blob: b3df92611950e895a03e5d0d876098b4992fc335 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Dan Gohman6864db62009-06-18 16:24:47 +0000822 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000824 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000825 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000826 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
827 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000828 }
829
Dan Gohmanf53462d2010-07-15 20:02:11 +0000830 // As a special case, fold trunc(undef) to undef. We don't want to
831 // know too much about SCEVUnknowns, but this special case is handy
832 // and harmless.
833 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
834 if (isa<UndefValue>(U->getValue()))
835 return getSCEV(UndefValue::get(Ty));
836
Dan Gohman420ab912010-06-25 18:47:08 +0000837 // The cast wasn't folded; create an explicit cast node. We can reuse
838 // the existing insert position since if we get here, we won't have
839 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000840 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
841 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000842 UniqueSCEVs.InsertNode(S, IP);
843 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000844}
845
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000847 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000848 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000849 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000850 assert(isSCEVable(Ty) &&
851 "This is not a conversion to a SCEVable type!");
852 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000853
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000854 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000855 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
856 return getConstant(
857 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
858 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000859
Dan Gohman20900ca2009-04-22 16:20:48 +0000860 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000861 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000862 return getZeroExtendExpr(SZ->getOperand(), Ty);
863
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000864 // Before doing any expensive analysis, check to see if we've already
865 // computed a SCEV for this Op and Ty.
866 FoldingSetNodeID ID;
867 ID.AddInteger(scZeroExtend);
868 ID.AddPointer(Op);
869 ID.AddPointer(Ty);
870 void *IP = 0;
871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
872
Dan Gohman01ecca22009-04-27 20:16:15 +0000873 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000874 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000875 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000877 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000878 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000879 const SCEV *Start = AR->getStart();
880 const SCEV *Step = AR->getStepRecurrence(*this);
881 unsigned BitWidth = getTypeSizeInBits(AR->getType());
882 const Loop *L = AR->getLoop();
883
Dan Gohmaneb490a72009-07-25 01:22:26 +0000884 // If we have special knowledge that this addrec won't overflow,
885 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000886 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000887 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
888 getZeroExtendExpr(Step, Ty),
889 L);
890
Dan Gohman01ecca22009-04-27 20:16:15 +0000891 // Check whether the backedge-taken count is SCEVCouldNotCompute.
892 // Note that this serves two purposes: It filters out loops that are
893 // simply not analyzable, and it covers the case where this code is
894 // being called from within backedge-taken count analysis, such that
895 // attempting to ask for the backedge-taken count would likely result
896 // in infinite recursion. In the later case, the analysis code will
897 // cope with a conservative value, and it will take care to purge
898 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000899 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000900 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000901 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000902 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000903
904 // Check whether the backedge-taken count can be losslessly casted to
905 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000906 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000907 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000908 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000909 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000911 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000913 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000914 const SCEV *Add = getAddExpr(Start, ZMul);
915 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000916 getAddExpr(getZeroExtendExpr(Start, WideTy),
917 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
918 getZeroExtendExpr(Step, WideTy)));
919 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000920 // Return the expression with the addrec on the outside.
921 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
922 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000923 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000924
925 // Similar to above, only this time treat the step value as signed.
926 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000927 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000928 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000929 OperandExtendedAdd =
930 getAddExpr(getZeroExtendExpr(Start, WideTy),
931 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932 getSignExtendExpr(Step, WideTy)));
933 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000934 // Return the expression with the addrec on the outside.
935 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 L);
938 }
939
940 // If the backedge is guarded by a comparison with the pre-inc value
941 // the addrec is safe. Also, if the entry is guarded by a comparison
942 // with the start value and the backedge is guarded by a comparison
943 // with the post-inc value, the addrec is safe.
944 if (isKnownPositive(Step)) {
945 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946 getUnsignedRange(Step).getUnsignedMax());
947 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000948 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950 AR->getPostIncExpr(*this), N)))
951 // Return the expression with the addrec on the outside.
952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
954 L);
955 } else if (isKnownNegative(Step)) {
956 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
965 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000966 }
967 }
968 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000969
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000970 // The cast wasn't folded; create an explicit cast node.
971 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000973 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
974 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000975 UniqueSCEVs.InsertNode(S, IP);
976 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000977}
978
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000980 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000981 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000982 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000983 assert(isSCEVable(Ty) &&
984 "This is not a conversion to a SCEVable type!");
985 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000986
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000987 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000988 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
989 return getConstant(
990 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
991 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +0000992
Dan Gohman20900ca2009-04-22 16:20:48 +0000993 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000994 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000995 return getSignExtendExpr(SS->getOperand(), Ty);
996
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000997 // Before doing any expensive analysis, check to see if we've already
998 // computed a SCEV for this Op and Ty.
999 FoldingSetNodeID ID;
1000 ID.AddInteger(scSignExtend);
1001 ID.AddPointer(Op);
1002 ID.AddPointer(Ty);
1003 void *IP = 0;
1004 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1005
Dan Gohman01ecca22009-04-27 20:16:15 +00001006 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001007 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001008 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001009 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001011 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 const SCEV *Start = AR->getStart();
1013 const SCEV *Step = AR->getStepRecurrence(*this);
1014 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1015 const Loop *L = AR->getLoop();
1016
Dan Gohmaneb490a72009-07-25 01:22:26 +00001017 // If we have special knowledge that this addrec won't overflow,
1018 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001019 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001020 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1021 getSignExtendExpr(Step, Ty),
1022 L);
1023
Dan Gohman01ecca22009-04-27 20:16:15 +00001024 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1025 // Note that this serves two purposes: It filters out loops that are
1026 // simply not analyzable, and it covers the case where this code is
1027 // being called from within backedge-taken count analysis, such that
1028 // attempting to ask for the backedge-taken count would likely result
1029 // in infinite recursion. In the later case, the analysis code will
1030 // cope with a conservative value, and it will take care to purge
1031 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001033 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001034 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001035 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001036
1037 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001038 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001039 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001040 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001041 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001042 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1043 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001044 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001046 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001047 const SCEV *Add = getAddExpr(Start, SMul);
1048 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001049 getAddExpr(getSignExtendExpr(Start, WideTy),
1050 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1051 getSignExtendExpr(Step, WideTy)));
1052 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001053 // Return the expression with the addrec on the outside.
1054 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1055 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001056 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001057
1058 // Similar to above, only this time treat the step value as unsigned.
1059 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001061 Add = getAddExpr(Start, UMul);
1062 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getZeroExtendExpr(Step, Ty),
1070 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001071 }
1072
1073 // If the backedge is guarded by a comparison with the pre-inc value
1074 // the addrec is safe. Also, if the entry is guarded by a comparison
1075 // with the start value and the backedge is guarded by a comparison
1076 // with the post-inc value, the addrec is safe.
1077 if (isKnownPositive(Step)) {
1078 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1079 getSignedRange(Step).getSignedMax());
1080 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001081 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1083 AR->getPostIncExpr(*this), N)))
1084 // Return the expression with the addrec on the outside.
1085 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1086 getSignExtendExpr(Step, Ty),
1087 L);
1088 } else if (isKnownNegative(Step)) {
1089 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1090 getSignedRange(Step).getSignedMin());
1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1094 AR->getPostIncExpr(*this), N)))
1095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getSignExtendExpr(Step, Ty),
1098 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001099 }
1100 }
1101 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001102
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001103 // The cast wasn't folded; create an explicit cast node.
1104 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1107 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001108 UniqueSCEVs.InsertNode(S, IP);
1109 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001110}
1111
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001112/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1113/// unspecified bits out to the given type.
1114///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001115const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001116 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1118 "This is not an extending conversion!");
1119 assert(isSCEVable(Ty) &&
1120 "This is not a conversion to a SCEVable type!");
1121 Ty = getEffectiveSCEVType(Ty);
1122
1123 // Sign-extend negative constants.
1124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1125 if (SC->getValue()->getValue().isNegative())
1126 return getSignExtendExpr(Op, Ty);
1127
1128 // Peel off a truncate cast.
1129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001130 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1132 return getAnyExtendExpr(NewOp, Ty);
1133 return getTruncateOrNoop(NewOp, Ty);
1134 }
1135
1136 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001138 if (!isa<SCEVZeroExtendExpr>(ZExt))
1139 return ZExt;
1140
1141 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (!isa<SCEVSignExtendExpr>(SExt))
1144 return SExt;
1145
Dan Gohmana10756e2010-01-21 02:09:26 +00001146 // Force the cast to be folded into the operands of an addrec.
1147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1148 SmallVector<const SCEV *, 4> Ops;
1149 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1150 I != E; ++I)
1151 Ops.push_back(getAnyExtendExpr(*I, Ty));
1152 return getAddRecExpr(Ops, AR->getLoop());
1153 }
1154
Dan Gohmanf53462d2010-07-15 20:02:11 +00001155 // As a special case, fold anyext(undef) to undef. We don't want to
1156 // know too much about SCEVUnknowns, but this special case is handy
1157 // and harmless.
1158 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1159 if (isa<UndefValue>(U->getValue()))
1160 return getSCEV(UndefValue::get(Ty));
1161
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001162 // If the expression is obviously signed, use the sext cast value.
1163 if (isa<SCEVSMaxExpr>(Op))
1164 return SExt;
1165
1166 // Absent any other information, use the zext cast value.
1167 return ZExt;
1168}
1169
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170/// CollectAddOperandsWithScales - Process the given Ops list, which is
1171/// a list of operands to be added under the given scale, update the given
1172/// map. This is a helper function for getAddRecExpr. As an example of
1173/// what it does, given a sequence of operands that would form an add
1174/// expression like this:
1175///
1176/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1177///
1178/// where A and B are constants, update the map with these values:
1179///
1180/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1181///
1182/// and add 13 + A*B*29 to AccumulatedConstant.
1183/// This will allow getAddRecExpr to produce this:
1184///
1185/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1186///
1187/// This form often exposes folding opportunities that are hidden in
1188/// the original operand list.
1189///
1190/// Return true iff it appears that any interesting folding opportunities
1191/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1192/// the common case where no interesting opportunities are present, and
1193/// is also used as a check to avoid infinite recursion.
1194///
1195static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001196CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1197 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001198 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001199 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001200 const APInt &Scale,
1201 ScalarEvolution &SE) {
1202 bool Interesting = false;
1203
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001204 // Iterate over the add operands. They are sorted, with constants first.
1205 unsigned i = 0;
1206 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1207 ++i;
1208 // Pull a buried constant out to the outside.
1209 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1210 Interesting = true;
1211 AccumulatedConstant += Scale * C->getValue()->getValue();
1212 }
1213
1214 // Next comes everything else. We're especially interested in multiplies
1215 // here, but they're in the middle, so just visit the rest with one loop.
1216 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001217 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1218 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1219 APInt NewScale =
1220 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1221 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1222 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001223 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001224 Interesting |=
1225 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001226 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001227 NewScale, SE);
1228 } else {
1229 // A multiplication of a constant with some other value. Update
1230 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001231 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1232 const SCEV *Key = SE.getMulExpr(MulOps);
1233 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001234 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001236 NewOps.push_back(Pair.first->first);
1237 } else {
1238 Pair.first->second += NewScale;
1239 // The map already had an entry for this value, which may indicate
1240 // a folding opportunity.
1241 Interesting = true;
1242 }
1243 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001244 } else {
1245 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001246 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001247 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 NewOps.push_back(Pair.first->first);
1250 } else {
1251 Pair.first->second += Scale;
1252 // The map already had an entry for this value, which may indicate
1253 // a folding opportunity.
1254 Interesting = true;
1255 }
1256 }
1257 }
1258
1259 return Interesting;
1260}
1261
1262namespace {
1263 struct APIntCompare {
1264 bool operator()(const APInt &LHS, const APInt &RHS) const {
1265 return LHS.ult(RHS);
1266 }
1267 };
1268}
1269
Dan Gohman6c0866c2009-05-24 23:45:28 +00001270/// getAddExpr - Get a canonical add expression, or something simpler if
1271/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001272const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1273 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001274 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001275 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001276#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001277 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001279 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001280 "SCEVAddExpr operand types don't match!");
1281#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001282
Dan Gohmana10756e2010-01-21 02:09:26 +00001283 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1284 if (!HasNUW && HasNSW) {
1285 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001286 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1287 E = Ops.end(); I != E; ++I)
1288 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Dan Gohman68ff7762010-08-27 21:39:59 +00001321 // Okay, check to see if the same value occurs in the operand list more than
1322 // once. If so, merge them together into an multiply expression. Since we
1323 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001325 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001326 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001328 // Scan ahead to count how many equal operands there are.
1329 unsigned Count = 2;
1330 while (i+Count != e && Ops[i+Count] == Ops[i])
1331 ++Count;
1332 // Merge the values into a multiply.
1333 const SCEV *Scale = getConstant(Ty, Count);
1334 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1335 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001337 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001338 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001339 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001340 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001341 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001342 if (FoundMatch)
1343 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001344
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 // Check for truncates. If all the operands are truncated from the same
1346 // type, see if factoring out the truncate would permit the result to be
1347 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1348 // if the contents of the resulting outer trunc fold to something simple.
1349 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1350 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1351 const Type *DstType = Trunc->getType();
1352 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001353 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001354 bool Ok = true;
1355 // Check all the operands to see if they can be represented in the
1356 // source type of the truncate.
1357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1359 if (T->getOperand()->getType() != SrcType) {
1360 Ok = false;
1361 break;
1362 }
1363 LargeOps.push_back(T->getOperand());
1364 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001365 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001366 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001367 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001368 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1369 if (const SCEVTruncateExpr *T =
1370 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1371 if (T->getOperand()->getType() != SrcType) {
1372 Ok = false;
1373 break;
1374 }
1375 LargeMulOps.push_back(T->getOperand());
1376 } else if (const SCEVConstant *C =
1377 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001378 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok)
1385 LargeOps.push_back(getMulExpr(LargeMulOps));
1386 } else {
1387 Ok = false;
1388 break;
1389 }
1390 }
1391 if (Ok) {
1392 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001393 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001394 // If it folds to something simple, use it. Otherwise, don't.
1395 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1396 return getTruncateExpr(Fold, DstType);
1397 }
1398 }
1399
1400 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001401 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1402 ++Idx;
1403
1404 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 if (Idx < Ops.size()) {
1406 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001407 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 // If we have an add, expand the add operands onto the end of the operands
1409 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001410 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001411 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001412 DeletedAdd = true;
1413 }
1414
1415 // If we deleted at least one add, we added operands to the end of the list,
1416 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001417 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001419 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 }
1421
1422 // Skip over the add expression until we get to a multiply.
1423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1424 ++Idx;
1425
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 // Check to see if there are any folding opportunities present with
1427 // operands multiplied by constant values.
1428 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1429 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001430 DenseMap<const SCEV *, APInt> M;
1431 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 APInt AccumulatedConstant(BitWidth, 0);
1433 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001434 Ops.data(), Ops.size(),
1435 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 // Some interesting folding opportunity is present, so its worthwhile to
1437 // re-generate the operands list. Group the operands by constant scale,
1438 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001439 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001440 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 E = NewOps.end(); I != E; ++I)
1442 MulOpLists[M.find(*I)->second].push_back(*I);
1443 // Re-generate the operands list.
1444 Ops.clear();
1445 if (AccumulatedConstant != 0)
1446 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001447 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1448 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001449 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001450 Ops.push_back(getMulExpr(getConstant(I->first),
1451 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001452 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001453 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001454 if (Ops.size() == 1)
1455 return Ops[0];
1456 return getAddExpr(Ops);
1457 }
1458 }
1459
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 // If we are adding something to a multiply expression, make sure the
1461 // something is not already an operand of the multiply. If so, merge it into
1462 // the multiply.
1463 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001464 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001466 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001467 if (isa<SCEVConstant>(MulOpSCEV))
1468 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001470 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001472 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 if (Mul->getNumOperands() != 2) {
1474 // If the multiply has more than two operands, we must get the
1475 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001476 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1477 Mul->op_begin()+MulOp);
1478 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001479 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001481 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001482 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001483 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 if (Ops.size() == 2) return OuterMul;
1485 if (AddOp < Idx) {
1486 Ops.erase(Ops.begin()+AddOp);
1487 Ops.erase(Ops.begin()+Idx-1);
1488 } else {
1489 Ops.erase(Ops.begin()+Idx);
1490 Ops.erase(Ops.begin()+AddOp-1);
1491 }
1492 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001493 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001495
Chris Lattner53e677a2004-04-02 20:23:17 +00001496 // Check this multiply against other multiplies being added together.
1497 for (unsigned OtherMulIdx = Idx+1;
1498 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1499 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001500 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 // If MulOp occurs in OtherMul, we can fold the two multiplies
1502 // together.
1503 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1504 OMulOp != e; ++OMulOp)
1505 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1506 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001507 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001510 Mul->op_begin()+MulOp);
1511 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001512 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001516 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001517 OtherMul->op_begin()+OMulOp);
1518 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001519 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001521 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1522 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001524 Ops.erase(Ops.begin()+Idx);
1525 Ops.erase(Ops.begin()+OtherMulIdx-1);
1526 Ops.push_back(OuterMul);
1527 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
1529 }
1530 }
1531 }
1532
1533 // If there are any add recurrences in the operands list, see if any other
1534 // added values are loop invariant. If so, we can fold them into the
1535 // recurrence.
1536 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1537 ++Idx;
1538
1539 // Scan over all recurrences, trying to fold loop invariants into them.
1540 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1541 // Scan all of the other operands to this add and add them to the vector if
1542 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001544 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001545 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001547 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001548 LIOps.push_back(Ops[i]);
1549 Ops.erase(Ops.begin()+i);
1550 --i; --e;
1551 }
1552
1553 // If we found some loop invariants, fold them into the recurrence.
1554 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001555 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 LIOps.push_back(AddRec->getStart());
1557
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001559 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001560 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001561
Dan Gohmanb9f96512010-06-30 07:16:37 +00001562 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001563 // outer add and the inner addrec are guaranteed to have no overflow.
1564 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1565 HasNUW && AddRec->hasNoUnsignedWrap(),
1566 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001567
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 // If all of the other operands were loop invariant, we are done.
1569 if (Ops.size() == 1) return NewRec;
1570
1571 // Otherwise, add the folded AddRec by the non-liv parts.
1572 for (unsigned i = 0;; ++i)
1573 if (Ops[i] == AddRec) {
1574 Ops[i] = NewRec;
1575 break;
1576 }
Dan Gohman246b2562007-10-22 18:31:58 +00001577 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 }
1579
1580 // Okay, if there weren't any loop invariants to be folded, check to see if
1581 // there are multiple AddRec's with the same loop induction variable being
1582 // added together. If so, we can fold them.
1583 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001584 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1585 ++OtherIdx)
1586 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1587 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1588 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1589 AddRec->op_end());
1590 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1591 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001592 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001593 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001594 if (OtherAddRec->getLoop() == AddRecLoop) {
1595 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1596 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001597 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001598 AddRecOps.append(OtherAddRec->op_begin()+i,
1599 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001600 break;
1601 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001602 AddRecOps[i] = getAddExpr(AddRecOps[i],
1603 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001604 }
1605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 }
Dan Gohman32527152010-08-27 20:45:56 +00001607 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1608 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 }
1610
1611 // Otherwise couldn't fold anything into this recurrence. Move onto the
1612 // next one.
1613 }
1614
1615 // Okay, it looks like we really DO need an add expr. Check to see if we
1616 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001617 FoldingSetNodeID ID;
1618 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001619 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1620 ID.AddPointer(Ops[i]);
1621 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001622 SCEVAddExpr *S =
1623 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1624 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1626 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001627 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1628 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 UniqueSCEVs.InsertNode(S, IP);
1630 }
Dan Gohman3645b012009-10-09 00:10:36 +00001631 if (HasNUW) S->setHasNoUnsignedWrap(true);
1632 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001633 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001634}
1635
Dan Gohman6c0866c2009-05-24 23:45:28 +00001636/// getMulExpr - Get a canonical multiply expression, or something simpler if
1637/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001638const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1639 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001641 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001642#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001643 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001644 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001645 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001646 "SCEVMulExpr operand types don't match!");
1647#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001648
Dan Gohmana10756e2010-01-21 02:09:26 +00001649 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1650 if (!HasNUW && HasNSW) {
1651 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001652 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1653 E = Ops.end(); I != E; ++I)
1654 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001655 All = false;
1656 break;
1657 }
1658 if (All) HasNUW = true;
1659 }
1660
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001662 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
1664 // If there are any constants, fold them together.
1665 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001667
1668 // C1*(C2+V) -> C1*C2 + C1*V
1669 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001670 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 if (Add->getNumOperands() == 2 &&
1672 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001673 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1674 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001675
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001677 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001679 ConstantInt *Fold = ConstantInt::get(getContext(),
1680 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001681 RHSC->getValue()->getValue());
1682 Ops[0] = getConstant(Fold);
1683 Ops.erase(Ops.begin()+1); // Erase the folded element
1684 if (Ops.size() == 1) return Ops[0];
1685 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 }
1687
1688 // If we are left with a constant one being multiplied, strip it off.
1689 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1690 Ops.erase(Ops.begin());
1691 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001692 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 // If we have a multiply of zero, it will always be zero.
1694 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001695 } else if (Ops[0]->isAllOnesValue()) {
1696 // If we have a mul by -1 of an add, try distributing the -1 among the
1697 // add operands.
1698 if (Ops.size() == 2)
1699 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1700 SmallVector<const SCEV *, 4> NewOps;
1701 bool AnyFolded = false;
1702 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1703 I != E; ++I) {
1704 const SCEV *Mul = getMulExpr(Ops[0], *I);
1705 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1706 NewOps.push_back(Mul);
1707 }
1708 if (AnyFolded)
1709 return getAddExpr(NewOps);
1710 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001712
1713 if (Ops.size() == 1)
1714 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 }
1716
1717 // Skip over the add expression until we get to a multiply.
1718 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1719 ++Idx;
1720
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 // If there are mul operands inline them all into this expression.
1722 if (Idx < Ops.size()) {
1723 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001724 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 // If we have an mul, expand the mul operands onto the end of the operands
1726 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001728 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 DeletedMul = true;
1730 }
1731
1732 // If we deleted at least one mul, we added operands to the end of the list,
1733 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001734 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001736 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 }
1738
1739 // If there are any add recurrences in the operands list, see if any other
1740 // added values are loop invariant. If so, we can fold them into the
1741 // recurrence.
1742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1743 ++Idx;
1744
1745 // Scan over all recurrences, trying to fold loop invariants into them.
1746 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1747 // Scan all of the other operands to this mul and add them to the vector if
1748 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001750 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001751 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001753 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 LIOps.push_back(Ops[i]);
1755 Ops.erase(Ops.begin()+i);
1756 --i; --e;
1757 }
1758
1759 // If we found some loop invariants, fold them into the recurrence.
1760 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001761 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001762 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001764 const SCEV *Scale = getMulExpr(LIOps);
1765 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1766 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
Dan Gohmanb9f96512010-06-30 07:16:37 +00001768 // Build the new addrec. Propagate the NUW and NSW flags if both the
1769 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001770 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001771 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001772 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001773
1774 // If all of the other operands were loop invariant, we are done.
1775 if (Ops.size() == 1) return NewRec;
1776
1777 // Otherwise, multiply the folded AddRec by the non-liv parts.
1778 for (unsigned i = 0;; ++i)
1779 if (Ops[i] == AddRec) {
1780 Ops[i] = NewRec;
1781 break;
1782 }
Dan Gohman246b2562007-10-22 18:31:58 +00001783 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 }
1785
1786 // Okay, if there weren't any loop invariants to be folded, check to see if
1787 // there are multiple AddRec's with the same loop induction variable being
1788 // multiplied together. If so, we can fold them.
1789 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001790 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1791 ++OtherIdx)
1792 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1793 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1794 // {A*C,+,F*D + G*B + B*D}<L>
1795 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1796 ++OtherIdx)
1797 if (const SCEVAddRecExpr *OtherAddRec =
1798 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1799 if (OtherAddRec->getLoop() == AddRecLoop) {
1800 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1801 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1802 const SCEV *B = F->getStepRecurrence(*this);
1803 const SCEV *D = G->getStepRecurrence(*this);
1804 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1805 getMulExpr(G, B),
1806 getMulExpr(B, D));
1807 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1808 F->getLoop());
1809 if (Ops.size() == 2) return NewAddRec;
1810 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1811 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1812 }
1813 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 }
1815
1816 // Otherwise couldn't fold anything into this recurrence. Move onto the
1817 // next one.
1818 }
1819
1820 // Okay, it looks like we really DO need an mul expr. Check to see if we
1821 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001822 FoldingSetNodeID ID;
1823 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001824 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1825 ID.AddPointer(Ops[i]);
1826 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 SCEVMulExpr *S =
1828 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1829 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001830 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1831 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001832 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1833 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001834 UniqueSCEVs.InsertNode(S, IP);
1835 }
Dan Gohman3645b012009-10-09 00:10:36 +00001836 if (HasNUW) S->setHasNoUnsignedWrap(true);
1837 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001838 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001839}
1840
Andreas Bolka8a11c982009-08-07 22:55:26 +00001841/// getUDivExpr - Get a canonical unsigned division expression, or something
1842/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001843const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1844 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001845 assert(getEffectiveSCEVType(LHS->getType()) ==
1846 getEffectiveSCEVType(RHS->getType()) &&
1847 "SCEVUDivExpr operand types don't match!");
1848
Dan Gohman622ed672009-05-04 22:02:23 +00001849 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001851 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001852 // If the denominator is zero, the result of the udiv is undefined. Don't
1853 // try to analyze it, because the resolution chosen here may differ from
1854 // the resolution chosen in other parts of the compiler.
1855 if (!RHSC->getValue()->isZero()) {
1856 // Determine if the division can be folded into the operands of
1857 // its operands.
1858 // TODO: Generalize this to non-constants by using known-bits information.
1859 const Type *Ty = LHS->getType();
1860 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001861 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001862 // For non-power-of-two values, effectively round the value up to the
1863 // nearest power of two.
1864 if (!RHSC->getValue()->getValue().isPowerOf2())
1865 ++MaxShiftAmt;
1866 const IntegerType *ExtTy =
1867 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1868 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1869 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1870 if (const SCEVConstant *Step =
1871 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1872 if (!Step->getValue()->getValue()
1873 .urem(RHSC->getValue()->getValue()) &&
1874 getZeroExtendExpr(AR, ExtTy) ==
1875 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1876 getZeroExtendExpr(Step, ExtTy),
1877 AR->getLoop())) {
1878 SmallVector<const SCEV *, 4> Operands;
1879 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1881 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001882 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001883 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1884 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1885 SmallVector<const SCEV *, 4> Operands;
1886 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1887 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1888 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1889 // Find an operand that's safely divisible.
1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1891 const SCEV *Op = M->getOperand(i);
1892 const SCEV *Div = getUDivExpr(Op, RHSC);
1893 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1894 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1895 M->op_end());
1896 Operands[i] = Div;
1897 return getMulExpr(Operands);
1898 }
1899 }
Dan Gohman185cf032009-05-08 20:18:49 +00001900 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001901 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1902 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1903 SmallVector<const SCEV *, 4> Operands;
1904 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1905 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1906 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1907 Operands.clear();
1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1909 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1910 if (isa<SCEVUDivExpr>(Op) ||
1911 getMulExpr(Op, RHS) != A->getOperand(i))
1912 break;
1913 Operands.push_back(Op);
1914 }
1915 if (Operands.size() == A->getNumOperands())
1916 return getAddExpr(Operands);
1917 }
1918 }
Dan Gohman185cf032009-05-08 20:18:49 +00001919
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001920 // Fold if both operands are constant.
1921 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1922 Constant *LHSCV = LHSC->getValue();
1923 Constant *RHSCV = RHSC->getValue();
1924 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1925 RHSCV)));
1926 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001927 }
1928 }
1929
Dan Gohman1c343752009-06-27 21:21:31 +00001930 FoldingSetNodeID ID;
1931 ID.AddInteger(scUDivExpr);
1932 ID.AddPointer(LHS);
1933 ID.AddPointer(RHS);
1934 void *IP = 0;
1935 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001936 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1937 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001938 UniqueSCEVs.InsertNode(S, IP);
1939 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001940}
1941
1942
Dan Gohman6c0866c2009-05-24 23:45:28 +00001943/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1944/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001945const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001946 const SCEV *Step, const Loop *L,
1947 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001948 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001950 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001951 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001952 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001953 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
1955
1956 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001957 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001958}
1959
Dan Gohman6c0866c2009-05-24 23:45:28 +00001960/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1961/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001962const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001963ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001964 const Loop *L,
1965 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001966 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001967#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001968 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001969 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001970 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001971 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00001972 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001973 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00001974 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001975#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001976
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001977 if (Operands.back()->isZero()) {
1978 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001979 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001980 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001981
Dan Gohmanbc028532010-02-19 18:49:22 +00001982 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1983 // use that information to infer NUW and NSW flags. However, computing a
1984 // BE count requires calling getAddRecExpr, so we may not yet have a
1985 // meaningful BE count at this point (and if we don't, we'd be stuck
1986 // with a SCEVCouldNotCompute as the cached BE count).
1987
Dan Gohmana10756e2010-01-21 02:09:26 +00001988 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1989 if (!HasNUW && HasNSW) {
1990 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001991 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
1992 E = Operands.end(); I != E; ++I)
1993 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001994 All = false;
1995 break;
1996 }
1997 if (All) HasNUW = true;
1998 }
1999
Dan Gohmand9cc7492008-08-08 18:33:12 +00002000 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002001 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002002 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002003 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002004 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002005 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002006 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002007 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002008 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002009 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002010 // AddRecs require their operands be loop-invariant with respect to their
2011 // loops. Don't perform this transformation if it would break this
2012 // requirement.
2013 bool AllInvariant = true;
2014 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002015 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002016 AllInvariant = false;
2017 break;
2018 }
2019 if (AllInvariant) {
2020 NestedOperands[0] = getAddRecExpr(Operands, L);
2021 AllInvariant = true;
2022 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002023 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002024 AllInvariant = false;
2025 break;
2026 }
2027 if (AllInvariant)
2028 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002029 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002030 }
2031 // Reset Operands to its original state.
2032 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002033 }
2034 }
2035
Dan Gohman67847532010-01-19 22:27:22 +00002036 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2037 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002038 FoldingSetNodeID ID;
2039 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002040 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2041 ID.AddPointer(Operands[i]);
2042 ID.AddPointer(L);
2043 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002044 SCEVAddRecExpr *S =
2045 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2046 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002047 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2048 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002049 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2050 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002051 UniqueSCEVs.InsertNode(S, IP);
2052 }
Dan Gohman3645b012009-10-09 00:10:36 +00002053 if (HasNUW) S->setHasNoUnsignedWrap(true);
2054 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002055 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002056}
2057
Dan Gohman9311ef62009-06-24 14:49:00 +00002058const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2059 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002060 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002061 Ops.push_back(LHS);
2062 Ops.push_back(RHS);
2063 return getSMaxExpr(Ops);
2064}
2065
Dan Gohman0bba49c2009-07-07 17:06:11 +00002066const SCEV *
2067ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002068 assert(!Ops.empty() && "Cannot get empty smax!");
2069 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002070#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002071 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002072 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002073 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002074 "SCEVSMaxExpr operand types don't match!");
2075#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002076
2077 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002078 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079
2080 // If there are any constants, fold them together.
2081 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002082 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002083 ++Idx;
2084 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002085 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002086 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002087 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002088 APIntOps::smax(LHSC->getValue()->getValue(),
2089 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002090 Ops[0] = getConstant(Fold);
2091 Ops.erase(Ops.begin()+1); // Erase the folded element
2092 if (Ops.size() == 1) return Ops[0];
2093 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002094 }
2095
Dan Gohmane5aceed2009-06-24 14:46:22 +00002096 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2098 Ops.erase(Ops.begin());
2099 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002100 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2101 // If we have an smax with a constant maximum-int, it will always be
2102 // maximum-int.
2103 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002104 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105
Dan Gohman3ab13122010-04-13 16:49:23 +00002106 if (Ops.size() == 1) return Ops[0];
2107 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002108
2109 // Find the first SMax
2110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2111 ++Idx;
2112
2113 // Check to see if one of the operands is an SMax. If so, expand its operands
2114 // onto our operand list, and recurse to simplify.
2115 if (Idx < Ops.size()) {
2116 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002117 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002118 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002119 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002120 DeletedSMax = true;
2121 }
2122
2123 if (DeletedSMax)
2124 return getSMaxExpr(Ops);
2125 }
2126
2127 // Okay, check to see if the same value occurs in the operand list twice. If
2128 // so, delete one. Since we sorted the list, these values are required to
2129 // be adjacent.
2130 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002131 // X smax Y smax Y --> X smax Y
2132 // X smax Y --> X, if X is always greater than Y
2133 if (Ops[i] == Ops[i+1] ||
2134 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2135 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2136 --i; --e;
2137 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2139 --i; --e;
2140 }
2141
2142 if (Ops.size() == 1) return Ops[0];
2143
2144 assert(!Ops.empty() && "Reduced smax down to nothing!");
2145
Nick Lewycky3e630762008-02-20 06:48:22 +00002146 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002147 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002148 FoldingSetNodeID ID;
2149 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002150 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2151 ID.AddPointer(Ops[i]);
2152 void *IP = 0;
2153 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002154 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2155 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002156 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2157 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002158 UniqueSCEVs.InsertNode(S, IP);
2159 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002160}
2161
Dan Gohman9311ef62009-06-24 14:49:00 +00002162const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2163 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002164 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002165 Ops.push_back(LHS);
2166 Ops.push_back(RHS);
2167 return getUMaxExpr(Ops);
2168}
2169
Dan Gohman0bba49c2009-07-07 17:06:11 +00002170const SCEV *
2171ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002172 assert(!Ops.empty() && "Cannot get empty umax!");
2173 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002174#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002175 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002176 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002177 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002178 "SCEVUMaxExpr operand types don't match!");
2179#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002180
2181 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002182 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002183
2184 // If there are any constants, fold them together.
2185 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002186 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002187 ++Idx;
2188 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002189 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002190 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002191 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002192 APIntOps::umax(LHSC->getValue()->getValue(),
2193 RHSC->getValue()->getValue()));
2194 Ops[0] = getConstant(Fold);
2195 Ops.erase(Ops.begin()+1); // Erase the folded element
2196 if (Ops.size() == 1) return Ops[0];
2197 LHSC = cast<SCEVConstant>(Ops[0]);
2198 }
2199
Dan Gohmane5aceed2009-06-24 14:46:22 +00002200 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002201 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2202 Ops.erase(Ops.begin());
2203 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002204 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2205 // If we have an umax with a constant maximum-int, it will always be
2206 // maximum-int.
2207 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002209
Dan Gohman3ab13122010-04-13 16:49:23 +00002210 if (Ops.size() == 1) return Ops[0];
2211 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002212
2213 // Find the first UMax
2214 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2215 ++Idx;
2216
2217 // Check to see if one of the operands is a UMax. If so, expand its operands
2218 // onto our operand list, and recurse to simplify.
2219 if (Idx < Ops.size()) {
2220 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002221 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002222 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002223 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002224 DeletedUMax = true;
2225 }
2226
2227 if (DeletedUMax)
2228 return getUMaxExpr(Ops);
2229 }
2230
2231 // Okay, check to see if the same value occurs in the operand list twice. If
2232 // so, delete one. Since we sorted the list, these values are required to
2233 // be adjacent.
2234 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002235 // X umax Y umax Y --> X umax Y
2236 // X umax Y --> X, if X is always greater than Y
2237 if (Ops[i] == Ops[i+1] ||
2238 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2239 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2240 --i; --e;
2241 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002242 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2243 --i; --e;
2244 }
2245
2246 if (Ops.size() == 1) return Ops[0];
2247
2248 assert(!Ops.empty() && "Reduced umax down to nothing!");
2249
2250 // Okay, it looks like we really DO need a umax expr. Check to see if we
2251 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002252 FoldingSetNodeID ID;
2253 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002254 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2255 ID.AddPointer(Ops[i]);
2256 void *IP = 0;
2257 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002258 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2259 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002260 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2261 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002262 UniqueSCEVs.InsertNode(S, IP);
2263 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002264}
2265
Dan Gohman9311ef62009-06-24 14:49:00 +00002266const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2267 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002268 // ~smax(~x, ~y) == smin(x, y).
2269 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2270}
2271
Dan Gohman9311ef62009-06-24 14:49:00 +00002272const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2273 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002274 // ~umax(~x, ~y) == umin(x, y)
2275 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2276}
2277
Dan Gohman4f8eea82010-02-01 18:27:38 +00002278const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002279 // If we have TargetData, we can bypass creating a target-independent
2280 // constant expression and then folding it back into a ConstantInt.
2281 // This is just a compile-time optimization.
2282 if (TD)
2283 return getConstant(TD->getIntPtrType(getContext()),
2284 TD->getTypeAllocSize(AllocTy));
2285
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2287 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002288 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2289 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002290 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2295 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2296 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002297 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2298 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002299 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2300 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2301}
2302
2303const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2304 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002305 // If we have TargetData, we can bypass creating a target-independent
2306 // constant expression and then folding it back into a ConstantInt.
2307 // This is just a compile-time optimization.
2308 if (TD)
2309 return getConstant(TD->getIntPtrType(getContext()),
2310 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2311
Dan Gohman0f5efe52010-01-28 02:15:55 +00002312 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2313 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002314 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2315 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002316 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002317 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002318}
2319
Dan Gohman4f8eea82010-02-01 18:27:38 +00002320const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2321 Constant *FieldNo) {
2322 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002324 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2325 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002326 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002327 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002328}
2329
Dan Gohman0bba49c2009-07-07 17:06:11 +00002330const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002331 // Don't attempt to do anything other than create a SCEVUnknown object
2332 // here. createSCEV only calls getUnknown after checking for all other
2333 // interesting possibilities, and any other code that calls getUnknown
2334 // is doing so in order to hide a value from SCEV canonicalization.
2335
Dan Gohman1c343752009-06-27 21:21:31 +00002336 FoldingSetNodeID ID;
2337 ID.AddInteger(scUnknown);
2338 ID.AddPointer(V);
2339 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002340 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2341 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2342 "Stale SCEVUnknown in uniquing map!");
2343 return S;
2344 }
2345 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2346 FirstUnknown);
2347 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002348 UniqueSCEVs.InsertNode(S, IP);
2349 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002350}
2351
Chris Lattner53e677a2004-04-02 20:23:17 +00002352//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002353// Basic SCEV Analysis and PHI Idiom Recognition Code
2354//
2355
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002356/// isSCEVable - Test if values of the given type are analyzable within
2357/// the SCEV framework. This primarily includes integer types, and it
2358/// can optionally include pointer types if the ScalarEvolution class
2359/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002360bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002361 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002362 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363}
2364
2365/// getTypeSizeInBits - Return the size in bits of the specified type,
2366/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002367uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002368 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2369
2370 // If we have a TargetData, use it!
2371 if (TD)
2372 return TD->getTypeSizeInBits(Ty);
2373
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002374 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002375 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002376 return Ty->getPrimitiveSizeInBits();
2377
2378 // The only other support type is pointer. Without TargetData, conservatively
2379 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002380 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002381 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002382}
2383
2384/// getEffectiveSCEVType - Return a type with the same bitwidth as
2385/// the given type and which represents how SCEV will treat the given
2386/// type, for which isSCEVable must return true. For pointer types,
2387/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002388const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002389 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2390
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002391 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002392 return Ty;
2393
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002394 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002395 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002396 if (TD) return TD->getIntPtrType(getContext());
2397
2398 // Without TargetData, conservatively assume pointers are 64-bit.
2399 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002400}
Chris Lattner53e677a2004-04-02 20:23:17 +00002401
Dan Gohman0bba49c2009-07-07 17:06:11 +00002402const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002403 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002404}
2405
Chris Lattner53e677a2004-04-02 20:23:17 +00002406/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2407/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002408const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002409 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002410
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002411 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2412 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002413 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002414
2415 // The process of creating a SCEV for V may have caused other SCEVs
2416 // to have been created, so it's necessary to insert the new entry
2417 // from scratch, rather than trying to remember the insert position
2418 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002419 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002420 return S;
2421}
2422
Dan Gohman2d1be872009-04-16 03:18:22 +00002423/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2424///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002425const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002426 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002427 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002428 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002429
2430 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002431 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002432 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002433 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002434}
2435
2436/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002437const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002438 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002439 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002440 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002441
2442 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002443 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002444 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002445 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002446 return getMinusSCEV(AllOnes, V);
2447}
2448
Chris Lattner6038a632011-01-11 17:11:59 +00002449/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2450/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2451/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002452const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2453 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002454 // Fast path: X - X --> 0.
2455 if (LHS == RHS)
2456 return getConstant(LHS->getType(), 0);
2457
Dan Gohman2d1be872009-04-16 03:18:22 +00002458 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002459 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002460}
2461
2462/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2463/// input value to the specified type. If the type must be extended, it is zero
2464/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002465const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002466ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002467 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002468 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2469 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002470 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002472 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002473 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002474 return getTruncateExpr(V, Ty);
2475 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002476}
2477
2478/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2479/// input value to the specified type. If the type must be extended, it is sign
2480/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002481const SCEV *
2482ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002483 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002484 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002485 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2486 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002487 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002489 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002490 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002491 return getTruncateExpr(V, Ty);
2492 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002493}
2494
Dan Gohman467c4302009-05-13 03:46:30 +00002495/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2496/// input value to the specified type. If the type must be extended, it is zero
2497/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002498const SCEV *
2499ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002500 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002501 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2502 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002503 "Cannot noop or zero extend with non-integer arguments!");
2504 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2505 "getNoopOrZeroExtend cannot truncate!");
2506 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2507 return V; // No conversion
2508 return getZeroExtendExpr(V, Ty);
2509}
2510
2511/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2512/// input value to the specified type. If the type must be extended, it is sign
2513/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002514const SCEV *
2515ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002516 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2518 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002519 "Cannot noop or sign extend with non-integer arguments!");
2520 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2521 "getNoopOrSignExtend cannot truncate!");
2522 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2523 return V; // No conversion
2524 return getSignExtendExpr(V, Ty);
2525}
2526
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002527/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2528/// the input value to the specified type. If the type must be extended,
2529/// it is extended with unspecified bits. The conversion must not be
2530/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002531const SCEV *
2532ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002533 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002534 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2535 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002536 "Cannot noop or any extend with non-integer arguments!");
2537 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2538 "getNoopOrAnyExtend cannot truncate!");
2539 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2540 return V; // No conversion
2541 return getAnyExtendExpr(V, Ty);
2542}
2543
Dan Gohman467c4302009-05-13 03:46:30 +00002544/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2545/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002546const SCEV *
2547ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002548 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2550 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002551 "Cannot truncate or noop with non-integer arguments!");
2552 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2553 "getTruncateOrNoop cannot extend!");
2554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2555 return V; // No conversion
2556 return getTruncateExpr(V, Ty);
2557}
2558
Dan Gohmana334aa72009-06-22 00:31:57 +00002559/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2560/// the types using zero-extension, and then perform a umax operation
2561/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002562const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2563 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002564 const SCEV *PromotedLHS = LHS;
2565 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002566
2567 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2568 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2569 else
2570 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2571
2572 return getUMaxExpr(PromotedLHS, PromotedRHS);
2573}
2574
Dan Gohmanc9759e82009-06-22 15:03:27 +00002575/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2576/// the types using zero-extension, and then perform a umin operation
2577/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002580 const SCEV *PromotedLHS = LHS;
2581 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002582
2583 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2584 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2585 else
2586 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2587
2588 return getUMinExpr(PromotedLHS, PromotedRHS);
2589}
2590
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002591/// PushDefUseChildren - Push users of the given Instruction
2592/// onto the given Worklist.
2593static void
2594PushDefUseChildren(Instruction *I,
2595 SmallVectorImpl<Instruction *> &Worklist) {
2596 // Push the def-use children onto the Worklist stack.
2597 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2598 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002599 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002600}
2601
2602/// ForgetSymbolicValue - This looks up computed SCEV values for all
2603/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002604/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002605/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002606void
Dan Gohman85669632010-02-25 06:57:05 +00002607ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002608 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002609 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002610
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002611 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002612 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002613 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002614 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002615 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002616
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002617 ValueExprMapType::iterator It =
2618 ValueExprMap.find(static_cast<Value *>(I));
2619 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002620 const SCEV *Old = It->second;
2621
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002622 // Short-circuit the def-use traversal if the symbolic name
2623 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002624 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002625 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002626
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002627 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002628 // structure, it's a PHI that's in the progress of being computed
2629 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2630 // additional loop trip count information isn't going to change anything.
2631 // In the second case, createNodeForPHI will perform the necessary
2632 // updates on its own when it gets to that point. In the third, we do
2633 // want to forget the SCEVUnknown.
2634 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002635 !isa<SCEVUnknown>(Old) ||
2636 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002637 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002638 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002639 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002640 }
2641
2642 PushDefUseChildren(I, Worklist);
2643 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002644}
Chris Lattner53e677a2004-04-02 20:23:17 +00002645
2646/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2647/// a loop header, making it a potential recurrence, or it doesn't.
2648///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002649const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002650 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2651 if (L->getHeader() == PN->getParent()) {
2652 // The loop may have multiple entrances or multiple exits; we can analyze
2653 // this phi as an addrec if it has a unique entry value and a unique
2654 // backedge value.
2655 Value *BEValueV = 0, *StartValueV = 0;
2656 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2657 Value *V = PN->getIncomingValue(i);
2658 if (L->contains(PN->getIncomingBlock(i))) {
2659 if (!BEValueV) {
2660 BEValueV = V;
2661 } else if (BEValueV != V) {
2662 BEValueV = 0;
2663 break;
2664 }
2665 } else if (!StartValueV) {
2666 StartValueV = V;
2667 } else if (StartValueV != V) {
2668 StartValueV = 0;
2669 break;
2670 }
2671 }
2672 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002673 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002674 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002675 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002676 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002677 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002678
2679 // Using this symbolic name for the PHI, analyze the value coming around
2680 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002681 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002682
2683 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2684 // has a special value for the first iteration of the loop.
2685
2686 // If the value coming around the backedge is an add with the symbolic
2687 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002688 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002689 // If there is a single occurrence of the symbolic value, replace it
2690 // with a recurrence.
2691 unsigned FoundIndex = Add->getNumOperands();
2692 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2693 if (Add->getOperand(i) == SymbolicName)
2694 if (FoundIndex == e) {
2695 FoundIndex = i;
2696 break;
2697 }
2698
2699 if (FoundIndex != Add->getNumOperands()) {
2700 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002701 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002702 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2703 if (i != FoundIndex)
2704 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002705 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002706
2707 // This is not a valid addrec if the step amount is varying each
2708 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002709 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002710 (isa<SCEVAddRecExpr>(Accum) &&
2711 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002712 bool HasNUW = false;
2713 bool HasNSW = false;
2714
2715 // If the increment doesn't overflow, then neither the addrec nor
2716 // the post-increment will overflow.
2717 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2718 if (OBO->hasNoUnsignedWrap())
2719 HasNUW = true;
2720 if (OBO->hasNoSignedWrap())
2721 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002722 } else if (const GEPOperator *GEP =
2723 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002724 // If the increment is a GEP, then we know it won't perform an
2725 // unsigned overflow, because the address space cannot be
2726 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002727 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002728 }
2729
Dan Gohman27dead42010-04-12 07:49:36 +00002730 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002731 const SCEV *PHISCEV =
2732 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002733
Dan Gohmana10756e2010-01-21 02:09:26 +00002734 // Since the no-wrap flags are on the increment, they apply to the
2735 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002736 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002737 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2738 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002739
2740 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002741 // to be symbolic. We now need to go back and purge all of the
2742 // entries for the scalars that use the symbolic expression.
2743 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002744 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002745 return PHISCEV;
2746 }
2747 }
Dan Gohman622ed672009-05-04 22:02:23 +00002748 } else if (const SCEVAddRecExpr *AddRec =
2749 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002750 // Otherwise, this could be a loop like this:
2751 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2752 // In this case, j = {1,+,1} and BEValue is j.
2753 // Because the other in-value of i (0) fits the evolution of BEValue
2754 // i really is an addrec evolution.
2755 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002756 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002757
2758 // If StartVal = j.start - j.stride, we can use StartVal as the
2759 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002760 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002761 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002762 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002763 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002764
2765 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002766 // to be symbolic. We now need to go back and purge all of the
2767 // entries for the scalars that use the symbolic expression.
2768 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002769 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002770 return PHISCEV;
2771 }
2772 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002773 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002774 }
Dan Gohman27dead42010-04-12 07:49:36 +00002775 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002776
Dan Gohman85669632010-02-25 06:57:05 +00002777 // If the PHI has a single incoming value, follow that value, unless the
2778 // PHI's incoming blocks are in a different loop, in which case doing so
2779 // risks breaking LCSSA form. Instcombine would normally zap these, but
2780 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002781 if (Value *V = SimplifyInstruction(PN, TD, DT))
2782 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002783 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002784
Chris Lattner53e677a2004-04-02 20:23:17 +00002785 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002786 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002787}
2788
Dan Gohman26466c02009-05-08 20:26:55 +00002789/// createNodeForGEP - Expand GEP instructions into add and multiply
2790/// operations. This allows them to be analyzed by regular SCEV code.
2791///
Dan Gohmand281ed22009-12-18 02:09:29 +00002792const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002793
Dan Gohmanb9f96512010-06-30 07:16:37 +00002794 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2795 // Add expression, because the Instruction may be guarded by control flow
2796 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002797 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002798
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002799 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002800 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002801 // Don't attempt to analyze GEPs over unsized objects.
2802 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2803 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002804 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002805 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002806 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002807 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002808 I != E; ++I) {
2809 Value *Index = *I;
2810 // Compute the (potentially symbolic) offset in bytes for this index.
2811 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2812 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002813 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002814 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2815
Dan Gohmanb9f96512010-06-30 07:16:37 +00002816 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002817 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002818 } else {
2819 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002820 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2821 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002822 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002823 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2824
Dan Gohmanb9f96512010-06-30 07:16:37 +00002825 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002826 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002827
2828 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002829 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002830 }
2831 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002832
2833 // Get the SCEV for the GEP base.
2834 const SCEV *BaseS = getSCEV(Base);
2835
Dan Gohmanb9f96512010-06-30 07:16:37 +00002836 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002837 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002838}
2839
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2841/// guaranteed to end in (at every loop iteration). It is, at the same time,
2842/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2843/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002844uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002845ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002846 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002847 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002848
Dan Gohman622ed672009-05-04 22:02:23 +00002849 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002850 return std::min(GetMinTrailingZeros(T->getOperand()),
2851 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002852
Dan Gohman622ed672009-05-04 22:02:23 +00002853 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002854 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2855 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2856 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002857 }
2858
Dan Gohman622ed672009-05-04 22:02:23 +00002859 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002860 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2861 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2862 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002863 }
2864
Dan Gohman622ed672009-05-04 22:02:23 +00002865 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002866 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002867 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002868 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002870 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002871 }
2872
Dan Gohman622ed672009-05-04 22:02:23 +00002873 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002874 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002875 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2876 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002877 for (unsigned i = 1, e = M->getNumOperands();
2878 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002879 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002880 BitWidth);
2881 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002882 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002883
Dan Gohman622ed672009-05-04 22:02:23 +00002884 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002885 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002887 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002888 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002889 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002890 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002891
Dan Gohman622ed672009-05-04 22:02:23 +00002892 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002893 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002894 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002895 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002897 return MinOpRes;
2898 }
2899
Dan Gohman622ed672009-05-04 22:02:23 +00002900 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002901 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002902 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002903 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002904 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002905 return MinOpRes;
2906 }
2907
Dan Gohman2c364ad2009-06-19 23:29:04 +00002908 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2909 // For a SCEVUnknown, ask ValueTracking.
2910 unsigned BitWidth = getTypeSizeInBits(U->getType());
2911 APInt Mask = APInt::getAllOnesValue(BitWidth);
2912 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2913 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2914 return Zeros.countTrailingOnes();
2915 }
2916
2917 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002918 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002919}
Chris Lattner53e677a2004-04-02 20:23:17 +00002920
Dan Gohman85b05a22009-07-13 21:35:55 +00002921/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2922///
2923ConstantRange
2924ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002925 // See if we've computed this range already.
2926 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2927 if (I != UnsignedRanges.end())
2928 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002929
2930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002931 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002932
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002933 unsigned BitWidth = getTypeSizeInBits(S->getType());
2934 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2935
2936 // If the value has known zeros, the maximum unsigned value will have those
2937 // known zeros as well.
2938 uint32_t TZ = GetMinTrailingZeros(S);
2939 if (TZ != 0)
2940 ConservativeResult =
2941 ConstantRange(APInt::getMinValue(BitWidth),
2942 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2943
Dan Gohman85b05a22009-07-13 21:35:55 +00002944 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2945 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2946 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2947 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002948 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002949 }
2950
2951 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2952 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2953 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2954 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002955 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002956 }
2957
2958 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2959 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2960 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2961 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002962 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002963 }
2964
2965 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2966 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2967 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2968 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002969 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002970 }
2971
2972 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2973 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2974 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002975 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002976 }
2977
2978 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2979 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002980 return setUnsignedRange(ZExt,
2981 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002982 }
2983
2984 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2985 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002986 return setUnsignedRange(SExt,
2987 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 }
2989
2990 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2991 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002992 return setUnsignedRange(Trunc,
2993 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002994 }
2995
Dan Gohman85b05a22009-07-13 21:35:55 +00002996 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002997 // If there's no unsigned wrap, the value will never be less than its
2998 // initial value.
2999 if (AddRec->hasNoUnsignedWrap())
3000 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003001 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003002 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003003 ConservativeResult.intersectWith(
3004 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003005
3006 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003007 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003008 const Type *Ty = AddRec->getType();
3009 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003010 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3011 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003012 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3013
3014 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003015 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003016
3017 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003018 ConstantRange StepRange = getSignedRange(Step);
3019 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3020 ConstantRange EndRange =
3021 StartRange.add(MaxBECountRange.multiply(StepRange));
3022
3023 // Check for overflow. This must be done with ConstantRange arithmetic
3024 // because we could be called from within the ScalarEvolution overflow
3025 // checking code.
3026 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3027 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3028 ConstantRange ExtMaxBECountRange =
3029 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3030 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3031 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3032 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003033 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003034
Dan Gohman85b05a22009-07-13 21:35:55 +00003035 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3036 EndRange.getUnsignedMin());
3037 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3038 EndRange.getUnsignedMax());
3039 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003040 return setUnsignedRange(AddRec, ConservativeResult);
3041 return setUnsignedRange(AddRec,
3042 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003043 }
3044 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003045
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003046 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003047 }
3048
3049 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3050 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003051 APInt Mask = APInt::getAllOnesValue(BitWidth);
3052 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3053 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003054 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003055 return setUnsignedRange(U, ConservativeResult);
3056 return setUnsignedRange(U,
3057 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003058 }
3059
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003060 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003061}
3062
Dan Gohman85b05a22009-07-13 21:35:55 +00003063/// getSignedRange - Determine the signed range for a particular SCEV.
3064///
3065ConstantRange
3066ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003067 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3068 if (I != SignedRanges.end())
3069 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003070
Dan Gohman85b05a22009-07-13 21:35:55 +00003071 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003072 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003073
Dan Gohman52fddd32010-01-26 04:40:18 +00003074 unsigned BitWidth = getTypeSizeInBits(S->getType());
3075 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3076
3077 // If the value has known zeros, the maximum signed value will have those
3078 // known zeros as well.
3079 uint32_t TZ = GetMinTrailingZeros(S);
3080 if (TZ != 0)
3081 ConservativeResult =
3082 ConstantRange(APInt::getSignedMinValue(BitWidth),
3083 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3084
Dan Gohman85b05a22009-07-13 21:35:55 +00003085 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3086 ConstantRange X = getSignedRange(Add->getOperand(0));
3087 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3088 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003089 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003090 }
3091
Dan Gohman85b05a22009-07-13 21:35:55 +00003092 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3093 ConstantRange X = getSignedRange(Mul->getOperand(0));
3094 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3095 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003096 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003097 }
3098
Dan Gohman85b05a22009-07-13 21:35:55 +00003099 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3100 ConstantRange X = getSignedRange(SMax->getOperand(0));
3101 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3102 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003103 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003104 }
Dan Gohman62849c02009-06-24 01:05:09 +00003105
Dan Gohman85b05a22009-07-13 21:35:55 +00003106 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3107 ConstantRange X = getSignedRange(UMax->getOperand(0));
3108 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3109 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003110 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003111 }
Dan Gohman62849c02009-06-24 01:05:09 +00003112
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3114 ConstantRange X = getSignedRange(UDiv->getLHS());
3115 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003116 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 }
Dan Gohman62849c02009-06-24 01:05:09 +00003118
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3120 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003121 return setSignedRange(ZExt,
3122 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003123 }
3124
3125 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3126 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003127 return setSignedRange(SExt,
3128 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003129 }
3130
3131 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3132 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003133 return setSignedRange(Trunc,
3134 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 }
3136
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003138 // If there's no signed wrap, and all the operands have the same sign or
3139 // zero, the value won't ever change sign.
3140 if (AddRec->hasNoSignedWrap()) {
3141 bool AllNonNeg = true;
3142 bool AllNonPos = true;
3143 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3144 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3145 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3146 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003147 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003148 ConservativeResult = ConservativeResult.intersectWith(
3149 ConstantRange(APInt(BitWidth, 0),
3150 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003151 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003152 ConservativeResult = ConservativeResult.intersectWith(
3153 ConstantRange(APInt::getSignedMinValue(BitWidth),
3154 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003155 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003156
3157 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003158 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003159 const Type *Ty = AddRec->getType();
3160 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003161 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3162 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003163 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3164
3165 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003166 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003167
3168 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003169 ConstantRange StepRange = getSignedRange(Step);
3170 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3171 ConstantRange EndRange =
3172 StartRange.add(MaxBECountRange.multiply(StepRange));
3173
3174 // Check for overflow. This must be done with ConstantRange arithmetic
3175 // because we could be called from within the ScalarEvolution overflow
3176 // checking code.
3177 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3178 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3179 ConstantRange ExtMaxBECountRange =
3180 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3181 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3182 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3183 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003184 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003185
Dan Gohman85b05a22009-07-13 21:35:55 +00003186 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3187 EndRange.getSignedMin());
3188 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3189 EndRange.getSignedMax());
3190 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003191 return setSignedRange(AddRec, ConservativeResult);
3192 return setSignedRange(AddRec,
3193 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003194 }
Dan Gohman62849c02009-06-24 01:05:09 +00003195 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003196
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003197 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003198 }
3199
Dan Gohman2c364ad2009-06-19 23:29:04 +00003200 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3201 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003202 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003203 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003204 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3205 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003206 return setSignedRange(U, ConservativeResult);
3207 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003208 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003209 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003210 }
3211
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003212 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003213}
3214
Chris Lattner53e677a2004-04-02 20:23:17 +00003215/// createSCEV - We know that there is no SCEV for the specified value.
3216/// Analyze the expression.
3217///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003218const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003219 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003220 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003221
Dan Gohman6c459a22008-06-22 19:56:46 +00003222 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003223 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003224 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003225
3226 // Don't attempt to analyze instructions in blocks that aren't
3227 // reachable. Such instructions don't matter, and they aren't required
3228 // to obey basic rules for definitions dominating uses which this
3229 // analysis depends on.
3230 if (!DT->isReachableFromEntry(I->getParent()))
3231 return getUnknown(V);
3232 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003233 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003234 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3235 return getConstant(CI);
3236 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003237 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003238 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3239 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003240 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003241 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003242
Dan Gohmanca178902009-07-17 20:47:02 +00003243 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003244 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003245 case Instruction::Add: {
3246 // The simple thing to do would be to just call getSCEV on both operands
3247 // and call getAddExpr with the result. However if we're looking at a
3248 // bunch of things all added together, this can be quite inefficient,
3249 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3250 // Instead, gather up all the operands and make a single getAddExpr call.
3251 // LLVM IR canonical form means we need only traverse the left operands.
3252 SmallVector<const SCEV *, 4> AddOps;
3253 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003254 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3255 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3256 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3257 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003258 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003259 const SCEV *Op1 = getSCEV(U->getOperand(1));
3260 if (Opcode == Instruction::Sub)
3261 AddOps.push_back(getNegativeSCEV(Op1));
3262 else
3263 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003264 }
3265 AddOps.push_back(getSCEV(U->getOperand(0)));
3266 return getAddExpr(AddOps);
3267 }
3268 case Instruction::Mul: {
3269 // See the Add code above.
3270 SmallVector<const SCEV *, 4> MulOps;
3271 MulOps.push_back(getSCEV(U->getOperand(1)));
3272 for (Value *Op = U->getOperand(0);
3273 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3274 Op = U->getOperand(0)) {
3275 U = cast<Operator>(Op);
3276 MulOps.push_back(getSCEV(U->getOperand(1)));
3277 }
3278 MulOps.push_back(getSCEV(U->getOperand(0)));
3279 return getMulExpr(MulOps);
3280 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003281 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003282 return getUDivExpr(getSCEV(U->getOperand(0)),
3283 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003284 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003285 return getMinusSCEV(getSCEV(U->getOperand(0)),
3286 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003287 case Instruction::And:
3288 // For an expression like x&255 that merely masks off the high bits,
3289 // use zext(trunc(x)) as the SCEV expression.
3290 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003291 if (CI->isNullValue())
3292 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003293 if (CI->isAllOnesValue())
3294 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003295 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003296
3297 // Instcombine's ShrinkDemandedConstant may strip bits out of
3298 // constants, obscuring what would otherwise be a low-bits mask.
3299 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3300 // knew about to reconstruct a low-bits mask value.
3301 unsigned LZ = A.countLeadingZeros();
3302 unsigned BitWidth = A.getBitWidth();
3303 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3304 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3305 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3306
3307 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3308
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003309 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003310 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003311 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003312 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003313 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003314 }
3315 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003316
Dan Gohman6c459a22008-06-22 19:56:46 +00003317 case Instruction::Or:
3318 // If the RHS of the Or is a constant, we may have something like:
3319 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3320 // optimizations will transparently handle this case.
3321 //
3322 // In order for this transformation to be safe, the LHS must be of the
3323 // form X*(2^n) and the Or constant must be less than 2^n.
3324 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003325 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003326 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003327 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003328 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3329 // Build a plain add SCEV.
3330 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3331 // If the LHS of the add was an addrec and it has no-wrap flags,
3332 // transfer the no-wrap flags, since an or won't introduce a wrap.
3333 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3334 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3335 if (OldAR->hasNoUnsignedWrap())
3336 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3337 if (OldAR->hasNoSignedWrap())
3338 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3339 }
3340 return S;
3341 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003342 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003343 break;
3344 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003345 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003346 // If the RHS of the xor is a signbit, then this is just an add.
3347 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003348 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003349 return getAddExpr(getSCEV(U->getOperand(0)),
3350 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003351
3352 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003353 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003354 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003355
3356 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3357 // This is a variant of the check for xor with -1, and it handles
3358 // the case where instcombine has trimmed non-demanded bits out
3359 // of an xor with -1.
3360 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3361 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3362 if (BO->getOpcode() == Instruction::And &&
3363 LCI->getValue() == CI->getValue())
3364 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003365 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003366 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003367 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003368 const Type *Z0Ty = Z0->getType();
3369 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3370
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003371 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003372 // mask off the high bits. Complement the operand and
3373 // re-apply the zext.
3374 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3375 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3376
3377 // If C is a single bit, it may be in the sign-bit position
3378 // before the zero-extend. In this case, represent the xor
3379 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003380 APInt Trunc = CI->getValue().trunc(Z0TySize);
3381 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003382 Trunc.isSignBit())
3383 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3384 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003385 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003386 }
3387 break;
3388
3389 case Instruction::Shl:
3390 // Turn shift left of a constant amount into a multiply.
3391 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003392 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003393
3394 // If the shift count is not less than the bitwidth, the result of
3395 // the shift is undefined. Don't try to analyze it, because the
3396 // resolution chosen here may differ from the resolution chosen in
3397 // other parts of the compiler.
3398 if (SA->getValue().uge(BitWidth))
3399 break;
3400
Owen Andersoneed707b2009-07-24 23:12:02 +00003401 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003402 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003403 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003404 }
3405 break;
3406
Nick Lewycky01eaf802008-07-07 06:15:49 +00003407 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003408 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003409 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003410 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003411
3412 // If the shift count is not less than the bitwidth, the result of
3413 // the shift is undefined. Don't try to analyze it, because the
3414 // resolution chosen here may differ from the resolution chosen in
3415 // other parts of the compiler.
3416 if (SA->getValue().uge(BitWidth))
3417 break;
3418
Owen Andersoneed707b2009-07-24 23:12:02 +00003419 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003420 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003421 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003422 }
3423 break;
3424
Dan Gohman4ee29af2009-04-21 02:26:00 +00003425 case Instruction::AShr:
3426 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3427 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003428 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003429 if (L->getOpcode() == Instruction::Shl &&
3430 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003431 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3432
3433 // If the shift count is not less than the bitwidth, the result of
3434 // the shift is undefined. Don't try to analyze it, because the
3435 // resolution chosen here may differ from the resolution chosen in
3436 // other parts of the compiler.
3437 if (CI->getValue().uge(BitWidth))
3438 break;
3439
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003440 uint64_t Amt = BitWidth - CI->getZExtValue();
3441 if (Amt == BitWidth)
3442 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003443 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003444 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003445 IntegerType::get(getContext(),
3446 Amt)),
3447 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003448 }
3449 break;
3450
Dan Gohman6c459a22008-06-22 19:56:46 +00003451 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003452 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003453
3454 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003455 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003456
3457 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003458 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003459
3460 case Instruction::BitCast:
3461 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003462 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003463 return getSCEV(U->getOperand(0));
3464 break;
3465
Dan Gohman4f8eea82010-02-01 18:27:38 +00003466 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3467 // lead to pointer expressions which cannot safely be expanded to GEPs,
3468 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3469 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003470
Dan Gohman26466c02009-05-08 20:26:55 +00003471 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003472 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003473
Dan Gohman6c459a22008-06-22 19:56:46 +00003474 case Instruction::PHI:
3475 return createNodeForPHI(cast<PHINode>(U));
3476
3477 case Instruction::Select:
3478 // This could be a smax or umax that was lowered earlier.
3479 // Try to recover it.
3480 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3481 Value *LHS = ICI->getOperand(0);
3482 Value *RHS = ICI->getOperand(1);
3483 switch (ICI->getPredicate()) {
3484 case ICmpInst::ICMP_SLT:
3485 case ICmpInst::ICMP_SLE:
3486 std::swap(LHS, RHS);
3487 // fall through
3488 case ICmpInst::ICMP_SGT:
3489 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003490 // a >s b ? a+x : b+x -> smax(a, b)+x
3491 // a >s b ? b+x : a+x -> smin(a, b)+x
3492 if (LHS->getType() == U->getType()) {
3493 const SCEV *LS = getSCEV(LHS);
3494 const SCEV *RS = getSCEV(RHS);
3495 const SCEV *LA = getSCEV(U->getOperand(1));
3496 const SCEV *RA = getSCEV(U->getOperand(2));
3497 const SCEV *LDiff = getMinusSCEV(LA, LS);
3498 const SCEV *RDiff = getMinusSCEV(RA, RS);
3499 if (LDiff == RDiff)
3500 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3501 LDiff = getMinusSCEV(LA, RS);
3502 RDiff = getMinusSCEV(RA, LS);
3503 if (LDiff == RDiff)
3504 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3505 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003506 break;
3507 case ICmpInst::ICMP_ULT:
3508 case ICmpInst::ICMP_ULE:
3509 std::swap(LHS, RHS);
3510 // fall through
3511 case ICmpInst::ICMP_UGT:
3512 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003513 // a >u b ? a+x : b+x -> umax(a, b)+x
3514 // a >u b ? b+x : a+x -> umin(a, b)+x
3515 if (LHS->getType() == U->getType()) {
3516 const SCEV *LS = getSCEV(LHS);
3517 const SCEV *RS = getSCEV(RHS);
3518 const SCEV *LA = getSCEV(U->getOperand(1));
3519 const SCEV *RA = getSCEV(U->getOperand(2));
3520 const SCEV *LDiff = getMinusSCEV(LA, LS);
3521 const SCEV *RDiff = getMinusSCEV(RA, RS);
3522 if (LDiff == RDiff)
3523 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3524 LDiff = getMinusSCEV(LA, RS);
3525 RDiff = getMinusSCEV(RA, LS);
3526 if (LDiff == RDiff)
3527 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3528 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003529 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003530 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003531 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3532 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003533 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003534 cast<ConstantInt>(RHS)->isZero()) {
3535 const SCEV *One = getConstant(LHS->getType(), 1);
3536 const SCEV *LS = getSCEV(LHS);
3537 const SCEV *LA = getSCEV(U->getOperand(1));
3538 const SCEV *RA = getSCEV(U->getOperand(2));
3539 const SCEV *LDiff = getMinusSCEV(LA, LS);
3540 const SCEV *RDiff = getMinusSCEV(RA, One);
3541 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003542 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003543 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003544 break;
3545 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003546 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3547 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003548 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003549 cast<ConstantInt>(RHS)->isZero()) {
3550 const SCEV *One = getConstant(LHS->getType(), 1);
3551 const SCEV *LS = getSCEV(LHS);
3552 const SCEV *LA = getSCEV(U->getOperand(1));
3553 const SCEV *RA = getSCEV(U->getOperand(2));
3554 const SCEV *LDiff = getMinusSCEV(LA, One);
3555 const SCEV *RDiff = getMinusSCEV(RA, LS);
3556 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003557 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003558 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003559 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003560 default:
3561 break;
3562 }
3563 }
3564
3565 default: // We cannot analyze this expression.
3566 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003567 }
3568
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003569 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003570}
3571
3572
3573
3574//===----------------------------------------------------------------------===//
3575// Iteration Count Computation Code
3576//
3577
Dan Gohman46bdfb02009-02-24 18:55:53 +00003578/// getBackedgeTakenCount - If the specified loop has a predictable
3579/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3580/// object. The backedge-taken count is the number of times the loop header
3581/// will be branched to from within the loop. This is one less than the
3582/// trip count of the loop, since it doesn't count the first iteration,
3583/// when the header is branched to from outside the loop.
3584///
3585/// Note that it is not valid to call this method on a loop without a
3586/// loop-invariant backedge-taken count (see
3587/// hasLoopInvariantBackedgeTakenCount).
3588///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003589const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003590 return getBackedgeTakenInfo(L).Exact;
3591}
3592
3593/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3594/// return the least SCEV value that is known never to be less than the
3595/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003596const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003597 return getBackedgeTakenInfo(L).Max;
3598}
3599
Dan Gohman59ae6b92009-07-08 19:23:34 +00003600/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3601/// onto the given Worklist.
3602static void
3603PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3604 BasicBlock *Header = L->getHeader();
3605
3606 // Push all Loop-header PHIs onto the Worklist stack.
3607 for (BasicBlock::iterator I = Header->begin();
3608 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3609 Worklist.push_back(PN);
3610}
3611
Dan Gohmana1af7572009-04-30 20:47:05 +00003612const ScalarEvolution::BackedgeTakenInfo &
3613ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003614 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003615 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003616 // update the value. The temporary CouldNotCompute value tells SCEV
3617 // code elsewhere that it shouldn't attempt to request a new
3618 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003619 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003620 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003621 if (!Pair.second)
3622 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003623
Chris Lattnerf1859892011-01-09 02:16:18 +00003624 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3625 if (BECount.Exact != getCouldNotCompute()) {
3626 assert(isLoopInvariant(BECount.Exact, L) &&
3627 isLoopInvariant(BECount.Max, L) &&
3628 "Computed backedge-taken count isn't loop invariant for loop!");
3629 ++NumTripCountsComputed;
3630
3631 // Update the value in the map.
3632 Pair.first->second = BECount;
3633 } else {
3634 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003635 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003636 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003637 if (isa<PHINode>(L->getHeader()->begin()))
3638 // Only count loops that have phi nodes as not being computable.
3639 ++NumTripCountsNotComputed;
3640 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003641
Chris Lattnerf1859892011-01-09 02:16:18 +00003642 // Now that we know more about the trip count for this loop, forget any
3643 // existing SCEV values for PHI nodes in this loop since they are only
3644 // conservative estimates made without the benefit of trip count
3645 // information. This is similar to the code in forgetLoop, except that
3646 // it handles SCEVUnknown PHI nodes specially.
3647 if (BECount.hasAnyInfo()) {
3648 SmallVector<Instruction *, 16> Worklist;
3649 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003650
Chris Lattnerf1859892011-01-09 02:16:18 +00003651 SmallPtrSet<Instruction *, 8> Visited;
3652 while (!Worklist.empty()) {
3653 Instruction *I = Worklist.pop_back_val();
3654 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003655
Chris Lattnerf1859892011-01-09 02:16:18 +00003656 ValueExprMapType::iterator It =
3657 ValueExprMap.find(static_cast<Value *>(I));
3658 if (It != ValueExprMap.end()) {
3659 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003660
Chris Lattnerf1859892011-01-09 02:16:18 +00003661 // SCEVUnknown for a PHI either means that it has an unrecognized
3662 // structure, or it's a PHI that's in the progress of being computed
3663 // by createNodeForPHI. In the former case, additional loop trip
3664 // count information isn't going to change anything. In the later
3665 // case, createNodeForPHI will perform the necessary updates on its
3666 // own when it gets to that point.
3667 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3668 forgetMemoizedResults(Old);
3669 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003670 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003671 if (PHINode *PN = dyn_cast<PHINode>(I))
3672 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003673 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003674
3675 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003676 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003677 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003678 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003679}
3680
Dan Gohman4c7279a2009-10-31 15:04:55 +00003681/// forgetLoop - This method should be called by the client when it has
3682/// changed a loop in a way that may effect ScalarEvolution's ability to
3683/// compute a trip count, or if the loop is deleted.
3684void ScalarEvolution::forgetLoop(const Loop *L) {
3685 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003686 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003687
Dan Gohman4c7279a2009-10-31 15:04:55 +00003688 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003689 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003690 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003691
Dan Gohman59ae6b92009-07-08 19:23:34 +00003692 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003693 while (!Worklist.empty()) {
3694 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003695 if (!Visited.insert(I)) continue;
3696
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003697 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3698 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003699 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003700 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003701 if (PHINode *PN = dyn_cast<PHINode>(I))
3702 ConstantEvolutionLoopExitValue.erase(PN);
3703 }
3704
3705 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003706 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003707
3708 // Forget all contained loops too, to avoid dangling entries in the
3709 // ValuesAtScopes map.
3710 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3711 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003712}
3713
Eric Christophere6cbfa62010-07-29 01:25:38 +00003714/// forgetValue - This method should be called by the client when it has
3715/// changed a value in a way that may effect its value, or which may
3716/// disconnect it from a def-use chain linking it to a loop.
3717void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003718 Instruction *I = dyn_cast<Instruction>(V);
3719 if (!I) return;
3720
3721 // Drop information about expressions based on loop-header PHIs.
3722 SmallVector<Instruction *, 16> Worklist;
3723 Worklist.push_back(I);
3724
3725 SmallPtrSet<Instruction *, 8> Visited;
3726 while (!Worklist.empty()) {
3727 I = Worklist.pop_back_val();
3728 if (!Visited.insert(I)) continue;
3729
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003730 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3731 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003732 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003733 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003734 if (PHINode *PN = dyn_cast<PHINode>(I))
3735 ConstantEvolutionLoopExitValue.erase(PN);
3736 }
3737
3738 PushDefUseChildren(I, Worklist);
3739 }
3740}
3741
Dan Gohman46bdfb02009-02-24 18:55:53 +00003742/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3743/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003744ScalarEvolution::BackedgeTakenInfo
3745ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003746 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003747 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003748
Dan Gohmana334aa72009-06-22 00:31:57 +00003749 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003750 const SCEV *BECount = getCouldNotCompute();
3751 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003752 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003753 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3754 BackedgeTakenInfo NewBTI =
3755 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003756
Dan Gohman1c343752009-06-27 21:21:31 +00003757 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003758 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003759 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003761 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003762 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003763 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003764 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003766 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003767 }
Dan Gohman1c343752009-06-27 21:21:31 +00003768 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003769 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003770 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003771 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003772 }
3773
3774 return BackedgeTakenInfo(BECount, MaxBECount);
3775}
3776
3777/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3778/// of the specified loop will execute if it exits via the specified block.
3779ScalarEvolution::BackedgeTakenInfo
3780ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3781 BasicBlock *ExitingBlock) {
3782
3783 // Okay, we've chosen an exiting block. See what condition causes us to
3784 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003785 //
3786 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003787 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003788 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003789 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003790
Chris Lattner8b0e3602007-01-07 02:24:26 +00003791 // At this point, we know we have a conditional branch that determines whether
3792 // the loop is exited. However, we don't know if the branch is executed each
3793 // time through the loop. If not, then the execution count of the branch will
3794 // not be equal to the trip count of the loop.
3795 //
3796 // Currently we check for this by checking to see if the Exit branch goes to
3797 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003798 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003799 // loop header. This is common for un-rotated loops.
3800 //
3801 // If both of those tests fail, walk up the unique predecessor chain to the
3802 // header, stopping if there is an edge that doesn't exit the loop. If the
3803 // header is reached, the execution count of the branch will be equal to the
3804 // trip count of the loop.
3805 //
3806 // More extensive analysis could be done to handle more cases here.
3807 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003808 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003809 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003810 ExitBr->getParent() != L->getHeader()) {
3811 // The simple checks failed, try climbing the unique predecessor chain
3812 // up to the header.
3813 bool Ok = false;
3814 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3815 BasicBlock *Pred = BB->getUniquePredecessor();
3816 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003817 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003818 TerminatorInst *PredTerm = Pred->getTerminator();
3819 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3820 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3821 if (PredSucc == BB)
3822 continue;
3823 // If the predecessor has a successor that isn't BB and isn't
3824 // outside the loop, assume the worst.
3825 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003826 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 }
3828 if (Pred == L->getHeader()) {
3829 Ok = true;
3830 break;
3831 }
3832 BB = Pred;
3833 }
3834 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003835 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003836 }
3837
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003838 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003839 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3840 ExitBr->getSuccessor(0),
3841 ExitBr->getSuccessor(1));
3842}
3843
3844/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3845/// backedge of the specified loop will execute if its exit condition
3846/// were a conditional branch of ExitCond, TBB, and FBB.
3847ScalarEvolution::BackedgeTakenInfo
3848ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3849 Value *ExitCond,
3850 BasicBlock *TBB,
3851 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003852 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003853 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3854 if (BO->getOpcode() == Instruction::And) {
3855 // Recurse on the operands of the and.
3856 BackedgeTakenInfo BTI0 =
3857 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3858 BackedgeTakenInfo BTI1 =
3859 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003860 const SCEV *BECount = getCouldNotCompute();
3861 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003862 if (L->contains(TBB)) {
3863 // Both conditions must be true for the loop to continue executing.
3864 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003865 if (BTI0.Exact == getCouldNotCompute() ||
3866 BTI1.Exact == getCouldNotCompute())
3867 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003868 else
3869 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003870 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003872 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003874 else
3875 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003877 // Both conditions must be true at the same time for the loop to exit.
3878 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003879 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003880 if (BTI0.Max == BTI1.Max)
3881 MaxBECount = BTI0.Max;
3882 if (BTI0.Exact == BTI1.Exact)
3883 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003884 }
3885
3886 return BackedgeTakenInfo(BECount, MaxBECount);
3887 }
3888 if (BO->getOpcode() == Instruction::Or) {
3889 // Recurse on the operands of the or.
3890 BackedgeTakenInfo BTI0 =
3891 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3892 BackedgeTakenInfo BTI1 =
3893 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003894 const SCEV *BECount = getCouldNotCompute();
3895 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003896 if (L->contains(FBB)) {
3897 // Both conditions must be false for the loop to continue executing.
3898 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003899 if (BTI0.Exact == getCouldNotCompute() ||
3900 BTI1.Exact == getCouldNotCompute())
3901 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003902 else
3903 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003904 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003905 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003906 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003907 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003908 else
3909 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003910 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003911 // Both conditions must be false at the same time for the loop to exit.
3912 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003913 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003914 if (BTI0.Max == BTI1.Max)
3915 MaxBECount = BTI0.Max;
3916 if (BTI0.Exact == BTI1.Exact)
3917 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003918 }
3919
3920 return BackedgeTakenInfo(BECount, MaxBECount);
3921 }
3922 }
3923
3924 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003925 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003926 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3927 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003928
Dan Gohman00cb5b72010-02-19 18:12:07 +00003929 // Check for a constant condition. These are normally stripped out by
3930 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3931 // preserve the CFG and is temporarily leaving constant conditions
3932 // in place.
3933 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3934 if (L->contains(FBB) == !CI->getZExtValue())
3935 // The backedge is always taken.
3936 return getCouldNotCompute();
3937 else
3938 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003939 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003940 }
3941
Eli Friedman361e54d2009-05-09 12:32:42 +00003942 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003943 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3944}
3945
Chris Lattner992efb02011-01-09 22:26:35 +00003946static const SCEVAddRecExpr *
3947isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3948 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3949
3950 // The SCEV must be an addrec of this loop.
3951 if (!SA || SA->getLoop() != L || !SA->isAffine())
3952 return 0;
3953
3954 // The SCEV must be known to not wrap in some way to be interesting.
3955 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3956 return 0;
3957
3958 // The stride must be a constant so that we know if it is striding up or down.
3959 if (!isa<SCEVConstant>(SA->getOperand(1)))
3960 return 0;
3961 return SA;
3962}
3963
3964/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3965/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3966/// and this function returns the expression to use for x-y. We know and take
3967/// advantage of the fact that this subtraction is only being used in a
3968/// comparison by zero context.
3969///
3970static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
3971 const Loop *L, ScalarEvolution &SE) {
3972 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
3973 // wrap (either NSW or NUW), then we know that the value will either become
3974 // the other one (and thus the loop terminates), that the loop will terminate
3975 // through some other exit condition first, or that the loop has undefined
3976 // behavior. This information is useful when the addrec has a stride that is
3977 // != 1 or -1, because it means we can't "miss" the exit value.
3978 //
3979 // In any of these three cases, it is safe to turn the exit condition into a
3980 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
3981 // but since we know that the "end cannot be missed" we can force the
3982 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
3983 // that the AddRec *cannot* pass zero.
3984
3985 // See if LHS and RHS are addrec's we can handle.
3986 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
3987 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
3988
3989 // If neither addrec is interesting, just return a minus.
3990 if (RHSA == 0 && LHSA == 0)
3991 return SE.getMinusSCEV(LHS, RHS);
3992
3993 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
3994 if (RHSA && LHSA == 0) {
3995 // Safe because a-b === b-a for comparisons against zero.
3996 std::swap(LHS, RHS);
3997 std::swap(LHSA, RHSA);
3998 }
3999
4000 // Handle the case when only one is advancing in a non-overflowing way.
4001 if (RHSA == 0) {
4002 // If RHS is loop varying, then we can't predict when LHS will cross it.
4003 if (!SE.isLoopInvariant(RHS, L))
4004 return SE.getMinusSCEV(LHS, RHS);
4005
4006 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4007 // is counting up until it crosses RHS (which must be larger than LHS). If
4008 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4009 const ConstantInt *Stride =
4010 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4011 if (Stride->getValue().isNegative())
4012 std::swap(LHS, RHS);
4013
4014 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4015 }
4016
4017 // If both LHS and RHS are interesting, we have something like:
4018 // a+i*4 != b+i*8.
4019 const ConstantInt *LHSStride =
4020 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4021 const ConstantInt *RHSStride =
4022 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4023
4024 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004025 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004026 if (LHSStride == RHSStride)
4027 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4028
4029 // If the signs of the strides differ, then the negative stride is counting
4030 // down to the positive stride.
4031 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4032 if (RHSStride->getValue().isNegative())
4033 std::swap(LHS, RHS);
4034 } else {
4035 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4036 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4037 // whether the strides are positive or negative.
4038 if (RHSStride->getValue().slt(LHSStride->getValue()))
4039 std::swap(LHS, RHS);
4040 }
4041
4042 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4043}
4044
Dan Gohmana334aa72009-06-22 00:31:57 +00004045/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4046/// backedge of the specified loop will execute if its exit condition
4047/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4048ScalarEvolution::BackedgeTakenInfo
4049ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4050 ICmpInst *ExitCond,
4051 BasicBlock *TBB,
4052 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004053
Reid Spencere4d87aa2006-12-23 06:05:41 +00004054 // If the condition was exit on true, convert the condition to exit on false
4055 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004056 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004057 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004058 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004059 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004060
4061 // Handle common loops like: for (X = "string"; *X; ++X)
4062 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4063 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004064 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004065 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004066 if (ItCnt.hasAnyInfo())
4067 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004068 }
4069
Dan Gohman0bba49c2009-07-07 17:06:11 +00004070 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4071 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004072
4073 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004074 LHS = getSCEVAtScope(LHS, L);
4075 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004076
Dan Gohman64a845e2009-06-24 04:48:43 +00004077 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004078 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004079 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004080 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004081 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004082 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004083 }
4084
Dan Gohman03557dc2010-05-03 16:35:17 +00004085 // Simplify the operands before analyzing them.
4086 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4087
Chris Lattner53e677a2004-04-02 20:23:17 +00004088 // If we have a comparison of a chrec against a constant, try to use value
4089 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004090 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4091 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004092 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004093 // Form the constant range.
4094 ConstantRange CompRange(
4095 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004096
Dan Gohman0bba49c2009-07-07 17:06:11 +00004097 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004098 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004099 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004100
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004102 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004104 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4105 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004106 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004108 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004109 case ICmpInst::ICMP_EQ: { // while (X == Y)
4110 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004111 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4112 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004113 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004114 }
4115 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004116 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4117 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004118 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004119 }
4120 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004121 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4122 getNotSCEV(RHS), L, true);
4123 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004124 break;
4125 }
4126 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004127 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4128 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004129 break;
4130 }
4131 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004132 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4133 getNotSCEV(RHS), L, false);
4134 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004135 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004136 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004137 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004138#if 0
David Greene25e0e872009-12-23 22:18:14 +00004139 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004140 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004141 dbgs() << "[unsigned] ";
4142 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004143 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004144 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004145#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004146 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004147 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004148 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004149 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004150}
4151
Chris Lattner673e02b2004-10-12 01:49:27 +00004152static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004153EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4154 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004155 const SCEV *InVal = SE.getConstant(C);
4156 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004157 assert(isa<SCEVConstant>(Val) &&
4158 "Evaluation of SCEV at constant didn't fold correctly?");
4159 return cast<SCEVConstant>(Val)->getValue();
4160}
4161
4162/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4163/// and a GEP expression (missing the pointer index) indexing into it, return
4164/// the addressed element of the initializer or null if the index expression is
4165/// invalid.
4166static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004167GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004168 const std::vector<ConstantInt*> &Indices) {
4169 Constant *Init = GV->getInitializer();
4170 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004171 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004172 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4173 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4174 Init = cast<Constant>(CS->getOperand(Idx));
4175 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4176 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4177 Init = cast<Constant>(CA->getOperand(Idx));
4178 } else if (isa<ConstantAggregateZero>(Init)) {
4179 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4180 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004181 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004182 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4183 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004184 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004185 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004186 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004187 }
4188 return 0;
4189 } else {
4190 return 0; // Unknown initializer type
4191 }
4192 }
4193 return Init;
4194}
4195
Dan Gohman46bdfb02009-02-24 18:55:53 +00004196/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4197/// 'icmp op load X, cst', try to see if we can compute the backedge
4198/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004199ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004200ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4201 LoadInst *LI,
4202 Constant *RHS,
4203 const Loop *L,
4204 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004205 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004206
4207 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004208 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004209 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004210 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004211
4212 // Make sure that it is really a constant global we are gepping, with an
4213 // initializer, and make sure the first IDX is really 0.
4214 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004215 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004216 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4217 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004218 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004219
4220 // Okay, we allow one non-constant index into the GEP instruction.
4221 Value *VarIdx = 0;
4222 std::vector<ConstantInt*> Indexes;
4223 unsigned VarIdxNum = 0;
4224 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4225 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4226 Indexes.push_back(CI);
4227 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004228 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004229 VarIdx = GEP->getOperand(i);
4230 VarIdxNum = i-2;
4231 Indexes.push_back(0);
4232 }
4233
4234 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4235 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004236 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004237 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004238
4239 // We can only recognize very limited forms of loop index expressions, in
4240 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004241 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004242 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004243 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4244 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004245 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004246
4247 unsigned MaxSteps = MaxBruteForceIterations;
4248 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004249 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004250 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004251 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004252
4253 // Form the GEP offset.
4254 Indexes[VarIdxNum] = Val;
4255
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004256 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004257 if (Result == 0) break; // Cannot compute!
4258
4259 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004260 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004261 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004262 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004263#if 0
David Greene25e0e872009-12-23 22:18:14 +00004264 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004265 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4266 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004267#endif
4268 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004269 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004270 }
4271 }
Dan Gohman1c343752009-06-27 21:21:31 +00004272 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004273}
4274
4275
Chris Lattner3221ad02004-04-17 22:58:41 +00004276/// CanConstantFold - Return true if we can constant fold an instruction of the
4277/// specified type, assuming that all operands were constants.
4278static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004279 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004280 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4281 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004282
Chris Lattner3221ad02004-04-17 22:58:41 +00004283 if (const CallInst *CI = dyn_cast<CallInst>(I))
4284 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004285 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004286 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004287}
4288
Chris Lattner3221ad02004-04-17 22:58:41 +00004289/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4290/// in the loop that V is derived from. We allow arbitrary operations along the
4291/// way, but the operands of an operation must either be constants or a value
4292/// derived from a constant PHI. If this expression does not fit with these
4293/// constraints, return null.
4294static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4295 // If this is not an instruction, or if this is an instruction outside of the
4296 // loop, it can't be derived from a loop PHI.
4297 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004298 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004299
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004300 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004301 if (L->getHeader() == I->getParent())
4302 return PN;
4303 else
4304 // We don't currently keep track of the control flow needed to evaluate
4305 // PHIs, so we cannot handle PHIs inside of loops.
4306 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004307 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004308
4309 // If we won't be able to constant fold this expression even if the operands
4310 // are constants, return early.
4311 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004312
Chris Lattner3221ad02004-04-17 22:58:41 +00004313 // Otherwise, we can evaluate this instruction if all of its operands are
4314 // constant or derived from a PHI node themselves.
4315 PHINode *PHI = 0;
4316 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004317 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004318 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4319 if (P == 0) return 0; // Not evolving from PHI
4320 if (PHI == 0)
4321 PHI = P;
4322 else if (PHI != P)
4323 return 0; // Evolving from multiple different PHIs.
4324 }
4325
4326 // This is a expression evolving from a constant PHI!
4327 return PHI;
4328}
4329
4330/// EvaluateExpression - Given an expression that passes the
4331/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4332/// in the loop has the value PHIVal. If we can't fold this expression for some
4333/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004334static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4335 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004337 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004338 Instruction *I = cast<Instruction>(V);
4339
Dan Gohman9d4588f2010-06-22 13:15:46 +00004340 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004341
4342 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004343 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004344 if (Operands[i] == 0) return 0;
4345 }
4346
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004347 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004348 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004349 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004350 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004351 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004352}
4353
4354/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4355/// in the header of its containing loop, we know the loop executes a
4356/// constant number of times, and the PHI node is just a recurrence
4357/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004358Constant *
4359ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004360 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004361 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004362 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004363 ConstantEvolutionLoopExitValue.find(PN);
4364 if (I != ConstantEvolutionLoopExitValue.end())
4365 return I->second;
4366
Dan Gohmane0567812010-04-08 23:03:40 +00004367 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004368 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4369
4370 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4371
4372 // Since the loop is canonicalized, the PHI node must have two entries. One
4373 // entry must be a constant (coming in from outside of the loop), and the
4374 // second must be derived from the same PHI.
4375 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4376 Constant *StartCST =
4377 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4378 if (StartCST == 0)
4379 return RetVal = 0; // Must be a constant.
4380
4381 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004382 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4383 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004384 return RetVal = 0; // Not derived from same PHI.
4385
4386 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004387 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004388 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004389
Dan Gohman46bdfb02009-02-24 18:55:53 +00004390 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004391 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004392 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4393 if (IterationNum == NumIterations)
4394 return RetVal = PHIVal; // Got exit value!
4395
4396 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004397 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004398 if (NextPHI == PHIVal)
4399 return RetVal = NextPHI; // Stopped evolving!
4400 if (NextPHI == 0)
4401 return 0; // Couldn't evaluate!
4402 PHIVal = NextPHI;
4403 }
4404}
4405
Dan Gohman07ad19b2009-07-27 16:09:48 +00004406/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004407/// constant number of times (the condition evolves only from constants),
4408/// try to evaluate a few iterations of the loop until we get the exit
4409/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004410/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004411const SCEV *
4412ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4413 Value *Cond,
4414 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004415 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004416 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004417
Dan Gohmanb92654d2010-06-19 14:17:24 +00004418 // If the loop is canonicalized, the PHI will have exactly two entries.
4419 // That's the only form we support here.
4420 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4421
4422 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004423 // second must be derived from the same PHI.
4424 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4425 Constant *StartCST =
4426 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004427 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004428
4429 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004430 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4431 !isa<Constant>(BEValue))
4432 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004433
4434 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4435 // the loop symbolically to determine when the condition gets a value of
4436 // "ExitWhen".
4437 unsigned IterationNum = 0;
4438 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4439 for (Constant *PHIVal = StartCST;
4440 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004441 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004442 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004443
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004444 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004445 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004446
Reid Spencere8019bb2007-03-01 07:25:48 +00004447 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004448 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004449 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004450 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004451
Chris Lattner3221ad02004-04-17 22:58:41 +00004452 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004453 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004455 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004456 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004457 }
4458
4459 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004460 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004461}
4462
Dan Gohmane7125f42009-09-03 15:00:26 +00004463/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004464/// at the specified scope in the program. The L value specifies a loop
4465/// nest to evaluate the expression at, where null is the top-level or a
4466/// specified loop is immediately inside of the loop.
4467///
4468/// This method can be used to compute the exit value for a variable defined
4469/// in a loop by querying what the value will hold in the parent loop.
4470///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004471/// In the case that a relevant loop exit value cannot be computed, the
4472/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004473const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004474 // Check to see if we've folded this expression at this loop before.
4475 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4476 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4477 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4478 if (!Pair.second)
4479 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004480
Dan Gohman42214892009-08-31 21:15:23 +00004481 // Otherwise compute it.
4482 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004483 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004484 return C;
4485}
4486
4487const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004488 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004489
Nick Lewycky3e630762008-02-20 06:48:22 +00004490 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004491 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004492 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004493 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004494 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004495 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4496 if (PHINode *PN = dyn_cast<PHINode>(I))
4497 if (PN->getParent() == LI->getHeader()) {
4498 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004499 // to see if the loop that contains it has a known backedge-taken
4500 // count. If so, we may be able to force computation of the exit
4501 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004502 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004503 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004504 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004505 // Okay, we know how many times the containing loop executes. If
4506 // this is a constant evolving PHI node, get the final value at
4507 // the specified iteration number.
4508 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004509 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004510 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004511 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004512 }
4513 }
4514
Reid Spencer09906f32006-12-04 21:33:23 +00004515 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004516 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004517 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004518 // result. This is particularly useful for computing loop exit values.
4519 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004520 SmallVector<Constant *, 4> Operands;
4521 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004522 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4523 Value *Op = I->getOperand(i);
4524 if (Constant *C = dyn_cast<Constant>(Op)) {
4525 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004526 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004527 }
Dan Gohman11046452010-06-29 23:43:06 +00004528
4529 // If any of the operands is non-constant and if they are
4530 // non-integer and non-pointer, don't even try to analyze them
4531 // with scev techniques.
4532 if (!isSCEVable(Op->getType()))
4533 return V;
4534
4535 const SCEV *OrigV = getSCEV(Op);
4536 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4537 MadeImprovement |= OrigV != OpV;
4538
4539 Constant *C = 0;
4540 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4541 C = SC->getValue();
4542 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4543 C = dyn_cast<Constant>(SU->getValue());
4544 if (!C) return V;
4545 if (C->getType() != Op->getType())
4546 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4547 Op->getType(),
4548 false),
4549 C, Op->getType());
4550 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004551 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004552
Dan Gohman11046452010-06-29 23:43:06 +00004553 // Check to see if getSCEVAtScope actually made an improvement.
4554 if (MadeImprovement) {
4555 Constant *C = 0;
4556 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4557 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4558 Operands[0], Operands[1], TD);
4559 else
4560 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4561 &Operands[0], Operands.size(), TD);
4562 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004563 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004564 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004565 }
4566 }
4567
4568 // This is some other type of SCEVUnknown, just return it.
4569 return V;
4570 }
4571
Dan Gohman622ed672009-05-04 22:02:23 +00004572 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004573 // Avoid performing the look-up in the common case where the specified
4574 // expression has no loop-variant portions.
4575 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004576 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004577 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004578 // Okay, at least one of these operands is loop variant but might be
4579 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004580 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4581 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004582 NewOps.push_back(OpAtScope);
4583
4584 for (++i; i != e; ++i) {
4585 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004586 NewOps.push_back(OpAtScope);
4587 }
4588 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004589 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004590 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004591 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004592 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004593 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004594 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004595 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004596 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 }
4598 }
4599 // If we got here, all operands are loop invariant.
4600 return Comm;
4601 }
4602
Dan Gohman622ed672009-05-04 22:02:23 +00004603 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004604 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4605 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004606 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4607 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004608 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 }
4610
4611 // If this is a loop recurrence for a loop that does not contain L, then we
4612 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004613 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004614 // First, attempt to evaluate each operand.
4615 // Avoid performing the look-up in the common case where the specified
4616 // expression has no loop-variant portions.
4617 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4618 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4619 if (OpAtScope == AddRec->getOperand(i))
4620 continue;
4621
4622 // Okay, at least one of these operands is loop variant but might be
4623 // foldable. Build a new instance of the folded commutative expression.
4624 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4625 AddRec->op_begin()+i);
4626 NewOps.push_back(OpAtScope);
4627 for (++i; i != e; ++i)
4628 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4629
4630 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4631 break;
4632 }
4633
4634 // If the scope is outside the addrec's loop, evaluate it by using the
4635 // loop exit value of the addrec.
4636 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004637 // To evaluate this recurrence, we need to know how many times the AddRec
4638 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004639 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004640 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004641
Eli Friedmanb42a6262008-08-04 23:49:06 +00004642 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004643 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004644 }
Dan Gohman11046452010-06-29 23:43:06 +00004645
Dan Gohmand594e6f2009-05-24 23:25:42 +00004646 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004647 }
4648
Dan Gohman622ed672009-05-04 22:02:23 +00004649 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004650 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004651 if (Op == Cast->getOperand())
4652 return Cast; // must be loop invariant
4653 return getZeroExtendExpr(Op, Cast->getType());
4654 }
4655
Dan Gohman622ed672009-05-04 22:02:23 +00004656 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004657 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004658 if (Op == Cast->getOperand())
4659 return Cast; // must be loop invariant
4660 return getSignExtendExpr(Op, Cast->getType());
4661 }
4662
Dan Gohman622ed672009-05-04 22:02:23 +00004663 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004664 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004665 if (Op == Cast->getOperand())
4666 return Cast; // must be loop invariant
4667 return getTruncateExpr(Op, Cast->getType());
4668 }
4669
Torok Edwinc23197a2009-07-14 16:55:14 +00004670 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004671 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004672}
4673
Dan Gohman66a7e852009-05-08 20:38:54 +00004674/// getSCEVAtScope - This is a convenience function which does
4675/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004676const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004677 return getSCEVAtScope(getSCEV(V), L);
4678}
4679
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004680/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4681/// following equation:
4682///
4683/// A * X = B (mod N)
4684///
4685/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4686/// A and B isn't important.
4687///
4688/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004689static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004690 ScalarEvolution &SE) {
4691 uint32_t BW = A.getBitWidth();
4692 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4693 assert(A != 0 && "A must be non-zero.");
4694
4695 // 1. D = gcd(A, N)
4696 //
4697 // The gcd of A and N may have only one prime factor: 2. The number of
4698 // trailing zeros in A is its multiplicity
4699 uint32_t Mult2 = A.countTrailingZeros();
4700 // D = 2^Mult2
4701
4702 // 2. Check if B is divisible by D.
4703 //
4704 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4705 // is not less than multiplicity of this prime factor for D.
4706 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004707 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004708
4709 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4710 // modulo (N / D).
4711 //
4712 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4713 // bit width during computations.
4714 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4715 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004716 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004717 APInt I = AD.multiplicativeInverse(Mod);
4718
4719 // 4. Compute the minimum unsigned root of the equation:
4720 // I * (B / D) mod (N / D)
4721 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4722
4723 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4724 // bits.
4725 return SE.getConstant(Result.trunc(BW));
4726}
Chris Lattner53e677a2004-04-02 20:23:17 +00004727
4728/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4729/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4730/// might be the same) or two SCEVCouldNotCompute objects.
4731///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004732static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004733SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004734 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004735 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4736 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4737 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004738
Chris Lattner53e677a2004-04-02 20:23:17 +00004739 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004740 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004741 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004742 return std::make_pair(CNC, CNC);
4743 }
4744
Reid Spencere8019bb2007-03-01 07:25:48 +00004745 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004746 const APInt &L = LC->getValue()->getValue();
4747 const APInt &M = MC->getValue()->getValue();
4748 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004749 APInt Two(BitWidth, 2);
4750 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004751
Dan Gohman64a845e2009-06-24 04:48:43 +00004752 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004753 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004754 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004755 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4756 // The B coefficient is M-N/2
4757 APInt B(M);
4758 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004759
Reid Spencere8019bb2007-03-01 07:25:48 +00004760 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004761 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004762
Reid Spencere8019bb2007-03-01 07:25:48 +00004763 // Compute the B^2-4ac term.
4764 APInt SqrtTerm(B);
4765 SqrtTerm *= B;
4766 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004767
Reid Spencere8019bb2007-03-01 07:25:48 +00004768 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4769 // integer value or else APInt::sqrt() will assert.
4770 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004771
Dan Gohman64a845e2009-06-24 04:48:43 +00004772 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004773 // The divisions must be performed as signed divisions.
4774 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004775 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004776 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004777 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004778 return std::make_pair(CNC, CNC);
4779 }
4780
Owen Andersone922c022009-07-22 00:24:57 +00004781 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004782
4783 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004784 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004785 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004786 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004787
Dan Gohman64a845e2009-06-24 04:48:43 +00004788 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004789 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004790 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004791}
4792
4793/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004794/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004795ScalarEvolution::BackedgeTakenInfo
4796ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004798 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004799 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004800 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004801 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004802 }
4803
Dan Gohman35738ac2009-05-04 22:30:44 +00004804 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004805 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004806 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004807
Chris Lattner7975e3e2011-01-09 22:39:48 +00004808 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4809 // the quadratic equation to solve it.
4810 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4811 std::pair<const SCEV *,const SCEV *> Roots =
4812 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004813 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4814 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004815 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004816#if 0
David Greene25e0e872009-12-23 22:18:14 +00004817 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004818 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004819#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004820 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004821 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004822 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4823 R1->getValue(),
4824 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004825 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004826 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004827
Chris Lattner53e677a2004-04-02 20:23:17 +00004828 // We can only use this value if the chrec ends up with an exact zero
4829 // value at this index. When solving for "X*X != 5", for example, we
4830 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004831 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004832 if (Val->isZero())
4833 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004834 }
4835 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004836 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004837 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004838
Chris Lattner7975e3e2011-01-09 22:39:48 +00004839 // Otherwise we can only handle this if it is affine.
4840 if (!AddRec->isAffine())
4841 return getCouldNotCompute();
4842
4843 // If this is an affine expression, the execution count of this branch is
4844 // the minimum unsigned root of the following equation:
4845 //
4846 // Start + Step*N = 0 (mod 2^BW)
4847 //
4848 // equivalent to:
4849 //
4850 // Step*N = -Start (mod 2^BW)
4851 //
4852 // where BW is the common bit width of Start and Step.
4853
4854 // Get the initial value for the loop.
4855 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4856 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4857
Chris Lattner53e1d452011-01-09 22:58:47 +00004858 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4859 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4860 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4861 // the stride is. As such, NUW addrec's will always become zero in
4862 // "start / -stride" steps, and we know that the division is exact.
4863 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004864 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004865 return getUDivExpr(Start, getNegativeSCEV(Step));
4866
Chris Lattner7975e3e2011-01-09 22:39:48 +00004867 // For now we handle only constant steps.
4868 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4869 if (StepC == 0)
4870 return getCouldNotCompute();
4871
4872 // First, handle unitary steps.
4873 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4874 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4875
4876 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4877 return Start; // N = Start (as unsigned)
4878
4879 // Then, try to solve the above equation provided that Start is constant.
4880 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4881 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4882 -StartC->getValue()->getValue(),
4883 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004884 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004885}
4886
4887/// HowFarToNonZero - Return the number of times a backedge checking the
4888/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004889/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004890ScalarEvolution::BackedgeTakenInfo
4891ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004892 // Loops that look like: while (X == 0) are very strange indeed. We don't
4893 // handle them yet except for the trivial case. This could be expanded in the
4894 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004895
Chris Lattner53e677a2004-04-02 20:23:17 +00004896 // If the value is a constant, check to see if it is known to be non-zero
4897 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004898 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004899 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004900 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004901 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004902 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004903
Chris Lattner53e677a2004-04-02 20:23:17 +00004904 // We could implement others, but I really doubt anyone writes loops like
4905 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004906 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004907}
4908
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004909/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4910/// (which may not be an immediate predecessor) which has exactly one
4911/// successor from which BB is reachable, or null if no such block is
4912/// found.
4913///
Dan Gohman005752b2010-04-15 16:19:08 +00004914std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004915ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004916 // If the block has a unique predecessor, then there is no path from the
4917 // predecessor to the block that does not go through the direct edge
4918 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004919 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004920 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004921
4922 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004923 // If the header has a unique predecessor outside the loop, it must be
4924 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004925 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004926 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004927
Dan Gohman005752b2010-04-15 16:19:08 +00004928 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004929}
4930
Dan Gohman763bad12009-06-20 00:35:32 +00004931/// HasSameValue - SCEV structural equivalence is usually sufficient for
4932/// testing whether two expressions are equal, however for the purposes of
4933/// looking for a condition guarding a loop, it can be useful to be a little
4934/// more general, since a front-end may have replicated the controlling
4935/// expression.
4936///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004937static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004938 // Quick check to see if they are the same SCEV.
4939 if (A == B) return true;
4940
4941 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4942 // two different instructions with the same value. Check for this case.
4943 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4944 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4945 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4946 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004947 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004948 return true;
4949
4950 // Otherwise assume they may have a different value.
4951 return false;
4952}
4953
Dan Gohmane9796502010-04-24 01:28:42 +00004954/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4955/// predicate Pred. Return true iff any changes were made.
4956///
4957bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4958 const SCEV *&LHS, const SCEV *&RHS) {
4959 bool Changed = false;
4960
4961 // Canonicalize a constant to the right side.
4962 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4963 // Check for both operands constant.
4964 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4965 if (ConstantExpr::getICmp(Pred,
4966 LHSC->getValue(),
4967 RHSC->getValue())->isNullValue())
4968 goto trivially_false;
4969 else
4970 goto trivially_true;
4971 }
4972 // Otherwise swap the operands to put the constant on the right.
4973 std::swap(LHS, RHS);
4974 Pred = ICmpInst::getSwappedPredicate(Pred);
4975 Changed = true;
4976 }
4977
4978 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004979 // addrec's loop, put the addrec on the left. Also make a dominance check,
4980 // as both operands could be addrecs loop-invariant in each other's loop.
4981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4982 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00004983 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00004984 std::swap(LHS, RHS);
4985 Pred = ICmpInst::getSwappedPredicate(Pred);
4986 Changed = true;
4987 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004988 }
Dan Gohmane9796502010-04-24 01:28:42 +00004989
4990 // If there's a constant operand, canonicalize comparisons with boundary
4991 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4992 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4993 const APInt &RA = RC->getValue()->getValue();
4994 switch (Pred) {
4995 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4996 case ICmpInst::ICMP_EQ:
4997 case ICmpInst::ICMP_NE:
4998 break;
4999 case ICmpInst::ICMP_UGE:
5000 if ((RA - 1).isMinValue()) {
5001 Pred = ICmpInst::ICMP_NE;
5002 RHS = getConstant(RA - 1);
5003 Changed = true;
5004 break;
5005 }
5006 if (RA.isMaxValue()) {
5007 Pred = ICmpInst::ICMP_EQ;
5008 Changed = true;
5009 break;
5010 }
5011 if (RA.isMinValue()) goto trivially_true;
5012
5013 Pred = ICmpInst::ICMP_UGT;
5014 RHS = getConstant(RA - 1);
5015 Changed = true;
5016 break;
5017 case ICmpInst::ICMP_ULE:
5018 if ((RA + 1).isMaxValue()) {
5019 Pred = ICmpInst::ICMP_NE;
5020 RHS = getConstant(RA + 1);
5021 Changed = true;
5022 break;
5023 }
5024 if (RA.isMinValue()) {
5025 Pred = ICmpInst::ICMP_EQ;
5026 Changed = true;
5027 break;
5028 }
5029 if (RA.isMaxValue()) goto trivially_true;
5030
5031 Pred = ICmpInst::ICMP_ULT;
5032 RHS = getConstant(RA + 1);
5033 Changed = true;
5034 break;
5035 case ICmpInst::ICMP_SGE:
5036 if ((RA - 1).isMinSignedValue()) {
5037 Pred = ICmpInst::ICMP_NE;
5038 RHS = getConstant(RA - 1);
5039 Changed = true;
5040 break;
5041 }
5042 if (RA.isMaxSignedValue()) {
5043 Pred = ICmpInst::ICMP_EQ;
5044 Changed = true;
5045 break;
5046 }
5047 if (RA.isMinSignedValue()) goto trivially_true;
5048
5049 Pred = ICmpInst::ICMP_SGT;
5050 RHS = getConstant(RA - 1);
5051 Changed = true;
5052 break;
5053 case ICmpInst::ICMP_SLE:
5054 if ((RA + 1).isMaxSignedValue()) {
5055 Pred = ICmpInst::ICMP_NE;
5056 RHS = getConstant(RA + 1);
5057 Changed = true;
5058 break;
5059 }
5060 if (RA.isMinSignedValue()) {
5061 Pred = ICmpInst::ICMP_EQ;
5062 Changed = true;
5063 break;
5064 }
5065 if (RA.isMaxSignedValue()) goto trivially_true;
5066
5067 Pred = ICmpInst::ICMP_SLT;
5068 RHS = getConstant(RA + 1);
5069 Changed = true;
5070 break;
5071 case ICmpInst::ICMP_UGT:
5072 if (RA.isMinValue()) {
5073 Pred = ICmpInst::ICMP_NE;
5074 Changed = true;
5075 break;
5076 }
5077 if ((RA + 1).isMaxValue()) {
5078 Pred = ICmpInst::ICMP_EQ;
5079 RHS = getConstant(RA + 1);
5080 Changed = true;
5081 break;
5082 }
5083 if (RA.isMaxValue()) goto trivially_false;
5084 break;
5085 case ICmpInst::ICMP_ULT:
5086 if (RA.isMaxValue()) {
5087 Pred = ICmpInst::ICMP_NE;
5088 Changed = true;
5089 break;
5090 }
5091 if ((RA - 1).isMinValue()) {
5092 Pred = ICmpInst::ICMP_EQ;
5093 RHS = getConstant(RA - 1);
5094 Changed = true;
5095 break;
5096 }
5097 if (RA.isMinValue()) goto trivially_false;
5098 break;
5099 case ICmpInst::ICMP_SGT:
5100 if (RA.isMinSignedValue()) {
5101 Pred = ICmpInst::ICMP_NE;
5102 Changed = true;
5103 break;
5104 }
5105 if ((RA + 1).isMaxSignedValue()) {
5106 Pred = ICmpInst::ICMP_EQ;
5107 RHS = getConstant(RA + 1);
5108 Changed = true;
5109 break;
5110 }
5111 if (RA.isMaxSignedValue()) goto trivially_false;
5112 break;
5113 case ICmpInst::ICMP_SLT:
5114 if (RA.isMaxSignedValue()) {
5115 Pred = ICmpInst::ICMP_NE;
5116 Changed = true;
5117 break;
5118 }
5119 if ((RA - 1).isMinSignedValue()) {
5120 Pred = ICmpInst::ICMP_EQ;
5121 RHS = getConstant(RA - 1);
5122 Changed = true;
5123 break;
5124 }
5125 if (RA.isMinSignedValue()) goto trivially_false;
5126 break;
5127 }
5128 }
5129
5130 // Check for obvious equality.
5131 if (HasSameValue(LHS, RHS)) {
5132 if (ICmpInst::isTrueWhenEqual(Pred))
5133 goto trivially_true;
5134 if (ICmpInst::isFalseWhenEqual(Pred))
5135 goto trivially_false;
5136 }
5137
Dan Gohman03557dc2010-05-03 16:35:17 +00005138 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5139 // adding or subtracting 1 from one of the operands.
5140 switch (Pred) {
5141 case ICmpInst::ICMP_SLE:
5142 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5143 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5144 /*HasNUW=*/false, /*HasNSW=*/true);
5145 Pred = ICmpInst::ICMP_SLT;
5146 Changed = true;
5147 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005148 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005149 /*HasNUW=*/false, /*HasNSW=*/true);
5150 Pred = ICmpInst::ICMP_SLT;
5151 Changed = true;
5152 }
5153 break;
5154 case ICmpInst::ICMP_SGE:
5155 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005156 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005157 /*HasNUW=*/false, /*HasNSW=*/true);
5158 Pred = ICmpInst::ICMP_SGT;
5159 Changed = true;
5160 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5161 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5162 /*HasNUW=*/false, /*HasNSW=*/true);
5163 Pred = ICmpInst::ICMP_SGT;
5164 Changed = true;
5165 }
5166 break;
5167 case ICmpInst::ICMP_ULE:
5168 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005169 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005170 /*HasNUW=*/true, /*HasNSW=*/false);
5171 Pred = ICmpInst::ICMP_ULT;
5172 Changed = true;
5173 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005174 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005175 /*HasNUW=*/true, /*HasNSW=*/false);
5176 Pred = ICmpInst::ICMP_ULT;
5177 Changed = true;
5178 }
5179 break;
5180 case ICmpInst::ICMP_UGE:
5181 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005182 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005183 /*HasNUW=*/true, /*HasNSW=*/false);
5184 Pred = ICmpInst::ICMP_UGT;
5185 Changed = true;
5186 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005187 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005188 /*HasNUW=*/true, /*HasNSW=*/false);
5189 Pred = ICmpInst::ICMP_UGT;
5190 Changed = true;
5191 }
5192 break;
5193 default:
5194 break;
5195 }
5196
Dan Gohmane9796502010-04-24 01:28:42 +00005197 // TODO: More simplifications are possible here.
5198
5199 return Changed;
5200
5201trivially_true:
5202 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005203 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005204 Pred = ICmpInst::ICMP_EQ;
5205 return true;
5206
5207trivially_false:
5208 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005209 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005210 Pred = ICmpInst::ICMP_NE;
5211 return true;
5212}
5213
Dan Gohman85b05a22009-07-13 21:35:55 +00005214bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5215 return getSignedRange(S).getSignedMax().isNegative();
5216}
5217
5218bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5219 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5220}
5221
5222bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5223 return !getSignedRange(S).getSignedMin().isNegative();
5224}
5225
5226bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5227 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5228}
5229
5230bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5231 return isKnownNegative(S) || isKnownPositive(S);
5232}
5233
5234bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5235 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005236 // Canonicalize the inputs first.
5237 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5238
Dan Gohman53c66ea2010-04-11 22:16:48 +00005239 // If LHS or RHS is an addrec, check to see if the condition is true in
5240 // every iteration of the loop.
5241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5242 if (isLoopEntryGuardedByCond(
5243 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5244 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005245 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005246 return true;
5247 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5248 if (isLoopEntryGuardedByCond(
5249 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5250 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005251 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005252 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005253
Dan Gohman53c66ea2010-04-11 22:16:48 +00005254 // Otherwise see what can be done with known constant ranges.
5255 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5256}
5257
5258bool
5259ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5260 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005261 if (HasSameValue(LHS, RHS))
5262 return ICmpInst::isTrueWhenEqual(Pred);
5263
Dan Gohman53c66ea2010-04-11 22:16:48 +00005264 // This code is split out from isKnownPredicate because it is called from
5265 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005266 switch (Pred) {
5267 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005268 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005269 break;
5270 case ICmpInst::ICMP_SGT:
5271 Pred = ICmpInst::ICMP_SLT;
5272 std::swap(LHS, RHS);
5273 case ICmpInst::ICMP_SLT: {
5274 ConstantRange LHSRange = getSignedRange(LHS);
5275 ConstantRange RHSRange = getSignedRange(RHS);
5276 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5277 return true;
5278 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5279 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005280 break;
5281 }
5282 case ICmpInst::ICMP_SGE:
5283 Pred = ICmpInst::ICMP_SLE;
5284 std::swap(LHS, RHS);
5285 case ICmpInst::ICMP_SLE: {
5286 ConstantRange LHSRange = getSignedRange(LHS);
5287 ConstantRange RHSRange = getSignedRange(RHS);
5288 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5289 return true;
5290 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5291 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005292 break;
5293 }
5294 case ICmpInst::ICMP_UGT:
5295 Pred = ICmpInst::ICMP_ULT;
5296 std::swap(LHS, RHS);
5297 case ICmpInst::ICMP_ULT: {
5298 ConstantRange LHSRange = getUnsignedRange(LHS);
5299 ConstantRange RHSRange = getUnsignedRange(RHS);
5300 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5301 return true;
5302 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5303 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005304 break;
5305 }
5306 case ICmpInst::ICMP_UGE:
5307 Pred = ICmpInst::ICMP_ULE;
5308 std::swap(LHS, RHS);
5309 case ICmpInst::ICMP_ULE: {
5310 ConstantRange LHSRange = getUnsignedRange(LHS);
5311 ConstantRange RHSRange = getUnsignedRange(RHS);
5312 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5313 return true;
5314 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5315 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005316 break;
5317 }
5318 case ICmpInst::ICMP_NE: {
5319 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5320 return true;
5321 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5322 return true;
5323
5324 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5325 if (isKnownNonZero(Diff))
5326 return true;
5327 break;
5328 }
5329 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005330 // The check at the top of the function catches the case where
5331 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005332 break;
5333 }
5334 return false;
5335}
5336
5337/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5338/// protected by a conditional between LHS and RHS. This is used to
5339/// to eliminate casts.
5340bool
5341ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5342 ICmpInst::Predicate Pred,
5343 const SCEV *LHS, const SCEV *RHS) {
5344 // Interpret a null as meaning no loop, where there is obviously no guard
5345 // (interprocedural conditions notwithstanding).
5346 if (!L) return true;
5347
5348 BasicBlock *Latch = L->getLoopLatch();
5349 if (!Latch)
5350 return false;
5351
5352 BranchInst *LoopContinuePredicate =
5353 dyn_cast<BranchInst>(Latch->getTerminator());
5354 if (!LoopContinuePredicate ||
5355 LoopContinuePredicate->isUnconditional())
5356 return false;
5357
Dan Gohmanaf08a362010-08-10 23:46:30 +00005358 return isImpliedCond(Pred, LHS, RHS,
5359 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005360 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005361}
5362
Dan Gohman3948d0b2010-04-11 19:27:13 +00005363/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005364/// by a conditional between LHS and RHS. This is used to help avoid max
5365/// expressions in loop trip counts, and to eliminate casts.
5366bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005367ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5368 ICmpInst::Predicate Pred,
5369 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005370 // Interpret a null as meaning no loop, where there is obviously no guard
5371 // (interprocedural conditions notwithstanding).
5372 if (!L) return false;
5373
Dan Gohman859b4822009-05-18 15:36:09 +00005374 // Starting at the loop predecessor, climb up the predecessor chain, as long
5375 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005376 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005377 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005378 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005379 Pair.first;
5380 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005381
5382 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005383 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005384 if (!LoopEntryPredicate ||
5385 LoopEntryPredicate->isUnconditional())
5386 continue;
5387
Dan Gohmanaf08a362010-08-10 23:46:30 +00005388 if (isImpliedCond(Pred, LHS, RHS,
5389 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005390 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005391 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005392 }
5393
Dan Gohman38372182008-08-12 20:17:31 +00005394 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005395}
5396
Dan Gohman0f4b2852009-07-21 23:03:19 +00005397/// isImpliedCond - Test whether the condition described by Pred, LHS,
5398/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005399bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005400 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005401 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005402 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005403 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005404 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005405 if (BO->getOpcode() == Instruction::And) {
5406 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005407 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5408 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005409 } else if (BO->getOpcode() == Instruction::Or) {
5410 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005411 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5412 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005413 }
5414 }
5415
Dan Gohmanaf08a362010-08-10 23:46:30 +00005416 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005417 if (!ICI) return false;
5418
Dan Gohman85b05a22009-07-13 21:35:55 +00005419 // Bail if the ICmp's operands' types are wider than the needed type
5420 // before attempting to call getSCEV on them. This avoids infinite
5421 // recursion, since the analysis of widening casts can require loop
5422 // exit condition information for overflow checking, which would
5423 // lead back here.
5424 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005425 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005426 return false;
5427
Dan Gohman0f4b2852009-07-21 23:03:19 +00005428 // Now that we found a conditional branch that dominates the loop, check to
5429 // see if it is the comparison we are looking for.
5430 ICmpInst::Predicate FoundPred;
5431 if (Inverse)
5432 FoundPred = ICI->getInversePredicate();
5433 else
5434 FoundPred = ICI->getPredicate();
5435
5436 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5437 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005438
5439 // Balance the types. The case where FoundLHS' type is wider than
5440 // LHS' type is checked for above.
5441 if (getTypeSizeInBits(LHS->getType()) >
5442 getTypeSizeInBits(FoundLHS->getType())) {
5443 if (CmpInst::isSigned(Pred)) {
5444 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5445 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5446 } else {
5447 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5448 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5449 }
5450 }
5451
Dan Gohman0f4b2852009-07-21 23:03:19 +00005452 // Canonicalize the query to match the way instcombine will have
5453 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005454 if (SimplifyICmpOperands(Pred, LHS, RHS))
5455 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005456 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005457 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5458 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005459 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005460
5461 // Check to see if we can make the LHS or RHS match.
5462 if (LHS == FoundRHS || RHS == FoundLHS) {
5463 if (isa<SCEVConstant>(RHS)) {
5464 std::swap(FoundLHS, FoundRHS);
5465 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5466 } else {
5467 std::swap(LHS, RHS);
5468 Pred = ICmpInst::getSwappedPredicate(Pred);
5469 }
5470 }
5471
5472 // Check whether the found predicate is the same as the desired predicate.
5473 if (FoundPred == Pred)
5474 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5475
5476 // Check whether swapping the found predicate makes it the same as the
5477 // desired predicate.
5478 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5479 if (isa<SCEVConstant>(RHS))
5480 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5481 else
5482 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5483 RHS, LHS, FoundLHS, FoundRHS);
5484 }
5485
5486 // Check whether the actual condition is beyond sufficient.
5487 if (FoundPred == ICmpInst::ICMP_EQ)
5488 if (ICmpInst::isTrueWhenEqual(Pred))
5489 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5490 return true;
5491 if (Pred == ICmpInst::ICMP_NE)
5492 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5493 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5494 return true;
5495
5496 // Otherwise assume the worst.
5497 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005498}
5499
Dan Gohman0f4b2852009-07-21 23:03:19 +00005500/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005501/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005502/// and FoundRHS is true.
5503bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5504 const SCEV *LHS, const SCEV *RHS,
5505 const SCEV *FoundLHS,
5506 const SCEV *FoundRHS) {
5507 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5508 FoundLHS, FoundRHS) ||
5509 // ~x < ~y --> x > y
5510 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5511 getNotSCEV(FoundRHS),
5512 getNotSCEV(FoundLHS));
5513}
5514
5515/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005516/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005517/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005518bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005519ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5520 const SCEV *LHS, const SCEV *RHS,
5521 const SCEV *FoundLHS,
5522 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005523 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005524 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5525 case ICmpInst::ICMP_EQ:
5526 case ICmpInst::ICMP_NE:
5527 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5528 return true;
5529 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005530 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005531 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005532 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5533 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005534 return true;
5535 break;
5536 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005537 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005538 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5539 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005540 return true;
5541 break;
5542 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005543 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005544 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5545 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005546 return true;
5547 break;
5548 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005549 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005550 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5551 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005552 return true;
5553 break;
5554 }
5555
5556 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005557}
5558
Dan Gohman51f53b72009-06-21 23:46:38 +00005559/// getBECount - Subtract the end and start values and divide by the step,
5560/// rounding up, to get the number of times the backedge is executed. Return
5561/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005562const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005563 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005564 const SCEV *Step,
5565 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005566 assert(!isKnownNegative(Step) &&
5567 "This code doesn't handle negative strides yet!");
5568
Dan Gohman51f53b72009-06-21 23:46:38 +00005569 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005570 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005571 const SCEV *Diff = getMinusSCEV(End, Start);
5572 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005573
5574 // Add an adjustment to the difference between End and Start so that
5575 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005576 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005577
Dan Gohman1f96e672009-09-17 18:05:20 +00005578 if (!NoWrap) {
5579 // Check Add for unsigned overflow.
5580 // TODO: More sophisticated things could be done here.
5581 const Type *WideTy = IntegerType::get(getContext(),
5582 getTypeSizeInBits(Ty) + 1);
5583 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5584 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5585 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5586 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5587 return getCouldNotCompute();
5588 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005589
5590 return getUDivExpr(Add, Step);
5591}
5592
Chris Lattnerdb25de42005-08-15 23:33:51 +00005593/// HowManyLessThans - Return the number of times a backedge containing the
5594/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005595/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005596ScalarEvolution::BackedgeTakenInfo
5597ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5598 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005599 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005600 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005601
Dan Gohman35738ac2009-05-04 22:30:44 +00005602 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005603 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005604 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005605
Dan Gohman1f96e672009-09-17 18:05:20 +00005606 // Check to see if we have a flag which makes analysis easy.
5607 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5608 AddRec->hasNoUnsignedWrap();
5609
Chris Lattnerdb25de42005-08-15 23:33:51 +00005610 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005611 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005612 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005613
Dan Gohman52fddd32010-01-26 04:40:18 +00005614 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005615 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005616 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005617 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005618 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005619 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005620 // value and past the maximum value for its type in a single step.
5621 // Note that it's not sufficient to check NoWrap here, because even
5622 // though the value after a wrap is undefined, it's not undefined
5623 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005624 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005625 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005626 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005627 if (isSigned) {
5628 APInt Max = APInt::getSignedMaxValue(BitWidth);
5629 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5630 .slt(getSignedRange(RHS).getSignedMax()))
5631 return getCouldNotCompute();
5632 } else {
5633 APInt Max = APInt::getMaxValue(BitWidth);
5634 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5635 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5636 return getCouldNotCompute();
5637 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005638 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005639 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005640 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005641
Dan Gohmana1af7572009-04-30 20:47:05 +00005642 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5643 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5644 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005645 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005646
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005647 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005648 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005649
Dan Gohmana1af7572009-04-30 20:47:05 +00005650 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005651 const SCEV *MinStart = getConstant(isSigned ?
5652 getSignedRange(Start).getSignedMin() :
5653 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005654
Dan Gohmana1af7572009-04-30 20:47:05 +00005655 // If we know that the condition is true in order to enter the loop,
5656 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005657 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5658 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005659 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005660 if (!isLoopEntryGuardedByCond(L,
5661 isSigned ? ICmpInst::ICMP_SLT :
5662 ICmpInst::ICMP_ULT,
5663 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005664 End = isSigned ? getSMaxExpr(RHS, Start)
5665 : getUMaxExpr(RHS, Start);
5666
5667 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005668 const SCEV *MaxEnd = getConstant(isSigned ?
5669 getSignedRange(End).getSignedMax() :
5670 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005671
Dan Gohman52fddd32010-01-26 04:40:18 +00005672 // If MaxEnd is within a step of the maximum integer value in its type,
5673 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005674 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005675 // compute the correct value.
5676 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005677 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005678 MaxEnd = isSigned ?
5679 getSMinExpr(MaxEnd,
5680 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5681 StepMinusOne)) :
5682 getUMinExpr(MaxEnd,
5683 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5684 StepMinusOne));
5685
Dan Gohmana1af7572009-04-30 20:47:05 +00005686 // Finally, we subtract these two values and divide, rounding up, to get
5687 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005688 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005689
5690 // The maximum backedge count is similar, except using the minimum start
5691 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005692 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005693
5694 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005695 }
5696
Dan Gohman1c343752009-06-27 21:21:31 +00005697 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005698}
5699
Chris Lattner53e677a2004-04-02 20:23:17 +00005700/// getNumIterationsInRange - Return the number of iterations of this loop that
5701/// produce values in the specified constant range. Another way of looking at
5702/// this is that it returns the first iteration number where the value is not in
5703/// the condition, thus computing the exit count. If the iteration count can't
5704/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005705const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005706 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005707 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005708 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005709
5710 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005711 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005712 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005713 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005714 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005715 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005716 if (const SCEVAddRecExpr *ShiftedAddRec =
5717 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005718 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005719 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005720 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005721 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005722 }
5723
5724 // The only time we can solve this is when we have all constant indices.
5725 // Otherwise, we cannot determine the overflow conditions.
5726 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5727 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005728 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005729
5730
5731 // Okay at this point we know that all elements of the chrec are constants and
5732 // that the start element is zero.
5733
5734 // First check to see if the range contains zero. If not, the first
5735 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005736 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005737 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005738 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005739
Chris Lattner53e677a2004-04-02 20:23:17 +00005740 if (isAffine()) {
5741 // If this is an affine expression then we have this situation:
5742 // Solve {0,+,A} in Range === Ax in Range
5743
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005744 // We know that zero is in the range. If A is positive then we know that
5745 // the upper value of the range must be the first possible exit value.
5746 // If A is negative then the lower of the range is the last possible loop
5747 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005748 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005749 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5750 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005751
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005752 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005753 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005754 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005755
5756 // Evaluate at the exit value. If we really did fall out of the valid
5757 // range, then we computed our trip count, otherwise wrap around or other
5758 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005759 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005760 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005761 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005762
5763 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005764 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005765 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005766 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005768 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005769 } else if (isQuadratic()) {
5770 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5771 // quadratic equation to solve it. To do this, we must frame our problem in
5772 // terms of figuring out when zero is crossed, instead of when
5773 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005774 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005775 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005776 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005777
5778 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005779 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005780 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005781 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5782 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005783 if (R1) {
5784 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005785 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005786 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005787 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005788 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005789 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005790
Chris Lattner53e677a2004-04-02 20:23:17 +00005791 // Make sure the root is not off by one. The returned iteration should
5792 // not be in the range, but the previous one should be. When solving
5793 // for "X*X < 5", for example, we should not return a root of 2.
5794 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005795 R1->getValue(),
5796 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005797 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005798 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005799 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005800 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005801
Dan Gohman246b2562007-10-22 18:31:58 +00005802 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005803 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005804 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005805 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005806 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005807
Chris Lattner53e677a2004-04-02 20:23:17 +00005808 // If R1 was not in the range, then it is a good return value. Make
5809 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005810 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005811 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005812 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005813 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005814 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005815 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005816 }
5817 }
5818 }
5819
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005820 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005821}
5822
5823
5824
5825//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005826// SCEVCallbackVH Class Implementation
5827//===----------------------------------------------------------------------===//
5828
Dan Gohman1959b752009-05-19 19:22:47 +00005829void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005830 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005831 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5832 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005833 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005834 // this now dangles!
5835}
5836
Dan Gohman81f91212010-07-28 01:09:07 +00005837void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005838 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005839
Dan Gohman35738ac2009-05-04 22:30:44 +00005840 // Forget all the expressions associated with users of the old value,
5841 // so that future queries will recompute the expressions using the new
5842 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005843 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005844 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005845 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005846 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5847 UI != UE; ++UI)
5848 Worklist.push_back(*UI);
5849 while (!Worklist.empty()) {
5850 User *U = Worklist.pop_back_val();
5851 // Deleting the Old value will cause this to dangle. Postpone
5852 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005853 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005854 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005855 if (!Visited.insert(U))
5856 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005857 if (PHINode *PN = dyn_cast<PHINode>(U))
5858 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005859 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005860 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5861 UI != UE; ++UI)
5862 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005863 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005864 // Delete the Old value.
5865 if (PHINode *PN = dyn_cast<PHINode>(Old))
5866 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005867 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005868 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005869}
5870
Dan Gohman1959b752009-05-19 19:22:47 +00005871ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005872 : CallbackVH(V), SE(se) {}
5873
5874//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005875// ScalarEvolution Class Implementation
5876//===----------------------------------------------------------------------===//
5877
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005878ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005879 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005880 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005881}
5882
Chris Lattner53e677a2004-04-02 20:23:17 +00005883bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005884 this->F = &F;
5885 LI = &getAnalysis<LoopInfo>();
5886 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005887 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005888 return false;
5889}
5890
5891void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005892 // Iterate through all the SCEVUnknown instances and call their
5893 // destructors, so that they release their references to their values.
5894 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5895 U->~SCEVUnknown();
5896 FirstUnknown = 0;
5897
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005898 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005899 BackedgeTakenCounts.clear();
5900 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005901 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005902 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005903 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005904 UnsignedRanges.clear();
5905 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005906 UniqueSCEVs.clear();
5907 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005908}
5909
5910void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5911 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005912 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005913 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005914}
5915
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005916bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005917 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005918}
5919
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005920static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005921 const Loop *L) {
5922 // Print all inner loops first
5923 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5924 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005925
Dan Gohman30733292010-01-09 18:17:45 +00005926 OS << "Loop ";
5927 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5928 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005929
Dan Gohman5d984912009-12-18 01:14:11 +00005930 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005931 L->getExitBlocks(ExitBlocks);
5932 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005933 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005934
Dan Gohman46bdfb02009-02-24 18:55:53 +00005935 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5936 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005937 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005938 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005939 }
5940
Dan Gohman30733292010-01-09 18:17:45 +00005941 OS << "\n"
5942 "Loop ";
5943 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5944 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005945
5946 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5947 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5948 } else {
5949 OS << "Unpredictable max backedge-taken count. ";
5950 }
5951
5952 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005953}
5954
Dan Gohman5d984912009-12-18 01:14:11 +00005955void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005956 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005957 // out SCEV values of all instructions that are interesting. Doing
5958 // this potentially causes it to create new SCEV objects though,
5959 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005960 // observable from outside the class though, so casting away the
5961 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005962 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005963
Dan Gohman30733292010-01-09 18:17:45 +00005964 OS << "Classifying expressions for: ";
5965 WriteAsOperand(OS, F, /*PrintType=*/false);
5966 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005967 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005968 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005969 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005970 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005971 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005972 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005973
Dan Gohman0c689c52009-06-19 17:49:54 +00005974 const Loop *L = LI->getLoopFor((*I).getParent());
5975
Dan Gohman0bba49c2009-07-07 17:06:11 +00005976 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005977 if (AtUse != SV) {
5978 OS << " --> ";
5979 AtUse->print(OS);
5980 }
5981
5982 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005983 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005984 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00005985 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005986 OS << "<<Unknown>>";
5987 } else {
5988 OS << *ExitValue;
5989 }
5990 }
5991
Chris Lattner53e677a2004-04-02 20:23:17 +00005992 OS << "\n";
5993 }
5994
Dan Gohman30733292010-01-09 18:17:45 +00005995 OS << "Determining loop execution counts for: ";
5996 WriteAsOperand(OS, F, /*PrintType=*/false);
5997 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005998 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5999 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006000}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006001
Dan Gohman714b5292010-11-17 23:21:44 +00006002ScalarEvolution::LoopDisposition
6003ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6004 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6005 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6006 Values.insert(std::make_pair(L, LoopVariant));
6007 if (!Pair.second)
6008 return Pair.first->second;
6009
6010 LoopDisposition D = computeLoopDisposition(S, L);
6011 return LoopDispositions[S][L] = D;
6012}
6013
6014ScalarEvolution::LoopDisposition
6015ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006016 switch (S->getSCEVType()) {
6017 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006018 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006019 case scTruncate:
6020 case scZeroExtend:
6021 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006022 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006023 case scAddRecExpr: {
6024 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6025
Dan Gohman714b5292010-11-17 23:21:44 +00006026 // If L is the addrec's loop, it's computable.
6027 if (AR->getLoop() == L)
6028 return LoopComputable;
6029
Dan Gohman17ead4f2010-11-17 21:23:15 +00006030 // Add recurrences are never invariant in the function-body (null loop).
6031 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006032 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006033
6034 // This recurrence is variant w.r.t. L if L contains AR's loop.
6035 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006036 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006037
6038 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6039 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006040 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006041
6042 // This recurrence is variant w.r.t. L if any of its operands
6043 // are variant.
6044 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6045 I != E; ++I)
6046 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006047 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006048
6049 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006050 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006051 }
6052 case scAddExpr:
6053 case scMulExpr:
6054 case scUMaxExpr:
6055 case scSMaxExpr: {
6056 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006057 bool HasVarying = false;
6058 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6059 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006060 LoopDisposition D = getLoopDisposition(*I, L);
6061 if (D == LoopVariant)
6062 return LoopVariant;
6063 if (D == LoopComputable)
6064 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006065 }
Dan Gohman714b5292010-11-17 23:21:44 +00006066 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006067 }
6068 case scUDivExpr: {
6069 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006070 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6071 if (LD == LoopVariant)
6072 return LoopVariant;
6073 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6074 if (RD == LoopVariant)
6075 return LoopVariant;
6076 return (LD == LoopInvariant && RD == LoopInvariant) ?
6077 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006078 }
6079 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006080 // All non-instruction values are loop invariant. All instructions are loop
6081 // invariant if they are not contained in the specified loop.
6082 // Instructions are never considered invariant in the function body
6083 // (null loop) because they are defined within the "loop".
6084 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6085 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6086 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006087 case scCouldNotCompute:
6088 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006089 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006090 default: break;
6091 }
6092 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006093 return LoopVariant;
6094}
6095
6096bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6097 return getLoopDisposition(S, L) == LoopInvariant;
6098}
6099
6100bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6101 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006102}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006103
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006104ScalarEvolution::BlockDisposition
6105ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6106 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6107 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6108 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6109 if (!Pair.second)
6110 return Pair.first->second;
6111
6112 BlockDisposition D = computeBlockDisposition(S, BB);
6113 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006114}
6115
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006116ScalarEvolution::BlockDisposition
6117ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006118 switch (S->getSCEVType()) {
6119 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006120 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006121 case scTruncate:
6122 case scZeroExtend:
6123 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006124 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006125 case scAddRecExpr: {
6126 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006127 // to test for proper dominance too, because the instruction which
6128 // produces the addrec's value is a PHI, and a PHI effectively properly
6129 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006130 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6131 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006132 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006133 }
6134 // FALL THROUGH into SCEVNAryExpr handling.
6135 case scAddExpr:
6136 case scMulExpr:
6137 case scUMaxExpr:
6138 case scSMaxExpr: {
6139 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006140 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006141 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006142 I != E; ++I) {
6143 BlockDisposition D = getBlockDisposition(*I, BB);
6144 if (D == DoesNotDominateBlock)
6145 return DoesNotDominateBlock;
6146 if (D == DominatesBlock)
6147 Proper = false;
6148 }
6149 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006150 }
6151 case scUDivExpr: {
6152 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006153 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6154 BlockDisposition LD = getBlockDisposition(LHS, BB);
6155 if (LD == DoesNotDominateBlock)
6156 return DoesNotDominateBlock;
6157 BlockDisposition RD = getBlockDisposition(RHS, BB);
6158 if (RD == DoesNotDominateBlock)
6159 return DoesNotDominateBlock;
6160 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6161 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006162 }
6163 case scUnknown:
6164 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006165 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6166 if (I->getParent() == BB)
6167 return DominatesBlock;
6168 if (DT->properlyDominates(I->getParent(), BB))
6169 return ProperlyDominatesBlock;
6170 return DoesNotDominateBlock;
6171 }
6172 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006173 case scCouldNotCompute:
6174 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006175 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006176 default: break;
6177 }
6178 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006179 return DoesNotDominateBlock;
6180}
6181
6182bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6183 return getBlockDisposition(S, BB) >= DominatesBlock;
6184}
6185
6186bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6187 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006188}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006189
6190bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6191 switch (S->getSCEVType()) {
6192 case scConstant:
6193 return false;
6194 case scTruncate:
6195 case scZeroExtend:
6196 case scSignExtend: {
6197 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6198 const SCEV *CastOp = Cast->getOperand();
6199 return Op == CastOp || hasOperand(CastOp, Op);
6200 }
6201 case scAddRecExpr:
6202 case scAddExpr:
6203 case scMulExpr:
6204 case scUMaxExpr:
6205 case scSMaxExpr: {
6206 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6207 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6208 I != E; ++I) {
6209 const SCEV *NAryOp = *I;
6210 if (NAryOp == Op || hasOperand(NAryOp, Op))
6211 return true;
6212 }
6213 return false;
6214 }
6215 case scUDivExpr: {
6216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6217 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6218 return LHS == Op || hasOperand(LHS, Op) ||
6219 RHS == Op || hasOperand(RHS, Op);
6220 }
6221 case scUnknown:
6222 return false;
6223 case scCouldNotCompute:
6224 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6225 return false;
6226 default: break;
6227 }
6228 llvm_unreachable("Unknown SCEV kind!");
6229 return false;
6230}
Dan Gohman56a75682010-11-17 23:28:48 +00006231
6232void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6233 ValuesAtScopes.erase(S);
6234 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006235 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006236 UnsignedRanges.erase(S);
6237 SignedRanges.erase(S);
6238}