blob: 9adb0e7b2217f6d9cc194817568568b623c29b4d [file] [log] [blame]
Brian Gaeke4acfd032004-03-04 06:00:41 +00001//===-- SparcV8AsmPrinter.cpp - SparcV8 LLVM assembly writer --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to GAS-format Sparc V8 assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "SparcV8.h"
16#include "SparcV8InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Support/Mangler.h"
26#include "Support/Statistic.h"
27#include "Support/StringExtras.h"
28#include "Support/CommandLine.h"
29using namespace llvm;
30
31namespace {
32 Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
33
34 struct V8Printer : public MachineFunctionPass {
35 /// Output stream on which we're printing assembly code.
36 ///
37 std::ostream &O;
38
39 /// Target machine description which we query for reg. names, data
40 /// layout, etc.
41 ///
42 TargetMachine &TM;
43
44 /// Name-mangler for global names.
45 ///
46 Mangler *Mang;
47
48 V8Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
49
50 /// We name each basic block in a Function with a unique number, so
51 /// that we can consistently refer to them later. This is cleared
52 /// at the beginning of each call to runOnMachineFunction().
53 ///
54 typedef std::map<const Value *, unsigned> ValueMapTy;
55 ValueMapTy NumberForBB;
56
57 /// Cache of mangled name for current function. This is
58 /// recalculated at the beginning of each call to
59 /// runOnMachineFunction().
60 ///
61 std::string CurrentFnName;
62
63 virtual const char *getPassName() const {
64 return "SparcV8 Assembly Printer";
65 }
66
67 void emitConstantValueOnly(const Constant *CV);
68 void emitGlobalConstant(const Constant *CV);
69 void printConstantPool(MachineConstantPool *MCP);
70 void printMachineInstruction(const MachineInstr *MI);
71 bool runOnMachineFunction(MachineFunction &F);
72 bool doInitialization(Module &M);
73 bool doFinalization(Module &M);
74 };
75} // end of anonymous namespace
76
77/// createSparcV8CodePrinterPass - Returns a pass that prints the SparcV8
78/// assembly code for a MachineFunction to the given output stream,
79/// using the given target machine description. This should work
80/// regardless of whether the function is in SSA form.
81///
82FunctionPass *llvm::createSparcV8CodePrinterPass (std::ostream &o,
83 TargetMachine &tm) {
84 return new V8Printer(o, tm);
85}
86
87/// toOctal - Convert the low order bits of X into an octal digit.
88///
89static inline char toOctal(int X) {
90 return (X&7)+'0';
91}
92
93/// getAsCString - Return the specified array as a C compatible
94/// string, only if the predicate isStringCompatible is true.
95///
96static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
97 assert(CVA->isString() && "Array is not string compatible!");
98
99 O << "\"";
100 for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
101 unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
102
103 if (C == '"') {
104 O << "\\\"";
105 } else if (C == '\\') {
106 O << "\\\\";
107 } else if (isprint(C)) {
108 O << C;
109 } else {
110 switch(C) {
111 case '\b': O << "\\b"; break;
112 case '\f': O << "\\f"; break;
113 case '\n': O << "\\n"; break;
114 case '\r': O << "\\r"; break;
115 case '\t': O << "\\t"; break;
116 default:
117 O << '\\';
118 O << toOctal(C >> 6);
119 O << toOctal(C >> 3);
120 O << toOctal(C >> 0);
121 break;
122 }
123 }
124 }
125 O << "\"";
126}
127
128// Print out the specified constant, without a storage class. Only the
129// constants valid in constant expressions can occur here.
130void V8Printer::emitConstantValueOnly(const Constant *CV) {
131 if (CV->isNullValue())
132 O << "0";
133 else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
134 assert(CB == ConstantBool::True);
135 O << "1";
136 } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
137 if (((CI->getValue() << 32) >> 32) == CI->getValue())
138 O << CI->getValue();
139 else
140 O << (unsigned long long)CI->getValue();
141 else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
142 O << CI->getValue();
143 else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
144 // This is a constant address for a global variable or function. Use the
145 // name of the variable or function as the address value.
146 O << Mang->getValueName(CPR->getValue());
147 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
148 const TargetData &TD = TM.getTargetData();
149 switch(CE->getOpcode()) {
150 case Instruction::GetElementPtr: {
151 // generate a symbolic expression for the byte address
152 const Constant *ptrVal = CE->getOperand(0);
153 std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
154 if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
155 O << "(";
156 emitConstantValueOnly(ptrVal);
157 O << ") + " << Offset;
158 } else {
159 emitConstantValueOnly(ptrVal);
160 }
161 break;
162 }
163 case Instruction::Cast: {
164 // Support only non-converting or widening casts for now, that is, ones
165 // that do not involve a change in value. This assertion is really gross,
166 // and may not even be a complete check.
167 Constant *Op = CE->getOperand(0);
168 const Type *OpTy = Op->getType(), *Ty = CE->getType();
169
170 // Pointers on ILP32 machines can be losslessly converted back and
171 // forth into 32-bit or wider integers, regardless of signedness.
172 assert(((isa<PointerType>(OpTy)
173 && (Ty == Type::LongTy || Ty == Type::ULongTy
174 || Ty == Type::IntTy || Ty == Type::UIntTy))
175 || (isa<PointerType>(Ty)
176 && (OpTy == Type::LongTy || OpTy == Type::ULongTy
177 || OpTy == Type::IntTy || OpTy == Type::UIntTy))
178 || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
179 && OpTy->isLosslesslyConvertibleTo(Ty))))
180 && "FIXME: Don't yet support this kind of constant cast expr");
181 O << "(";
182 emitConstantValueOnly(Op);
183 O << ")";
184 break;
185 }
186 case Instruction::Add:
187 O << "(";
188 emitConstantValueOnly(CE->getOperand(0));
189 O << ") + (";
190 emitConstantValueOnly(CE->getOperand(1));
191 O << ")";
192 break;
193 default:
194 assert(0 && "Unsupported operator!");
195 }
196 } else {
197 assert(0 && "Unknown constant value!");
198 }
199}
200
201// Print a constant value or values, with the appropriate storage class as a
202// prefix.
203void V8Printer::emitGlobalConstant(const Constant *CV) {
204 const TargetData &TD = TM.getTargetData();
205
206 if (CV->isNullValue()) {
207 O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
208 return;
209 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
210 if (CVA->isString()) {
211 O << "\t.ascii\t";
212 printAsCString(O, CVA);
213 O << "\n";
214 } else { // Not a string. Print the values in successive locations
215 const std::vector<Use> &constValues = CVA->getValues();
216 for (unsigned i=0; i < constValues.size(); i++)
217 emitGlobalConstant(cast<Constant>(constValues[i].get()));
218 }
219 return;
220 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
221 // Print the fields in successive locations. Pad to align if needed!
222 const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
223 const std::vector<Use>& constValues = CVS->getValues();
224 unsigned sizeSoFar = 0;
225 for (unsigned i=0, N = constValues.size(); i < N; i++) {
226 const Constant* field = cast<Constant>(constValues[i].get());
227
228 // Check if padding is needed and insert one or more 0s.
229 unsigned fieldSize = TD.getTypeSize(field->getType());
230 unsigned padSize = ((i == N-1? cvsLayout->StructSize
231 : cvsLayout->MemberOffsets[i+1])
232 - cvsLayout->MemberOffsets[i]) - fieldSize;
233 sizeSoFar += fieldSize + padSize;
234
235 // Now print the actual field value
236 emitGlobalConstant(field);
237
238 // Insert the field padding unless it's zero bytes...
239 if (padSize)
240 O << "\t.zero\t " << padSize << "\n";
241 }
242 assert(sizeSoFar == cvsLayout->StructSize &&
243 "Layout of constant struct may be incorrect!");
244 return;
245 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
246 // FP Constants are printed as integer constants to avoid losing
247 // precision...
248 double Val = CFP->getValue();
249 switch (CFP->getType()->getPrimitiveID()) {
250 default: assert(0 && "Unknown floating point type!");
251 case Type::FloatTyID: {
252 union FU { // Abide by C TBAA rules
253 float FVal;
254 unsigned UVal;
255 } U;
256 U.FVal = Val;
257 O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
258 return;
259 }
260 case Type::DoubleTyID: {
261 union DU { // Abide by C TBAA rules
262 double FVal;
263 uint64_t UVal;
264 } U;
265 U.FVal = Val;
266 O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
267 return;
268 }
269 }
270 }
271
272 const Type *type = CV->getType();
273 O << "\t";
274 switch (type->getPrimitiveID()) {
275 case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
276 O << ".byte";
277 break;
278 case Type::UShortTyID: case Type::ShortTyID:
279 O << ".word";
280 break;
281 case Type::FloatTyID: case Type::PointerTyID:
282 case Type::UIntTyID: case Type::IntTyID:
283 O << ".long";
284 break;
285 case Type::DoubleTyID:
286 case Type::ULongTyID: case Type::LongTyID:
287 O << ".quad";
288 break;
289 default:
290 assert (0 && "Can't handle printing this type of thing");
291 break;
292 }
293 O << "\t";
294 emitConstantValueOnly(CV);
295 O << "\n";
296}
297
298/// printConstantPool - Print to the current output stream assembly
299/// representations of the constants in the constant pool MCP. This is
300/// used to print out constants which have been "spilled to memory" by
301/// the code generator.
302///
303void V8Printer::printConstantPool(MachineConstantPool *MCP) {
304 const std::vector<Constant*> &CP = MCP->getConstants();
305 const TargetData &TD = TM.getTargetData();
306
307 if (CP.empty()) return;
308
309 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
310 O << "\t.section .rodata\n";
311 O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
312 << "\n";
313 O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
314 << *CP[i] << "\n";
315 emitGlobalConstant(CP[i]);
316 }
317}
318
319/// runOnMachineFunction - This uses the printMachineInstruction()
320/// method to print assembly for each instruction.
321///
322bool V8Printer::runOnMachineFunction(MachineFunction &MF) {
323 // BBNumber is used here so that a given Printer will never give two
324 // BBs the same name. (If you have a better way, please let me know!)
325 static unsigned BBNumber = 0;
326
327 O << "\n\n";
328 // What's my mangled name?
329 CurrentFnName = Mang->getValueName(MF.getFunction());
330
331 // Print out constants referenced by the function
332 printConstantPool(MF.getConstantPool());
333
334 // Print out labels for the function.
335 O << "\t.text\n";
336 O << "\t.align 16\n";
337 O << "\t.globl\t" << CurrentFnName << "\n";
338 O << "\t.type\t" << CurrentFnName << ", @function\n";
339 O << CurrentFnName << ":\n";
340
341 // Number each basic block so that we can consistently refer to them
342 // in PC-relative references.
343 NumberForBB.clear();
344 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
345 I != E; ++I) {
346 NumberForBB[I->getBasicBlock()] = BBNumber++;
347 }
348
349 // Print out code for the function.
350 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
351 I != E; ++I) {
352 // Print a label for the basic block.
353 O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
354 << I->getBasicBlock()->getName() << "\n";
355 for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
356 II != E; ++II) {
357 // Print the assembly for the instruction.
358 O << "\t";
359 printMachineInstruction(II);
360 }
361 }
362
363 // We didn't modify anything.
364 return false;
365}
366
367/// printMachineInstruction -- Print out a single SparcV8 LLVM instruction
368/// MI in GAS syntax to the current output stream.
369///
370void V8Printer::printMachineInstruction(const MachineInstr *MI) {
371 unsigned Opcode = MI->getOpcode();
372 const TargetInstrInfo &TII = TM.getInstrInfo();
373 const TargetInstrDescriptor &Desc = TII.get(Opcode);
374 O << Desc.Name << "\n"; // not yet done
375}
376
377bool V8Printer::doInitialization(Module &M) {
378 Mang = new Mangler(M);
379 return false; // success
380}
381
382// SwitchSection - Switch to the specified section of the executable if we are
383// not already in it!
384//
385static void SwitchSection(std::ostream &OS, std::string &CurSection,
386 const char *NewSection) {
387 if (CurSection != NewSection) {
388 CurSection = NewSection;
389 if (!CurSection.empty())
390 OS << "\t" << NewSection << "\n";
391 }
392}
393
394bool V8Printer::doFinalization(Module &M) {
395 const TargetData &TD = TM.getTargetData();
396 std::string CurSection;
397
398 // Print out module-level global variables here.
399 for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
400 if (I->hasInitializer()) { // External global require no code
401 O << "\n\n";
402 std::string name = Mang->getValueName(I);
403 Constant *C = I->getInitializer();
404 unsigned Size = TD.getTypeSize(C->getType());
405 unsigned Align = TD.getTypeAlignment(C->getType());
406
407 if (C->isNullValue() &&
408 (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
409 I->hasWeakLinkage() /* FIXME: Verify correct */)) {
410 SwitchSection(O, CurSection, ".data");
411 if (I->hasInternalLinkage())
412 O << "\t.local " << name << "\n";
413
414 O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
415 << "," << (unsigned)TD.getTypeAlignment(C->getType());
416 O << "\t\t# ";
417 WriteAsOperand(O, I, true, true, &M);
418 O << "\n";
419 } else {
420 switch (I->getLinkage()) {
421 case GlobalValue::LinkOnceLinkage:
422 case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
423 // Nonnull linkonce -> weak
424 O << "\t.weak " << name << "\n";
425 SwitchSection(O, CurSection, "");
426 O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
427 break;
428
429 case GlobalValue::AppendingLinkage:
430 // FIXME: appending linkage variables should go into a section of
431 // their name or something. For now, just emit them as external.
432 case GlobalValue::ExternalLinkage:
433 // If external or appending, declare as a global symbol
434 O << "\t.globl " << name << "\n";
435 // FALL THROUGH
436 case GlobalValue::InternalLinkage:
437 if (C->isNullValue())
438 SwitchSection(O, CurSection, ".bss");
439 else
440 SwitchSection(O, CurSection, ".data");
441 break;
442 }
443
444 O << "\t.align " << Align << "\n";
445 O << "\t.type " << name << ",@object\n";
446 O << "\t.size " << name << "," << Size << "\n";
447 O << name << ":\t\t\t\t# ";
448 WriteAsOperand(O, I, true, true, &M);
449 O << " = ";
450 WriteAsOperand(O, C, false, false, &M);
451 O << "\n";
452 emitGlobalConstant(C);
453 }
454 }
455
456 delete Mang;
457 return false; // success
458}