blob: 54c6647f05904f039b69827a8cc9523f65ed5c56 [file] [log] [blame]
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +00001//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
Owen Anderson0bda0e82007-10-31 03:37:57 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Owen Anderson0bda0e82007-10-31 03:37:57 +00007//
8//===----------------------------------------------------------------------===//
9//
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000010// This pass eliminates PHI instructions by aggressively coalescing the copies
11// that would be inserted by a naive algorithm and only inserting the copies
12// that are necessary. The coalescing technique initially assumes that all
13// registers appearing in a PHI instruction do not interfere. It then eliminates
14// proven interferences, using dominators to only perform a linear number of
15// interference tests instead of the quadratic number of interference tests
16// that this would naively require. This is a technique derived from:
17//
18// Budimlic, et al. Fast copy coalescing and live-range identification.
19// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21// PLDI '02. ACM, New York, NY, 25-32.
22//
23// The original implementation constructs a data structure they call a dominance
24// forest for this purpose. The dominance forest was shown to be unnecessary,
25// as it is possible to emulate the creation and traversal of a dominance forest
26// by directly using the dominator tree, rather than actually constructing the
27// dominance forest. This technique is explained in:
28//
29// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30// Quality and Efficiency,
31// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33// CGO '09. IEEE, Washington, DC, 114-125.
34//
35// Careful implementation allows for all of the dominator forest interference
36// checks to be performed at once in a single depth-first traversal of the
37// dominator tree, which is what is implemented here.
Owen Anderson0bda0e82007-10-31 03:37:57 +000038//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "strongphielim"
Cameron Zwarich47bce432010-12-21 06:54:43 +000042#include "PHIEliminationUtils.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000043#include "llvm/CodeGen/Passes.h"
Owen Andersoneb37ecc2008-03-10 07:22:36 +000044#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000045#include "llvm/CodeGen/MachineDominators.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
Cameron Zwarich47bce432010-12-21 06:54:43 +000047#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineRegisterInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Support/Debug.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000051using namespace llvm;
52
Owen Anderson0bda0e82007-10-31 03:37:57 +000053namespace {
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000054 class StrongPHIElimination : public MachineFunctionPass {
55 public:
56 static char ID; // Pass identification, replacement for typeid
57 StrongPHIElimination() : MachineFunctionPass(ID) {
58 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
59 }
Owen Anderson0bda0e82007-10-31 03:37:57 +000060
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000061 virtual void getAnalysisUsage(AnalysisUsage&) const;
62 bool runOnMachineFunction(MachineFunction&);
Cameron Zwarich47bce432010-12-21 06:54:43 +000063
64 private:
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000065 /// This struct represents a single node in the union-find data structure
66 /// representing the variable congruence classes. There is one difference
67 /// from a normal union-find data structure. We steal two bits from the parent
68 /// pointer . One of these bits is used to represent whether the register
69 /// itself has been isolated, and the other is used to represent whether the
70 /// PHI with that register as its destination has been isolated.
71 ///
72 /// Note that this leads to the strange situation where the leader of a
73 /// congruence class may no longer logically be a member, due to being
74 /// isolated.
75 struct Node {
76 enum Flags {
77 kRegisterIsolatedFlag = 1,
78 kPHIIsolatedFlag = 2
79 };
80 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
81
82 Node* getLeader();
83
84 PointerIntPair<Node*, 2> parent;
85 unsigned value;
86 unsigned rank;
87 };
88
89 /// Add a register in a new congruence class containing only itself.
90 void addReg(unsigned);
91
92 /// Join the congruence classes of two registers.
93 void unionRegs(unsigned, unsigned);
94
95 /// Get the color of a register. The color is 0 if the register has been
96 /// isolated.
97 unsigned getRegColor(unsigned);
98
99 // Isolate a register.
100 void isolateReg(unsigned);
101
102 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
103 /// isolated. Otherwise, it is the original color of its destination and
104 /// all of its operands (before they were isolated, if they were).
105 unsigned getPHIColor(MachineInstr*);
106
107 /// Isolate a PHI.
108 void isolatePHI(MachineInstr*);
109
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000110 /// Traverses a basic block, splitting any interferences found between
111 /// registers in the same congruence class. It takes two DenseMaps as
112 /// arguments that it also updates: CurrentDominatingParent, which maps
113 /// a color to the register in that congruence class whose definition was
114 /// most recently seen, and ImmediateDominatingParent, which maps a register
115 /// to the register in the same congruence class that most immediately
116 /// dominates it.
117 ///
118 /// This function assumes that it is being called in a depth-first traversal
119 /// of the dominator tree.
120 void SplitInterferencesForBasicBlock(
121 MachineBasicBlock&,
122 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
123 DenseMap<unsigned, unsigned>& ImmediateDominatingParent);
124
125 // Lowers a PHI instruction, inserting copies of the source and destination
126 // registers as necessary.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000127 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
128
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000129 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
130 // everywhere that Reg appears. Requires Reg and NewReg to have non-
131 // overlapping lifetimes.
132 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
133
Cameron Zwarich47bce432010-12-21 06:54:43 +0000134 MachineRegisterInfo* MRI;
135 const TargetInstrInfo* TII;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000136 MachineDominatorTree* DT;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000137 LiveIntervals* LI;
138
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000139 BumpPtrAllocator Allocator;
140
141 DenseMap<unsigned, Node*> RegNodeMap;
142
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000143 // Maps a basic block to a list of its defs of registers that appear as PHI
144 // sources.
145 DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
146
Cameron Zwarich645b1d22011-01-04 06:42:27 +0000147 // Maps a color to a pair of a MachineInstr* and a virtual register, which
148 // is the operand of that PHI corresponding to the current basic block.
149 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
150
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000151 // FIXME: Can these two data structures be combined? Would a std::multimap
152 // be any better?
153
154 // Stores pairs of predecessor basic blocks and the source registers of
155 // inserted copy instructions.
156 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
157 SrcCopySet InsertedSrcCopySet;
158
159 // Maps pairs of predecessor basic blocks and colors to their defining copy
160 // instructions.
161 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
162 SrcCopyMap;
163 SrcCopyMap InsertedSrcCopyMap;
164
165 // Maps inserted destination copy registers to their defining copy
166 // instructions.
167 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
168 DestCopyMap InsertedDestCopies;
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000169 };
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000170
171 struct MIIndexCompare {
172 MIIndexCompare(LiveIntervals* LiveIntervals) : LI(LiveIntervals) { }
173
174 bool operator()(const MachineInstr* LHS, const MachineInstr* RHS) const {
175 return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
176 }
177
178 LiveIntervals* LI;
179 };
Jakob Stoklund Olesen68be9562010-12-03 19:21:53 +0000180} // namespace
Owen Anderson0bda0e82007-10-31 03:37:57 +0000181
Dan Gohman844731a2008-05-13 00:00:25 +0000182char StrongPHIElimination::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000183INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
184 "Eliminate PHI nodes for register allocation, intelligently", false, false)
185INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
186INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
187INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
188INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
Owen Andersonce665bd2010-10-07 22:25:06 +0000189 "Eliminate PHI nodes for register allocation, intelligently", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000190
Owen Anderson90c579d2010-08-06 18:33:48 +0000191char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
Owen Anderson0bda0e82007-10-31 03:37:57 +0000192
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000193void StrongPHIElimination::getAnalysisUsage(AnalysisUsage& AU) const {
194 AU.setPreservesCFG();
195 AU.addRequired<MachineDominatorTree>();
196 AU.addRequired<SlotIndexes>();
197 AU.addPreserved<SlotIndexes>();
198 AU.addRequired<LiveIntervals>();
199 AU.addPreserved<LiveIntervals>();
200 MachineFunctionPass::getAnalysisUsage(AU);
201}
202
Cameron Zwarich47bce432010-12-21 06:54:43 +0000203static MachineOperand* findLastUse(MachineBasicBlock* MBB, unsigned Reg) {
204 // FIXME: This only needs to check from the first terminator, as only the
205 // first terminator can use a virtual register.
206 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
207 assert (RI != MBB->rend());
208 MachineInstr* MI = &*RI;
209
210 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
211 OE = MI->operands_end(); OI != OE; ++OI) {
212 MachineOperand& MO = *OI;
213 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
214 return &MO;
215 }
216 }
217 return NULL;
218}
219
220bool StrongPHIElimination::runOnMachineFunction(MachineFunction& MF) {
221 MRI = &MF.getRegInfo();
222 TII = MF.getTarget().getInstrInfo();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000223 DT = &getAnalysis<MachineDominatorTree>();
Cameron Zwarich47bce432010-12-21 06:54:43 +0000224 LI = &getAnalysis<LiveIntervals>();
225
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000226 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
227 I != E; ++I) {
228 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
229 BBI != BBE && BBI->isPHI(); ++BBI) {
230 unsigned DestReg = BBI->getOperand(0).getReg();
231 addReg(DestReg);
232 PHISrcDefs[I].push_back(BBI);
233
234 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
235 MachineOperand& SrcMO = BBI->getOperand(i);
236 unsigned SrcReg = SrcMO.getReg();
237 addReg(SrcReg);
238 unionRegs(DestReg, SrcReg);
239
Cameron Zwarichd16ad3e2010-12-30 00:42:23 +0000240 MachineInstr* DefMI = MRI->getVRegDef(SrcReg);
241 if (DefMI)
242 PHISrcDefs[DefMI->getParent()].push_back(DefMI);
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000243 }
244 }
245 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000246
247 // Perform a depth-first traversal of the dominator tree, splitting
248 // interferences amongst PHI-congruence classes.
249 DenseMap<unsigned, unsigned> CurrentDominatingParent;
250 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
251 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
252 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
253 SplitInterferencesForBasicBlock(*DI->getBlock(),
254 CurrentDominatingParent,
255 ImmediateDominatingParent);
256 }
257
Cameron Zwarich47bce432010-12-21 06:54:43 +0000258 // Insert copies for all PHI source and destination registers.
259 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
260 I != E; ++I) {
261 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
262 BBI != BBE && BBI->isPHI(); ++BBI) {
263 InsertCopiesForPHI(BBI, I);
264 }
265 }
266
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000267 // FIXME: Preserve the equivalence classes during copy insertion and use
268 // the preversed equivalence classes instead of recomputing them.
269 RegNodeMap.clear();
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000270 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
271 I != E; ++I) {
272 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
273 BBI != BBE && BBI->isPHI(); ++BBI) {
274 unsigned DestReg = BBI->getOperand(0).getReg();
275 addReg(DestReg);
276
277 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
278 unsigned SrcReg = BBI->getOperand(i).getReg();
279 addReg(SrcReg);
280 unionRegs(DestReg, SrcReg);
281 }
282 }
283 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000284
285 DenseMap<unsigned, unsigned> RegRenamingMap;
286 bool Changed = false;
287 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
288 I != E; ++I) {
289 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
290 while (BBI != BBE && BBI->isPHI()) {
291 MachineInstr* PHI = BBI;
292
293 assert(PHI->getNumOperands() > 0);
294
295 unsigned SrcReg = PHI->getOperand(1).getReg();
296 unsigned SrcColor = getRegColor(SrcReg);
297 unsigned NewReg = RegRenamingMap[SrcColor];
298 if (!NewReg) {
299 NewReg = SrcReg;
300 RegRenamingMap[SrcColor] = SrcReg;
301 }
302 MergeLIsAndRename(SrcReg, NewReg);
303
304 unsigned DestReg = PHI->getOperand(0).getReg();
305 if (!InsertedDestCopies.count(DestReg))
306 MergeLIsAndRename(DestReg, NewReg);
307
308 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
309 unsigned SrcReg = PHI->getOperand(i).getReg();
310 MergeLIsAndRename(SrcReg, NewReg);
311 }
312
313 ++BBI;
314 LI->RemoveMachineInstrFromMaps(PHI);
315 PHI->eraseFromParent();
316 Changed = true;
317 }
318 }
319
320 // Due to the insertion of copies to split live ranges, the live intervals are
321 // guaranteed to not overlap, except in one case: an original PHI source and a
322 // PHI destination copy. In this case, they have the same value and thus don't
323 // truly intersect, so we merge them into the value live at that point.
324 // FIXME: Is there some better way we can handle this?
325 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
326 E = InsertedDestCopies.end(); I != E; ++I) {
327 unsigned DestReg = I->first;
328 unsigned DestColor = getRegColor(DestReg);
329 unsigned NewReg = RegRenamingMap[DestColor];
330
331 LiveInterval& DestLI = LI->getInterval(DestReg);
332 LiveInterval& NewLI = LI->getInterval(NewReg);
333
Cameron Zwarich480b80a2010-12-29 03:52:51 +0000334 assert(DestLI.ranges.size() == 1
335 && "PHI destination copy's live interval should be a single live "
336 "range from the beginning of the BB to the copy instruction.");
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000337 LiveRange* DestLR = DestLI.begin();
338 VNInfo* NewVNI = NewLI.getVNInfoAt(DestLR->start);
339 if (!NewVNI) {
340 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
341 MachineInstr* CopyInstr = I->second;
342 CopyInstr->getOperand(1).setIsKill(true);
343 }
344
345 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
346 NewLI.addRange(NewLR);
347
348 LI->removeInterval(DestReg);
349 MRI->replaceRegWith(DestReg, NewReg);
350 }
351
Cameron Zwarich47bce432010-12-21 06:54:43 +0000352 // Adjust the live intervals of all PHI source registers to handle the case
353 // where the PHIs in successor blocks were the only later uses of the source
354 // register.
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000355 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
356 E = InsertedSrcCopySet.end(); I != E; ++I) {
Cameron Zwarich47bce432010-12-21 06:54:43 +0000357 MachineBasicBlock* MBB = I->first;
358 unsigned SrcReg = I->second;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000359 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
360 SrcReg = RenamedRegister;
361
Cameron Zwarich47bce432010-12-21 06:54:43 +0000362 LiveInterval& SrcLI = LI->getInterval(SrcReg);
363
364 bool isLiveOut = false;
365 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
366 SE = MBB->succ_end(); SI != SE; ++SI) {
367 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
368 isLiveOut = true;
369 break;
370 }
371 }
372
373 if (isLiveOut)
374 continue;
375
376 MachineOperand* LastUse = findLastUse(MBB, SrcReg);
377 assert(LastUse);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000378 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
379 SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
Cameron Zwarich47bce432010-12-21 06:54:43 +0000380 LastUse->setIsKill(true);
381 }
382
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000383 LI->renumber();
384
385 Allocator.Reset();
386 RegNodeMap.clear();
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000387 PHISrcDefs.clear();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000388 InsertedSrcCopySet.clear();
389 InsertedSrcCopyMap.clear();
390 InsertedDestCopies.clear();
391
392 return Changed;
393}
394
395void StrongPHIElimination::addReg(unsigned Reg) {
396 if (RegNodeMap.count(Reg))
397 return;
398 RegNodeMap[Reg] = new (Allocator) Node(Reg);
399}
400
401StrongPHIElimination::Node*
402StrongPHIElimination::Node::getLeader() {
403 Node* parentPointer = parent.getPointer();
404 if (parentPointer == this)
405 return this;
406 Node* newParent = parentPointer->getLeader();
407 parent.setPointer(newParent);
408 return newParent;
409}
410
411unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
412 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
413 if (RI == RegNodeMap.end())
414 return 0;
415 Node* Node = RI->second;
416 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
417 return 0;
418 return Node->getLeader()->value;
419}
420
421void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
422 Node* Node1 = RegNodeMap[Reg1]->getLeader();
423 Node* Node2 = RegNodeMap[Reg2]->getLeader();
424
425 if (Node1->rank > Node2->rank) {
426 Node2->parent.setPointer(Node1->getLeader());
427 } else if (Node1->rank < Node2->rank) {
428 Node1->parent.setPointer(Node2->getLeader());
429 } else if (Node1 != Node2) {
430 Node2->parent.setPointer(Node1->getLeader());
431 Node1->rank++;
432 }
433}
434
435void StrongPHIElimination::isolateReg(unsigned Reg) {
436 Node* Node = RegNodeMap[Reg];
437 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
438}
439
440unsigned StrongPHIElimination::getPHIColor(MachineInstr* PHI) {
441 assert(PHI->isPHI());
442
443 unsigned DestReg = PHI->getOperand(0).getReg();
444 Node* DestNode = RegNodeMap[DestReg];
445 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
446 return 0;
447
448 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
449 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
450 if (SrcColor)
451 return SrcColor;
452 }
453 return 0;
454}
455
456void StrongPHIElimination::isolatePHI(MachineInstr* PHI) {
457 assert(PHI->isPHI());
458 Node* Node = RegNodeMap[PHI->getOperand(0).getReg()];
459 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
460}
461
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000462/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
463/// interferences found between registers in the same congruence class. It
464/// takes two DenseMaps as arguments that it also updates:
465///
466/// 1) CurrentDominatingParent, which maps a color to the register in that
467/// congruence class whose definition was most recently seen.
468///
469/// 2) ImmediateDominatingParent, which maps a register to the register in the
470/// same congruence class that most immediately dominates it.
471///
472/// This function assumes that it is being called in a depth-first traversal
473/// of the dominator tree.
474///
475/// The algorithm used here is a generalization of the dominance-based SSA test
476/// for two variables. If there are variables a_1, ..., a_n such that
477///
478/// def(a_1) dom ... dom def(a_n),
479///
480/// then we can test for an interference between any two a_i by only using O(n)
481/// interference tests between pairs of variables. If i < j and a_i and a_j
482/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
483/// Thus, in order to test for an interference involving a_i, we need only check
484/// for a potential interference with a_i+1.
485///
486/// This method can be generalized to arbitrary sets of variables by performing
487/// a depth-first traversal of the dominator tree. As we traverse down a branch
488/// of the dominator tree, we keep track of the current dominating variable and
489/// only perform an interference test with that variable. However, when we go to
490/// another branch of the dominator tree, the definition of the current dominating
491/// variable may no longer dominate the current block. In order to correct this,
492/// we need to use a stack of past choices of the current dominating variable
493/// and pop from this stack until we find a variable whose definition actually
494/// dominates the current block.
495///
496/// There will be one push on this stack for each variable that has become the
497/// current dominating variable, so instead of using an explicit stack we can
498/// simply associate the previous choice for a current dominating variable with
499/// the new choice. This works better in our implementation, where we test for
500/// interference in multiple distinct sets at once.
501void
502StrongPHIElimination::SplitInterferencesForBasicBlock(
503 MachineBasicBlock& MBB,
504 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
505 DenseMap<unsigned, unsigned>& ImmediateDominatingParent) {
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000506 // Sort defs by their order in the original basic block, as the code below
507 // assumes that it is processing definitions in dominance order.
508 std::vector<MachineInstr*>& DefInstrs = PHISrcDefs[&MBB];
509 std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
510
511 for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
512 BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
513 for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
514 E = (*BBI)->operands_end(); I != E; ++I) {
Cameron Zwarich92f0fcb62010-12-28 10:49:33 +0000515 const MachineOperand& MO = *I;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000516
Cameron Zwarich438e25c2010-12-28 23:02:56 +0000517 // FIXME: This would be faster if it were possible to bail out of checking
518 // an instruction's operands after the explicit defs, but this is incorrect
519 // for variadic instructions, which may appear before register allocation
520 // in the future.
521 if (!MO.isReg() || !MO.isDef())
522 continue;
523
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000524 unsigned DestReg = MO.getReg();
525 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
526 continue;
527
528 // If the virtual register being defined is not used in any PHI or has
529 // already been isolated, then there are no more interferences to check.
530 unsigned DestColor = getRegColor(DestReg);
531 if (!DestColor)
532 continue;
533
534 // The input to this pass sometimes is not in SSA form in every basic
535 // block, as some virtual registers have redefinitions. We could eliminate
536 // this by fixing the passes that generate the non-SSA code, or we could
537 // handle it here by tracking defining machine instructions rather than
538 // virtual registers. For now, we just handle the situation conservatively
539 // in a way that will possibly lead to false interferences.
540 unsigned NewParent = CurrentDominatingParent[DestColor];
541 if (NewParent == DestReg)
542 continue;
543
544 // Pop registers from the stack represented by ImmediateDominatingParent
545 // until we find a parent that dominates the current instruction.
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000546 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000547 || !getRegColor(NewParent)))
548 NewParent = ImmediateDominatingParent[NewParent];
549
550 // If NewParent is nonzero, then its definition dominates the current
551 // instruction, so it is only necessary to check for the liveness of
552 // NewParent in order to check for an interference.
553 if (NewParent
Cameron Zwarich1558f5e2010-12-29 11:00:09 +0000554 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000555 // If there is an interference, always isolate the new register. This
556 // could be improved by using a heuristic that decides which of the two
557 // registers to isolate.
558 isolateReg(DestReg);
559 CurrentDominatingParent[DestColor] = NewParent;
560 } else {
561 // If there is no interference, update ImmediateDominatingParent and set
562 // the CurrentDominatingParent for this color to the current register.
563 ImmediateDominatingParent[DestReg] = NewParent;
564 CurrentDominatingParent[DestColor] = DestReg;
565 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000566 }
567 }
568
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000569 // We now walk the PHIs in successor blocks and check for interferences. This
570 // is necesary because the use of a PHI's operands are logically contained in
571 // the predecessor block. The def of a PHI's destination register is processed
572 // along with the other defs in a basic block.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000573
Cameron Zwarich645b1d22011-01-04 06:42:27 +0000574 CurrentPHIForColor.clear();
Cameron Zwarich47bce432010-12-21 06:54:43 +0000575
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000576 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
577 SE = MBB.succ_end(); SI != SE; ++SI) {
578 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
579 BBI != BBE && BBI->isPHI(); ++BBI) {
580 MachineInstr* PHI = BBI;
581
582 // If a PHI is already isolated, either by being isolated directly or
583 // having all of its operands isolated, ignore it.
584 unsigned Color = getPHIColor(PHI);
585 if (!Color)
586 continue;
587
588 // Find the index of the PHI operand that corresponds to this basic block.
589 unsigned PredIndex;
590 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
591 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
592 break;
593 }
594 assert(PredIndex < PHI->getNumOperands());
595 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
596
597 // Pop registers from the stack represented by ImmediateDominatingParent
598 // until we find a parent that dominates the current instruction.
599 unsigned NewParent = CurrentDominatingParent[Color];
600 while (NewParent
601 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
602 || !getRegColor(NewParent)))
603 NewParent = ImmediateDominatingParent[NewParent];
604 CurrentDominatingParent[Color] = NewParent;
605
606 // If there is an interference with a register, always isolate the
607 // register rather than the PHI. It is also possible to isolate the
608 // PHI, but that introduces copies for all of the registers involved
609 // in that PHI.
610 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
611 && NewParent != PredOperandReg)
612 isolateReg(NewParent);
613
614 std::pair<MachineInstr*, unsigned> CurrentPHI = CurrentPHIForColor[Color];
615
616 // If two PHIs have the same operand from every shared predecessor, then
617 // they don't actually interfere. Otherwise, isolate the current PHI. This
618 // could possibly be improved, e.g. we could isolate the PHI with the
619 // fewest operands.
620 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
621 isolatePHI(PHI);
622 else
623 CurrentPHIForColor[Color] = std::make_pair(PHI, PredOperandReg);
624 }
625 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000626}
627
628void StrongPHIElimination::InsertCopiesForPHI(MachineInstr* PHI,
629 MachineBasicBlock* MBB) {
630 assert(PHI->isPHI());
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000631 unsigned PHIColor = getPHIColor(PHI);
632
633 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
634 MachineOperand& SrcMO = PHI->getOperand(i);
635
636 // If a source is defined by an implicit def, there is no need to insert a
637 // copy in the predecessor.
638 if (SrcMO.isUndef())
639 continue;
640
641 unsigned SrcReg = SrcMO.getReg();
642 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
643 "Machine PHI Operands must all be virtual registers!");
644
645 MachineBasicBlock* PredBB = PHI->getOperand(i + 1).getMBB();
646 unsigned SrcColor = getRegColor(SrcReg);
647
648 // If neither the PHI nor the operand were isolated, then we only need to
649 // set the phi-kill flag on the VNInfo at this PHI.
650 if (PHIColor && SrcColor == PHIColor) {
651 LiveInterval& SrcInterval = LI->getInterval(SrcReg);
652 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
653 VNInfo* SrcVNI = SrcInterval.getVNInfoAt(PredIndex.getPrevIndex());
654 assert(SrcVNI);
655 SrcVNI->setHasPHIKill(true);
656 continue;
657 }
658
659 unsigned CopyReg = 0;
660 if (PHIColor) {
661 SrcCopyMap::const_iterator I
662 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
663 CopyReg
664 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
665 }
666
667 if (!CopyReg) {
668 const TargetRegisterClass* RC = MRI->getRegClass(SrcReg);
669 CopyReg = MRI->createVirtualRegister(RC);
670
671 MachineBasicBlock::iterator
672 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
673 unsigned SrcSubReg = SrcMO.getSubReg();
674 MachineInstr* CopyInstr = BuildMI(*PredBB,
675 CopyInsertPoint,
676 PHI->getDebugLoc(),
677 TII->get(TargetOpcode::COPY),
678 CopyReg).addReg(SrcReg, 0, SrcSubReg);
679 LI->InsertMachineInstrInMaps(CopyInstr);
680
681 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
682 // the newly added range.
683 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
684 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
685
686 addReg(CopyReg);
687 if (PHIColor) {
688 unionRegs(PHIColor, CopyReg);
689 assert(getRegColor(CopyReg) != CopyReg);
690 } else {
691 PHIColor = CopyReg;
692 assert(getRegColor(CopyReg) == CopyReg);
693 }
694
695 if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
696 InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
697 }
698
699 SrcMO.setReg(CopyReg);
700
701 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
702 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
703 // processed later, but this is still correct to do at this point because we
704 // never rely on LiveIntervals being correct while inserting copies.
705 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
706 // pass does?
707 LiveInterval& SrcLI = LI->getInterval(SrcReg);
708 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
709 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
710 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
711 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
712 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
713 }
714
Cameron Zwarich47bce432010-12-21 06:54:43 +0000715 unsigned DestReg = PHI->getOperand(0).getReg();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000716 unsigned DestColor = getRegColor(DestReg);
717
718 if (PHIColor && DestColor == PHIColor) {
719 LiveInterval& DestLI = LI->getInterval(DestReg);
720
721 // Set the phi-def flag for the VN at this PHI.
722 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
723 VNInfo* DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
724 assert(DestVNI);
725 DestVNI->setIsPHIDef(true);
726
727 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
728 // instruction. After PHI elimination, PHI instructions are replaced by VNs
729 // with the phi-def flag set, and the live ranges of these VNs start at the
730 // beginning of the basic block.
731 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
732 DestVNI->def = MBBStartIndex;
733 DestLI.addRange(LiveRange(MBBStartIndex,
734 PHIIndex.getDefIndex(),
735 DestVNI));
736 return;
737 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000738
739 const TargetRegisterClass* RC = MRI->getRegClass(DestReg);
740 unsigned CopyReg = MRI->createVirtualRegister(RC);
741
742 MachineInstr* CopyInstr = BuildMI(*MBB,
743 MBB->SkipPHIsAndLabels(MBB->begin()),
744 PHI->getDebugLoc(),
745 TII->get(TargetOpcode::COPY),
746 DestReg).addReg(CopyReg);
747 LI->InsertMachineInstrInMaps(CopyInstr);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000748 PHI->getOperand(0).setReg(CopyReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000749
750 // Add the region from the beginning of MBB to the copy instruction to
751 // CopyReg's live interval, and give the VNInfo the phidef flag.
752 LiveInterval& CopyLI = LI->getOrCreateInterval(CopyReg);
753 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
754 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
755 VNInfo* CopyVNI = CopyLI.getNextValue(MBBStartIndex,
756 CopyInstr,
757 LI->getVNInfoAllocator());
758 CopyVNI->setIsPHIDef(true);
759 CopyLI.addRange(LiveRange(MBBStartIndex,
760 DestCopyIndex.getDefIndex(),
761 CopyVNI));
762
763 // Adjust DestReg's live interval to adjust for its new definition at
764 // CopyInstr.
765 LiveInterval& DestLI = LI->getOrCreateInterval(DestReg);
766 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
767 DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
768
769 VNInfo* DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
770 assert(DestVNI);
771 DestVNI->def = DestCopyIndex.getDefIndex();
772
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000773 InsertedDestCopies[CopyReg] = CopyInstr;
774}
Cameron Zwarichef485d82010-12-24 03:09:36 +0000775
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000776void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
777 if (Reg == NewReg)
778 return;
Cameron Zwarichef485d82010-12-24 03:09:36 +0000779
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000780 LiveInterval& OldLI = LI->getInterval(Reg);
781 LiveInterval& NewLI = LI->getInterval(NewReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000782
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000783 // Merge the live ranges of the two registers.
784 DenseMap<VNInfo*, VNInfo*> VNMap;
785 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
786 LRI != LRE; ++LRI) {
787 LiveRange OldLR = *LRI;
788 VNInfo* OldVN = OldLR.valno;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000789
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000790 VNInfo*& NewVN = VNMap[OldVN];
791 if (!NewVN) {
792 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
793 VNMap[OldVN] = NewVN;
794 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000795
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000796 LiveRange LR(OldLR.start, OldLR.end, NewVN);
797 NewLI.addRange(LR);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000798 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000799
800 // Remove the LiveInterval for the register being renamed and replace all
801 // of its defs and uses with the new register.
802 LI->removeInterval(Reg);
803 MRI->replaceRegWith(Reg, NewReg);
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000804}