blob: 795232b7cec738f6fd2feea50813fee3d0a7192d [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000263 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000270 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000271 return true;
272}
273
Dan Gohman2f199f92010-08-16 16:21:27 +0000274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276 if (!(*I)->isLoopInvariant(L))
277 return false;
278 return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285 bool HasVarying = false;
286 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287 const SCEV *S = *I;
288 if (!S->isLoopInvariant(L)) {
289 if (S->hasComputableLoopEvolution(L))
290 HasVarying = true;
291 else
292 return false;
293 }
294 }
295 return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300 const SCEV *S = *I;
301 if (O == S || S->hasOperand(O))
302 return true;
303 }
304 return false;
305}
306
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
Dan Gohman6e70e312009-09-27 15:26:03 +0000311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000316 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
318
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000319const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000320 // In most cases the types of LHS and RHS will be the same, but in some
321 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322 // depend on the type for correctness, but handling types carefully can
323 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324 // a pointer type than the RHS, so use the RHS' type here.
325 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000326}
327
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000329 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000330 if (!QueryLoop)
331 return false;
332
333 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000334 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 return false;
336
Dan Gohman71c41442010-08-13 20:11:39 +0000337 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338 if (L->contains(QueryLoop))
339 return true;
340
Dan Gohmane890eea2009-06-26 22:17:21 +0000341 // This recurrence is variant w.r.t. QueryLoop if any of its operands
342 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000343 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 return false;
346
347 // Otherwise it's loop-invariant.
348 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000349}
350
Dan Gohman39125d82010-02-13 00:19:39 +0000351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353 return DT->dominates(L->getHeader(), BB) &&
354 SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359 // This uses a "dominates" query instead of "properly dominates" query because
360 // the instruction which produces the addrec's value is a PHI, and a PHI
361 // effectively properly dominates its entire containing block.
362 return DT->dominates(L->getHeader(), BB) &&
363 SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000366void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000368 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000370 OS << "}<";
371 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373}
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Dan Gohmanab37f502010-08-02 23:49:30 +0000375void SCEVUnknown::deleted() {
376 // Clear this SCEVUnknown from ValuesAtScopes.
377 SE->ValuesAtScopes.erase(this);
378
379 // Remove this SCEVUnknown from the uniquing map.
380 SE->UniqueSCEVs.RemoveNode(this);
381
382 // Release the value.
383 setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387 // Clear this SCEVUnknown from ValuesAtScopes.
388 SE->ValuesAtScopes.erase(this);
389
390 // Remove this SCEVUnknown from the uniquing map.
391 SE->UniqueSCEVs.RemoveNode(this);
392
393 // Update this SCEVUnknown to point to the new value. This is needed
394 // because there may still be outstanding SCEVs which still point to
395 // this SCEVUnknown.
396 setValPtr(New);
397}
398
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400 // All non-instruction values are loop invariant. All instructions are loop
401 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000402 // Instructions are never considered invariant in the function body
403 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000404 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000405 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000406 return true;
407}
Chris Lattner53e677a2004-04-02 20:23:17 +0000408
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410 if (Instruction *I = dyn_cast<Instruction>(getValue()))
411 return DT->dominates(I->getParent(), BB);
412 return true;
413}
414
Dan Gohman6e70e312009-09-27 15:26:03 +0000415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416 if (Instruction *I = dyn_cast<Instruction>(getValue()))
417 return DT->properlyDominates(I->getParent(), BB);
418 return true;
419}
420
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000421const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000423}
Chris Lattner53e677a2004-04-02 20:23:17 +0000424
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000427 if (VCE->getOpcode() == Instruction::PtrToInt)
428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000429 if (CE->getOpcode() == Instruction::GetElementPtr &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getNumOperands() == 2)
432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433 if (CI->isOne()) {
434 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435 ->getElementType();
436 return true;
437 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000438
439 return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000443 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000444 if (VCE->getOpcode() == Instruction::PtrToInt)
445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000446 if (CE->getOpcode() == Instruction::GetElementPtr &&
447 CE->getOperand(0)->isNullValue()) {
448 const Type *Ty =
449 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450 if (const StructType *STy = dyn_cast<StructType>(Ty))
451 if (!STy->isPacked() &&
452 CE->getNumOperands() == 3 &&
453 CE->getOperand(1)->isNullValue()) {
454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455 if (CI->isOne() &&
456 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000457 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000458 AllocTy = STy->getElementType(1);
459 return true;
460 }
461 }
462 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000463
464 return false;
465}
466
Dan Gohman4f8eea82010-02-01 18:27:38 +0000467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000468 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000469 if (VCE->getOpcode() == Instruction::PtrToInt)
470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471 if (CE->getOpcode() == Instruction::GetElementPtr &&
472 CE->getNumOperands() == 3 &&
473 CE->getOperand(0)->isNullValue() &&
474 CE->getOperand(1)->isNullValue()) {
475 const Type *Ty =
476 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477 // Ignore vector types here so that ScalarEvolutionExpander doesn't
478 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000479 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000480 CTy = Ty;
481 FieldNo = CE->getOperand(2);
482 return true;
483 }
484 }
485
486 return false;
487}
488
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000489void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000490 const Type *AllocTy;
491 if (isSizeOf(AllocTy)) {
492 OS << "sizeof(" << *AllocTy << ")";
493 return;
494 }
495 if (isAlignOf(AllocTy)) {
496 OS << "alignof(" << *AllocTy << ")";
497 return;
498 }
499
Dan Gohman4f8eea82010-02-01 18:27:38 +0000500 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000501 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000502 if (isOffsetOf(CTy, FieldNo)) {
503 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000504 WriteAsOperand(OS, FieldNo, false);
505 OS << ")";
506 return;
507 }
508
509 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000510 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000511}
512
Chris Lattner8d741b82004-06-20 06:23:15 +0000513//===----------------------------------------------------------------------===//
514// SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519 /// than the complexity of the RHS. This comparator is used to canonicalize
520 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000521 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000522 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000523 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000525
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000527 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return compare(LHS, RHS) < 0;
529 }
530
531 // Return negative, zero, or positive, if LHS is less than, equal to, or
532 // greater than RHS, respectively. A three-way result allows recursive
533 // comparisons to be more efficient.
534 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000535 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000538
Dan Gohman72861302009-05-07 14:39:04 +0000539 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000543
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 // Aside from the getSCEVType() ordering, the particular ordering
545 // isn't very important except that it's beneficial to be consistent,
546 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 switch (LType) {
548 case scUnknown: {
549 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000550 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551
552 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000555
556 // Order pointer values after integer values. This helps SCEVExpander
557 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000560 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000562
563 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000564 unsigned LID = LV->getValueID(),
565 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000566 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000567 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000568
569 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000570 if (const Argument *LA = dyn_cast<Argument>(LV)) {
571 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 // For instructions, compare their loop depth, and their operand
577 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000578 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580
581 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000582 const BasicBlock *LParent = LInst->getParent(),
583 *RParent = RInst->getParent();
584 if (LParent != RParent) {
585 unsigned LDepth = LI->getLoopDepth(LParent),
586 RDepth = LI->getLoopDepth(RParent);
587 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000588 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000589 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000590
591 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000592 unsigned LNumOps = LInst->getNumOperands(),
593 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
599
Dan Gohman67ef74e2010-08-27 15:26:01 +0000600 case scConstant: {
601 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000602 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603
604 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000605 const APInt &LA = LC->getValue()->getValue();
606 const APInt &RA = RC->getValue()->getValue();
607 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 return (int)LBitWidth - (int)RBitWidth;
610 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 }
612
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 case scAddRecExpr: {
614 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000616
617 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000618 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619 if (LLoop != RLoop) {
620 unsigned LDepth = LLoop->getLoopDepth(),
621 RDepth = RLoop->getLoopDepth();
622 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000623 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000624 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Addrec complexity grows with operand count.
627 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628 if (LNumOps != RNumOps)
629 return (int)LNumOps - (int)RNumOps;
630
631 // Lexicographically compare.
632 for (unsigned i = 0; i != LNumOps; ++i) {
633 long X = compare(LA->getOperand(i), RA->getOperand(i));
634 if (X != 0)
635 return X;
636 }
637
638 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000639 }
640
Dan Gohman67ef74e2010-08-27 15:26:01 +0000641 case scAddExpr:
642 case scMulExpr:
643 case scSMaxExpr:
644 case scUMaxExpr: {
645 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000646 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000647
648 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000649 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650 for (unsigned i = 0; i != LNumOps; ++i) {
651 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000652 return 1;
653 long X = compare(LC->getOperand(i), RC->getOperand(i));
654 if (X != 0)
655 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000656 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000657 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000658 }
659
Dan Gohman67ef74e2010-08-27 15:26:01 +0000660 case scUDivExpr: {
661 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000662 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000663
664 // Lexicographically compare udiv expressions.
665 long X = compare(LC->getLHS(), RC->getLHS());
666 if (X != 0)
667 return X;
668 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000669 }
670
Dan Gohman67ef74e2010-08-27 15:26:01 +0000671 case scTruncate:
672 case scZeroExtend:
673 case scSignExtend: {
674 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000675 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000676
677 // Compare cast expressions by operand.
678 return compare(LC->getOperand(), RC->getOperand());
679 }
680
681 default:
682 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000683 }
684
685 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000686 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000687 }
688 };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000696/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000697/// results from this routine. In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000702 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000703 if (Ops.size() < 2) return; // Noop
704 if (Ops.size() == 2) {
705 // This is the common case, which also happens to be trivially simple.
706 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000707 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
708 if (SCEVComplexityCompare(LI)(RHS, LHS))
709 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000710 return;
711 }
712
Dan Gohman3bf63762010-06-18 19:54:20 +0000713 // Do the rough sort by complexity.
714 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
715
716 // Now that we are sorted by complexity, group elements of the same
717 // complexity. Note that this is, at worst, N^2, but the vector is likely to
718 // be extremely short in practice. Note that we take this approach because we
719 // do not want to depend on the addresses of the objects we are grouping.
720 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
721 const SCEV *S = Ops[i];
722 unsigned Complexity = S->getSCEVType();
723
724 // If there are any objects of the same complexity and same value as this
725 // one, group them.
726 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
727 if (Ops[j] == S) { // Found a duplicate.
728 // Move it to immediately after i'th element.
729 std::swap(Ops[i+1], Ops[j]);
730 ++i; // no need to rescan it.
731 if (i == e-2) return; // Done!
732 }
733 }
734 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000735}
736
Chris Lattner53e677a2004-04-02 20:23:17 +0000737
Chris Lattner53e677a2004-04-02 20:23:17 +0000738
739//===----------------------------------------------------------------------===//
740// Simple SCEV method implementations
741//===----------------------------------------------------------------------===//
742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000744/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000745static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000746 ScalarEvolution &SE,
747 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 // Handle the simplest case efficiently.
749 if (K == 1)
750 return SE.getTruncateOrZeroExtend(It, ResultTy);
751
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000752 // We are using the following formula for BC(It, K):
753 //
754 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
755 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756 // Suppose, W is the bitwidth of the return value. We must be prepared for
757 // overflow. Hence, we must assure that the result of our computation is
758 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
759 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000760 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000762 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
764 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000766 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000768 // This formula is trivially equivalent to the previous formula. However,
769 // this formula can be implemented much more efficiently. The trick is that
770 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
771 // arithmetic. To do exact division in modular arithmetic, all we have
772 // to do is multiply by the inverse. Therefore, this step can be done at
773 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000774 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 // The next issue is how to safely do the division by 2^T. The way this
776 // is done is by doing the multiplication step at a width of at least W + T
777 // bits. This way, the bottom W+T bits of the product are accurate. Then,
778 // when we perform the division by 2^T (which is equivalent to a right shift
779 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
780 // truncated out after the division by 2^T.
781 //
782 // In comparison to just directly using the first formula, this technique
783 // is much more efficient; using the first formula requires W * K bits,
784 // but this formula less than W + K bits. Also, the first formula requires
785 // a division step, whereas this formula only requires multiplies and shifts.
786 //
787 // It doesn't matter whether the subtraction step is done in the calculation
788 // width or the input iteration count's width; if the subtraction overflows,
789 // the result must be zero anyway. We prefer here to do it in the width of
790 // the induction variable because it helps a lot for certain cases; CodeGen
791 // isn't smart enough to ignore the overflow, which leads to much less
792 // efficient code if the width of the subtraction is wider than the native
793 // register width.
794 //
795 // (It's possible to not widen at all by pulling out factors of 2 before
796 // the multiplication; for example, K=2 can be calculated as
797 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
798 // extra arithmetic, so it's not an obvious win, and it gets
799 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800
Eli Friedmanb42a6262008-08-04 23:49:06 +0000801 // Protection from insane SCEVs; this bound is conservative,
802 // but it probably doesn't matter.
803 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000804 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000805
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000806 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000807
Eli Friedmanb42a6262008-08-04 23:49:06 +0000808 // Calculate K! / 2^T and T; we divide out the factors of two before
809 // multiplying for calculating K! / 2^T to avoid overflow.
810 // Other overflow doesn't matter because we only care about the bottom
811 // W bits of the result.
812 APInt OddFactorial(W, 1);
813 unsigned T = 1;
814 for (unsigned i = 3; i <= K; ++i) {
815 APInt Mult(W, i);
816 unsigned TwoFactors = Mult.countTrailingZeros();
817 T += TwoFactors;
818 Mult = Mult.lshr(TwoFactors);
819 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000820 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000821
Eli Friedmanb42a6262008-08-04 23:49:06 +0000822 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000823 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000824
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000825 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000826 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
827
828 // Calculate the multiplicative inverse of K! / 2^T;
829 // this multiplication factor will perform the exact division by
830 // K! / 2^T.
831 APInt Mod = APInt::getSignedMinValue(W+1);
832 APInt MultiplyFactor = OddFactorial.zext(W+1);
833 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
834 MultiplyFactor = MultiplyFactor.trunc(W);
835
836 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000837 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
838 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000840 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000841 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000842 Dividend = SE.getMulExpr(Dividend,
843 SE.getTruncateOrZeroExtend(S, CalculationTy));
844 }
845
846 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000847 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000848
849 // Truncate the result, and divide by K! / 2^T.
850
851 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
852 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000853}
854
Chris Lattner53e677a2004-04-02 20:23:17 +0000855/// evaluateAtIteration - Return the value of this chain of recurrences at
856/// the specified iteration number. We can evaluate this recurrence by
857/// multiplying each element in the chain by the binomial coefficient
858/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
859///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000860/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000861///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000862/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000863///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000864const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000865 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000866 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000867 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000868 // The computation is correct in the face of overflow provided that the
869 // multiplication is performed _after_ the evaluation of the binomial
870 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000871 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000872 if (isa<SCEVCouldNotCompute>(Coeff))
873 return Coeff;
874
875 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 }
877 return Result;
878}
879
Chris Lattner53e677a2004-04-02 20:23:17 +0000880//===----------------------------------------------------------------------===//
881// SCEV Expression folder implementations
882//===----------------------------------------------------------------------===//
883
Dan Gohman0bba49c2009-07-07 17:06:11 +0000884const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000885 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000886 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000887 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000888 assert(isSCEVable(Ty) &&
889 "This is not a conversion to a SCEVable type!");
890 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000891
Dan Gohmanc050fd92009-07-13 20:50:19 +0000892 FoldingSetNodeID ID;
893 ID.AddInteger(scTruncate);
894 ID.AddPointer(Op);
895 ID.AddPointer(Ty);
896 void *IP = 0;
897 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
898
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000899 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000900 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000901 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000902 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
903 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000904
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000906 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000907 return getTruncateExpr(ST->getOperand(), Ty);
908
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000909 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000910 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000911 return getTruncateOrSignExtend(SS->getOperand(), Ty);
912
913 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000915 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
916
Dan Gohman6864db62009-06-18 16:24:47 +0000917 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000919 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000921 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
922 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000923 }
924
Dan Gohmanf53462d2010-07-15 20:02:11 +0000925 // As a special case, fold trunc(undef) to undef. We don't want to
926 // know too much about SCEVUnknowns, but this special case is handy
927 // and harmless.
928 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
929 if (isa<UndefValue>(U->getValue()))
930 return getSCEV(UndefValue::get(Ty));
931
Dan Gohman420ab912010-06-25 18:47:08 +0000932 // The cast wasn't folded; create an explicit cast node. We can reuse
933 // the existing insert position since if we get here, we won't have
934 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000935 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
936 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000937 UniqueSCEVs.InsertNode(S, IP);
938 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000939}
940
Dan Gohman0bba49c2009-07-07 17:06:11 +0000941const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000942 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000943 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000944 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000945 assert(isSCEVable(Ty) &&
946 "This is not a conversion to a SCEVable type!");
947 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000948
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000949 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000950 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
951 return getConstant(
952 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
953 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000954
Dan Gohman20900ca2009-04-22 16:20:48 +0000955 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000956 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000957 return getZeroExtendExpr(SZ->getOperand(), Ty);
958
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000959 // Before doing any expensive analysis, check to see if we've already
960 // computed a SCEV for this Op and Ty.
961 FoldingSetNodeID ID;
962 ID.AddInteger(scZeroExtend);
963 ID.AddPointer(Op);
964 ID.AddPointer(Ty);
965 void *IP = 0;
966 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
967
Dan Gohman01ecca22009-04-27 20:16:15 +0000968 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000969 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000970 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000971 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000972 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000974 const SCEV *Start = AR->getStart();
975 const SCEV *Step = AR->getStepRecurrence(*this);
976 unsigned BitWidth = getTypeSizeInBits(AR->getType());
977 const Loop *L = AR->getLoop();
978
Dan Gohmaneb490a72009-07-25 01:22:26 +0000979 // If we have special knowledge that this addrec won't overflow,
980 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000981 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000982 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983 getZeroExtendExpr(Step, Ty),
984 L);
985
Dan Gohman01ecca22009-04-27 20:16:15 +0000986 // Check whether the backedge-taken count is SCEVCouldNotCompute.
987 // Note that this serves two purposes: It filters out loops that are
988 // simply not analyzable, and it covers the case where this code is
989 // being called from within backedge-taken count analysis, such that
990 // attempting to ask for the backedge-taken count would likely result
991 // in infinite recursion. In the later case, the analysis code will
992 // cope with a conservative value, and it will take care to purge
993 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000994 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000995 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000996 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000997 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000998
999 // Check whether the backedge-taken count can be losslessly casted to
1000 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001001 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001002 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001003 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001004 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1005 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001006 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001007 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001008 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001009 const SCEV *Add = getAddExpr(Start, ZMul);
1010 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001011 getAddExpr(getZeroExtendExpr(Start, WideTy),
1012 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1013 getZeroExtendExpr(Step, WideTy)));
1014 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001015 // Return the expression with the addrec on the outside.
1016 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001019
1020 // Similar to above, only this time treat the step value as signed.
1021 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001022 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001023 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001024 OperandExtendedAdd =
1025 getAddExpr(getZeroExtendExpr(Start, WideTy),
1026 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1027 getSignExtendExpr(Step, WideTy)));
1028 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001029 // Return the expression with the addrec on the outside.
1030 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 L);
1033 }
1034
1035 // If the backedge is guarded by a comparison with the pre-inc value
1036 // the addrec is safe. Also, if the entry is guarded by a comparison
1037 // with the start value and the backedge is guarded by a comparison
1038 // with the post-inc value, the addrec is safe.
1039 if (isKnownPositive(Step)) {
1040 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1041 getUnsignedRange(Step).getUnsignedMax());
1042 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001043 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1045 AR->getPostIncExpr(*this), N)))
1046 // Return the expression with the addrec on the outside.
1047 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1048 getZeroExtendExpr(Step, Ty),
1049 L);
1050 } else if (isKnownNegative(Step)) {
1051 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1052 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001053 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1054 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001055 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1056 AR->getPostIncExpr(*this), N)))
1057 // Return the expression with the addrec on the outside.
1058 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1059 getSignExtendExpr(Step, Ty),
1060 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001061 }
1062 }
1063 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001064
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001065 // The cast wasn't folded; create an explicit cast node.
1066 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001068 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1069 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001070 UniqueSCEVs.InsertNode(S, IP);
1071 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001072}
1073
Dan Gohman0bba49c2009-07-07 17:06:11 +00001074const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001075 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001076 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001077 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001078 assert(isSCEVable(Ty) &&
1079 "This is not a conversion to a SCEVable type!");
1080 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001081
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001082 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084 return getConstant(
1085 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1086 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001087
Dan Gohman20900ca2009-04-22 16:20:48 +00001088 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001089 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001090 return getSignExtendExpr(SS->getOperand(), Ty);
1091
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001092 // Before doing any expensive analysis, check to see if we've already
1093 // computed a SCEV for this Op and Ty.
1094 FoldingSetNodeID ID;
1095 ID.AddInteger(scSignExtend);
1096 ID.AddPointer(Op);
1097 ID.AddPointer(Ty);
1098 void *IP = 0;
1099 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1100
Dan Gohman01ecca22009-04-27 20:16:15 +00001101 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001102 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001103 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001104 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001105 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001106 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 const SCEV *Start = AR->getStart();
1108 const SCEV *Step = AR->getStepRecurrence(*this);
1109 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1110 const Loop *L = AR->getLoop();
1111
Dan Gohmaneb490a72009-07-25 01:22:26 +00001112 // If we have special knowledge that this addrec won't overflow,
1113 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001114 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001115 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1116 getSignExtendExpr(Step, Ty),
1117 L);
1118
Dan Gohman01ecca22009-04-27 20:16:15 +00001119 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1120 // Note that this serves two purposes: It filters out loops that are
1121 // simply not analyzable, and it covers the case where this code is
1122 // being called from within backedge-taken count analysis, such that
1123 // attempting to ask for the backedge-taken count would likely result
1124 // in infinite recursion. In the later case, the analysis code will
1125 // cope with a conservative value, and it will take care to purge
1126 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001127 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001128 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001129 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001130 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001131
1132 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001133 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001134 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001135 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001136 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001137 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1138 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001139 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001140 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001141 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *Add = getAddExpr(Start, SMul);
1143 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001144 getAddExpr(getSignExtendExpr(Start, WideTy),
1145 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1146 getSignExtendExpr(Step, WideTy)));
1147 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001148 // Return the expression with the addrec on the outside.
1149 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001151 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001152
1153 // Similar to above, only this time treat the step value as unsigned.
1154 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001155 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001156 Add = getAddExpr(Start, UMul);
1157 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001158 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001159 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1160 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001161 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001162 // Return the expression with the addrec on the outside.
1163 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1164 getZeroExtendExpr(Step, Ty),
1165 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001166 }
1167
1168 // If the backedge is guarded by a comparison with the pre-inc value
1169 // the addrec is safe. Also, if the entry is guarded by a comparison
1170 // with the start value and the backedge is guarded by a comparison
1171 // with the post-inc value, the addrec is safe.
1172 if (isKnownPositive(Step)) {
1173 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1174 getSignedRange(Step).getSignedMax());
1175 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001176 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001177 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1178 AR->getPostIncExpr(*this), N)))
1179 // Return the expression with the addrec on the outside.
1180 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1181 getSignExtendExpr(Step, Ty),
1182 L);
1183 } else if (isKnownNegative(Step)) {
1184 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1185 getSignedRange(Step).getSignedMin());
1186 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001187 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001188 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1189 AR->getPostIncExpr(*this), N)))
1190 // Return the expression with the addrec on the outside.
1191 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1192 getSignExtendExpr(Step, Ty),
1193 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001194 }
1195 }
1196 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001197
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001198 // The cast wasn't folded; create an explicit cast node.
1199 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001201 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1202 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001203 UniqueSCEVs.InsertNode(S, IP);
1204 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001205}
1206
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001207/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1208/// unspecified bits out to the given type.
1209///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001210const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001211 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001212 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1213 "This is not an extending conversion!");
1214 assert(isSCEVable(Ty) &&
1215 "This is not a conversion to a SCEVable type!");
1216 Ty = getEffectiveSCEVType(Ty);
1217
1218 // Sign-extend negative constants.
1219 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1220 if (SC->getValue()->getValue().isNegative())
1221 return getSignExtendExpr(Op, Ty);
1222
1223 // Peel off a truncate cast.
1224 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001225 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001226 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1227 return getAnyExtendExpr(NewOp, Ty);
1228 return getTruncateOrNoop(NewOp, Ty);
1229 }
1230
1231 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001232 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001233 if (!isa<SCEVZeroExtendExpr>(ZExt))
1234 return ZExt;
1235
1236 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001238 if (!isa<SCEVSignExtendExpr>(SExt))
1239 return SExt;
1240
Dan Gohmana10756e2010-01-21 02:09:26 +00001241 // Force the cast to be folded into the operands of an addrec.
1242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1243 SmallVector<const SCEV *, 4> Ops;
1244 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1245 I != E; ++I)
1246 Ops.push_back(getAnyExtendExpr(*I, Ty));
1247 return getAddRecExpr(Ops, AR->getLoop());
1248 }
1249
Dan Gohmanf53462d2010-07-15 20:02:11 +00001250 // As a special case, fold anyext(undef) to undef. We don't want to
1251 // know too much about SCEVUnknowns, but this special case is handy
1252 // and harmless.
1253 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1254 if (isa<UndefValue>(U->getValue()))
1255 return getSCEV(UndefValue::get(Ty));
1256
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001257 // If the expression is obviously signed, use the sext cast value.
1258 if (isa<SCEVSMaxExpr>(Op))
1259 return SExt;
1260
1261 // Absent any other information, use the zext cast value.
1262 return ZExt;
1263}
1264
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001265/// CollectAddOperandsWithScales - Process the given Ops list, which is
1266/// a list of operands to be added under the given scale, update the given
1267/// map. This is a helper function for getAddRecExpr. As an example of
1268/// what it does, given a sequence of operands that would form an add
1269/// expression like this:
1270///
1271/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1272///
1273/// where A and B are constants, update the map with these values:
1274///
1275/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1276///
1277/// and add 13 + A*B*29 to AccumulatedConstant.
1278/// This will allow getAddRecExpr to produce this:
1279///
1280/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1281///
1282/// This form often exposes folding opportunities that are hidden in
1283/// the original operand list.
1284///
1285/// Return true iff it appears that any interesting folding opportunities
1286/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1287/// the common case where no interesting opportunities are present, and
1288/// is also used as a check to avoid infinite recursion.
1289///
1290static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001291CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1292 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001293 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001294 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001295 const APInt &Scale,
1296 ScalarEvolution &SE) {
1297 bool Interesting = false;
1298
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001299 // Iterate over the add operands. They are sorted, with constants first.
1300 unsigned i = 0;
1301 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1302 ++i;
1303 // Pull a buried constant out to the outside.
1304 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1305 Interesting = true;
1306 AccumulatedConstant += Scale * C->getValue()->getValue();
1307 }
1308
1309 // Next comes everything else. We're especially interested in multiplies
1310 // here, but they're in the middle, so just visit the rest with one loop.
1311 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001312 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1313 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1314 APInt NewScale =
1315 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1316 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1317 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001318 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001319 Interesting |=
1320 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001321 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001322 NewScale, SE);
1323 } else {
1324 // A multiplication of a constant with some other value. Update
1325 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1327 const SCEV *Key = SE.getMulExpr(MulOps);
1328 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001329 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001330 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001331 NewOps.push_back(Pair.first->first);
1332 } else {
1333 Pair.first->second += NewScale;
1334 // The map already had an entry for this value, which may indicate
1335 // a folding opportunity.
1336 Interesting = true;
1337 }
1338 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 } else {
1340 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001341 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001342 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001343 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001344 NewOps.push_back(Pair.first->first);
1345 } else {
1346 Pair.first->second += Scale;
1347 // The map already had an entry for this value, which may indicate
1348 // a folding opportunity.
1349 Interesting = true;
1350 }
1351 }
1352 }
1353
1354 return Interesting;
1355}
1356
1357namespace {
1358 struct APIntCompare {
1359 bool operator()(const APInt &LHS, const APInt &RHS) const {
1360 return LHS.ult(RHS);
1361 }
1362 };
1363}
1364
Dan Gohman6c0866c2009-05-24 23:45:28 +00001365/// getAddExpr - Get a canonical add expression, or something simpler if
1366/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001367const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1368 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001369 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001370 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001371#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001372 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001373 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001374 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001375 "SCEVAddExpr operand types don't match!");
1376#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001377
Dan Gohmana10756e2010-01-21 02:09:26 +00001378 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1379 if (!HasNUW && HasNSW) {
1380 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001381 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1382 E = Ops.end(); I != E; ++I)
1383 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001384 All = false;
1385 break;
1386 }
1387 if (All) HasNUW = true;
1388 }
1389
Chris Lattner53e677a2004-04-02 20:23:17 +00001390 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001391 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001392
1393 // If there are any constants, fold them together.
1394 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001395 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001397 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001398 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001399 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001400 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1401 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001402 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001403 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001404 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 }
1406
1407 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001408 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001409 Ops.erase(Ops.begin());
1410 --Idx;
1411 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001412
Dan Gohmanbca091d2010-04-12 23:08:18 +00001413 if (Ops.size() == 1) return Ops[0];
1414 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001415
Dan Gohman68ff7762010-08-27 21:39:59 +00001416 // Okay, check to see if the same value occurs in the operand list more than
1417 // once. If so, merge them together into an multiply expression. Since we
1418 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001419 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001420 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001421 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001422 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001423 // Scan ahead to count how many equal operands there are.
1424 unsigned Count = 2;
1425 while (i+Count != e && Ops[i+Count] == Ops[i])
1426 ++Count;
1427 // Merge the values into a multiply.
1428 const SCEV *Scale = getConstant(Ty, Count);
1429 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1430 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001432 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001433 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001434 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001435 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001436 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001437 if (FoundMatch)
1438 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001439
Dan Gohman728c7f32009-05-08 21:03:19 +00001440 // Check for truncates. If all the operands are truncated from the same
1441 // type, see if factoring out the truncate would permit the result to be
1442 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1443 // if the contents of the resulting outer trunc fold to something simple.
1444 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1445 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1446 const Type *DstType = Trunc->getType();
1447 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001448 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001449 bool Ok = true;
1450 // Check all the operands to see if they can be represented in the
1451 // source type of the truncate.
1452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1454 if (T->getOperand()->getType() != SrcType) {
1455 Ok = false;
1456 break;
1457 }
1458 LargeOps.push_back(T->getOperand());
1459 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001460 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001461 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001462 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001463 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1464 if (const SCEVTruncateExpr *T =
1465 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1466 if (T->getOperand()->getType() != SrcType) {
1467 Ok = false;
1468 break;
1469 }
1470 LargeMulOps.push_back(T->getOperand());
1471 } else if (const SCEVConstant *C =
1472 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001473 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001474 } else {
1475 Ok = false;
1476 break;
1477 }
1478 }
1479 if (Ok)
1480 LargeOps.push_back(getMulExpr(LargeMulOps));
1481 } else {
1482 Ok = false;
1483 break;
1484 }
1485 }
1486 if (Ok) {
1487 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001488 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001489 // If it folds to something simple, use it. Otherwise, don't.
1490 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1491 return getTruncateExpr(Fold, DstType);
1492 }
1493 }
1494
1495 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001496 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1497 ++Idx;
1498
1499 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 if (Idx < Ops.size()) {
1501 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001502 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 // If we have an add, expand the add operands onto the end of the operands
1504 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001506 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 DeletedAdd = true;
1508 }
1509
1510 // If we deleted at least one add, we added operands to the end of the list,
1511 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001512 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001514 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 }
1516
1517 // Skip over the add expression until we get to a multiply.
1518 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1519 ++Idx;
1520
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001521 // Check to see if there are any folding opportunities present with
1522 // operands multiplied by constant values.
1523 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1524 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001525 DenseMap<const SCEV *, APInt> M;
1526 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001527 APInt AccumulatedConstant(BitWidth, 0);
1528 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001529 Ops.data(), Ops.size(),
1530 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001531 // Some interesting folding opportunity is present, so its worthwhile to
1532 // re-generate the operands list. Group the operands by constant scale,
1533 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001535 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001536 E = NewOps.end(); I != E; ++I)
1537 MulOpLists[M.find(*I)->second].push_back(*I);
1538 // Re-generate the operands list.
1539 Ops.clear();
1540 if (AccumulatedConstant != 0)
1541 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001542 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1543 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001544 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001545 Ops.push_back(getMulExpr(getConstant(I->first),
1546 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001547 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001548 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001549 if (Ops.size() == 1)
1550 return Ops[0];
1551 return getAddExpr(Ops);
1552 }
1553 }
1554
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 // If we are adding something to a multiply expression, make sure the
1556 // something is not already an operand of the multiply. If so, merge it into
1557 // the multiply.
1558 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001559 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001561 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001562 if (isa<SCEVConstant>(MulOpSCEV))
1563 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001565 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001567 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 if (Mul->getNumOperands() != 2) {
1569 // If the multiply has more than two operands, we must get the
1570 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001571 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1572 Mul->op_begin()+MulOp);
1573 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001574 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001576 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001577 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001578 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 if (Ops.size() == 2) return OuterMul;
1580 if (AddOp < Idx) {
1581 Ops.erase(Ops.begin()+AddOp);
1582 Ops.erase(Ops.begin()+Idx-1);
1583 } else {
1584 Ops.erase(Ops.begin()+Idx);
1585 Ops.erase(Ops.begin()+AddOp-1);
1586 }
1587 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001588 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001590
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 // Check this multiply against other multiplies being added together.
1592 for (unsigned OtherMulIdx = Idx+1;
1593 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1594 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001595 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 // If MulOp occurs in OtherMul, we can fold the two multiplies
1597 // together.
1598 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1599 OMulOp != e; ++OMulOp)
1600 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1601 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001602 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001604 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001605 Mul->op_begin()+MulOp);
1606 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001607 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001609 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001611 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001612 OtherMul->op_begin()+OMulOp);
1613 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001614 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001616 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1617 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001619 Ops.erase(Ops.begin()+Idx);
1620 Ops.erase(Ops.begin()+OtherMulIdx-1);
1621 Ops.push_back(OuterMul);
1622 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624 }
1625 }
1626 }
1627
1628 // If there are any add recurrences in the operands list, see if any other
1629 // added values are loop invariant. If so, we can fold them into the
1630 // recurrence.
1631 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1632 ++Idx;
1633
1634 // Scan over all recurrences, trying to fold loop invariants into them.
1635 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1636 // Scan all of the other operands to this add and add them to the vector if
1637 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001638 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001639 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001640 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001642 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 LIOps.push_back(Ops[i]);
1644 Ops.erase(Ops.begin()+i);
1645 --i; --e;
1646 }
1647
1648 // If we found some loop invariants, fold them into the recurrence.
1649 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001650 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 LIOps.push_back(AddRec->getStart());
1652
Dan Gohman0bba49c2009-07-07 17:06:11 +00001653 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001654 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001655 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001656
Dan Gohmanb9f96512010-06-30 07:16:37 +00001657 // Build the new addrec. Propagate the NUW and NSW flags if both the
1658 // outer add and the inner addrec are guaranteed to have no overflow.
1659 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1660 HasNUW && AddRec->hasNoUnsignedWrap(),
1661 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // If all of the other operands were loop invariant, we are done.
1664 if (Ops.size() == 1) return NewRec;
1665
1666 // Otherwise, add the folded AddRec by the non-liv parts.
1667 for (unsigned i = 0;; ++i)
1668 if (Ops[i] == AddRec) {
1669 Ops[i] = NewRec;
1670 break;
1671 }
Dan Gohman246b2562007-10-22 18:31:58 +00001672 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
1674
1675 // Okay, if there weren't any loop invariants to be folded, check to see if
1676 // there are multiple AddRec's with the same loop induction variable being
1677 // added together. If so, we can fold them.
1678 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001679 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1680 ++OtherIdx)
1681 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1682 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1683 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1684 AddRec->op_end());
1685 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1686 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001687 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001688 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001689 if (OtherAddRec->getLoop() == AddRecLoop) {
1690 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1691 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001692 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001693 AddRecOps.append(OtherAddRec->op_begin()+i,
1694 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001695 break;
1696 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001697 AddRecOps[i] = getAddExpr(AddRecOps[i],
1698 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001699 }
1700 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001701 }
Dan Gohman32527152010-08-27 20:45:56 +00001702 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1703 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
1705
1706 // Otherwise couldn't fold anything into this recurrence. Move onto the
1707 // next one.
1708 }
1709
1710 // Okay, it looks like we really DO need an add expr. Check to see if we
1711 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001712 FoldingSetNodeID ID;
1713 ID.AddInteger(scAddExpr);
1714 ID.AddInteger(Ops.size());
1715 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1716 ID.AddPointer(Ops[i]);
1717 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001718 SCEVAddExpr *S =
1719 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1720 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001721 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1722 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001723 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1724 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001725 UniqueSCEVs.InsertNode(S, IP);
1726 }
Dan Gohman3645b012009-10-09 00:10:36 +00001727 if (HasNUW) S->setHasNoUnsignedWrap(true);
1728 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001729 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001730}
1731
Dan Gohman6c0866c2009-05-24 23:45:28 +00001732/// getMulExpr - Get a canonical multiply expression, or something simpler if
1733/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001734const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1735 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001736 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001737 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001738#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001739 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001740 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001741 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001742 "SCEVMulExpr operand types don't match!");
1743#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001744
Dan Gohmana10756e2010-01-21 02:09:26 +00001745 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1746 if (!HasNUW && HasNSW) {
1747 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001748 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1749 E = Ops.end(); I != E; ++I)
1750 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001751 All = false;
1752 break;
1753 }
1754 if (All) HasNUW = true;
1755 }
1756
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001758 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001759
1760 // If there are any constants, fold them together.
1761 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001762 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001763
1764 // C1*(C2+V) -> C1*C2 + C1*V
1765 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001766 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 if (Add->getNumOperands() == 2 &&
1768 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001769 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1770 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001771
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001773 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001775 ConstantInt *Fold = ConstantInt::get(getContext(),
1776 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001777 RHSC->getValue()->getValue());
1778 Ops[0] = getConstant(Fold);
1779 Ops.erase(Ops.begin()+1); // Erase the folded element
1780 if (Ops.size() == 1) return Ops[0];
1781 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001782 }
1783
1784 // If we are left with a constant one being multiplied, strip it off.
1785 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1786 Ops.erase(Ops.begin());
1787 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001788 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 // If we have a multiply of zero, it will always be zero.
1790 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001791 } else if (Ops[0]->isAllOnesValue()) {
1792 // If we have a mul by -1 of an add, try distributing the -1 among the
1793 // add operands.
1794 if (Ops.size() == 2)
1795 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1796 SmallVector<const SCEV *, 4> NewOps;
1797 bool AnyFolded = false;
1798 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1799 I != E; ++I) {
1800 const SCEV *Mul = getMulExpr(Ops[0], *I);
1801 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1802 NewOps.push_back(Mul);
1803 }
1804 if (AnyFolded)
1805 return getAddExpr(NewOps);
1806 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001807 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001808
1809 if (Ops.size() == 1)
1810 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001811 }
1812
1813 // Skip over the add expression until we get to a multiply.
1814 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1815 ++Idx;
1816
Chris Lattner53e677a2004-04-02 20:23:17 +00001817 // If there are mul operands inline them all into this expression.
1818 if (Idx < Ops.size()) {
1819 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001820 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001821 // If we have an mul, expand the mul operands onto the end of the operands
1822 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001823 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001824 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 DeletedMul = true;
1826 }
1827
1828 // If we deleted at least one mul, we added operands to the end of the list,
1829 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001830 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001831 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001832 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 }
1834
1835 // If there are any add recurrences in the operands list, see if any other
1836 // added values are loop invariant. If so, we can fold them into the
1837 // recurrence.
1838 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1839 ++Idx;
1840
1841 // Scan over all recurrences, trying to fold loop invariants into them.
1842 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1843 // Scan all of the other operands to this mul and add them to the vector if
1844 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001845 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001846 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001847 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001849 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 LIOps.push_back(Ops[i]);
1851 Ops.erase(Ops.begin()+i);
1852 --i; --e;
1853 }
1854
1855 // If we found some loop invariants, fold them into the recurrence.
1856 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001857 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001858 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001859 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001860 const SCEV *Scale = getMulExpr(LIOps);
1861 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1862 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001863
Dan Gohmanb9f96512010-06-30 07:16:37 +00001864 // Build the new addrec. Propagate the NUW and NSW flags if both the
1865 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001866 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001868 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001869
1870 // If all of the other operands were loop invariant, we are done.
1871 if (Ops.size() == 1) return NewRec;
1872
1873 // Otherwise, multiply the folded AddRec by the non-liv parts.
1874 for (unsigned i = 0;; ++i)
1875 if (Ops[i] == AddRec) {
1876 Ops[i] = NewRec;
1877 break;
1878 }
Dan Gohman246b2562007-10-22 18:31:58 +00001879 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001880 }
1881
1882 // Okay, if there weren't any loop invariants to be folded, check to see if
1883 // there are multiple AddRec's with the same loop induction variable being
1884 // multiplied together. If so, we can fold them.
1885 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001886 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1887 ++OtherIdx)
1888 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1889 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1890 // {A*C,+,F*D + G*B + B*D}<L>
1891 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1892 ++OtherIdx)
1893 if (const SCEVAddRecExpr *OtherAddRec =
1894 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1895 if (OtherAddRec->getLoop() == AddRecLoop) {
1896 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1897 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1898 const SCEV *B = F->getStepRecurrence(*this);
1899 const SCEV *D = G->getStepRecurrence(*this);
1900 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1901 getMulExpr(G, B),
1902 getMulExpr(B, D));
1903 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1904 F->getLoop());
1905 if (Ops.size() == 2) return NewAddRec;
1906 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1907 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1908 }
1909 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001910 }
1911
1912 // Otherwise couldn't fold anything into this recurrence. Move onto the
1913 // next one.
1914 }
1915
1916 // Okay, it looks like we really DO need an mul expr. Check to see if we
1917 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001918 FoldingSetNodeID ID;
1919 ID.AddInteger(scMulExpr);
1920 ID.AddInteger(Ops.size());
1921 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1922 ID.AddPointer(Ops[i]);
1923 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001924 SCEVMulExpr *S =
1925 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1926 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001927 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1928 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001929 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1930 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001931 UniqueSCEVs.InsertNode(S, IP);
1932 }
Dan Gohman3645b012009-10-09 00:10:36 +00001933 if (HasNUW) S->setHasNoUnsignedWrap(true);
1934 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001935 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001936}
1937
Andreas Bolka8a11c982009-08-07 22:55:26 +00001938/// getUDivExpr - Get a canonical unsigned division expression, or something
1939/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001940const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1941 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001942 assert(getEffectiveSCEVType(LHS->getType()) ==
1943 getEffectiveSCEVType(RHS->getType()) &&
1944 "SCEVUDivExpr operand types don't match!");
1945
Dan Gohman622ed672009-05-04 22:02:23 +00001946 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001948 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001949 // If the denominator is zero, the result of the udiv is undefined. Don't
1950 // try to analyze it, because the resolution chosen here may differ from
1951 // the resolution chosen in other parts of the compiler.
1952 if (!RHSC->getValue()->isZero()) {
1953 // Determine if the division can be folded into the operands of
1954 // its operands.
1955 // TODO: Generalize this to non-constants by using known-bits information.
1956 const Type *Ty = LHS->getType();
1957 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001958 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001959 // For non-power-of-two values, effectively round the value up to the
1960 // nearest power of two.
1961 if (!RHSC->getValue()->getValue().isPowerOf2())
1962 ++MaxShiftAmt;
1963 const IntegerType *ExtTy =
1964 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1965 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1966 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1967 if (const SCEVConstant *Step =
1968 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1969 if (!Step->getValue()->getValue()
1970 .urem(RHSC->getValue()->getValue()) &&
1971 getZeroExtendExpr(AR, ExtTy) ==
1972 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1973 getZeroExtendExpr(Step, ExtTy),
1974 AR->getLoop())) {
1975 SmallVector<const SCEV *, 4> Operands;
1976 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1977 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1978 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001979 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001980 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1981 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1982 SmallVector<const SCEV *, 4> Operands;
1983 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1984 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1985 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1986 // Find an operand that's safely divisible.
1987 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1988 const SCEV *Op = M->getOperand(i);
1989 const SCEV *Div = getUDivExpr(Op, RHSC);
1990 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1991 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1992 M->op_end());
1993 Operands[i] = Div;
1994 return getMulExpr(Operands);
1995 }
1996 }
Dan Gohman185cf032009-05-08 20:18:49 +00001997 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001998 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1999 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2000 SmallVector<const SCEV *, 4> Operands;
2001 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2002 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2003 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2004 Operands.clear();
2005 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2006 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2007 if (isa<SCEVUDivExpr>(Op) ||
2008 getMulExpr(Op, RHS) != A->getOperand(i))
2009 break;
2010 Operands.push_back(Op);
2011 }
2012 if (Operands.size() == A->getNumOperands())
2013 return getAddExpr(Operands);
2014 }
2015 }
Dan Gohman185cf032009-05-08 20:18:49 +00002016
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002017 // Fold if both operands are constant.
2018 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2019 Constant *LHSCV = LHSC->getValue();
2020 Constant *RHSCV = RHSC->getValue();
2021 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2022 RHSCV)));
2023 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 }
2025 }
2026
Dan Gohman1c343752009-06-27 21:21:31 +00002027 FoldingSetNodeID ID;
2028 ID.AddInteger(scUDivExpr);
2029 ID.AddPointer(LHS);
2030 ID.AddPointer(RHS);
2031 void *IP = 0;
2032 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002033 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2034 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002035 UniqueSCEVs.InsertNode(S, IP);
2036 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002037}
2038
2039
Dan Gohman6c0866c2009-05-24 23:45:28 +00002040/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2041/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002042const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002043 const SCEV *Step, const Loop *L,
2044 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002045 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002046 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002047 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002048 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002049 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002050 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002051 }
2052
2053 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002054 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002055}
2056
Dan Gohman6c0866c2009-05-24 23:45:28 +00002057/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2058/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002059const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002060ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002061 const Loop *L,
2062 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002063 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002064#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002065 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002066 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002067 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002068 "SCEVAddRecExpr operand types don't match!");
2069#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002070
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002071 if (Operands.back()->isZero()) {
2072 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002073 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002074 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002075
Dan Gohmanbc028532010-02-19 18:49:22 +00002076 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2077 // use that information to infer NUW and NSW flags. However, computing a
2078 // BE count requires calling getAddRecExpr, so we may not yet have a
2079 // meaningful BE count at this point (and if we don't, we'd be stuck
2080 // with a SCEVCouldNotCompute as the cached BE count).
2081
Dan Gohmana10756e2010-01-21 02:09:26 +00002082 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2083 if (!HasNUW && HasNSW) {
2084 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002085 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2086 E = Operands.end(); I != E; ++I)
2087 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002088 All = false;
2089 break;
2090 }
2091 if (All) HasNUW = true;
2092 }
2093
Dan Gohmand9cc7492008-08-08 18:33:12 +00002094 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002095 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002096 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002097 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002098 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002099 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002100 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002101 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002102 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002103 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002104 // AddRecs require their operands be loop-invariant with respect to their
2105 // loops. Don't perform this transformation if it would break this
2106 // requirement.
2107 bool AllInvariant = true;
2108 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2109 if (!Operands[i]->isLoopInvariant(L)) {
2110 AllInvariant = false;
2111 break;
2112 }
2113 if (AllInvariant) {
2114 NestedOperands[0] = getAddRecExpr(Operands, L);
2115 AllInvariant = true;
2116 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2117 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2118 AllInvariant = false;
2119 break;
2120 }
2121 if (AllInvariant)
2122 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002123 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002124 }
2125 // Reset Operands to its original state.
2126 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002127 }
2128 }
2129
Dan Gohman67847532010-01-19 22:27:22 +00002130 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2131 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002132 FoldingSetNodeID ID;
2133 ID.AddInteger(scAddRecExpr);
2134 ID.AddInteger(Operands.size());
2135 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2136 ID.AddPointer(Operands[i]);
2137 ID.AddPointer(L);
2138 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002139 SCEVAddRecExpr *S =
2140 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2141 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002142 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2143 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002144 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2145 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002146 UniqueSCEVs.InsertNode(S, IP);
2147 }
Dan Gohman3645b012009-10-09 00:10:36 +00002148 if (HasNUW) S->setHasNoUnsignedWrap(true);
2149 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002150 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002151}
2152
Dan Gohman9311ef62009-06-24 14:49:00 +00002153const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2154 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002155 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156 Ops.push_back(LHS);
2157 Ops.push_back(RHS);
2158 return getSMaxExpr(Ops);
2159}
2160
Dan Gohman0bba49c2009-07-07 17:06:11 +00002161const SCEV *
2162ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002163 assert(!Ops.empty() && "Cannot get empty smax!");
2164 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002165#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002166 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002167 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002168 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002169 "SCEVSMaxExpr operand types don't match!");
2170#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002171
2172 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002173 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002174
2175 // If there are any constants, fold them together.
2176 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002177 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002178 ++Idx;
2179 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002180 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002181 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002182 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002183 APIntOps::smax(LHSC->getValue()->getValue(),
2184 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002185 Ops[0] = getConstant(Fold);
2186 Ops.erase(Ops.begin()+1); // Erase the folded element
2187 if (Ops.size() == 1) return Ops[0];
2188 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002189 }
2190
Dan Gohmane5aceed2009-06-24 14:46:22 +00002191 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002192 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2193 Ops.erase(Ops.begin());
2194 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002195 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2196 // If we have an smax with a constant maximum-int, it will always be
2197 // maximum-int.
2198 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002199 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002200
Dan Gohman3ab13122010-04-13 16:49:23 +00002201 if (Ops.size() == 1) return Ops[0];
2202 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002203
2204 // Find the first SMax
2205 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2206 ++Idx;
2207
2208 // Check to see if one of the operands is an SMax. If so, expand its operands
2209 // onto our operand list, and recurse to simplify.
2210 if (Idx < Ops.size()) {
2211 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002212 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002213 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002214 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002215 DeletedSMax = true;
2216 }
2217
2218 if (DeletedSMax)
2219 return getSMaxExpr(Ops);
2220 }
2221
2222 // Okay, check to see if the same value occurs in the operand list twice. If
2223 // so, delete one. Since we sorted the list, these values are required to
2224 // be adjacent.
2225 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002226 // X smax Y smax Y --> X smax Y
2227 // X smax Y --> X, if X is always greater than Y
2228 if (Ops[i] == Ops[i+1] ||
2229 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2230 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2231 --i; --e;
2232 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002233 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2234 --i; --e;
2235 }
2236
2237 if (Ops.size() == 1) return Ops[0];
2238
2239 assert(!Ops.empty() && "Reduced smax down to nothing!");
2240
Nick Lewycky3e630762008-02-20 06:48:22 +00002241 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002242 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002243 FoldingSetNodeID ID;
2244 ID.AddInteger(scSMaxExpr);
2245 ID.AddInteger(Ops.size());
2246 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247 ID.AddPointer(Ops[i]);
2248 void *IP = 0;
2249 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002250 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002252 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002254 UniqueSCEVs.InsertNode(S, IP);
2255 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002256}
2257
Dan Gohman9311ef62009-06-24 14:49:00 +00002258const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002260 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002261 Ops.push_back(LHS);
2262 Ops.push_back(RHS);
2263 return getUMaxExpr(Ops);
2264}
2265
Dan Gohman0bba49c2009-07-07 17:06:11 +00002266const SCEV *
2267ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002268 assert(!Ops.empty() && "Cannot get empty umax!");
2269 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002270#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002271 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002273 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274 "SCEVUMaxExpr operand types don't match!");
2275#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002276
2277 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002278 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002279
2280 // If there are any constants, fold them together.
2281 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002282 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002283 ++Idx;
2284 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002285 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002287 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002288 APIntOps::umax(LHSC->getValue()->getValue(),
2289 RHSC->getValue()->getValue()));
2290 Ops[0] = getConstant(Fold);
2291 Ops.erase(Ops.begin()+1); // Erase the folded element
2292 if (Ops.size() == 1) return Ops[0];
2293 LHSC = cast<SCEVConstant>(Ops[0]);
2294 }
2295
Dan Gohmane5aceed2009-06-24 14:46:22 +00002296 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002297 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298 Ops.erase(Ops.begin());
2299 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002300 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301 // If we have an umax with a constant maximum-int, it will always be
2302 // maximum-int.
2303 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002304 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002305
Dan Gohman3ab13122010-04-13 16:49:23 +00002306 if (Ops.size() == 1) return Ops[0];
2307 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002308
2309 // Find the first UMax
2310 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311 ++Idx;
2312
2313 // Check to see if one of the operands is a UMax. If so, expand its operands
2314 // onto our operand list, and recurse to simplify.
2315 if (Idx < Ops.size()) {
2316 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002317 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002318 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002319 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002320 DeletedUMax = true;
2321 }
2322
2323 if (DeletedUMax)
2324 return getUMaxExpr(Ops);
2325 }
2326
2327 // Okay, check to see if the same value occurs in the operand list twice. If
2328 // so, delete one. Since we sorted the list, these values are required to
2329 // be adjacent.
2330 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002331 // X umax Y umax Y --> X umax Y
2332 // X umax Y --> X, if X is always greater than Y
2333 if (Ops[i] == Ops[i+1] ||
2334 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336 --i; --e;
2337 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002338 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339 --i; --e;
2340 }
2341
2342 if (Ops.size() == 1) return Ops[0];
2343
2344 assert(!Ops.empty() && "Reduced umax down to nothing!");
2345
2346 // Okay, it looks like we really DO need a umax expr. Check to see if we
2347 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002348 FoldingSetNodeID ID;
2349 ID.AddInteger(scUMaxExpr);
2350 ID.AddInteger(Ops.size());
2351 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2352 ID.AddPointer(Ops[i]);
2353 void *IP = 0;
2354 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002355 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2356 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002357 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2358 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002359 UniqueSCEVs.InsertNode(S, IP);
2360 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002361}
2362
Dan Gohman9311ef62009-06-24 14:49:00 +00002363const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2364 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002365 // ~smax(~x, ~y) == smin(x, y).
2366 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2367}
2368
Dan Gohman9311ef62009-06-24 14:49:00 +00002369const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2370 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002371 // ~umax(~x, ~y) == umin(x, y)
2372 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2373}
2374
Dan Gohman4f8eea82010-02-01 18:27:38 +00002375const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002376 // If we have TargetData, we can bypass creating a target-independent
2377 // constant expression and then folding it back into a ConstantInt.
2378 // This is just a compile-time optimization.
2379 if (TD)
2380 return getConstant(TD->getIntPtrType(getContext()),
2381 TD->getTypeAllocSize(AllocTy));
2382
Dan Gohman4f8eea82010-02-01 18:27:38 +00002383 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002385 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2386 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002387 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2388 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2389}
2390
2391const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2392 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2393 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002394 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2395 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002396 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2397 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2398}
2399
2400const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2401 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002402 // If we have TargetData, we can bypass creating a target-independent
2403 // constant expression and then folding it back into a ConstantInt.
2404 // This is just a compile-time optimization.
2405 if (TD)
2406 return getConstant(TD->getIntPtrType(getContext()),
2407 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2408
Dan Gohman0f5efe52010-01-28 02:15:55 +00002409 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002411 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2412 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002413 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002414 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002415}
2416
Dan Gohman4f8eea82010-02-01 18:27:38 +00002417const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2418 Constant *FieldNo) {
2419 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002420 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002421 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2422 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002423 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002424 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002425}
2426
Dan Gohman0bba49c2009-07-07 17:06:11 +00002427const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002428 // Don't attempt to do anything other than create a SCEVUnknown object
2429 // here. createSCEV only calls getUnknown after checking for all other
2430 // interesting possibilities, and any other code that calls getUnknown
2431 // is doing so in order to hide a value from SCEV canonicalization.
2432
Dan Gohman1c343752009-06-27 21:21:31 +00002433 FoldingSetNodeID ID;
2434 ID.AddInteger(scUnknown);
2435 ID.AddPointer(V);
2436 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002437 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2438 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2439 "Stale SCEVUnknown in uniquing map!");
2440 return S;
2441 }
2442 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2443 FirstUnknown);
2444 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002445 UniqueSCEVs.InsertNode(S, IP);
2446 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002447}
2448
Chris Lattner53e677a2004-04-02 20:23:17 +00002449//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002450// Basic SCEV Analysis and PHI Idiom Recognition Code
2451//
2452
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002453/// isSCEVable - Test if values of the given type are analyzable within
2454/// the SCEV framework. This primarily includes integer types, and it
2455/// can optionally include pointer types if the ScalarEvolution class
2456/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002457bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002458 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002459 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002460}
2461
2462/// getTypeSizeInBits - Return the size in bits of the specified type,
2463/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002464uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002465 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2466
2467 // If we have a TargetData, use it!
2468 if (TD)
2469 return TD->getTypeSizeInBits(Ty);
2470
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002471 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002472 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002473 return Ty->getPrimitiveSizeInBits();
2474
2475 // The only other support type is pointer. Without TargetData, conservatively
2476 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002477 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002478 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002479}
2480
2481/// getEffectiveSCEVType - Return a type with the same bitwidth as
2482/// the given type and which represents how SCEV will treat the given
2483/// type, for which isSCEVable must return true. For pointer types,
2484/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002485const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002486 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2487
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002488 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002489 return Ty;
2490
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002491 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002492 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002493 if (TD) return TD->getIntPtrType(getContext());
2494
2495 // Without TargetData, conservatively assume pointers are 64-bit.
2496 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002497}
Chris Lattner53e677a2004-04-02 20:23:17 +00002498
Dan Gohman0bba49c2009-07-07 17:06:11 +00002499const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002500 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002501}
2502
Chris Lattner53e677a2004-04-02 20:23:17 +00002503/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2504/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002505const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002506 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002507
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002508 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2509 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002510 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002511
2512 // The process of creating a SCEV for V may have caused other SCEVs
2513 // to have been created, so it's necessary to insert the new entry
2514 // from scratch, rather than trying to remember the insert position
2515 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002516 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002517 return S;
2518}
2519
Dan Gohman2d1be872009-04-16 03:18:22 +00002520/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2521///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002522const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002523 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002524 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002525 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002526
2527 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002528 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002529 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002530 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002531}
2532
2533/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002534const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002535 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002536 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002537 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002538
2539 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002540 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002541 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002542 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002543 return getMinusSCEV(AllOnes, V);
2544}
2545
2546/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2547///
Dan Gohman9311ef62009-06-24 14:49:00 +00002548const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2549 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002550 // Fast path: X - X --> 0.
2551 if (LHS == RHS)
2552 return getConstant(LHS->getType(), 0);
2553
Dan Gohman2d1be872009-04-16 03:18:22 +00002554 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002555 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002556}
2557
2558/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2559/// input value to the specified type. If the type must be extended, it is zero
2560/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002561const SCEV *
2562ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002563 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002564 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2566 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002567 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002568 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002569 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002570 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002571 return getTruncateExpr(V, Ty);
2572 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002573}
2574
2575/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2576/// input value to the specified type. If the type must be extended, it is sign
2577/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002578const SCEV *
2579ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002580 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002581 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002582 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2583 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002584 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002585 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002586 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002587 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002588 return getTruncateExpr(V, Ty);
2589 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002590}
2591
Dan Gohman467c4302009-05-13 03:46:30 +00002592/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2593/// input value to the specified type. If the type must be extended, it is zero
2594/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002595const SCEV *
2596ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002597 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002598 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2599 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002600 "Cannot noop or zero extend with non-integer arguments!");
2601 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2602 "getNoopOrZeroExtend cannot truncate!");
2603 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2604 return V; // No conversion
2605 return getZeroExtendExpr(V, Ty);
2606}
2607
2608/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2609/// input value to the specified type. If the type must be extended, it is sign
2610/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002611const SCEV *
2612ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002613 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002614 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2615 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002616 "Cannot noop or sign extend with non-integer arguments!");
2617 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2618 "getNoopOrSignExtend cannot truncate!");
2619 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2620 return V; // No conversion
2621 return getSignExtendExpr(V, Ty);
2622}
2623
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002624/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2625/// the input value to the specified type. If the type must be extended,
2626/// it is extended with unspecified bits. The conversion must not be
2627/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002628const SCEV *
2629ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002630 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002631 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2632 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002633 "Cannot noop or any extend with non-integer arguments!");
2634 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2635 "getNoopOrAnyExtend cannot truncate!");
2636 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2637 return V; // No conversion
2638 return getAnyExtendExpr(V, Ty);
2639}
2640
Dan Gohman467c4302009-05-13 03:46:30 +00002641/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2642/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002643const SCEV *
2644ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002645 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002646 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2647 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002648 "Cannot truncate or noop with non-integer arguments!");
2649 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2650 "getTruncateOrNoop cannot extend!");
2651 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2652 return V; // No conversion
2653 return getTruncateExpr(V, Ty);
2654}
2655
Dan Gohmana334aa72009-06-22 00:31:57 +00002656/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2657/// the types using zero-extension, and then perform a umax operation
2658/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002659const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2660 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002661 const SCEV *PromotedLHS = LHS;
2662 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002663
2664 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2665 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2666 else
2667 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2668
2669 return getUMaxExpr(PromotedLHS, PromotedRHS);
2670}
2671
Dan Gohmanc9759e82009-06-22 15:03:27 +00002672/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2673/// the types using zero-extension, and then perform a umin operation
2674/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002675const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2676 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002677 const SCEV *PromotedLHS = LHS;
2678 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002679
2680 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2681 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2682 else
2683 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2684
2685 return getUMinExpr(PromotedLHS, PromotedRHS);
2686}
2687
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002688/// PushDefUseChildren - Push users of the given Instruction
2689/// onto the given Worklist.
2690static void
2691PushDefUseChildren(Instruction *I,
2692 SmallVectorImpl<Instruction *> &Worklist) {
2693 // Push the def-use children onto the Worklist stack.
2694 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2695 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002696 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002697}
2698
2699/// ForgetSymbolicValue - This looks up computed SCEV values for all
2700/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002701/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002702/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002703void
Dan Gohman85669632010-02-25 06:57:05 +00002704ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002705 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002706 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002707
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002708 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002709 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002710 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002711 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002712 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002713
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002714 ValueExprMapType::iterator It =
2715 ValueExprMap.find(static_cast<Value *>(I));
2716 if (It != ValueExprMap.end()) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002717 // Short-circuit the def-use traversal if the symbolic name
2718 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002719 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002720 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002721
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002722 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002723 // structure, it's a PHI that's in the progress of being computed
2724 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2725 // additional loop trip count information isn't going to change anything.
2726 // In the second case, createNodeForPHI will perform the necessary
2727 // updates on its own when it gets to that point. In the third, we do
2728 // want to forget the SCEVUnknown.
2729 if (!isa<PHINode>(I) ||
2730 !isa<SCEVUnknown>(It->second) ||
2731 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002732 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002733 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002734 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002735 }
2736
2737 PushDefUseChildren(I, Worklist);
2738 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002739}
Chris Lattner53e677a2004-04-02 20:23:17 +00002740
2741/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2742/// a loop header, making it a potential recurrence, or it doesn't.
2743///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002744const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002745 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2746 if (L->getHeader() == PN->getParent()) {
2747 // The loop may have multiple entrances or multiple exits; we can analyze
2748 // this phi as an addrec if it has a unique entry value and a unique
2749 // backedge value.
2750 Value *BEValueV = 0, *StartValueV = 0;
2751 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2752 Value *V = PN->getIncomingValue(i);
2753 if (L->contains(PN->getIncomingBlock(i))) {
2754 if (!BEValueV) {
2755 BEValueV = V;
2756 } else if (BEValueV != V) {
2757 BEValueV = 0;
2758 break;
2759 }
2760 } else if (!StartValueV) {
2761 StartValueV = V;
2762 } else if (StartValueV != V) {
2763 StartValueV = 0;
2764 break;
2765 }
2766 }
2767 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002768 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002769 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002770 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002771 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002772 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002773
2774 // Using this symbolic name for the PHI, analyze the value coming around
2775 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002776 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002777
2778 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2779 // has a special value for the first iteration of the loop.
2780
2781 // If the value coming around the backedge is an add with the symbolic
2782 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002783 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002784 // If there is a single occurrence of the symbolic value, replace it
2785 // with a recurrence.
2786 unsigned FoundIndex = Add->getNumOperands();
2787 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2788 if (Add->getOperand(i) == SymbolicName)
2789 if (FoundIndex == e) {
2790 FoundIndex = i;
2791 break;
2792 }
2793
2794 if (FoundIndex != Add->getNumOperands()) {
2795 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002796 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002797 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2798 if (i != FoundIndex)
2799 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002800 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002801
2802 // This is not a valid addrec if the step amount is varying each
2803 // loop iteration, but is not itself an addrec in this loop.
2804 if (Accum->isLoopInvariant(L) ||
2805 (isa<SCEVAddRecExpr>(Accum) &&
2806 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002807 bool HasNUW = false;
2808 bool HasNSW = false;
2809
2810 // If the increment doesn't overflow, then neither the addrec nor
2811 // the post-increment will overflow.
2812 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2813 if (OBO->hasNoUnsignedWrap())
2814 HasNUW = true;
2815 if (OBO->hasNoSignedWrap())
2816 HasNSW = true;
2817 }
2818
Dan Gohman27dead42010-04-12 07:49:36 +00002819 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002820 const SCEV *PHISCEV =
2821 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002822
Dan Gohmana10756e2010-01-21 02:09:26 +00002823 // Since the no-wrap flags are on the increment, they apply to the
2824 // post-incremented value as well.
2825 if (Accum->isLoopInvariant(L))
2826 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2827 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002828
2829 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002830 // to be symbolic. We now need to go back and purge all of the
2831 // entries for the scalars that use the symbolic expression.
2832 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002833 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002834 return PHISCEV;
2835 }
2836 }
Dan Gohman622ed672009-05-04 22:02:23 +00002837 } else if (const SCEVAddRecExpr *AddRec =
2838 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002839 // Otherwise, this could be a loop like this:
2840 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2841 // In this case, j = {1,+,1} and BEValue is j.
2842 // Because the other in-value of i (0) fits the evolution of BEValue
2843 // i really is an addrec evolution.
2844 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002845 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002846
2847 // If StartVal = j.start - j.stride, we can use StartVal as the
2848 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002849 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002850 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002851 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002852 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002853
2854 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002855 // to be symbolic. We now need to go back and purge all of the
2856 // entries for the scalars that use the symbolic expression.
2857 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002858 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002859 return PHISCEV;
2860 }
2861 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002862 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002863 }
Dan Gohman27dead42010-04-12 07:49:36 +00002864 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002865
Dan Gohman85669632010-02-25 06:57:05 +00002866 // If the PHI has a single incoming value, follow that value, unless the
2867 // PHI's incoming blocks are in a different loop, in which case doing so
2868 // risks breaking LCSSA form. Instcombine would normally zap these, but
2869 // it doesn't have DominatorTree information, so it may miss cases.
2870 if (Value *V = PN->hasConstantValue(DT)) {
2871 bool AllSameLoop = true;
2872 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2873 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2874 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2875 AllSameLoop = false;
2876 break;
2877 }
2878 if (AllSameLoop)
2879 return getSCEV(V);
2880 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002881
Chris Lattner53e677a2004-04-02 20:23:17 +00002882 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002883 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002884}
2885
Dan Gohman26466c02009-05-08 20:26:55 +00002886/// createNodeForGEP - Expand GEP instructions into add and multiply
2887/// operations. This allows them to be analyzed by regular SCEV code.
2888///
Dan Gohmand281ed22009-12-18 02:09:29 +00002889const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002890
Dan Gohmanb9f96512010-06-30 07:16:37 +00002891 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2892 // Add expression, because the Instruction may be guarded by control flow
2893 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002894 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002895
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002896 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002897 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002898 // Don't attempt to analyze GEPs over unsized objects.
2899 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2900 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002901 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002902 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002903 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002904 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002905 I != E; ++I) {
2906 Value *Index = *I;
2907 // Compute the (potentially symbolic) offset in bytes for this index.
2908 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2909 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002910 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002911 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2912
Dan Gohmanb9f96512010-06-30 07:16:37 +00002913 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002914 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002915 } else {
2916 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002917 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2918 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002919 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002920 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2921
Dan Gohmanb9f96512010-06-30 07:16:37 +00002922 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002923 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002924
2925 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002926 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002927 }
2928 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002929
2930 // Get the SCEV for the GEP base.
2931 const SCEV *BaseS = getSCEV(Base);
2932
Dan Gohmanb9f96512010-06-30 07:16:37 +00002933 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002934 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002935}
2936
Nick Lewycky83bb0052007-11-22 07:59:40 +00002937/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2938/// guaranteed to end in (at every loop iteration). It is, at the same time,
2939/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2940/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002941uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002942ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002943 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002944 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002945
Dan Gohman622ed672009-05-04 22:02:23 +00002946 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002947 return std::min(GetMinTrailingZeros(T->getOperand()),
2948 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002949
Dan Gohman622ed672009-05-04 22:02:23 +00002950 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002951 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2952 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2953 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002954 }
2955
Dan Gohman622ed672009-05-04 22:02:23 +00002956 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002957 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2958 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2959 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002960 }
2961
Dan Gohman622ed672009-05-04 22:02:23 +00002962 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002965 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002966 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002967 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002968 }
2969
Dan Gohman622ed672009-05-04 22:02:23 +00002970 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002971 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002972 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2973 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002974 for (unsigned i = 1, e = M->getNumOperands();
2975 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002976 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002977 BitWidth);
2978 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002979 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002980
Dan Gohman622ed672009-05-04 22:02:23 +00002981 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002982 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002983 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002984 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002985 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002986 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002987 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002988
Dan Gohman622ed672009-05-04 22:02:23 +00002989 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002990 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002991 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002992 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002993 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002994 return MinOpRes;
2995 }
2996
Dan Gohman622ed672009-05-04 22:02:23 +00002997 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002998 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002999 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003000 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003001 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003002 return MinOpRes;
3003 }
3004
Dan Gohman2c364ad2009-06-19 23:29:04 +00003005 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3006 // For a SCEVUnknown, ask ValueTracking.
3007 unsigned BitWidth = getTypeSizeInBits(U->getType());
3008 APInt Mask = APInt::getAllOnesValue(BitWidth);
3009 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3010 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3011 return Zeros.countTrailingOnes();
3012 }
3013
3014 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003015 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003016}
Chris Lattner53e677a2004-04-02 20:23:17 +00003017
Dan Gohman85b05a22009-07-13 21:35:55 +00003018/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3019///
3020ConstantRange
3021ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003022
3023 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00003024 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003025
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003026 unsigned BitWidth = getTypeSizeInBits(S->getType());
3027 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3028
3029 // If the value has known zeros, the maximum unsigned value will have those
3030 // known zeros as well.
3031 uint32_t TZ = GetMinTrailingZeros(S);
3032 if (TZ != 0)
3033 ConservativeResult =
3034 ConstantRange(APInt::getMinValue(BitWidth),
3035 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3036
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3038 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3039 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3040 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003041 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003042 }
3043
3044 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3045 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3046 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3047 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003048 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003049 }
3050
3051 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3052 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3053 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3054 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003055 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003056 }
3057
3058 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3059 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3060 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3061 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003062 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003063 }
3064
3065 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3066 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3067 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003068 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003069 }
3070
3071 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3072 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003073 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
3075
3076 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3077 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003078 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003079 }
3080
3081 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3082 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003083 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 }
3085
Dan Gohman85b05a22009-07-13 21:35:55 +00003086 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003087 // If there's no unsigned wrap, the value will never be less than its
3088 // initial value.
3089 if (AddRec->hasNoUnsignedWrap())
3090 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003091 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003092 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003093 ConservativeResult.intersectWith(
3094 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003095
3096 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003097 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003098 const Type *Ty = AddRec->getType();
3099 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003100 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3101 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003102 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3103
3104 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003105 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003106
3107 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003108 ConstantRange StepRange = getSignedRange(Step);
3109 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3110 ConstantRange EndRange =
3111 StartRange.add(MaxBECountRange.multiply(StepRange));
3112
3113 // Check for overflow. This must be done with ConstantRange arithmetic
3114 // because we could be called from within the ScalarEvolution overflow
3115 // checking code.
3116 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3117 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3118 ConstantRange ExtMaxBECountRange =
3119 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3120 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3121 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3122 ExtEndRange)
3123 return ConservativeResult;
3124
Dan Gohman85b05a22009-07-13 21:35:55 +00003125 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3126 EndRange.getUnsignedMin());
3127 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3128 EndRange.getUnsignedMax());
3129 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003130 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003131 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003132 }
3133 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003134
3135 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003136 }
3137
3138 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3139 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003140 APInt Mask = APInt::getAllOnesValue(BitWidth);
3141 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3142 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003143 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003144 return ConservativeResult;
3145 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003146 }
3147
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003148 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149}
3150
Dan Gohman85b05a22009-07-13 21:35:55 +00003151/// getSignedRange - Determine the signed range for a particular SCEV.
3152///
3153ConstantRange
3154ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003155
Dan Gohman85b05a22009-07-13 21:35:55 +00003156 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3157 return ConstantRange(C->getValue()->getValue());
3158
Dan Gohman52fddd32010-01-26 04:40:18 +00003159 unsigned BitWidth = getTypeSizeInBits(S->getType());
3160 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3161
3162 // If the value has known zeros, the maximum signed value will have those
3163 // known zeros as well.
3164 uint32_t TZ = GetMinTrailingZeros(S);
3165 if (TZ != 0)
3166 ConservativeResult =
3167 ConstantRange(APInt::getSignedMinValue(BitWidth),
3168 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3169
Dan Gohman85b05a22009-07-13 21:35:55 +00003170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3171 ConstantRange X = getSignedRange(Add->getOperand(0));
3172 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3173 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003174 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003175 }
3176
Dan Gohman85b05a22009-07-13 21:35:55 +00003177 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3178 ConstantRange X = getSignedRange(Mul->getOperand(0));
3179 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3180 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003181 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003182 }
3183
Dan Gohman85b05a22009-07-13 21:35:55 +00003184 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3185 ConstantRange X = getSignedRange(SMax->getOperand(0));
3186 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3187 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003188 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003189 }
Dan Gohman62849c02009-06-24 01:05:09 +00003190
Dan Gohman85b05a22009-07-13 21:35:55 +00003191 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3192 ConstantRange X = getSignedRange(UMax->getOperand(0));
3193 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3194 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003195 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003196 }
Dan Gohman62849c02009-06-24 01:05:09 +00003197
Dan Gohman85b05a22009-07-13 21:35:55 +00003198 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3199 ConstantRange X = getSignedRange(UDiv->getLHS());
3200 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003201 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003202 }
Dan Gohman62849c02009-06-24 01:05:09 +00003203
Dan Gohman85b05a22009-07-13 21:35:55 +00003204 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3205 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003206 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 }
3208
3209 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3210 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003211 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003212 }
3213
3214 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3215 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003216 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003217 }
3218
Dan Gohman85b05a22009-07-13 21:35:55 +00003219 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003220 // If there's no signed wrap, and all the operands have the same sign or
3221 // zero, the value won't ever change sign.
3222 if (AddRec->hasNoSignedWrap()) {
3223 bool AllNonNeg = true;
3224 bool AllNonPos = true;
3225 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3226 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3227 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3228 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003229 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003230 ConservativeResult = ConservativeResult.intersectWith(
3231 ConstantRange(APInt(BitWidth, 0),
3232 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003233 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003234 ConservativeResult = ConservativeResult.intersectWith(
3235 ConstantRange(APInt::getSignedMinValue(BitWidth),
3236 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003237 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003238
3239 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003240 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003241 const Type *Ty = AddRec->getType();
3242 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003243 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3244 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003245 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3246
3247 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003248 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003249
3250 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003251 ConstantRange StepRange = getSignedRange(Step);
3252 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3253 ConstantRange EndRange =
3254 StartRange.add(MaxBECountRange.multiply(StepRange));
3255
3256 // Check for overflow. This must be done with ConstantRange arithmetic
3257 // because we could be called from within the ScalarEvolution overflow
3258 // checking code.
3259 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3260 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3261 ConstantRange ExtMaxBECountRange =
3262 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3263 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3264 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3265 ExtEndRange)
3266 return ConservativeResult;
3267
Dan Gohman85b05a22009-07-13 21:35:55 +00003268 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3269 EndRange.getSignedMin());
3270 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3271 EndRange.getSignedMax());
3272 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003273 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003274 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003275 }
Dan Gohman62849c02009-06-24 01:05:09 +00003276 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003277
3278 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003279 }
3280
Dan Gohman2c364ad2009-06-19 23:29:04 +00003281 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3282 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003283 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003284 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003285 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3286 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003287 return ConservativeResult;
3288 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003289 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003290 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003291 }
3292
Dan Gohman52fddd32010-01-26 04:40:18 +00003293 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003294}
3295
Chris Lattner53e677a2004-04-02 20:23:17 +00003296/// createSCEV - We know that there is no SCEV for the specified value.
3297/// Analyze the expression.
3298///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003299const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003300 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003301 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003302
Dan Gohman6c459a22008-06-22 19:56:46 +00003303 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003304 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003305 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003306
3307 // Don't attempt to analyze instructions in blocks that aren't
3308 // reachable. Such instructions don't matter, and they aren't required
3309 // to obey basic rules for definitions dominating uses which this
3310 // analysis depends on.
3311 if (!DT->isReachableFromEntry(I->getParent()))
3312 return getUnknown(V);
3313 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003314 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003315 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3316 return getConstant(CI);
3317 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003318 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003319 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3320 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003321 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003322 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003323
Dan Gohmanca178902009-07-17 20:47:02 +00003324 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003325 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003326 case Instruction::Add: {
3327 // The simple thing to do would be to just call getSCEV on both operands
3328 // and call getAddExpr with the result. However if we're looking at a
3329 // bunch of things all added together, this can be quite inefficient,
3330 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3331 // Instead, gather up all the operands and make a single getAddExpr call.
3332 // LLVM IR canonical form means we need only traverse the left operands.
3333 SmallVector<const SCEV *, 4> AddOps;
3334 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman26125c62010-08-31 20:58:44 +00003335 for (Value *Op = U->getOperand(0);
3336 Op->getValueID() == Instruction::Add + Value::InstructionVal;
3337 Op = U->getOperand(0)) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003338 U = cast<Operator>(Op);
Dan Gohman26125c62010-08-31 20:58:44 +00003339 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohmand3f171d2010-08-16 16:03:49 +00003340 }
3341 AddOps.push_back(getSCEV(U->getOperand(0)));
3342 return getAddExpr(AddOps);
3343 }
3344 case Instruction::Mul: {
3345 // See the Add code above.
3346 SmallVector<const SCEV *, 4> MulOps;
3347 MulOps.push_back(getSCEV(U->getOperand(1)));
3348 for (Value *Op = U->getOperand(0);
3349 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3350 Op = U->getOperand(0)) {
3351 U = cast<Operator>(Op);
3352 MulOps.push_back(getSCEV(U->getOperand(1)));
3353 }
3354 MulOps.push_back(getSCEV(U->getOperand(0)));
3355 return getMulExpr(MulOps);
3356 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003357 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003358 return getUDivExpr(getSCEV(U->getOperand(0)),
3359 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003360 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003361 return getMinusSCEV(getSCEV(U->getOperand(0)),
3362 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003363 case Instruction::And:
3364 // For an expression like x&255 that merely masks off the high bits,
3365 // use zext(trunc(x)) as the SCEV expression.
3366 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003367 if (CI->isNullValue())
3368 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003369 if (CI->isAllOnesValue())
3370 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003371 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003372
3373 // Instcombine's ShrinkDemandedConstant may strip bits out of
3374 // constants, obscuring what would otherwise be a low-bits mask.
3375 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3376 // knew about to reconstruct a low-bits mask value.
3377 unsigned LZ = A.countLeadingZeros();
3378 unsigned BitWidth = A.getBitWidth();
3379 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3380 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3381 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3382
3383 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3384
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003385 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003386 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003387 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003388 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003389 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003390 }
3391 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003392
Dan Gohman6c459a22008-06-22 19:56:46 +00003393 case Instruction::Or:
3394 // If the RHS of the Or is a constant, we may have something like:
3395 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3396 // optimizations will transparently handle this case.
3397 //
3398 // In order for this transformation to be safe, the LHS must be of the
3399 // form X*(2^n) and the Or constant must be less than 2^n.
3400 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003401 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003402 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003403 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003404 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3405 // Build a plain add SCEV.
3406 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3407 // If the LHS of the add was an addrec and it has no-wrap flags,
3408 // transfer the no-wrap flags, since an or won't introduce a wrap.
3409 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3410 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3411 if (OldAR->hasNoUnsignedWrap())
3412 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3413 if (OldAR->hasNoSignedWrap())
3414 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3415 }
3416 return S;
3417 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003418 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003419 break;
3420 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003421 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003422 // If the RHS of the xor is a signbit, then this is just an add.
3423 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003424 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003425 return getAddExpr(getSCEV(U->getOperand(0)),
3426 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003427
3428 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003429 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003430 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003431
3432 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3433 // This is a variant of the check for xor with -1, and it handles
3434 // the case where instcombine has trimmed non-demanded bits out
3435 // of an xor with -1.
3436 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3437 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3438 if (BO->getOpcode() == Instruction::And &&
3439 LCI->getValue() == CI->getValue())
3440 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003441 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003442 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003443 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003444 const Type *Z0Ty = Z0->getType();
3445 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3446
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003447 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003448 // mask off the high bits. Complement the operand and
3449 // re-apply the zext.
3450 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3451 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3452
3453 // If C is a single bit, it may be in the sign-bit position
3454 // before the zero-extend. In this case, represent the xor
3455 // using an add, which is equivalent, and re-apply the zext.
3456 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3457 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3458 Trunc.isSignBit())
3459 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3460 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003461 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 }
3463 break;
3464
3465 case Instruction::Shl:
3466 // Turn shift left of a constant amount into a multiply.
3467 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003468 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003469
3470 // If the shift count is not less than the bitwidth, the result of
3471 // the shift is undefined. Don't try to analyze it, because the
3472 // resolution chosen here may differ from the resolution chosen in
3473 // other parts of the compiler.
3474 if (SA->getValue().uge(BitWidth))
3475 break;
3476
Owen Andersoneed707b2009-07-24 23:12:02 +00003477 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003478 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003479 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003480 }
3481 break;
3482
Nick Lewycky01eaf802008-07-07 06:15:49 +00003483 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003484 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003485 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003486 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003487
3488 // If the shift count is not less than the bitwidth, the result of
3489 // the shift is undefined. Don't try to analyze it, because the
3490 // resolution chosen here may differ from the resolution chosen in
3491 // other parts of the compiler.
3492 if (SA->getValue().uge(BitWidth))
3493 break;
3494
Owen Andersoneed707b2009-07-24 23:12:02 +00003495 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003496 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003497 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003498 }
3499 break;
3500
Dan Gohman4ee29af2009-04-21 02:26:00 +00003501 case Instruction::AShr:
3502 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3503 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003504 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003505 if (L->getOpcode() == Instruction::Shl &&
3506 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003507 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3508
3509 // If the shift count is not less than the bitwidth, the result of
3510 // the shift is undefined. Don't try to analyze it, because the
3511 // resolution chosen here may differ from the resolution chosen in
3512 // other parts of the compiler.
3513 if (CI->getValue().uge(BitWidth))
3514 break;
3515
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003516 uint64_t Amt = BitWidth - CI->getZExtValue();
3517 if (Amt == BitWidth)
3518 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003519 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003520 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003521 IntegerType::get(getContext(),
3522 Amt)),
3523 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003524 }
3525 break;
3526
Dan Gohman6c459a22008-06-22 19:56:46 +00003527 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003528 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003529
3530 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003531 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003532
3533 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003534 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003535
3536 case Instruction::BitCast:
3537 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003538 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003539 return getSCEV(U->getOperand(0));
3540 break;
3541
Dan Gohman4f8eea82010-02-01 18:27:38 +00003542 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3543 // lead to pointer expressions which cannot safely be expanded to GEPs,
3544 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3545 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003546
Dan Gohman26466c02009-05-08 20:26:55 +00003547 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003548 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003549
Dan Gohman6c459a22008-06-22 19:56:46 +00003550 case Instruction::PHI:
3551 return createNodeForPHI(cast<PHINode>(U));
3552
3553 case Instruction::Select:
3554 // This could be a smax or umax that was lowered earlier.
3555 // Try to recover it.
3556 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3557 Value *LHS = ICI->getOperand(0);
3558 Value *RHS = ICI->getOperand(1);
3559 switch (ICI->getPredicate()) {
3560 case ICmpInst::ICMP_SLT:
3561 case ICmpInst::ICMP_SLE:
3562 std::swap(LHS, RHS);
3563 // fall through
3564 case ICmpInst::ICMP_SGT:
3565 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003566 // a >s b ? a+x : b+x -> smax(a, b)+x
3567 // a >s b ? b+x : a+x -> smin(a, b)+x
3568 if (LHS->getType() == U->getType()) {
3569 const SCEV *LS = getSCEV(LHS);
3570 const SCEV *RS = getSCEV(RHS);
3571 const SCEV *LA = getSCEV(U->getOperand(1));
3572 const SCEV *RA = getSCEV(U->getOperand(2));
3573 const SCEV *LDiff = getMinusSCEV(LA, LS);
3574 const SCEV *RDiff = getMinusSCEV(RA, RS);
3575 if (LDiff == RDiff)
3576 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3577 LDiff = getMinusSCEV(LA, RS);
3578 RDiff = getMinusSCEV(RA, LS);
3579 if (LDiff == RDiff)
3580 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3581 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 break;
3583 case ICmpInst::ICMP_ULT:
3584 case ICmpInst::ICMP_ULE:
3585 std::swap(LHS, RHS);
3586 // fall through
3587 case ICmpInst::ICMP_UGT:
3588 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003589 // a >u b ? a+x : b+x -> umax(a, b)+x
3590 // a >u b ? b+x : a+x -> umin(a, b)+x
3591 if (LHS->getType() == U->getType()) {
3592 const SCEV *LS = getSCEV(LHS);
3593 const SCEV *RS = getSCEV(RHS);
3594 const SCEV *LA = getSCEV(U->getOperand(1));
3595 const SCEV *RA = getSCEV(U->getOperand(2));
3596 const SCEV *LDiff = getMinusSCEV(LA, LS);
3597 const SCEV *RDiff = getMinusSCEV(RA, RS);
3598 if (LDiff == RDiff)
3599 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3600 LDiff = getMinusSCEV(LA, RS);
3601 RDiff = getMinusSCEV(RA, LS);
3602 if (LDiff == RDiff)
3603 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3604 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003605 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003606 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003607 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3608 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003609 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003610 cast<ConstantInt>(RHS)->isZero()) {
3611 const SCEV *One = getConstant(LHS->getType(), 1);
3612 const SCEV *LS = getSCEV(LHS);
3613 const SCEV *LA = getSCEV(U->getOperand(1));
3614 const SCEV *RA = getSCEV(U->getOperand(2));
3615 const SCEV *LDiff = getMinusSCEV(LA, LS);
3616 const SCEV *RDiff = getMinusSCEV(RA, One);
3617 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003618 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003619 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003620 break;
3621 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003622 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3623 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003624 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003625 cast<ConstantInt>(RHS)->isZero()) {
3626 const SCEV *One = getConstant(LHS->getType(), 1);
3627 const SCEV *LS = getSCEV(LHS);
3628 const SCEV *LA = getSCEV(U->getOperand(1));
3629 const SCEV *RA = getSCEV(U->getOperand(2));
3630 const SCEV *LDiff = getMinusSCEV(LA, One);
3631 const SCEV *RDiff = getMinusSCEV(RA, LS);
3632 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003633 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003634 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003635 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003636 default:
3637 break;
3638 }
3639 }
3640
3641 default: // We cannot analyze this expression.
3642 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003643 }
3644
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003645 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003646}
3647
3648
3649
3650//===----------------------------------------------------------------------===//
3651// Iteration Count Computation Code
3652//
3653
Dan Gohman46bdfb02009-02-24 18:55:53 +00003654/// getBackedgeTakenCount - If the specified loop has a predictable
3655/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3656/// object. The backedge-taken count is the number of times the loop header
3657/// will be branched to from within the loop. This is one less than the
3658/// trip count of the loop, since it doesn't count the first iteration,
3659/// when the header is branched to from outside the loop.
3660///
3661/// Note that it is not valid to call this method on a loop without a
3662/// loop-invariant backedge-taken count (see
3663/// hasLoopInvariantBackedgeTakenCount).
3664///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003665const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003666 return getBackedgeTakenInfo(L).Exact;
3667}
3668
3669/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3670/// return the least SCEV value that is known never to be less than the
3671/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003672const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003673 return getBackedgeTakenInfo(L).Max;
3674}
3675
Dan Gohman59ae6b92009-07-08 19:23:34 +00003676/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3677/// onto the given Worklist.
3678static void
3679PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3680 BasicBlock *Header = L->getHeader();
3681
3682 // Push all Loop-header PHIs onto the Worklist stack.
3683 for (BasicBlock::iterator I = Header->begin();
3684 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3685 Worklist.push_back(PN);
3686}
3687
Dan Gohmana1af7572009-04-30 20:47:05 +00003688const ScalarEvolution::BackedgeTakenInfo &
3689ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003690 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003691 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003692 // update the value. The temporary CouldNotCompute value tells SCEV
3693 // code elsewhere that it shouldn't attempt to request a new
3694 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003695 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003696 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3697 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003698 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3699 if (BECount.Exact != getCouldNotCompute()) {
3700 assert(BECount.Exact->isLoopInvariant(L) &&
3701 BECount.Max->isLoopInvariant(L) &&
3702 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003703 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003704
Dan Gohman01ecca22009-04-27 20:16:15 +00003705 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003706 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003707 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003708 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003709 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003710 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003711 if (isa<PHINode>(L->getHeader()->begin()))
3712 // Only count loops that have phi nodes as not being computable.
3713 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003714 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003715
3716 // Now that we know more about the trip count for this loop, forget any
3717 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003718 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003719 // information. This is similar to the code in forgetLoop, except that
3720 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003721 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003722 SmallVector<Instruction *, 16> Worklist;
3723 PushLoopPHIs(L, Worklist);
3724
3725 SmallPtrSet<Instruction *, 8> Visited;
3726 while (!Worklist.empty()) {
3727 Instruction *I = Worklist.pop_back_val();
3728 if (!Visited.insert(I)) continue;
3729
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003730 ValueExprMapType::iterator It =
3731 ValueExprMap.find(static_cast<Value *>(I));
3732 if (It != ValueExprMap.end()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003733 // SCEVUnknown for a PHI either means that it has an unrecognized
3734 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003735 // by createNodeForPHI. In the former case, additional loop trip
3736 // count information isn't going to change anything. In the later
3737 // case, createNodeForPHI will perform the necessary updates on its
3738 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003739 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3740 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003741 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003742 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003743 if (PHINode *PN = dyn_cast<PHINode>(I))
3744 ConstantEvolutionLoopExitValue.erase(PN);
3745 }
3746
3747 PushDefUseChildren(I, Worklist);
3748 }
3749 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003750 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003751 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003752}
3753
Dan Gohman4c7279a2009-10-31 15:04:55 +00003754/// forgetLoop - This method should be called by the client when it has
3755/// changed a loop in a way that may effect ScalarEvolution's ability to
3756/// compute a trip count, or if the loop is deleted.
3757void ScalarEvolution::forgetLoop(const Loop *L) {
3758 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003759 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003760
Dan Gohman4c7279a2009-10-31 15:04:55 +00003761 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003762 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003763 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003764
Dan Gohman59ae6b92009-07-08 19:23:34 +00003765 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003766 while (!Worklist.empty()) {
3767 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003768 if (!Visited.insert(I)) continue;
3769
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003770 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3771 if (It != ValueExprMap.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003772 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003773 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003774 if (PHINode *PN = dyn_cast<PHINode>(I))
3775 ConstantEvolutionLoopExitValue.erase(PN);
3776 }
3777
3778 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003779 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003780}
3781
Eric Christophere6cbfa62010-07-29 01:25:38 +00003782/// forgetValue - This method should be called by the client when it has
3783/// changed a value in a way that may effect its value, or which may
3784/// disconnect it from a def-use chain linking it to a loop.
3785void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003786 Instruction *I = dyn_cast<Instruction>(V);
3787 if (!I) return;
3788
3789 // Drop information about expressions based on loop-header PHIs.
3790 SmallVector<Instruction *, 16> Worklist;
3791 Worklist.push_back(I);
3792
3793 SmallPtrSet<Instruction *, 8> Visited;
3794 while (!Worklist.empty()) {
3795 I = Worklist.pop_back_val();
3796 if (!Visited.insert(I)) continue;
3797
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003798 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3799 if (It != ValueExprMap.end()) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003800 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003801 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003802 if (PHINode *PN = dyn_cast<PHINode>(I))
3803 ConstantEvolutionLoopExitValue.erase(PN);
3804 }
3805
3806 PushDefUseChildren(I, Worklist);
3807 }
3808}
3809
Dan Gohman46bdfb02009-02-24 18:55:53 +00003810/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3811/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003812ScalarEvolution::BackedgeTakenInfo
3813ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003814 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003815 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003816
Dan Gohmana334aa72009-06-22 00:31:57 +00003817 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003818 const SCEV *BECount = getCouldNotCompute();
3819 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003821 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3822 BackedgeTakenInfo NewBTI =
3823 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003824
Dan Gohman1c343752009-06-27 21:21:31 +00003825 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003826 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003827 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003829 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003831 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003833 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003834 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 }
Dan Gohman1c343752009-06-27 21:21:31 +00003836 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003837 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003838 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003839 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003840 }
3841
3842 return BackedgeTakenInfo(BECount, MaxBECount);
3843}
3844
3845/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3846/// of the specified loop will execute if it exits via the specified block.
3847ScalarEvolution::BackedgeTakenInfo
3848ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3849 BasicBlock *ExitingBlock) {
3850
3851 // Okay, we've chosen an exiting block. See what condition causes us to
3852 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003853 //
3854 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003855 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003856 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003857 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003858
Chris Lattner8b0e3602007-01-07 02:24:26 +00003859 // At this point, we know we have a conditional branch that determines whether
3860 // the loop is exited. However, we don't know if the branch is executed each
3861 // time through the loop. If not, then the execution count of the branch will
3862 // not be equal to the trip count of the loop.
3863 //
3864 // Currently we check for this by checking to see if the Exit branch goes to
3865 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003866 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003867 // loop header. This is common for un-rotated loops.
3868 //
3869 // If both of those tests fail, walk up the unique predecessor chain to the
3870 // header, stopping if there is an edge that doesn't exit the loop. If the
3871 // header is reached, the execution count of the branch will be equal to the
3872 // trip count of the loop.
3873 //
3874 // More extensive analysis could be done to handle more cases here.
3875 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003876 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003877 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 ExitBr->getParent() != L->getHeader()) {
3879 // The simple checks failed, try climbing the unique predecessor chain
3880 // up to the header.
3881 bool Ok = false;
3882 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3883 BasicBlock *Pred = BB->getUniquePredecessor();
3884 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003885 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003886 TerminatorInst *PredTerm = Pred->getTerminator();
3887 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3888 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3889 if (PredSucc == BB)
3890 continue;
3891 // If the predecessor has a successor that isn't BB and isn't
3892 // outside the loop, assume the worst.
3893 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003894 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003895 }
3896 if (Pred == L->getHeader()) {
3897 Ok = true;
3898 break;
3899 }
3900 BB = Pred;
3901 }
3902 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003903 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003904 }
3905
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003906 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003907 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3908 ExitBr->getSuccessor(0),
3909 ExitBr->getSuccessor(1));
3910}
3911
3912/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3913/// backedge of the specified loop will execute if its exit condition
3914/// were a conditional branch of ExitCond, TBB, and FBB.
3915ScalarEvolution::BackedgeTakenInfo
3916ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3917 Value *ExitCond,
3918 BasicBlock *TBB,
3919 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003920 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003921 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3922 if (BO->getOpcode() == Instruction::And) {
3923 // Recurse on the operands of the and.
3924 BackedgeTakenInfo BTI0 =
3925 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3926 BackedgeTakenInfo BTI1 =
3927 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003928 const SCEV *BECount = getCouldNotCompute();
3929 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003930 if (L->contains(TBB)) {
3931 // Both conditions must be true for the loop to continue executing.
3932 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003933 if (BTI0.Exact == getCouldNotCompute() ||
3934 BTI1.Exact == getCouldNotCompute())
3935 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003936 else
3937 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003938 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003940 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003942 else
3943 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003944 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003945 // Both conditions must be true at the same time for the loop to exit.
3946 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003947 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003948 if (BTI0.Max == BTI1.Max)
3949 MaxBECount = BTI0.Max;
3950 if (BTI0.Exact == BTI1.Exact)
3951 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003952 }
3953
3954 return BackedgeTakenInfo(BECount, MaxBECount);
3955 }
3956 if (BO->getOpcode() == Instruction::Or) {
3957 // Recurse on the operands of the or.
3958 BackedgeTakenInfo BTI0 =
3959 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3960 BackedgeTakenInfo BTI1 =
3961 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003962 const SCEV *BECount = getCouldNotCompute();
3963 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003964 if (L->contains(FBB)) {
3965 // Both conditions must be false for the loop to continue executing.
3966 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003967 if (BTI0.Exact == getCouldNotCompute() ||
3968 BTI1.Exact == getCouldNotCompute())
3969 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003970 else
3971 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003972 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003973 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003974 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003975 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003976 else
3977 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003978 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003979 // Both conditions must be false at the same time for the loop to exit.
3980 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003981 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003982 if (BTI0.Max == BTI1.Max)
3983 MaxBECount = BTI0.Max;
3984 if (BTI0.Exact == BTI1.Exact)
3985 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003986 }
3987
3988 return BackedgeTakenInfo(BECount, MaxBECount);
3989 }
3990 }
3991
3992 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003993 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003994 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3995 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003996
Dan Gohman00cb5b72010-02-19 18:12:07 +00003997 // Check for a constant condition. These are normally stripped out by
3998 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3999 // preserve the CFG and is temporarily leaving constant conditions
4000 // in place.
4001 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4002 if (L->contains(FBB) == !CI->getZExtValue())
4003 // The backedge is always taken.
4004 return getCouldNotCompute();
4005 else
4006 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004007 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004008 }
4009
Eli Friedman361e54d2009-05-09 12:32:42 +00004010 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004011 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4012}
4013
4014/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4015/// backedge of the specified loop will execute if its exit condition
4016/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4017ScalarEvolution::BackedgeTakenInfo
4018ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4019 ICmpInst *ExitCond,
4020 BasicBlock *TBB,
4021 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004022
Reid Spencere4d87aa2006-12-23 06:05:41 +00004023 // If the condition was exit on true, convert the condition to exit on false
4024 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004025 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004026 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004027 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004028 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004029
4030 // Handle common loops like: for (X = "string"; *X; ++X)
4031 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4032 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004033 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004034 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004035 if (ItCnt.hasAnyInfo())
4036 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004037 }
4038
Dan Gohman0bba49c2009-07-07 17:06:11 +00004039 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4040 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004041
4042 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004043 LHS = getSCEVAtScope(LHS, L);
4044 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004045
Dan Gohman64a845e2009-06-24 04:48:43 +00004046 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004047 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004048 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4049 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004050 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004051 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004052 }
4053
Dan Gohman03557dc2010-05-03 16:35:17 +00004054 // Simplify the operands before analyzing them.
4055 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4056
Chris Lattner53e677a2004-04-02 20:23:17 +00004057 // If we have a comparison of a chrec against a constant, try to use value
4058 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004059 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4060 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004061 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004062 // Form the constant range.
4063 ConstantRange CompRange(
4064 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004065
Dan Gohman0bba49c2009-07-07 17:06:11 +00004066 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004067 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004068 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004069
Chris Lattner53e677a2004-04-02 20:23:17 +00004070 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004071 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004072 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004073 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4074 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004075 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004076 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004077 case ICmpInst::ICMP_EQ: { // while (X == Y)
4078 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004079 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4080 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004081 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004082 }
4083 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004084 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4085 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004086 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004087 }
4088 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004089 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4090 getNotSCEV(RHS), L, true);
4091 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004092 break;
4093 }
4094 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004095 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4096 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004097 break;
4098 }
4099 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004100 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4101 getNotSCEV(RHS), L, false);
4102 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004103 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004104 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004105 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004106#if 0
David Greene25e0e872009-12-23 22:18:14 +00004107 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004108 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004109 dbgs() << "[unsigned] ";
4110 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004111 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004112 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004113#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004114 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004115 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004116 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004117 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004118}
4119
Chris Lattner673e02b2004-10-12 01:49:27 +00004120static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004121EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4122 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004123 const SCEV *InVal = SE.getConstant(C);
4124 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004125 assert(isa<SCEVConstant>(Val) &&
4126 "Evaluation of SCEV at constant didn't fold correctly?");
4127 return cast<SCEVConstant>(Val)->getValue();
4128}
4129
4130/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4131/// and a GEP expression (missing the pointer index) indexing into it, return
4132/// the addressed element of the initializer or null if the index expression is
4133/// invalid.
4134static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004135GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004136 const std::vector<ConstantInt*> &Indices) {
4137 Constant *Init = GV->getInitializer();
4138 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004139 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004140 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4141 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4142 Init = cast<Constant>(CS->getOperand(Idx));
4143 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4144 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4145 Init = cast<Constant>(CA->getOperand(Idx));
4146 } else if (isa<ConstantAggregateZero>(Init)) {
4147 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4148 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004149 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004150 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4151 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004152 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004153 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004154 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004155 }
4156 return 0;
4157 } else {
4158 return 0; // Unknown initializer type
4159 }
4160 }
4161 return Init;
4162}
4163
Dan Gohman46bdfb02009-02-24 18:55:53 +00004164/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4165/// 'icmp op load X, cst', try to see if we can compute the backedge
4166/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004167ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004168ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4169 LoadInst *LI,
4170 Constant *RHS,
4171 const Loop *L,
4172 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004173 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004174
4175 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004176 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004177 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004178 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004179
4180 // Make sure that it is really a constant global we are gepping, with an
4181 // initializer, and make sure the first IDX is really 0.
4182 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004183 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004184 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4185 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004186 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004187
4188 // Okay, we allow one non-constant index into the GEP instruction.
4189 Value *VarIdx = 0;
4190 std::vector<ConstantInt*> Indexes;
4191 unsigned VarIdxNum = 0;
4192 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4193 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4194 Indexes.push_back(CI);
4195 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004196 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004197 VarIdx = GEP->getOperand(i);
4198 VarIdxNum = i-2;
4199 Indexes.push_back(0);
4200 }
4201
4202 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4203 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004204 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004205 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004206
4207 // We can only recognize very limited forms of loop index expressions, in
4208 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004209 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004210 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4211 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4212 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004213 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004214
4215 unsigned MaxSteps = MaxBruteForceIterations;
4216 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004217 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004218 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004219 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004220
4221 // Form the GEP offset.
4222 Indexes[VarIdxNum] = Val;
4223
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004224 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004225 if (Result == 0) break; // Cannot compute!
4226
4227 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004228 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004229 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004230 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004231#if 0
David Greene25e0e872009-12-23 22:18:14 +00004232 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004233 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4234 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004235#endif
4236 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004237 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004238 }
4239 }
Dan Gohman1c343752009-06-27 21:21:31 +00004240 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004241}
4242
4243
Chris Lattner3221ad02004-04-17 22:58:41 +00004244/// CanConstantFold - Return true if we can constant fold an instruction of the
4245/// specified type, assuming that all operands were constants.
4246static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004247 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004248 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4249 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004250
Chris Lattner3221ad02004-04-17 22:58:41 +00004251 if (const CallInst *CI = dyn_cast<CallInst>(I))
4252 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004253 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004254 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004255}
4256
Chris Lattner3221ad02004-04-17 22:58:41 +00004257/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4258/// in the loop that V is derived from. We allow arbitrary operations along the
4259/// way, but the operands of an operation must either be constants or a value
4260/// derived from a constant PHI. If this expression does not fit with these
4261/// constraints, return null.
4262static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4263 // If this is not an instruction, or if this is an instruction outside of the
4264 // loop, it can't be derived from a loop PHI.
4265 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004266 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004267
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004268 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004269 if (L->getHeader() == I->getParent())
4270 return PN;
4271 else
4272 // We don't currently keep track of the control flow needed to evaluate
4273 // PHIs, so we cannot handle PHIs inside of loops.
4274 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004275 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004276
4277 // If we won't be able to constant fold this expression even if the operands
4278 // are constants, return early.
4279 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004280
Chris Lattner3221ad02004-04-17 22:58:41 +00004281 // Otherwise, we can evaluate this instruction if all of its operands are
4282 // constant or derived from a PHI node themselves.
4283 PHINode *PHI = 0;
4284 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004285 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004286 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4287 if (P == 0) return 0; // Not evolving from PHI
4288 if (PHI == 0)
4289 PHI = P;
4290 else if (PHI != P)
4291 return 0; // Evolving from multiple different PHIs.
4292 }
4293
4294 // This is a expression evolving from a constant PHI!
4295 return PHI;
4296}
4297
4298/// EvaluateExpression - Given an expression that passes the
4299/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4300/// in the loop has the value PHIVal. If we can't fold this expression for some
4301/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004302static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4303 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004304 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004305 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004306 Instruction *I = cast<Instruction>(V);
4307
Dan Gohman9d4588f2010-06-22 13:15:46 +00004308 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004309
4310 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004311 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 if (Operands[i] == 0) return 0;
4313 }
4314
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004315 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004316 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004317 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004318 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004319 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004320}
4321
4322/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4323/// in the header of its containing loop, we know the loop executes a
4324/// constant number of times, and the PHI node is just a recurrence
4325/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004326Constant *
4327ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004328 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004329 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004330 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004331 ConstantEvolutionLoopExitValue.find(PN);
4332 if (I != ConstantEvolutionLoopExitValue.end())
4333 return I->second;
4334
Dan Gohmane0567812010-04-08 23:03:40 +00004335 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4337
4338 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4339
4340 // Since the loop is canonicalized, the PHI node must have two entries. One
4341 // entry must be a constant (coming in from outside of the loop), and the
4342 // second must be derived from the same PHI.
4343 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4344 Constant *StartCST =
4345 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4346 if (StartCST == 0)
4347 return RetVal = 0; // Must be a constant.
4348
4349 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004350 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4351 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004352 return RetVal = 0; // Not derived from same PHI.
4353
4354 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004355 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004356 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004357
Dan Gohman46bdfb02009-02-24 18:55:53 +00004358 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004359 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004360 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4361 if (IterationNum == NumIterations)
4362 return RetVal = PHIVal; // Got exit value!
4363
4364 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004365 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004366 if (NextPHI == PHIVal)
4367 return RetVal = NextPHI; // Stopped evolving!
4368 if (NextPHI == 0)
4369 return 0; // Couldn't evaluate!
4370 PHIVal = NextPHI;
4371 }
4372}
4373
Dan Gohman07ad19b2009-07-27 16:09:48 +00004374/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004375/// constant number of times (the condition evolves only from constants),
4376/// try to evaluate a few iterations of the loop until we get the exit
4377/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004378/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004379const SCEV *
4380ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4381 Value *Cond,
4382 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004383 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004384 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004385
Dan Gohmanb92654d2010-06-19 14:17:24 +00004386 // If the loop is canonicalized, the PHI will have exactly two entries.
4387 // That's the only form we support here.
4388 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4389
4390 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004391 // second must be derived from the same PHI.
4392 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4393 Constant *StartCST =
4394 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004395 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004396
4397 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004398 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4399 !isa<Constant>(BEValue))
4400 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004401
4402 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4403 // the loop symbolically to determine when the condition gets a value of
4404 // "ExitWhen".
4405 unsigned IterationNum = 0;
4406 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4407 for (Constant *PHIVal = StartCST;
4408 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004409 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004410 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004411
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004412 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004413 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004414
Reid Spencere8019bb2007-03-01 07:25:48 +00004415 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004416 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004417 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004418 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004419
Chris Lattner3221ad02004-04-17 22:58:41 +00004420 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004421 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004422 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004423 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004424 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004425 }
4426
4427 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004428 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004429}
4430
Dan Gohmane7125f42009-09-03 15:00:26 +00004431/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004432/// at the specified scope in the program. The L value specifies a loop
4433/// nest to evaluate the expression at, where null is the top-level or a
4434/// specified loop is immediately inside of the loop.
4435///
4436/// This method can be used to compute the exit value for a variable defined
4437/// in a loop by querying what the value will hold in the parent loop.
4438///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004439/// In the case that a relevant loop exit value cannot be computed, the
4440/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004441const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004442 // Check to see if we've folded this expression at this loop before.
4443 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4444 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4445 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4446 if (!Pair.second)
4447 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004448
Dan Gohman42214892009-08-31 21:15:23 +00004449 // Otherwise compute it.
4450 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004451 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004452 return C;
4453}
4454
4455const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004456 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004457
Nick Lewycky3e630762008-02-20 06:48:22 +00004458 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004459 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004460 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004461 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004462 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004463 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4464 if (PHINode *PN = dyn_cast<PHINode>(I))
4465 if (PN->getParent() == LI->getHeader()) {
4466 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004467 // to see if the loop that contains it has a known backedge-taken
4468 // count. If so, we may be able to force computation of the exit
4469 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004470 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004471 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004472 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004473 // Okay, we know how many times the containing loop executes. If
4474 // this is a constant evolving PHI node, get the final value at
4475 // the specified iteration number.
4476 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004477 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004478 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004479 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004480 }
4481 }
4482
Reid Spencer09906f32006-12-04 21:33:23 +00004483 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004484 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004485 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004486 // result. This is particularly useful for computing loop exit values.
4487 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004488 SmallVector<Constant *, 4> Operands;
4489 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004490 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4491 Value *Op = I->getOperand(i);
4492 if (Constant *C = dyn_cast<Constant>(Op)) {
4493 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004494 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004495 }
Dan Gohman11046452010-06-29 23:43:06 +00004496
4497 // If any of the operands is non-constant and if they are
4498 // non-integer and non-pointer, don't even try to analyze them
4499 // with scev techniques.
4500 if (!isSCEVable(Op->getType()))
4501 return V;
4502
4503 const SCEV *OrigV = getSCEV(Op);
4504 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4505 MadeImprovement |= OrigV != OpV;
4506
4507 Constant *C = 0;
4508 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4509 C = SC->getValue();
4510 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4511 C = dyn_cast<Constant>(SU->getValue());
4512 if (!C) return V;
4513 if (C->getType() != Op->getType())
4514 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4515 Op->getType(),
4516 false),
4517 C, Op->getType());
4518 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004519 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004520
Dan Gohman11046452010-06-29 23:43:06 +00004521 // Check to see if getSCEVAtScope actually made an improvement.
4522 if (MadeImprovement) {
4523 Constant *C = 0;
4524 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4525 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4526 Operands[0], Operands[1], TD);
4527 else
4528 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4529 &Operands[0], Operands.size(), TD);
4530 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004531 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004532 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004533 }
4534 }
4535
4536 // This is some other type of SCEVUnknown, just return it.
4537 return V;
4538 }
4539
Dan Gohman622ed672009-05-04 22:02:23 +00004540 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004541 // Avoid performing the look-up in the common case where the specified
4542 // expression has no loop-variant portions.
4543 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004544 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004545 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004546 // Okay, at least one of these operands is loop variant but might be
4547 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004548 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4549 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004550 NewOps.push_back(OpAtScope);
4551
4552 for (++i; i != e; ++i) {
4553 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004554 NewOps.push_back(OpAtScope);
4555 }
4556 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004557 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004558 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004559 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004560 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004561 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004562 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004563 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004564 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004565 }
4566 }
4567 // If we got here, all operands are loop invariant.
4568 return Comm;
4569 }
4570
Dan Gohman622ed672009-05-04 22:02:23 +00004571 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004572 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4573 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004574 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4575 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004576 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004577 }
4578
4579 // If this is a loop recurrence for a loop that does not contain L, then we
4580 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004581 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004582 // First, attempt to evaluate each operand.
4583 // Avoid performing the look-up in the common case where the specified
4584 // expression has no loop-variant portions.
4585 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4586 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4587 if (OpAtScope == AddRec->getOperand(i))
4588 continue;
4589
4590 // Okay, at least one of these operands is loop variant but might be
4591 // foldable. Build a new instance of the folded commutative expression.
4592 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4593 AddRec->op_begin()+i);
4594 NewOps.push_back(OpAtScope);
4595 for (++i; i != e; ++i)
4596 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4597
4598 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4599 break;
4600 }
4601
4602 // If the scope is outside the addrec's loop, evaluate it by using the
4603 // loop exit value of the addrec.
4604 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 // To evaluate this recurrence, we need to know how many times the AddRec
4606 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004607 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004608 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004609
Eli Friedmanb42a6262008-08-04 23:49:06 +00004610 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004611 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004612 }
Dan Gohman11046452010-06-29 23:43:06 +00004613
Dan Gohmand594e6f2009-05-24 23:25:42 +00004614 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004615 }
4616
Dan Gohman622ed672009-05-04 22:02:23 +00004617 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004618 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004619 if (Op == Cast->getOperand())
4620 return Cast; // must be loop invariant
4621 return getZeroExtendExpr(Op, Cast->getType());
4622 }
4623
Dan Gohman622ed672009-05-04 22:02:23 +00004624 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004625 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004626 if (Op == Cast->getOperand())
4627 return Cast; // must be loop invariant
4628 return getSignExtendExpr(Op, Cast->getType());
4629 }
4630
Dan Gohman622ed672009-05-04 22:02:23 +00004631 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004632 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004633 if (Op == Cast->getOperand())
4634 return Cast; // must be loop invariant
4635 return getTruncateExpr(Op, Cast->getType());
4636 }
4637
Torok Edwinc23197a2009-07-14 16:55:14 +00004638 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004639 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004640}
4641
Dan Gohman66a7e852009-05-08 20:38:54 +00004642/// getSCEVAtScope - This is a convenience function which does
4643/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004644const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004645 return getSCEVAtScope(getSCEV(V), L);
4646}
4647
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004648/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4649/// following equation:
4650///
4651/// A * X = B (mod N)
4652///
4653/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4654/// A and B isn't important.
4655///
4656/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004657static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004658 ScalarEvolution &SE) {
4659 uint32_t BW = A.getBitWidth();
4660 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4661 assert(A != 0 && "A must be non-zero.");
4662
4663 // 1. D = gcd(A, N)
4664 //
4665 // The gcd of A and N may have only one prime factor: 2. The number of
4666 // trailing zeros in A is its multiplicity
4667 uint32_t Mult2 = A.countTrailingZeros();
4668 // D = 2^Mult2
4669
4670 // 2. Check if B is divisible by D.
4671 //
4672 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4673 // is not less than multiplicity of this prime factor for D.
4674 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004675 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004676
4677 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4678 // modulo (N / D).
4679 //
4680 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4681 // bit width during computations.
4682 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4683 APInt Mod(BW + 1, 0);
4684 Mod.set(BW - Mult2); // Mod = N / D
4685 APInt I = AD.multiplicativeInverse(Mod);
4686
4687 // 4. Compute the minimum unsigned root of the equation:
4688 // I * (B / D) mod (N / D)
4689 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4690
4691 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4692 // bits.
4693 return SE.getConstant(Result.trunc(BW));
4694}
Chris Lattner53e677a2004-04-02 20:23:17 +00004695
4696/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4697/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4698/// might be the same) or two SCEVCouldNotCompute objects.
4699///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004700static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004701SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004702 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004703 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4704 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4705 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004706
Chris Lattner53e677a2004-04-02 20:23:17 +00004707 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004708 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004709 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004710 return std::make_pair(CNC, CNC);
4711 }
4712
Reid Spencere8019bb2007-03-01 07:25:48 +00004713 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004714 const APInt &L = LC->getValue()->getValue();
4715 const APInt &M = MC->getValue()->getValue();
4716 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004717 APInt Two(BitWidth, 2);
4718 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004719
Dan Gohman64a845e2009-06-24 04:48:43 +00004720 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004721 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004722 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004723 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4724 // The B coefficient is M-N/2
4725 APInt B(M);
4726 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004727
Reid Spencere8019bb2007-03-01 07:25:48 +00004728 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004729 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004730
Reid Spencere8019bb2007-03-01 07:25:48 +00004731 // Compute the B^2-4ac term.
4732 APInt SqrtTerm(B);
4733 SqrtTerm *= B;
4734 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004735
Reid Spencere8019bb2007-03-01 07:25:48 +00004736 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4737 // integer value or else APInt::sqrt() will assert.
4738 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004739
Dan Gohman64a845e2009-06-24 04:48:43 +00004740 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004741 // The divisions must be performed as signed divisions.
4742 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004743 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004744 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004745 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004746 return std::make_pair(CNC, CNC);
4747 }
4748
Owen Andersone922c022009-07-22 00:24:57 +00004749 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004750
4751 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004752 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004753 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004754 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004755
Dan Gohman64a845e2009-06-24 04:48:43 +00004756 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004757 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004758 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004759}
4760
4761/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004762/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004763ScalarEvolution::BackedgeTakenInfo
4764ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004765 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004766 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004767 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004768 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004769 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004770 }
4771
Dan Gohman35738ac2009-05-04 22:30:44 +00004772 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004773 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004774 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004775
4776 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004777 // If this is an affine expression, the execution count of this branch is
4778 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004779 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004780 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004781 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004782 // equivalent to:
4783 //
4784 // Step*N = -Start (mod 2^BW)
4785 //
4786 // where BW is the common bit width of Start and Step.
4787
Chris Lattner53e677a2004-04-02 20:23:17 +00004788 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004789 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4790 L->getParentLoop());
4791 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4792 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004793
Dan Gohman622ed672009-05-04 22:02:23 +00004794 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004795 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004796
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004797 // First, handle unitary steps.
4798 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004799 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004800 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4801 return Start; // N = Start (as unsigned)
4802
4803 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004804 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004805 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004806 -StartC->getValue()->getValue(),
4807 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004808 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004809 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004810 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4811 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004812 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004813 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004814 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4815 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004816 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004817#if 0
David Greene25e0e872009-12-23 22:18:14 +00004818 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004819 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004820#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004821 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004822 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004823 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004824 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004825 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004826 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004827
Chris Lattner53e677a2004-04-02 20:23:17 +00004828 // We can only use this value if the chrec ends up with an exact zero
4829 // value at this index. When solving for "X*X != 5", for example, we
4830 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004831 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004832 if (Val->isZero())
4833 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004834 }
4835 }
4836 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004837
Dan Gohman1c343752009-06-27 21:21:31 +00004838 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004839}
4840
4841/// HowFarToNonZero - Return the number of times a backedge checking the
4842/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004843/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004844ScalarEvolution::BackedgeTakenInfo
4845ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004846 // Loops that look like: while (X == 0) are very strange indeed. We don't
4847 // handle them yet except for the trivial case. This could be expanded in the
4848 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004849
Chris Lattner53e677a2004-04-02 20:23:17 +00004850 // If the value is a constant, check to see if it is known to be non-zero
4851 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004852 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004853 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004854 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004855 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004856 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004857
Chris Lattner53e677a2004-04-02 20:23:17 +00004858 // We could implement others, but I really doubt anyone writes loops like
4859 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004860 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004861}
4862
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004863/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4864/// (which may not be an immediate predecessor) which has exactly one
4865/// successor from which BB is reachable, or null if no such block is
4866/// found.
4867///
Dan Gohman005752b2010-04-15 16:19:08 +00004868std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004869ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004870 // If the block has a unique predecessor, then there is no path from the
4871 // predecessor to the block that does not go through the direct edge
4872 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004873 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004874 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004875
4876 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004877 // If the header has a unique predecessor outside the loop, it must be
4878 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004879 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004880 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004881
Dan Gohman005752b2010-04-15 16:19:08 +00004882 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004883}
4884
Dan Gohman763bad12009-06-20 00:35:32 +00004885/// HasSameValue - SCEV structural equivalence is usually sufficient for
4886/// testing whether two expressions are equal, however for the purposes of
4887/// looking for a condition guarding a loop, it can be useful to be a little
4888/// more general, since a front-end may have replicated the controlling
4889/// expression.
4890///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004891static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004892 // Quick check to see if they are the same SCEV.
4893 if (A == B) return true;
4894
4895 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4896 // two different instructions with the same value. Check for this case.
4897 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4898 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4899 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4900 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004901 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004902 return true;
4903
4904 // Otherwise assume they may have a different value.
4905 return false;
4906}
4907
Dan Gohmane9796502010-04-24 01:28:42 +00004908/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4909/// predicate Pred. Return true iff any changes were made.
4910///
4911bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4912 const SCEV *&LHS, const SCEV *&RHS) {
4913 bool Changed = false;
4914
4915 // Canonicalize a constant to the right side.
4916 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4917 // Check for both operands constant.
4918 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4919 if (ConstantExpr::getICmp(Pred,
4920 LHSC->getValue(),
4921 RHSC->getValue())->isNullValue())
4922 goto trivially_false;
4923 else
4924 goto trivially_true;
4925 }
4926 // Otherwise swap the operands to put the constant on the right.
4927 std::swap(LHS, RHS);
4928 Pred = ICmpInst::getSwappedPredicate(Pred);
4929 Changed = true;
4930 }
4931
4932 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004933 // addrec's loop, put the addrec on the left. Also make a dominance check,
4934 // as both operands could be addrecs loop-invariant in each other's loop.
4935 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4936 const Loop *L = AR->getLoop();
4937 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004938 std::swap(LHS, RHS);
4939 Pred = ICmpInst::getSwappedPredicate(Pred);
4940 Changed = true;
4941 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004942 }
Dan Gohmane9796502010-04-24 01:28:42 +00004943
4944 // If there's a constant operand, canonicalize comparisons with boundary
4945 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4946 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4947 const APInt &RA = RC->getValue()->getValue();
4948 switch (Pred) {
4949 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4950 case ICmpInst::ICMP_EQ:
4951 case ICmpInst::ICMP_NE:
4952 break;
4953 case ICmpInst::ICMP_UGE:
4954 if ((RA - 1).isMinValue()) {
4955 Pred = ICmpInst::ICMP_NE;
4956 RHS = getConstant(RA - 1);
4957 Changed = true;
4958 break;
4959 }
4960 if (RA.isMaxValue()) {
4961 Pred = ICmpInst::ICMP_EQ;
4962 Changed = true;
4963 break;
4964 }
4965 if (RA.isMinValue()) goto trivially_true;
4966
4967 Pred = ICmpInst::ICMP_UGT;
4968 RHS = getConstant(RA - 1);
4969 Changed = true;
4970 break;
4971 case ICmpInst::ICMP_ULE:
4972 if ((RA + 1).isMaxValue()) {
4973 Pred = ICmpInst::ICMP_NE;
4974 RHS = getConstant(RA + 1);
4975 Changed = true;
4976 break;
4977 }
4978 if (RA.isMinValue()) {
4979 Pred = ICmpInst::ICMP_EQ;
4980 Changed = true;
4981 break;
4982 }
4983 if (RA.isMaxValue()) goto trivially_true;
4984
4985 Pred = ICmpInst::ICMP_ULT;
4986 RHS = getConstant(RA + 1);
4987 Changed = true;
4988 break;
4989 case ICmpInst::ICMP_SGE:
4990 if ((RA - 1).isMinSignedValue()) {
4991 Pred = ICmpInst::ICMP_NE;
4992 RHS = getConstant(RA - 1);
4993 Changed = true;
4994 break;
4995 }
4996 if (RA.isMaxSignedValue()) {
4997 Pred = ICmpInst::ICMP_EQ;
4998 Changed = true;
4999 break;
5000 }
5001 if (RA.isMinSignedValue()) goto trivially_true;
5002
5003 Pred = ICmpInst::ICMP_SGT;
5004 RHS = getConstant(RA - 1);
5005 Changed = true;
5006 break;
5007 case ICmpInst::ICMP_SLE:
5008 if ((RA + 1).isMaxSignedValue()) {
5009 Pred = ICmpInst::ICMP_NE;
5010 RHS = getConstant(RA + 1);
5011 Changed = true;
5012 break;
5013 }
5014 if (RA.isMinSignedValue()) {
5015 Pred = ICmpInst::ICMP_EQ;
5016 Changed = true;
5017 break;
5018 }
5019 if (RA.isMaxSignedValue()) goto trivially_true;
5020
5021 Pred = ICmpInst::ICMP_SLT;
5022 RHS = getConstant(RA + 1);
5023 Changed = true;
5024 break;
5025 case ICmpInst::ICMP_UGT:
5026 if (RA.isMinValue()) {
5027 Pred = ICmpInst::ICMP_NE;
5028 Changed = true;
5029 break;
5030 }
5031 if ((RA + 1).isMaxValue()) {
5032 Pred = ICmpInst::ICMP_EQ;
5033 RHS = getConstant(RA + 1);
5034 Changed = true;
5035 break;
5036 }
5037 if (RA.isMaxValue()) goto trivially_false;
5038 break;
5039 case ICmpInst::ICMP_ULT:
5040 if (RA.isMaxValue()) {
5041 Pred = ICmpInst::ICMP_NE;
5042 Changed = true;
5043 break;
5044 }
5045 if ((RA - 1).isMinValue()) {
5046 Pred = ICmpInst::ICMP_EQ;
5047 RHS = getConstant(RA - 1);
5048 Changed = true;
5049 break;
5050 }
5051 if (RA.isMinValue()) goto trivially_false;
5052 break;
5053 case ICmpInst::ICMP_SGT:
5054 if (RA.isMinSignedValue()) {
5055 Pred = ICmpInst::ICMP_NE;
5056 Changed = true;
5057 break;
5058 }
5059 if ((RA + 1).isMaxSignedValue()) {
5060 Pred = ICmpInst::ICMP_EQ;
5061 RHS = getConstant(RA + 1);
5062 Changed = true;
5063 break;
5064 }
5065 if (RA.isMaxSignedValue()) goto trivially_false;
5066 break;
5067 case ICmpInst::ICMP_SLT:
5068 if (RA.isMaxSignedValue()) {
5069 Pred = ICmpInst::ICMP_NE;
5070 Changed = true;
5071 break;
5072 }
5073 if ((RA - 1).isMinSignedValue()) {
5074 Pred = ICmpInst::ICMP_EQ;
5075 RHS = getConstant(RA - 1);
5076 Changed = true;
5077 break;
5078 }
5079 if (RA.isMinSignedValue()) goto trivially_false;
5080 break;
5081 }
5082 }
5083
5084 // Check for obvious equality.
5085 if (HasSameValue(LHS, RHS)) {
5086 if (ICmpInst::isTrueWhenEqual(Pred))
5087 goto trivially_true;
5088 if (ICmpInst::isFalseWhenEqual(Pred))
5089 goto trivially_false;
5090 }
5091
Dan Gohman03557dc2010-05-03 16:35:17 +00005092 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5093 // adding or subtracting 1 from one of the operands.
5094 switch (Pred) {
5095 case ICmpInst::ICMP_SLE:
5096 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5097 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5098 /*HasNUW=*/false, /*HasNSW=*/true);
5099 Pred = ICmpInst::ICMP_SLT;
5100 Changed = true;
5101 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005102 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005103 /*HasNUW=*/false, /*HasNSW=*/true);
5104 Pred = ICmpInst::ICMP_SLT;
5105 Changed = true;
5106 }
5107 break;
5108 case ICmpInst::ICMP_SGE:
5109 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005110 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005111 /*HasNUW=*/false, /*HasNSW=*/true);
5112 Pred = ICmpInst::ICMP_SGT;
5113 Changed = true;
5114 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5115 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5116 /*HasNUW=*/false, /*HasNSW=*/true);
5117 Pred = ICmpInst::ICMP_SGT;
5118 Changed = true;
5119 }
5120 break;
5121 case ICmpInst::ICMP_ULE:
5122 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005123 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005124 /*HasNUW=*/true, /*HasNSW=*/false);
5125 Pred = ICmpInst::ICMP_ULT;
5126 Changed = true;
5127 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005128 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005129 /*HasNUW=*/true, /*HasNSW=*/false);
5130 Pred = ICmpInst::ICMP_ULT;
5131 Changed = true;
5132 }
5133 break;
5134 case ICmpInst::ICMP_UGE:
5135 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005136 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005137 /*HasNUW=*/true, /*HasNSW=*/false);
5138 Pred = ICmpInst::ICMP_UGT;
5139 Changed = true;
5140 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005141 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005142 /*HasNUW=*/true, /*HasNSW=*/false);
5143 Pred = ICmpInst::ICMP_UGT;
5144 Changed = true;
5145 }
5146 break;
5147 default:
5148 break;
5149 }
5150
Dan Gohmane9796502010-04-24 01:28:42 +00005151 // TODO: More simplifications are possible here.
5152
5153 return Changed;
5154
5155trivially_true:
5156 // Return 0 == 0.
5157 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5158 Pred = ICmpInst::ICMP_EQ;
5159 return true;
5160
5161trivially_false:
5162 // Return 0 != 0.
5163 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5164 Pred = ICmpInst::ICMP_NE;
5165 return true;
5166}
5167
Dan Gohman85b05a22009-07-13 21:35:55 +00005168bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5169 return getSignedRange(S).getSignedMax().isNegative();
5170}
5171
5172bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5173 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5174}
5175
5176bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5177 return !getSignedRange(S).getSignedMin().isNegative();
5178}
5179
5180bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5181 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5182}
5183
5184bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5185 return isKnownNegative(S) || isKnownPositive(S);
5186}
5187
5188bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5189 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005190 // Canonicalize the inputs first.
5191 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5192
Dan Gohman53c66ea2010-04-11 22:16:48 +00005193 // If LHS or RHS is an addrec, check to see if the condition is true in
5194 // every iteration of the loop.
5195 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5196 if (isLoopEntryGuardedByCond(
5197 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5198 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005199 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005200 return true;
5201 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5202 if (isLoopEntryGuardedByCond(
5203 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5204 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005205 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005206 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005207
Dan Gohman53c66ea2010-04-11 22:16:48 +00005208 // Otherwise see what can be done with known constant ranges.
5209 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5210}
5211
5212bool
5213ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5214 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005215 if (HasSameValue(LHS, RHS))
5216 return ICmpInst::isTrueWhenEqual(Pred);
5217
Dan Gohman53c66ea2010-04-11 22:16:48 +00005218 // This code is split out from isKnownPredicate because it is called from
5219 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005220 switch (Pred) {
5221 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005222 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005223 break;
5224 case ICmpInst::ICMP_SGT:
5225 Pred = ICmpInst::ICMP_SLT;
5226 std::swap(LHS, RHS);
5227 case ICmpInst::ICMP_SLT: {
5228 ConstantRange LHSRange = getSignedRange(LHS);
5229 ConstantRange RHSRange = getSignedRange(RHS);
5230 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5231 return true;
5232 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5233 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005234 break;
5235 }
5236 case ICmpInst::ICMP_SGE:
5237 Pred = ICmpInst::ICMP_SLE;
5238 std::swap(LHS, RHS);
5239 case ICmpInst::ICMP_SLE: {
5240 ConstantRange LHSRange = getSignedRange(LHS);
5241 ConstantRange RHSRange = getSignedRange(RHS);
5242 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5243 return true;
5244 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5245 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005246 break;
5247 }
5248 case ICmpInst::ICMP_UGT:
5249 Pred = ICmpInst::ICMP_ULT;
5250 std::swap(LHS, RHS);
5251 case ICmpInst::ICMP_ULT: {
5252 ConstantRange LHSRange = getUnsignedRange(LHS);
5253 ConstantRange RHSRange = getUnsignedRange(RHS);
5254 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5255 return true;
5256 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5257 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005258 break;
5259 }
5260 case ICmpInst::ICMP_UGE:
5261 Pred = ICmpInst::ICMP_ULE;
5262 std::swap(LHS, RHS);
5263 case ICmpInst::ICMP_ULE: {
5264 ConstantRange LHSRange = getUnsignedRange(LHS);
5265 ConstantRange RHSRange = getUnsignedRange(RHS);
5266 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5267 return true;
5268 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5269 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005270 break;
5271 }
5272 case ICmpInst::ICMP_NE: {
5273 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5274 return true;
5275 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5276 return true;
5277
5278 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5279 if (isKnownNonZero(Diff))
5280 return true;
5281 break;
5282 }
5283 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005284 // The check at the top of the function catches the case where
5285 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005286 break;
5287 }
5288 return false;
5289}
5290
5291/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5292/// protected by a conditional between LHS and RHS. This is used to
5293/// to eliminate casts.
5294bool
5295ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5296 ICmpInst::Predicate Pred,
5297 const SCEV *LHS, const SCEV *RHS) {
5298 // Interpret a null as meaning no loop, where there is obviously no guard
5299 // (interprocedural conditions notwithstanding).
5300 if (!L) return true;
5301
5302 BasicBlock *Latch = L->getLoopLatch();
5303 if (!Latch)
5304 return false;
5305
5306 BranchInst *LoopContinuePredicate =
5307 dyn_cast<BranchInst>(Latch->getTerminator());
5308 if (!LoopContinuePredicate ||
5309 LoopContinuePredicate->isUnconditional())
5310 return false;
5311
Dan Gohmanaf08a362010-08-10 23:46:30 +00005312 return isImpliedCond(Pred, LHS, RHS,
5313 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005314 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005315}
5316
Dan Gohman3948d0b2010-04-11 19:27:13 +00005317/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005318/// by a conditional between LHS and RHS. This is used to help avoid max
5319/// expressions in loop trip counts, and to eliminate casts.
5320bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005321ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5322 ICmpInst::Predicate Pred,
5323 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005324 // Interpret a null as meaning no loop, where there is obviously no guard
5325 // (interprocedural conditions notwithstanding).
5326 if (!L) return false;
5327
Dan Gohman859b4822009-05-18 15:36:09 +00005328 // Starting at the loop predecessor, climb up the predecessor chain, as long
5329 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005330 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005331 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005332 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005333 Pair.first;
5334 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005335
5336 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005337 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005338 if (!LoopEntryPredicate ||
5339 LoopEntryPredicate->isUnconditional())
5340 continue;
5341
Dan Gohmanaf08a362010-08-10 23:46:30 +00005342 if (isImpliedCond(Pred, LHS, RHS,
5343 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005344 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005345 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005346 }
5347
Dan Gohman38372182008-08-12 20:17:31 +00005348 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005349}
5350
Dan Gohman0f4b2852009-07-21 23:03:19 +00005351/// isImpliedCond - Test whether the condition described by Pred, LHS,
5352/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005353bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005354 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005355 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005356 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005357 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005358 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005359 if (BO->getOpcode() == Instruction::And) {
5360 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005361 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5362 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005363 } else if (BO->getOpcode() == Instruction::Or) {
5364 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005365 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5366 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005367 }
5368 }
5369
Dan Gohmanaf08a362010-08-10 23:46:30 +00005370 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005371 if (!ICI) return false;
5372
Dan Gohman85b05a22009-07-13 21:35:55 +00005373 // Bail if the ICmp's operands' types are wider than the needed type
5374 // before attempting to call getSCEV on them. This avoids infinite
5375 // recursion, since the analysis of widening casts can require loop
5376 // exit condition information for overflow checking, which would
5377 // lead back here.
5378 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005379 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005380 return false;
5381
Dan Gohman0f4b2852009-07-21 23:03:19 +00005382 // Now that we found a conditional branch that dominates the loop, check to
5383 // see if it is the comparison we are looking for.
5384 ICmpInst::Predicate FoundPred;
5385 if (Inverse)
5386 FoundPred = ICI->getInversePredicate();
5387 else
5388 FoundPred = ICI->getPredicate();
5389
5390 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5391 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005392
5393 // Balance the types. The case where FoundLHS' type is wider than
5394 // LHS' type is checked for above.
5395 if (getTypeSizeInBits(LHS->getType()) >
5396 getTypeSizeInBits(FoundLHS->getType())) {
5397 if (CmpInst::isSigned(Pred)) {
5398 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5399 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5400 } else {
5401 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5402 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5403 }
5404 }
5405
Dan Gohman0f4b2852009-07-21 23:03:19 +00005406 // Canonicalize the query to match the way instcombine will have
5407 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005408 if (SimplifyICmpOperands(Pred, LHS, RHS))
5409 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005410 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005411 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5412 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005413 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005414
5415 // Check to see if we can make the LHS or RHS match.
5416 if (LHS == FoundRHS || RHS == FoundLHS) {
5417 if (isa<SCEVConstant>(RHS)) {
5418 std::swap(FoundLHS, FoundRHS);
5419 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5420 } else {
5421 std::swap(LHS, RHS);
5422 Pred = ICmpInst::getSwappedPredicate(Pred);
5423 }
5424 }
5425
5426 // Check whether the found predicate is the same as the desired predicate.
5427 if (FoundPred == Pred)
5428 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5429
5430 // Check whether swapping the found predicate makes it the same as the
5431 // desired predicate.
5432 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5433 if (isa<SCEVConstant>(RHS))
5434 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5435 else
5436 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5437 RHS, LHS, FoundLHS, FoundRHS);
5438 }
5439
5440 // Check whether the actual condition is beyond sufficient.
5441 if (FoundPred == ICmpInst::ICMP_EQ)
5442 if (ICmpInst::isTrueWhenEqual(Pred))
5443 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5444 return true;
5445 if (Pred == ICmpInst::ICMP_NE)
5446 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5447 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5448 return true;
5449
5450 // Otherwise assume the worst.
5451 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005452}
5453
Dan Gohman0f4b2852009-07-21 23:03:19 +00005454/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005455/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005456/// and FoundRHS is true.
5457bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5458 const SCEV *LHS, const SCEV *RHS,
5459 const SCEV *FoundLHS,
5460 const SCEV *FoundRHS) {
5461 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5462 FoundLHS, FoundRHS) ||
5463 // ~x < ~y --> x > y
5464 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5465 getNotSCEV(FoundRHS),
5466 getNotSCEV(FoundLHS));
5467}
5468
5469/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005470/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005471/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005472bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005473ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5474 const SCEV *LHS, const SCEV *RHS,
5475 const SCEV *FoundLHS,
5476 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005477 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005478 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5479 case ICmpInst::ICMP_EQ:
5480 case ICmpInst::ICMP_NE:
5481 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5482 return true;
5483 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005484 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005485 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005486 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5487 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005488 return true;
5489 break;
5490 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005491 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005492 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5493 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005494 return true;
5495 break;
5496 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005497 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005498 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5499 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005500 return true;
5501 break;
5502 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005503 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005504 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5505 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005506 return true;
5507 break;
5508 }
5509
5510 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005511}
5512
Dan Gohman51f53b72009-06-21 23:46:38 +00005513/// getBECount - Subtract the end and start values and divide by the step,
5514/// rounding up, to get the number of times the backedge is executed. Return
5515/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005516const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005517 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005518 const SCEV *Step,
5519 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005520 assert(!isKnownNegative(Step) &&
5521 "This code doesn't handle negative strides yet!");
5522
Dan Gohman51f53b72009-06-21 23:46:38 +00005523 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005524 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005525 const SCEV *Diff = getMinusSCEV(End, Start);
5526 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005527
5528 // Add an adjustment to the difference between End and Start so that
5529 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005530 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005531
Dan Gohman1f96e672009-09-17 18:05:20 +00005532 if (!NoWrap) {
5533 // Check Add for unsigned overflow.
5534 // TODO: More sophisticated things could be done here.
5535 const Type *WideTy = IntegerType::get(getContext(),
5536 getTypeSizeInBits(Ty) + 1);
5537 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5538 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5539 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5540 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5541 return getCouldNotCompute();
5542 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005543
5544 return getUDivExpr(Add, Step);
5545}
5546
Chris Lattnerdb25de42005-08-15 23:33:51 +00005547/// HowManyLessThans - Return the number of times a backedge containing the
5548/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005549/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005550ScalarEvolution::BackedgeTakenInfo
5551ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5552 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005553 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005554 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005555
Dan Gohman35738ac2009-05-04 22:30:44 +00005556 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005557 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005558 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005559
Dan Gohman1f96e672009-09-17 18:05:20 +00005560 // Check to see if we have a flag which makes analysis easy.
5561 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5562 AddRec->hasNoUnsignedWrap();
5563
Chris Lattnerdb25de42005-08-15 23:33:51 +00005564 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005565 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005566 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005567
Dan Gohman52fddd32010-01-26 04:40:18 +00005568 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005569 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005570 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005571 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005572 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005573 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005574 // value and past the maximum value for its type in a single step.
5575 // Note that it's not sufficient to check NoWrap here, because even
5576 // though the value after a wrap is undefined, it's not undefined
5577 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005578 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005579 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005580 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005581 if (isSigned) {
5582 APInt Max = APInt::getSignedMaxValue(BitWidth);
5583 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5584 .slt(getSignedRange(RHS).getSignedMax()))
5585 return getCouldNotCompute();
5586 } else {
5587 APInt Max = APInt::getMaxValue(BitWidth);
5588 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5589 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5590 return getCouldNotCompute();
5591 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005592 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005593 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005594 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005595
Dan Gohmana1af7572009-04-30 20:47:05 +00005596 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5597 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5598 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005599 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005600
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005601 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005602 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005603
Dan Gohmana1af7572009-04-30 20:47:05 +00005604 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005605 const SCEV *MinStart = getConstant(isSigned ?
5606 getSignedRange(Start).getSignedMin() :
5607 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005608
Dan Gohmana1af7572009-04-30 20:47:05 +00005609 // If we know that the condition is true in order to enter the loop,
5610 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005611 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5612 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005613 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005614 if (!isLoopEntryGuardedByCond(L,
5615 isSigned ? ICmpInst::ICMP_SLT :
5616 ICmpInst::ICMP_ULT,
5617 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005618 End = isSigned ? getSMaxExpr(RHS, Start)
5619 : getUMaxExpr(RHS, Start);
5620
5621 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005622 const SCEV *MaxEnd = getConstant(isSigned ?
5623 getSignedRange(End).getSignedMax() :
5624 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005625
Dan Gohman52fddd32010-01-26 04:40:18 +00005626 // If MaxEnd is within a step of the maximum integer value in its type,
5627 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005628 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005629 // compute the correct value.
5630 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005631 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005632 MaxEnd = isSigned ?
5633 getSMinExpr(MaxEnd,
5634 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5635 StepMinusOne)) :
5636 getUMinExpr(MaxEnd,
5637 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5638 StepMinusOne));
5639
Dan Gohmana1af7572009-04-30 20:47:05 +00005640 // Finally, we subtract these two values and divide, rounding up, to get
5641 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005642 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005643
5644 // The maximum backedge count is similar, except using the minimum start
5645 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005646 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005647
5648 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005649 }
5650
Dan Gohman1c343752009-06-27 21:21:31 +00005651 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005652}
5653
Chris Lattner53e677a2004-04-02 20:23:17 +00005654/// getNumIterationsInRange - Return the number of iterations of this loop that
5655/// produce values in the specified constant range. Another way of looking at
5656/// this is that it returns the first iteration number where the value is not in
5657/// the condition, thus computing the exit count. If the iteration count can't
5658/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005659const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005660 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005661 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005662 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005663
5664 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005665 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005666 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005667 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005668 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005669 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005670 if (const SCEVAddRecExpr *ShiftedAddRec =
5671 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005672 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005673 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005674 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005675 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005676 }
5677
5678 // The only time we can solve this is when we have all constant indices.
5679 // Otherwise, we cannot determine the overflow conditions.
5680 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5681 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005682 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005683
5684
5685 // Okay at this point we know that all elements of the chrec are constants and
5686 // that the start element is zero.
5687
5688 // First check to see if the range contains zero. If not, the first
5689 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005690 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005691 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005692 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005693
Chris Lattner53e677a2004-04-02 20:23:17 +00005694 if (isAffine()) {
5695 // If this is an affine expression then we have this situation:
5696 // Solve {0,+,A} in Range === Ax in Range
5697
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005698 // We know that zero is in the range. If A is positive then we know that
5699 // the upper value of the range must be the first possible exit value.
5700 // If A is negative then the lower of the range is the last possible loop
5701 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005702 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005703 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5704 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005705
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005706 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005707 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005708 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005709
5710 // Evaluate at the exit value. If we really did fall out of the valid
5711 // range, then we computed our trip count, otherwise wrap around or other
5712 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005713 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005714 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005715 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005716
5717 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005718 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005719 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005720 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005721 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005722 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005723 } else if (isQuadratic()) {
5724 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5725 // quadratic equation to solve it. To do this, we must frame our problem in
5726 // terms of figuring out when zero is crossed, instead of when
5727 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005728 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005729 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005730 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005731
5732 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005733 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005734 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005735 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5736 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005737 if (R1) {
5738 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005739 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005740 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005741 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005742 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005743 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005744
Chris Lattner53e677a2004-04-02 20:23:17 +00005745 // Make sure the root is not off by one. The returned iteration should
5746 // not be in the range, but the previous one should be. When solving
5747 // for "X*X < 5", for example, we should not return a root of 2.
5748 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005749 R1->getValue(),
5750 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005751 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005752 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005753 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005754 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005755
Dan Gohman246b2562007-10-22 18:31:58 +00005756 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005757 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005758 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005759 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005760 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005761
Chris Lattner53e677a2004-04-02 20:23:17 +00005762 // If R1 was not in the range, then it is a good return value. Make
5763 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005764 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005765 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005766 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005767 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005768 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005769 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005770 }
5771 }
5772 }
5773
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005774 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005775}
5776
5777
5778
5779//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005780// SCEVCallbackVH Class Implementation
5781//===----------------------------------------------------------------------===//
5782
Dan Gohman1959b752009-05-19 19:22:47 +00005783void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005784 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005785 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5786 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005787 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005788 // this now dangles!
5789}
5790
Dan Gohman81f91212010-07-28 01:09:07 +00005791void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005792 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005793
Dan Gohman35738ac2009-05-04 22:30:44 +00005794 // Forget all the expressions associated with users of the old value,
5795 // so that future queries will recompute the expressions using the new
5796 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005797 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005798 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005799 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005800 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5801 UI != UE; ++UI)
5802 Worklist.push_back(*UI);
5803 while (!Worklist.empty()) {
5804 User *U = Worklist.pop_back_val();
5805 // Deleting the Old value will cause this to dangle. Postpone
5806 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005807 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005808 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005809 if (!Visited.insert(U))
5810 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005811 if (PHINode *PN = dyn_cast<PHINode>(U))
5812 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005813 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005814 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5815 UI != UE; ++UI)
5816 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005817 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005818 // Delete the Old value.
5819 if (PHINode *PN = dyn_cast<PHINode>(Old))
5820 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005821 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005822 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005823}
5824
Dan Gohman1959b752009-05-19 19:22:47 +00005825ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005826 : CallbackVH(V), SE(se) {}
5827
5828//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005829// ScalarEvolution Class Implementation
5830//===----------------------------------------------------------------------===//
5831
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005832ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005833 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005834}
5835
Chris Lattner53e677a2004-04-02 20:23:17 +00005836bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005837 this->F = &F;
5838 LI = &getAnalysis<LoopInfo>();
5839 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005840 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005841 return false;
5842}
5843
5844void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005845 // Iterate through all the SCEVUnknown instances and call their
5846 // destructors, so that they release their references to their values.
5847 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5848 U->~SCEVUnknown();
5849 FirstUnknown = 0;
5850
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005851 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005852 BackedgeTakenCounts.clear();
5853 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005854 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005855 UniqueSCEVs.clear();
5856 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005857}
5858
5859void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5860 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005861 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005862 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005863}
5864
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005865bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005866 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005867}
5868
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005869static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005870 const Loop *L) {
5871 // Print all inner loops first
5872 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5873 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005874
Dan Gohman30733292010-01-09 18:17:45 +00005875 OS << "Loop ";
5876 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5877 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005878
Dan Gohman5d984912009-12-18 01:14:11 +00005879 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005880 L->getExitBlocks(ExitBlocks);
5881 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005882 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005883
Dan Gohman46bdfb02009-02-24 18:55:53 +00005884 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5885 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005886 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005887 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005888 }
5889
Dan Gohman30733292010-01-09 18:17:45 +00005890 OS << "\n"
5891 "Loop ";
5892 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5893 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005894
5895 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5896 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5897 } else {
5898 OS << "Unpredictable max backedge-taken count. ";
5899 }
5900
5901 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005902}
5903
Dan Gohman5d984912009-12-18 01:14:11 +00005904void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005905 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005906 // out SCEV values of all instructions that are interesting. Doing
5907 // this potentially causes it to create new SCEV objects though,
5908 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005909 // observable from outside the class though, so casting away the
5910 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005911 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005912
Dan Gohman30733292010-01-09 18:17:45 +00005913 OS << "Classifying expressions for: ";
5914 WriteAsOperand(OS, F, /*PrintType=*/false);
5915 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005916 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005917 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005918 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005919 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005920 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005921 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005922
Dan Gohman0c689c52009-06-19 17:49:54 +00005923 const Loop *L = LI->getLoopFor((*I).getParent());
5924
Dan Gohman0bba49c2009-07-07 17:06:11 +00005925 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005926 if (AtUse != SV) {
5927 OS << " --> ";
5928 AtUse->print(OS);
5929 }
5930
5931 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005932 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005933 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005934 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005935 OS << "<<Unknown>>";
5936 } else {
5937 OS << *ExitValue;
5938 }
5939 }
5940
Chris Lattner53e677a2004-04-02 20:23:17 +00005941 OS << "\n";
5942 }
5943
Dan Gohman30733292010-01-09 18:17:45 +00005944 OS << "Determining loop execution counts for: ";
5945 WriteAsOperand(OS, F, /*PrintType=*/false);
5946 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005947 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5948 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005949}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005950