZero, KnownOne; |
| 1173 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1174 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1175 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1176 | // sign bits set. |
| 1177 | if ((KnownZero|1) == Mask) |
| 1178 | return VTBits; |
| 1179 | |
| 1180 | // If the input is known to be positive (the sign bit is known clear), |
| 1181 | // the output of the NEG has the same number of sign bits as the input. |
| 1182 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1183 | return Tmp2; |
| 1184 | |
| 1185 | // Otherwise, we treat this like a SUB. |
| 1186 | } |
| 1187 | |
| 1188 | // Sub can have at most one carry bit. Thus we know that the output |
| 1189 | // is, at worst, one more bit than the inputs. |
| 1190 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1191 | if (Tmp == 1) return 1; // Early out. |
| 1192 | return std::min(Tmp, Tmp2)-1; |
| 1193 | break; |
| 1194 | case ISD::TRUNCATE: |
| 1195 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 1196 | // case for targets like X86. |
| 1197 | break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1198 | } |
| 1199 | |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1200 | // Handle LOADX separately here. EXTLOAD case will fallthrough. |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1201 | if (Op.getOpcode() == ISD::LOAD) { |
| 1202 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
| 1203 | unsigned ExtType = LD->getExtensionType(); |
| 1204 | switch (ExtType) { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1205 | default: break; |
| 1206 | case ISD::SEXTLOAD: // '17' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1207 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1208 | return VTBits-Tmp+1; |
| 1209 | case ISD::ZEXTLOAD: // '16' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1210 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1211 | return VTBits-Tmp; |
| 1212 | } |
| 1213 | } |
| 1214 | |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1215 | // Allow the target to implement this method for its nodes. |
| 1216 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1217 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1218 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1219 | Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| 1220 | unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth); |
| 1221 | if (NumBits > 1) return NumBits; |
| 1222 | } |
| 1223 | |
Chris Lattner | 822db93 | 2006-05-06 23:48:13 +0000 | [diff] [blame] | 1224 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 1225 | // use this information. |
| 1226 | uint64_t KnownZero, KnownOne; |
| 1227 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1228 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 1229 | |
| 1230 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 1231 | if (KnownZero & SignBit) { // SignBit is 0 |
| 1232 | Mask = KnownZero; |
| 1233 | } else if (KnownOne & SignBit) { // SignBit is 1; |
| 1234 | Mask = KnownOne; |
| 1235 | } else { |
| 1236 | // Nothing known. |
| 1237 | return 1; |
| 1238 | } |
| 1239 | |
| 1240 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 1241 | // the number of identical bits in the top of the input value. |
| 1242 | Mask ^= ~0ULL; |
| 1243 | Mask <<= 64-VTBits; |
| 1244 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1245 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1246 | return std::min(VTBits, CountLeadingZeros_64(Mask)); |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1247 | } |
| 1248 | |
| 1249 | |
| 1250 | |
| 1251 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| 1252 | /// targets that want to expose additional information about sign bits to the |
| 1253 | /// DAG Combiner. |
| 1254 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, |
| 1255 | unsigned Depth) const { |
| 1256 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1257 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1258 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1259 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 1260 | "Should use ComputeNumSignBits if you don't know whether Op" |
| 1261 | " is a target node!"); |
| 1262 | return 1; |
| 1263 | } |
| 1264 | |
| 1265 | |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 1266 | SDOperand TargetLowering:: |
| 1267 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 1268 | // Default implementation: no optimization. |
| 1269 | return SDOperand(); |
| 1270 | } |
| 1271 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1272 | //===----------------------------------------------------------------------===// |
| 1273 | // Inline Assembler Implementation Methods |
| 1274 | //===----------------------------------------------------------------------===// |
| 1275 | |
| 1276 | TargetLowering::ConstraintType |
| 1277 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 1278 | // FIXME: lots more standard ones to handle. |
| 1279 | switch (ConstraintLetter) { |
| 1280 | default: return C_Unknown; |
| 1281 | case 'r': return C_RegisterClass; |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1282 | case 'm': // memory |
| 1283 | case 'o': // offsetable |
| 1284 | case 'V': // not offsetable |
| 1285 | return C_Memory; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1286 | case 'i': // Simple Integer or Relocatable Constant |
| 1287 | case 'n': // Simple Integer |
| 1288 | case 's': // Relocatable Constant |
| 1289 | case 'I': // Target registers. |
| 1290 | case 'J': |
| 1291 | case 'K': |
| 1292 | case 'L': |
| 1293 | case 'M': |
| 1294 | case 'N': |
| 1295 | case 'O': |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1296 | case 'P': |
| 1297 | return C_Other; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1298 | } |
| 1299 | } |
| 1300 | |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1301 | /// isOperandValidForConstraint - Return the specified operand (possibly |
| 1302 | /// modified) if the specified SDOperand is valid for the specified target |
| 1303 | /// constraint letter, otherwise return null. |
| 1304 | SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 1305 | char ConstraintLetter, |
| 1306 | SelectionDAG &DAG) { |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1307 | switch (ConstraintLetter) { |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1308 | default: return SDOperand(0,0); |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1309 | case 'i': // Simple Integer or Relocatable Constant |
| 1310 | case 'n': // Simple Integer |
| 1311 | case 's': // Relocatable Constant |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1312 | return Op; // FIXME: not right. |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1313 | } |
| 1314 | } |
| 1315 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1316 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1317 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 1318 | MVT::ValueType VT) const { |
| 1319 | return std::vector<unsigned>(); |
| 1320 | } |
| 1321 | |
| 1322 | |
| 1323 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 1324 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 1325 | MVT::ValueType VT) const { |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1326 | if (Constraint[0] != '{') |
| 1327 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1328 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 1329 | |
| 1330 | // Remove the braces from around the name. |
| 1331 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1332 | |
| 1333 | // Figure out which register class contains this reg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1334 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1335 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), |
| 1336 | E = RI->regclass_end(); RCI != E; ++RCI) { |
| 1337 | const TargetRegisterClass *RC = *RCI; |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1338 | |
| 1339 | // If none of the the value types for this register class are valid, we |
| 1340 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 1341 | bool isLegal = false; |
| 1342 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| 1343 | I != E; ++I) { |
| 1344 | if (isTypeLegal(*I)) { |
| 1345 | isLegal = true; |
| 1346 | break; |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | if (!isLegal) continue; |
| 1351 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1352 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 1353 | I != E; ++I) { |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1354 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1355 | return std::make_pair(*I, RC); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1356 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1357 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1358 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1359 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1360 | } |
Evan Cheng | 30b37b5 | 2006-03-13 23:18:16 +0000 | [diff] [blame] | 1361 | |
| 1362 | //===----------------------------------------------------------------------===// |
| 1363 | // Loop Strength Reduction hooks |
| 1364 | //===----------------------------------------------------------------------===// |
| 1365 | |
| 1366 | /// isLegalAddressImmediate - Return true if the integer value or |
| 1367 | /// GlobalValue can be used as the offset of the target addressing mode. |
| 1368 | bool TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| 1369 | return false; |
| 1370 | } |
| 1371 | bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| 1372 | return false; |
| 1373 | } |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1374 | |
| 1375 | |
| 1376 | // Magic for divide replacement |
| 1377 | |
| 1378 | struct ms { |
| 1379 | int64_t m; // magic number |
| 1380 | int64_t s; // shift amount |
| 1381 | }; |
| 1382 | |
| 1383 | struct mu { |
| 1384 | uint64_t m; // magic number |
| 1385 | int64_t a; // add indicator |
| 1386 | int64_t s; // shift amount |
| 1387 | }; |
| 1388 | |
| 1389 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1390 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1391 | /// or -1. |
| 1392 | static ms magic32(int32_t d) { |
| 1393 | int32_t p; |
| 1394 | uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1395 | const uint32_t two31 = 0x80000000U; |
| 1396 | struct ms mag; |
| 1397 | |
| 1398 | ad = abs(d); |
| 1399 | t = two31 + ((uint32_t)d >> 31); |
| 1400 | anc = t - 1 - t%ad; // absolute value of nc |
| 1401 | p = 31; // initialize p |
| 1402 | q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| 1403 | r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1404 | q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| 1405 | r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1406 | do { |
| 1407 | p = p + 1; |
| 1408 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1409 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1410 | if (r1 >= anc) { // must be unsigned comparison |
| 1411 | q1 = q1 + 1; |
| 1412 | r1 = r1 - anc; |
| 1413 | } |
| 1414 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1415 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1416 | if (r2 >= ad) { // must be unsigned comparison |
| 1417 | q2 = q2 + 1; |
| 1418 | r2 = r2 - ad; |
| 1419 | } |
| 1420 | delta = ad - r2; |
| 1421 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1422 | |
| 1423 | mag.m = (int32_t)(q2 + 1); // make sure to sign extend |
| 1424 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1425 | mag.s = p - 32; // resulting shift |
| 1426 | return mag; |
| 1427 | } |
| 1428 | |
| 1429 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1430 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1431 | static mu magicu32(uint32_t d) { |
| 1432 | int32_t p; |
| 1433 | uint32_t nc, delta, q1, r1, q2, r2; |
| 1434 | struct mu magu; |
| 1435 | magu.a = 0; // initialize "add" indicator |
| 1436 | nc = - 1 - (-d)%d; |
| 1437 | p = 31; // initialize p |
| 1438 | q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| 1439 | r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| 1440 | q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| 1441 | r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| 1442 | do { |
| 1443 | p = p + 1; |
| 1444 | if (r1 >= nc - r1 ) { |
| 1445 | q1 = 2*q1 + 1; // update q1 |
| 1446 | r1 = 2*r1 - nc; // update r1 |
| 1447 | } |
| 1448 | else { |
| 1449 | q1 = 2*q1; // update q1 |
| 1450 | r1 = 2*r1; // update r1 |
| 1451 | } |
| 1452 | if (r2 + 1 >= d - r2) { |
| 1453 | if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| 1454 | q2 = 2*q2 + 1; // update q2 |
| 1455 | r2 = 2*r2 + 1 - d; // update r2 |
| 1456 | } |
| 1457 | else { |
| 1458 | if (q2 >= 0x80000000) magu.a = 1; |
| 1459 | q2 = 2*q2; // update q2 |
| 1460 | r2 = 2*r2 + 1; // update r2 |
| 1461 | } |
| 1462 | delta = d - 1 - r2; |
| 1463 | } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| 1464 | magu.m = q2 + 1; // resulting magic number |
| 1465 | magu.s = p - 32; // resulting shift |
| 1466 | return magu; |
| 1467 | } |
| 1468 | |
| 1469 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1470 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1471 | /// or -1. |
| 1472 | static ms magic64(int64_t d) { |
| 1473 | int64_t p; |
| 1474 | uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1475 | const uint64_t two63 = 9223372036854775808ULL; // 2^63 |
| 1476 | struct ms mag; |
| 1477 | |
| 1478 | ad = d >= 0 ? d : -d; |
| 1479 | t = two63 + ((uint64_t)d >> 63); |
| 1480 | anc = t - 1 - t%ad; // absolute value of nc |
| 1481 | p = 63; // initialize p |
| 1482 | q1 = two63/anc; // initialize q1 = 2p/abs(nc) |
| 1483 | r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1484 | q2 = two63/ad; // initialize q2 = 2p/abs(d) |
| 1485 | r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1486 | do { |
| 1487 | p = p + 1; |
| 1488 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1489 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1490 | if (r1 >= anc) { // must be unsigned comparison |
| 1491 | q1 = q1 + 1; |
| 1492 | r1 = r1 - anc; |
| 1493 | } |
| 1494 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1495 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1496 | if (r2 >= ad) { // must be unsigned comparison |
| 1497 | q2 = q2 + 1; |
| 1498 | r2 = r2 - ad; |
| 1499 | } |
| 1500 | delta = ad - r2; |
| 1501 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1502 | |
| 1503 | mag.m = q2 + 1; |
| 1504 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1505 | mag.s = p - 64; // resulting shift |
| 1506 | return mag; |
| 1507 | } |
| 1508 | |
| 1509 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1510 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1511 | static mu magicu64(uint64_t d) |
| 1512 | { |
| 1513 | int64_t p; |
| 1514 | uint64_t nc, delta, q1, r1, q2, r2; |
| 1515 | struct mu magu; |
| 1516 | magu.a = 0; // initialize "add" indicator |
| 1517 | nc = - 1 - (-d)%d; |
| 1518 | p = 63; // initialize p |
| 1519 | q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc |
| 1520 | r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) |
| 1521 | q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d |
| 1522 | r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) |
| 1523 | do { |
| 1524 | p = p + 1; |
| 1525 | if (r1 >= nc - r1 ) { |
| 1526 | q1 = 2*q1 + 1; // update q1 |
| 1527 | r1 = 2*r1 - nc; // update r1 |
| 1528 | } |
| 1529 | else { |
| 1530 | q1 = 2*q1; // update q1 |
| 1531 | r1 = 2*r1; // update r1 |
| 1532 | } |
| 1533 | if (r2 + 1 >= d - r2) { |
| 1534 | if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; |
| 1535 | q2 = 2*q2 + 1; // update q2 |
| 1536 | r2 = 2*r2 + 1 - d; // update r2 |
| 1537 | } |
| 1538 | else { |
| 1539 | if (q2 >= 0x8000000000000000ull) magu.a = 1; |
| 1540 | q2 = 2*q2; // update q2 |
| 1541 | r2 = 2*r2 + 1; // update r2 |
| 1542 | } |
| 1543 | delta = d - 1 - r2; |
Andrew Lenharth | 3e34849 | 2006-05-16 17:45:23 +0000 | [diff] [blame] | 1544 | } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0))); |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1545 | magu.m = q2 + 1; // resulting magic number |
| 1546 | magu.s = p - 64; // resulting shift |
| 1547 | return magu; |
| 1548 | } |
| 1549 | |
| 1550 | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| 1551 | /// return a DAG expression to select that will generate the same value by |
| 1552 | /// multiplying by a magic number. See: |
| 1553 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1554 | SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1555 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1556 | MVT::ValueType VT = N->getValueType(0); |
| 1557 | |
| 1558 | // Check to see if we can do this. |
| 1559 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1560 | return SDOperand(); // BuildSDIV only operates on i32 or i64 |
| 1561 | if (!isOperationLegal(ISD::MULHS, VT)) |
| 1562 | return SDOperand(); // Make sure the target supports MULHS. |
| 1563 | |
| 1564 | int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); |
| 1565 | ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); |
| 1566 | |
| 1567 | // Multiply the numerator (operand 0) by the magic value |
| 1568 | SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), |
| 1569 | DAG.getConstant(magics.m, VT)); |
| 1570 | // If d > 0 and m < 0, add the numerator |
| 1571 | if (d > 0 && magics.m < 0) { |
| 1572 | Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); |
| 1573 | if (Created) |
| 1574 | Created->push_back(Q.Val); |
| 1575 | } |
| 1576 | // If d < 0 and m > 0, subtract the numerator. |
| 1577 | if (d < 0 && magics.m > 0) { |
| 1578 | Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); |
| 1579 | if (Created) |
| 1580 | Created->push_back(Q.Val); |
| 1581 | } |
| 1582 | // Shift right algebraic if shift value is nonzero |
| 1583 | if (magics.s > 0) { |
| 1584 | Q = DAG.getNode(ISD::SRA, VT, Q, |
| 1585 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1586 | if (Created) |
| 1587 | Created->push_back(Q.Val); |
| 1588 | } |
| 1589 | // Extract the sign bit and add it to the quotient |
| 1590 | SDOperand T = |
| 1591 | DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| 1592 | getShiftAmountTy())); |
| 1593 | if (Created) |
| 1594 | Created->push_back(T.Val); |
| 1595 | return DAG.getNode(ISD::ADD, VT, Q, T); |
| 1596 | } |
| 1597 | |
| 1598 | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| 1599 | /// return a DAG expression to select that will generate the same value by |
| 1600 | /// multiplying by a magic number. See: |
| 1601 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1602 | SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1603 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1604 | MVT::ValueType VT = N->getValueType(0); |
| 1605 | |
| 1606 | // Check to see if we can do this. |
| 1607 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1608 | return SDOperand(); // BuildUDIV only operates on i32 or i64 |
| 1609 | if (!isOperationLegal(ISD::MULHU, VT)) |
| 1610 | return SDOperand(); // Make sure the target supports MULHU. |
| 1611 | |
| 1612 | uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| 1613 | mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); |
| 1614 | |
| 1615 | // Multiply the numerator (operand 0) by the magic value |
| 1616 | SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), |
| 1617 | DAG.getConstant(magics.m, VT)); |
| 1618 | if (Created) |
| 1619 | Created->push_back(Q.Val); |
| 1620 | |
| 1621 | if (magics.a == 0) { |
| 1622 | return DAG.getNode(ISD::SRL, VT, Q, |
| 1623 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1624 | } else { |
| 1625 | SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); |
| 1626 | if (Created) |
| 1627 | Created->push_back(NPQ.Val); |
| 1628 | NPQ = DAG.getNode(ISD::SRL, VT, NPQ, |
| 1629 | DAG.getConstant(1, getShiftAmountTy())); |
| 1630 | if (Created) |
| 1631 | Created->push_back(NPQ.Val); |
| 1632 | NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); |
| 1633 | if (Created) |
| 1634 | Created->push_back(NPQ.Val); |
| 1635 | return DAG.getNode(ISD::SRL, VT, NPQ, |
| 1636 | DAG.getConstant(magics.s-1, getShiftAmountTy())); |
| 1637 | } |
| 1638 | } |