Chris Lattner | 645e00d | 2002-09-01 23:53:36 +0000 | [diff] [blame^] | 1 | //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// |
| 2 | // |
| 3 | // Represent a range of possible values that may occur when the program is run |
| 4 | // for an integral value. This keeps track of a lower and upper bound for the |
| 5 | // constant, which MAY wrap around the end of the numeric range. To do this, it |
| 6 | // keeps track of a [lower, upper) bound, which specifies an interval just like |
| 7 | // STL iterators. When used with boolean values, the following are important |
| 8 | // ranges (other integral ranges use min/max values for special range values): |
| 9 | // |
| 10 | // [F, F) = {} = Empty set |
| 11 | // [T, F) = {T} |
| 12 | // [F, T) = {F} |
| 13 | // [T, T) = {F, T} = Full set |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "llvm/Support/ConstantRange.h" |
| 18 | #include "llvm/Type.h" |
| 19 | #include "llvm/Instruction.h" |
| 20 | #include "llvm/ConstantHandling.h" |
| 21 | |
| 22 | /// Initialize a full (the default) or empty set for the specified type. |
| 23 | /// |
| 24 | ConstantRange::ConstantRange(const Type *Ty, bool Full) { |
| 25 | assert(Ty->isIntegral() && |
| 26 | "Cannot make constant range of non-integral type!"); |
| 27 | if (Full) |
| 28 | Lower = Upper = ConstantIntegral::getMaxValue(Ty); |
| 29 | else |
| 30 | Lower = Upper = ConstantIntegral::getMinValue(Ty); |
| 31 | } |
| 32 | |
| 33 | /// Initialize a range of values explicitly... this will assert out if |
| 34 | /// Lower==Upper and Lower != Min or Max for its type (or if the two constants |
| 35 | /// have different types) |
| 36 | /// |
| 37 | ConstantRange::ConstantRange(ConstantIntegral *L, |
| 38 | ConstantIntegral *U) : Lower(L), Upper(U) { |
| 39 | assert(Lower->getType() == Upper->getType() && |
| 40 | "Incompatible types for ConstantRange!"); |
| 41 | |
| 42 | // Make sure that if L & U are equal that they are either Min or Max... |
| 43 | assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || |
| 44 | L == ConstantIntegral::getMinValue(L->getType()))) && |
| 45 | "Lower == Upper, but they aren't min or max for type!"); |
| 46 | } |
| 47 | |
| 48 | static ConstantIntegral *Next(ConstantIntegral *CI) { |
| 49 | if (CI->getType() == Type::BoolTy) |
| 50 | return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True; |
| 51 | |
| 52 | // Otherwise use operator+ in the ConstantHandling Library. |
| 53 | Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI; |
| 54 | assert(Result && "ConstantHandling not implemented for integral plus!?"); |
| 55 | return cast<ConstantIntegral>(Result); |
| 56 | } |
| 57 | |
| 58 | /// Initialize a set of values that all satisfy the condition with C. |
| 59 | /// |
| 60 | ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { |
| 61 | switch (SetCCOpcode) { |
| 62 | default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); |
| 63 | case Instruction::SetEQ: Lower = C; Upper = Next(C); return; |
| 64 | case Instruction::SetNE: Upper = C; Lower = Next(C); return; |
| 65 | case Instruction::SetLT: |
| 66 | Lower = ConstantIntegral::getMinValue(C->getType()); |
| 67 | Upper = C; |
| 68 | return; |
| 69 | case Instruction::SetGT: |
| 70 | Upper = ConstantIntegral::getMaxValue(C->getType()); |
| 71 | Lower = Next(C); |
| 72 | return; |
| 73 | case Instruction::SetLE: |
| 74 | Lower = ConstantIntegral::getMinValue(C->getType()); |
| 75 | Upper = Next(C); |
| 76 | return; |
| 77 | case Instruction::SetGE: |
| 78 | Upper = ConstantIntegral::getMaxValue(C->getType()); |
| 79 | Lower = C; |
| 80 | return; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /// getType - Return the LLVM data type of this range. |
| 85 | /// |
| 86 | const Type *ConstantRange::getType() const { return Lower->getType(); } |
| 87 | |
| 88 | /// isFullSet - Return true if this set contains all of the elements possible |
| 89 | /// for this data-type |
| 90 | bool ConstantRange::isFullSet() const { |
| 91 | return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); |
| 92 | } |
| 93 | |
| 94 | /// isEmptySet - Return true if this set contains no members. |
| 95 | /// |
| 96 | bool ConstantRange::isEmptySet() const { |
| 97 | return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); |
| 98 | } |
| 99 | |
| 100 | /// isWrappedSet - Return true if this set wraps around the top of the range, |
| 101 | /// for example: [100, 8) |
| 102 | /// |
| 103 | bool ConstantRange::isWrappedSet() const { |
| 104 | return (*(Constant*)Lower > *(Constant*)Upper)->getValue(); |
| 105 | } |
| 106 | |
| 107 | |
| 108 | /// getSingleElement - If this set contains a single element, return it, |
| 109 | /// otherwise return null. |
| 110 | ConstantIntegral *ConstantRange::getSingleElement() const { |
| 111 | if (Upper == Next(Lower)) // Is it a single element range? |
| 112 | return Lower; |
| 113 | return 0; |
| 114 | } |
| 115 | |
| 116 | /// getSetSize - Return the number of elements in this set. |
| 117 | /// |
| 118 | uint64_t ConstantRange::getSetSize() const { |
| 119 | if (isEmptySet()) return 0; |
| 120 | if (getType() == Type::BoolTy) { |
| 121 | if (Lower != Upper) // One of T or F in the set... |
| 122 | return 1; |
| 123 | return 2; // Must be full set... |
| 124 | } |
| 125 | |
| 126 | // Simply subtract the bounds... |
| 127 | Constant *Result = *(Constant*)Upper - *(Constant*)Lower; |
| 128 | assert(Result && "Subtraction of constant integers not implemented?"); |
| 129 | if (getType()->isSigned()) |
| 130 | return (uint64_t)cast<ConstantSInt>(Result)->getValue(); |
| 131 | else |
| 132 | return cast<ConstantUInt>(Result)->getValue(); |
| 133 | } |
| 134 | |
| 135 | |
| 136 | |
| 137 | |
| 138 | // intersect1Wrapped - This helper function is used to intersect two ranges when |
| 139 | // it is known that LHS is wrapped and RHS isn't. |
| 140 | // |
| 141 | static ConstantRange intersect1Wrapped(const ConstantRange &LHS, |
| 142 | const ConstantRange &RHS) { |
| 143 | assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); |
| 144 | |
| 145 | // Handle common special cases |
| 146 | if (RHS.isEmptySet()) return RHS; |
| 147 | if (RHS.isFullSet()) return LHS; |
| 148 | |
| 149 | // Check to see if we overlap on the Left side of RHS... |
| 150 | // |
| 151 | if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) { |
| 152 | // We do overlap on the left side of RHS, see if we overlap on the right of |
| 153 | // RHS... |
| 154 | if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { |
| 155 | // Ok, the result overlaps on both the left and right sides. See if the |
| 156 | // resultant interval will be smaller if we wrap or not... |
| 157 | // |
| 158 | if (LHS.getSetSize() < RHS.getSetSize()) |
| 159 | return LHS; |
| 160 | else |
| 161 | return RHS; |
| 162 | |
| 163 | } else { |
| 164 | // No overlap on the right, just on the left. |
| 165 | return ConstantRange(RHS.getLower(), LHS.getUpper()); |
| 166 | } |
| 167 | |
| 168 | } else { |
| 169 | // We don't overlap on the left side of RHS, see if we overlap on the right |
| 170 | // of RHS... |
| 171 | if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { |
| 172 | // Simple overlap... |
| 173 | return ConstantRange(LHS.getLower(), RHS.getUpper()); |
| 174 | } else { |
| 175 | // No overlap... |
| 176 | return ConstantRange(LHS.getType(), false); |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | |
| 182 | /// intersect - Return the range that results from the intersection of this |
| 183 | /// range with another range. |
| 184 | /// |
| 185 | ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { |
| 186 | assert(getType() == CR.getType() && "ConstantRange types don't agree!"); |
| 187 | |
| 188 | if (!isWrappedSet()) { |
| 189 | if (!CR.isWrappedSet()) { |
| 190 | const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); |
| 191 | const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); |
| 192 | |
| 193 | if ((L < U)->getValue()) // If range isn't empty... |
| 194 | return ConstantRange(cast<ConstantIntegral>((Constant*)&L), |
| 195 | cast<ConstantIntegral>((Constant*)&U)); |
| 196 | else |
| 197 | return ConstantRange(getType(), false); // Otherwise, return empty set |
| 198 | } else |
| 199 | return intersect1Wrapped(CR, *this); |
| 200 | } else { // We know "this" is wrapped... |
| 201 | if (!CR.isWrappedSet()) |
| 202 | return intersect1Wrapped(*this, CR); |
| 203 | else { |
| 204 | // Both ranges are wrapped... |
| 205 | const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); |
| 206 | const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); |
| 207 | |
| 208 | return ConstantRange(cast<ConstantIntegral>((Constant*)&L), |
| 209 | cast<ConstantIntegral>((Constant*)&U)); |
| 210 | } |
| 211 | } |
| 212 | return *this; |
| 213 | } |
| 214 | |
| 215 | /// union - Return the range that results from the union of this range with |
| 216 | /// another range. The resultant range is guaranteed to include the elements of |
| 217 | /// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, |
| 218 | /// 15), which includes 9, 10, and 11, which were not included in either set |
| 219 | /// before. |
| 220 | /// |
| 221 | ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { |
| 222 | assert(getType() == CR.getType() && "ConstantRange types don't agree!"); |
| 223 | |
| 224 | assert(0 && "Range union not implemented yet!"); |
| 225 | |
| 226 | return *this; |
| 227 | } |