blob: d63e179da47a708251b3b2343fc4335a32c380df [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000191 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000192 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf9e64722010-03-18 01:17:13 +0000250 assert(NumOperands > 1 && "This plus expr shouldn't exist!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251 const char *OpStr = getOperationStr();
252 OS << "(" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000253 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000254 OS << OpStr << *Operands[i];
255 OS << ")";
256}
257
Dan Gohmanecb403a2009-05-07 14:00:19 +0000258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260 if (!getOperand(i)->dominates(BB, DT))
261 return false;
262 }
263 return true;
264}
265
Dan Gohman6e70e312009-09-27 15:26:03 +0000266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268 if (!getOperand(i)->properlyDominates(BB, DT))
269 return false;
270 }
271 return true;
272}
273
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
Dan Gohman6e70e312009-09-27 15:26:03 +0000278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000282void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000283 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000284}
285
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000286const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000287 // In most cases the types of LHS and RHS will be the same, but in some
288 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289 // depend on the type for correctness, but handling types carefully can
290 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291 // a pointer type than the RHS, so use the RHS' type here.
292 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000296 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000297 if (!QueryLoop)
298 return false;
299
300 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000301 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000302 return false;
303
304 // This recurrence is variant w.r.t. QueryLoop if any of its operands
305 // are variant.
306 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307 if (!getOperand(i)->isLoopInvariant(QueryLoop))
308 return false;
309
310 // Otherwise it's loop-invariant.
311 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000312}
313
Dan Gohman39125d82010-02-13 00:19:39 +0000314bool
315SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
316 return DT->dominates(L->getHeader(), BB) &&
317 SCEVNAryExpr::dominates(BB, DT);
318}
319
320bool
321SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
322 // This uses a "dominates" query instead of "properly dominates" query because
323 // the instruction which produces the addrec's value is a PHI, and a PHI
324 // effectively properly dominates its entire containing block.
325 return DT->dominates(L->getHeader(), BB) &&
326 SCEVNAryExpr::properlyDominates(BB, DT);
327}
328
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000329void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000331 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000333 OS << "}<";
334 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
335 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336}
Chris Lattner53e677a2004-04-02 20:23:17 +0000337
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
339 // All non-instruction values are loop invariant. All instructions are loop
340 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000341 // Instructions are never considered invariant in the function body
342 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000343 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000344 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 return true;
346}
Chris Lattner53e677a2004-04-02 20:23:17 +0000347
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000348bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
349 if (Instruction *I = dyn_cast<Instruction>(getValue()))
350 return DT->dominates(I->getParent(), BB);
351 return true;
352}
353
Dan Gohman6e70e312009-09-27 15:26:03 +0000354bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
355 if (Instruction *I = dyn_cast<Instruction>(getValue()))
356 return DT->properlyDominates(I->getParent(), BB);
357 return true;
358}
359
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000360const Type *SCEVUnknown::getType() const {
361 return V->getType();
362}
Chris Lattner53e677a2004-04-02 20:23:17 +0000363
Dan Gohman0f5efe52010-01-28 02:15:55 +0000364bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
365 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
366 if (VCE->getOpcode() == Instruction::PtrToInt)
367 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000368 if (CE->getOpcode() == Instruction::GetElementPtr &&
369 CE->getOperand(0)->isNullValue() &&
370 CE->getNumOperands() == 2)
371 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
372 if (CI->isOne()) {
373 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
374 ->getElementType();
375 return true;
376 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000377
378 return false;
379}
380
381bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue()) {
387 const Type *Ty =
388 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
389 if (const StructType *STy = dyn_cast<StructType>(Ty))
390 if (!STy->isPacked() &&
391 CE->getNumOperands() == 3 &&
392 CE->getOperand(1)->isNullValue()) {
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
394 if (CI->isOne() &&
395 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000396 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000397 AllocTy = STy->getElementType(1);
398 return true;
399 }
400 }
401 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000402
403 return false;
404}
405
Dan Gohman4f8eea82010-02-01 18:27:38 +0000406bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(0)->isNullValue() &&
413 CE->getOperand(1)->isNullValue()) {
414 const Type *Ty =
415 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
416 // Ignore vector types here so that ScalarEvolutionExpander doesn't
417 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000418 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000419 CTy = Ty;
420 FieldNo = CE->getOperand(2);
421 return true;
422 }
423 }
424
425 return false;
426}
427
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000428void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000429 const Type *AllocTy;
430 if (isSizeOf(AllocTy)) {
431 OS << "sizeof(" << *AllocTy << ")";
432 return;
433 }
434 if (isAlignOf(AllocTy)) {
435 OS << "alignof(" << *AllocTy << ")";
436 return;
437 }
438
Dan Gohman4f8eea82010-02-01 18:27:38 +0000439 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000440 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 if (isOffsetOf(CTy, FieldNo)) {
442 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000443 WriteAsOperand(OS, FieldNo, false);
444 OS << ")";
445 return;
446 }
447
448 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000449 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000450}
451
Chris Lattner8d741b82004-06-20 06:23:15 +0000452//===----------------------------------------------------------------------===//
453// SCEV Utilities
454//===----------------------------------------------------------------------===//
455
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000456static bool CompareTypes(const Type *A, const Type *B) {
457 if (A->getTypeID() != B->getTypeID())
458 return A->getTypeID() < B->getTypeID();
459 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
460 const IntegerType *BI = cast<IntegerType>(B);
461 return AI->getBitWidth() < BI->getBitWidth();
462 }
463 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
464 const PointerType *BI = cast<PointerType>(B);
465 return CompareTypes(AI->getElementType(), BI->getElementType());
466 }
467 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
468 const ArrayType *BI = cast<ArrayType>(B);
469 if (AI->getNumElements() != BI->getNumElements())
470 return AI->getNumElements() < BI->getNumElements();
471 return CompareTypes(AI->getElementType(), BI->getElementType());
472 }
473 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
474 const VectorType *BI = cast<VectorType>(B);
475 if (AI->getNumElements() != BI->getNumElements())
476 return AI->getNumElements() < BI->getNumElements();
477 return CompareTypes(AI->getElementType(), BI->getElementType());
478 }
479 if (const StructType *AI = dyn_cast<StructType>(A)) {
480 const StructType *BI = cast<StructType>(B);
481 if (AI->getNumElements() != BI->getNumElements())
482 return AI->getNumElements() < BI->getNumElements();
483 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
484 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
485 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
486 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
487 }
488 return false;
489}
490
Chris Lattner8d741b82004-06-20 06:23:15 +0000491namespace {
492 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
493 /// than the complexity of the RHS. This comparator is used to canonicalize
494 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000495 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000496 LoopInfo *LI;
497 public:
498 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
499
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000500 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000501 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
502 if (LHS == RHS)
503 return false;
504
Dan Gohman72861302009-05-07 14:39:04 +0000505 // Primarily, sort the SCEVs by their getSCEVType().
506 if (LHS->getSCEVType() != RHS->getSCEVType())
507 return LHS->getSCEVType() < RHS->getSCEVType();
508
509 // Aside from the getSCEVType() ordering, the particular ordering
510 // isn't very important except that it's beneficial to be consistent,
511 // so that (a + b) and (b + a) don't end up as different expressions.
512
513 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
514 // not as complete as it could be.
515 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
516 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
517
Dan Gohman5be18e82009-05-19 02:15:55 +0000518 // Order pointer values after integer values. This helps SCEVExpander
519 // form GEPs.
Duncan Sands1df98592010-02-16 11:11:14 +0000520 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000521 return false;
Duncan Sands1df98592010-02-16 11:11:14 +0000522 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000523 return true;
524
Dan Gohman72861302009-05-07 14:39:04 +0000525 // Compare getValueID values.
526 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
527 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
528
529 // Sort arguments by their position.
530 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
531 const Argument *RA = cast<Argument>(RU->getValue());
532 return LA->getArgNo() < RA->getArgNo();
533 }
534
535 // For instructions, compare their loop depth, and their opcode.
536 // This is pretty loose.
537 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
538 Instruction *RV = cast<Instruction>(RU->getValue());
539
540 // Compare loop depths.
541 if (LI->getLoopDepth(LV->getParent()) !=
542 LI->getLoopDepth(RV->getParent()))
543 return LI->getLoopDepth(LV->getParent()) <
544 LI->getLoopDepth(RV->getParent());
545
546 // Compare opcodes.
547 if (LV->getOpcode() != RV->getOpcode())
548 return LV->getOpcode() < RV->getOpcode();
549
550 // Compare the number of operands.
551 if (LV->getNumOperands() != RV->getNumOperands())
552 return LV->getNumOperands() < RV->getNumOperands();
553 }
554
555 return false;
556 }
557
Dan Gohman4dfad292009-06-14 22:51:25 +0000558 // Compare constant values.
559 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
560 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000561 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
562 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000563 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
564 }
565
566 // Compare addrec loop depths.
567 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
568 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
569 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
570 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
571 }
Dan Gohman72861302009-05-07 14:39:04 +0000572
573 // Lexicographically compare n-ary expressions.
574 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
575 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
576 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
577 if (i >= RC->getNumOperands())
578 return false;
579 if (operator()(LC->getOperand(i), RC->getOperand(i)))
580 return true;
581 if (operator()(RC->getOperand(i), LC->getOperand(i)))
582 return false;
583 }
584 return LC->getNumOperands() < RC->getNumOperands();
585 }
586
Dan Gohmana6b35e22009-05-07 19:23:21 +0000587 // Lexicographically compare udiv expressions.
588 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
589 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
590 if (operator()(LC->getLHS(), RC->getLHS()))
591 return true;
592 if (operator()(RC->getLHS(), LC->getLHS()))
593 return false;
594 if (operator()(LC->getRHS(), RC->getRHS()))
595 return true;
596 if (operator()(RC->getRHS(), LC->getRHS()))
597 return false;
598 return false;
599 }
600
Dan Gohman72861302009-05-07 14:39:04 +0000601 // Compare cast expressions by operand.
602 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
603 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
604 return operator()(LC->getOperand(), RC->getOperand());
605 }
606
Torok Edwinc23197a2009-07-14 16:55:14 +0000607 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000608 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000609 }
610 };
611}
612
613/// GroupByComplexity - Given a list of SCEV objects, order them by their
614/// complexity, and group objects of the same complexity together by value.
615/// When this routine is finished, we know that any duplicates in the vector are
616/// consecutive and that complexity is monotonically increasing.
617///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000618/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000619/// results from this routine. In other words, we don't want the results of
620/// this to depend on where the addresses of various SCEV objects happened to
621/// land in memory.
622///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000623static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000624 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 if (Ops.size() < 2) return; // Noop
626 if (Ops.size() == 2) {
627 // This is the common case, which also happens to be trivially simple.
628 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000629 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 std::swap(Ops[0], Ops[1]);
631 return;
632 }
633
634 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000635 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000636
637 // Now that we are sorted by complexity, group elements of the same
638 // complexity. Note that this is, at worst, N^2, but the vector is likely to
639 // be extremely short in practice. Note that we take this approach because we
640 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000641 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000642 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000643 unsigned Complexity = S->getSCEVType();
644
645 // If there are any objects of the same complexity and same value as this
646 // one, group them.
647 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
648 if (Ops[j] == S) { // Found a duplicate.
649 // Move it to immediately after i'th element.
650 std::swap(Ops[i+1], Ops[j]);
651 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000652 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000653 }
654 }
655 }
656}
657
Chris Lattner53e677a2004-04-02 20:23:17 +0000658
Chris Lattner53e677a2004-04-02 20:23:17 +0000659
660//===----------------------------------------------------------------------===//
661// Simple SCEV method implementations
662//===----------------------------------------------------------------------===//
663
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000665/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000666static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000667 ScalarEvolution &SE,
668 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // Handle the simplest case efficiently.
670 if (K == 1)
671 return SE.getTruncateOrZeroExtend(It, ResultTy);
672
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 // We are using the following formula for BC(It, K):
674 //
675 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
676 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // Suppose, W is the bitwidth of the return value. We must be prepared for
678 // overflow. Hence, we must assure that the result of our computation is
679 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
680 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000682 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000683 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
685 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000686 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // This formula is trivially equivalent to the previous formula. However,
690 // this formula can be implemented much more efficiently. The trick is that
691 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
692 // arithmetic. To do exact division in modular arithmetic, all we have
693 // to do is multiply by the inverse. Therefore, this step can be done at
694 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000695 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // The next issue is how to safely do the division by 2^T. The way this
697 // is done is by doing the multiplication step at a width of at least W + T
698 // bits. This way, the bottom W+T bits of the product are accurate. Then,
699 // when we perform the division by 2^T (which is equivalent to a right shift
700 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
701 // truncated out after the division by 2^T.
702 //
703 // In comparison to just directly using the first formula, this technique
704 // is much more efficient; using the first formula requires W * K bits,
705 // but this formula less than W + K bits. Also, the first formula requires
706 // a division step, whereas this formula only requires multiplies and shifts.
707 //
708 // It doesn't matter whether the subtraction step is done in the calculation
709 // width or the input iteration count's width; if the subtraction overflows,
710 // the result must be zero anyway. We prefer here to do it in the width of
711 // the induction variable because it helps a lot for certain cases; CodeGen
712 // isn't smart enough to ignore the overflow, which leads to much less
713 // efficient code if the width of the subtraction is wider than the native
714 // register width.
715 //
716 // (It's possible to not widen at all by pulling out factors of 2 before
717 // the multiplication; for example, K=2 can be calculated as
718 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
719 // extra arithmetic, so it's not an obvious win, and it gets
720 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000721
Eli Friedmanb42a6262008-08-04 23:49:06 +0000722 // Protection from insane SCEVs; this bound is conservative,
723 // but it probably doesn't matter.
724 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000725 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000726
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000727 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729 // Calculate K! / 2^T and T; we divide out the factors of two before
730 // multiplying for calculating K! / 2^T to avoid overflow.
731 // Other overflow doesn't matter because we only care about the bottom
732 // W bits of the result.
733 APInt OddFactorial(W, 1);
734 unsigned T = 1;
735 for (unsigned i = 3; i <= K; ++i) {
736 APInt Mult(W, i);
737 unsigned TwoFactors = Mult.countTrailingZeros();
738 T += TwoFactors;
739 Mult = Mult.lshr(TwoFactors);
740 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000741 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000744 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000746 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
748
749 // Calculate the multiplicative inverse of K! / 2^T;
750 // this multiplication factor will perform the exact division by
751 // K! / 2^T.
752 APInt Mod = APInt::getSignedMinValue(W+1);
753 APInt MultiplyFactor = OddFactorial.zext(W+1);
754 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
755 MultiplyFactor = MultiplyFactor.trunc(W);
756
757 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000758 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
759 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000760 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 Dividend = SE.getMulExpr(Dividend,
764 SE.getTruncateOrZeroExtend(S, CalculationTy));
765 }
766
767 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000768 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769
770 // Truncate the result, and divide by K! / 2^T.
771
772 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
773 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000774}
775
Chris Lattner53e677a2004-04-02 20:23:17 +0000776/// evaluateAtIteration - Return the value of this chain of recurrences at
777/// the specified iteration number. We can evaluate this recurrence by
778/// multiplying each element in the chain by the binomial coefficient
779/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
780///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000781/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000786 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000788 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789 // The computation is correct in the face of overflow provided that the
790 // multiplication is performed _after_ the evaluation of the binomial
791 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000793 if (isa<SCEVCouldNotCompute>(Coeff))
794 return Coeff;
795
796 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000797 }
798 return Result;
799}
800
Chris Lattner53e677a2004-04-02 20:23:17 +0000801//===----------------------------------------------------------------------===//
802// SCEV Expression folder implementations
803//===----------------------------------------------------------------------===//
804
Dan Gohman0bba49c2009-07-07 17:06:11 +0000805const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000806 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000807 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000808 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000809 assert(isSCEVable(Ty) &&
810 "This is not a conversion to a SCEVable type!");
811 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000812
Dan Gohmanc050fd92009-07-13 20:50:19 +0000813 FoldingSetNodeID ID;
814 ID.AddInteger(scTruncate);
815 ID.AddPointer(Op);
816 ID.AddPointer(Ty);
817 void *IP = 0;
818 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
819
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000820 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000821 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000822 return getConstant(
823 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000824
Dan Gohman20900ca2009-04-22 16:20:48 +0000825 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000826 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 return getTruncateExpr(ST->getOperand(), Ty);
828
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000829 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000830 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 return getTruncateOrSignExtend(SS->getOperand(), Ty);
832
833 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
836
Dan Gohman6864db62009-06-18 16:24:47 +0000837 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000840 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000841 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
842 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 }
844
Dan Gohmanc050fd92009-07-13 20:50:19 +0000845 // The cast wasn't folded; create an explicit cast node.
846 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000847 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000848 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
849 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000850 UniqueSCEVs.InsertNode(S, IP);
851 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000852}
853
Dan Gohman0bba49c2009-07-07 17:06:11 +0000854const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000855 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000856 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000857 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000858 assert(isSCEVable(Ty) &&
859 "This is not a conversion to a SCEVable type!");
860 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000861
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000862 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000863 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000864 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000865 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
866 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000867 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000868 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000869
Dan Gohman20900ca2009-04-22 16:20:48 +0000870 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000871 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 return getZeroExtendExpr(SZ->getOperand(), Ty);
873
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000874 // Before doing any expensive analysis, check to see if we've already
875 // computed a SCEV for this Op and Ty.
876 FoldingSetNodeID ID;
877 ID.AddInteger(scZeroExtend);
878 ID.AddPointer(Op);
879 ID.AddPointer(Ty);
880 void *IP = 0;
881 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
882
Dan Gohman01ecca22009-04-27 20:16:15 +0000883 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000888 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000889 const SCEV *Start = AR->getStart();
890 const SCEV *Step = AR->getStepRecurrence(*this);
891 unsigned BitWidth = getTypeSizeInBits(AR->getType());
892 const Loop *L = AR->getLoop();
893
Dan Gohmaneb490a72009-07-25 01:22:26 +0000894 // If we have special knowledge that this addrec won't overflow,
895 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000896 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000897 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
898 getZeroExtendExpr(Step, Ty),
899 L);
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // Check whether the backedge-taken count is SCEVCouldNotCompute.
902 // Note that this serves two purposes: It filters out loops that are
903 // simply not analyzable, and it covers the case where this code is
904 // being called from within backedge-taken count analysis, such that
905 // attempting to ask for the backedge-taken count would likely result
906 // in infinite recursion. In the later case, the analysis code will
907 // cope with a conservative value, and it will take care to purge
908 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000909 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000910 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000911 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000912 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000913
914 // Check whether the backedge-taken count can be losslessly casted to
915 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000916 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000917 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000919 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
920 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000921 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000922 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000923 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000924 const SCEV *Add = getAddExpr(Start, ZMul);
925 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000926 getAddExpr(getZeroExtendExpr(Start, WideTy),
927 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
928 getZeroExtendExpr(Step, WideTy)));
929 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // Return the expression with the addrec on the outside.
931 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
932 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000933 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000934
935 // Similar to above, only this time treat the step value as signed.
936 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000937 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000938 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000939 OperandExtendedAdd =
940 getAddExpr(getZeroExtendExpr(Start, WideTy),
941 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
942 getSignExtendExpr(Step, WideTy)));
943 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000944 // Return the expression with the addrec on the outside.
945 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000947 L);
948 }
949
950 // If the backedge is guarded by a comparison with the pre-inc value
951 // the addrec is safe. Also, if the entry is guarded by a comparison
952 // with the start value and the backedge is guarded by a comparison
953 // with the post-inc value, the addrec is safe.
954 if (isKnownPositive(Step)) {
955 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
956 getUnsignedRange(Step).getUnsignedMax());
957 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000958 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000959 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
960 AR->getPostIncExpr(*this), N)))
961 // Return the expression with the addrec on the outside.
962 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
963 getZeroExtendExpr(Step, Ty),
964 L);
965 } else if (isKnownNegative(Step)) {
966 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
967 getSignedRange(Step).getSignedMin());
968 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
Dan Gohman3948d0b2010-04-11 19:27:13 +0000969 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
Dan Gohman85b05a22009-07-13 21:35:55 +0000970 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
971 AR->getPostIncExpr(*this), N)))
972 // Return the expression with the addrec on the outside.
973 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
974 getSignExtendExpr(Step, Ty),
975 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000976 }
977 }
978 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000979
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000980 // The cast wasn't folded; create an explicit cast node.
981 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000982 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000983 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
984 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000985 UniqueSCEVs.InsertNode(S, IP);
986 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000987}
988
Dan Gohman0bba49c2009-07-07 17:06:11 +0000989const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000990 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000991 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000992 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000993 assert(isSCEVable(Ty) &&
994 "This is not a conversion to a SCEVable type!");
995 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000996
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000997 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000998 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000999 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001000 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1001 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001002 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001003 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001004
Dan Gohman20900ca2009-04-22 16:20:48 +00001005 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001006 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 return getSignExtendExpr(SS->getOperand(), Ty);
1008
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001009 // Before doing any expensive analysis, check to see if we've already
1010 // computed a SCEV for this Op and Ty.
1011 FoldingSetNodeID ID;
1012 ID.AddInteger(scSignExtend);
1013 ID.AddPointer(Op);
1014 ID.AddPointer(Ty);
1015 void *IP = 0;
1016 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1017
Dan Gohman01ecca22009-04-27 20:16:15 +00001018 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001019 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001023 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 const SCEV *Start = AR->getStart();
1025 const SCEV *Step = AR->getStepRecurrence(*this);
1026 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1027 const Loop *L = AR->getLoop();
1028
Dan Gohmaneb490a72009-07-25 01:22:26 +00001029 // If we have special knowledge that this addrec won't overflow,
1030 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001031 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001032 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1033 getSignExtendExpr(Step, Ty),
1034 L);
1035
Dan Gohman01ecca22009-04-27 20:16:15 +00001036 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1037 // Note that this serves two purposes: It filters out loops that are
1038 // simply not analyzable, and it covers the case where this code is
1039 // being called from within backedge-taken count analysis, such that
1040 // attempting to ask for the backedge-taken count would likely result
1041 // in infinite recursion. In the later case, the analysis code will
1042 // cope with a conservative value, and it will take care to purge
1043 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001046 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001047 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001048
1049 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001050 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001051 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001052 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001054 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1055 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001056 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001057 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001058 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059 const SCEV *Add = getAddExpr(Start, SMul);
1060 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001061 getAddExpr(getSignExtendExpr(Start, WideTy),
1062 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1063 getSignExtendExpr(Step, WideTy)));
1064 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001065 // Return the expression with the addrec on the outside.
1066 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1067 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001068 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001069
1070 // Similar to above, only this time treat the step value as unsigned.
1071 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001072 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001073 Add = getAddExpr(Start, UMul);
1074 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001075 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001076 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1077 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001078 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001079 // Return the expression with the addrec on the outside.
1080 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1081 getZeroExtendExpr(Step, Ty),
1082 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001083 }
1084
1085 // If the backedge is guarded by a comparison with the pre-inc value
1086 // the addrec is safe. Also, if the entry is guarded by a comparison
1087 // with the start value and the backedge is guarded by a comparison
1088 // with the post-inc value, the addrec is safe.
1089 if (isKnownPositive(Step)) {
1090 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1091 getSignedRange(Step).getSignedMax());
1092 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001093 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001094 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1095 AR->getPostIncExpr(*this), N)))
1096 // Return the expression with the addrec on the outside.
1097 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1098 getSignExtendExpr(Step, Ty),
1099 L);
1100 } else if (isKnownNegative(Step)) {
1101 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1102 getSignedRange(Step).getSignedMin());
1103 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001104 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001105 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1106 AR->getPostIncExpr(*this), N)))
1107 // Return the expression with the addrec on the outside.
1108 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1109 getSignExtendExpr(Step, Ty),
1110 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001111 }
1112 }
1113 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001114
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001115 // The cast wasn't folded; create an explicit cast node.
1116 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001117 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001118 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1119 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001120 UniqueSCEVs.InsertNode(S, IP);
1121 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001122}
1123
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001124/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1125/// unspecified bits out to the given type.
1126///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001127const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001128 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001129 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1130 "This is not an extending conversion!");
1131 assert(isSCEVable(Ty) &&
1132 "This is not a conversion to a SCEVable type!");
1133 Ty = getEffectiveSCEVType(Ty);
1134
1135 // Sign-extend negative constants.
1136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1137 if (SC->getValue()->getValue().isNegative())
1138 return getSignExtendExpr(Op, Ty);
1139
1140 // Peel off a truncate cast.
1141 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1144 return getAnyExtendExpr(NewOp, Ty);
1145 return getTruncateOrNoop(NewOp, Ty);
1146 }
1147
1148 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001149 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001150 if (!isa<SCEVZeroExtendExpr>(ZExt))
1151 return ZExt;
1152
1153 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001154 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001155 if (!isa<SCEVSignExtendExpr>(SExt))
1156 return SExt;
1157
Dan Gohmana10756e2010-01-21 02:09:26 +00001158 // Force the cast to be folded into the operands of an addrec.
1159 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1160 SmallVector<const SCEV *, 4> Ops;
1161 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1162 I != E; ++I)
1163 Ops.push_back(getAnyExtendExpr(*I, Ty));
1164 return getAddRecExpr(Ops, AR->getLoop());
1165 }
1166
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001167 // If the expression is obviously signed, use the sext cast value.
1168 if (isa<SCEVSMaxExpr>(Op))
1169 return SExt;
1170
1171 // Absent any other information, use the zext cast value.
1172 return ZExt;
1173}
1174
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001175/// CollectAddOperandsWithScales - Process the given Ops list, which is
1176/// a list of operands to be added under the given scale, update the given
1177/// map. This is a helper function for getAddRecExpr. As an example of
1178/// what it does, given a sequence of operands that would form an add
1179/// expression like this:
1180///
1181/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1182///
1183/// where A and B are constants, update the map with these values:
1184///
1185/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1186///
1187/// and add 13 + A*B*29 to AccumulatedConstant.
1188/// This will allow getAddRecExpr to produce this:
1189///
1190/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1191///
1192/// This form often exposes folding opportunities that are hidden in
1193/// the original operand list.
1194///
1195/// Return true iff it appears that any interesting folding opportunities
1196/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1197/// the common case where no interesting opportunities are present, and
1198/// is also used as a check to avoid infinite recursion.
1199///
1200static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001201CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1202 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001203 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001204 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 const APInt &Scale,
1206 ScalarEvolution &SE) {
1207 bool Interesting = false;
1208
1209 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001210 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001211 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1212 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1213 APInt NewScale =
1214 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1215 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1216 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001217 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001218 Interesting |=
1219 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001220 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001221 NewScale, SE);
1222 } else {
1223 // A multiplication of a constant with some other value. Update
1224 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1226 const SCEV *Key = SE.getMulExpr(MulOps);
1227 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001228 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001229 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001230 NewOps.push_back(Pair.first->first);
1231 } else {
1232 Pair.first->second += NewScale;
1233 // The map already had an entry for this value, which may indicate
1234 // a folding opportunity.
1235 Interesting = true;
1236 }
1237 }
1238 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239 // Pull a buried constant out to the outside.
1240 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1241 Interesting = true;
1242 AccumulatedConstant += Scale * C->getValue()->getValue();
1243 } else {
1244 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001246 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001247 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 NewOps.push_back(Pair.first->first);
1249 } else {
1250 Pair.first->second += Scale;
1251 // The map already had an entry for this value, which may indicate
1252 // a folding opportunity.
1253 Interesting = true;
1254 }
1255 }
1256 }
1257
1258 return Interesting;
1259}
1260
1261namespace {
1262 struct APIntCompare {
1263 bool operator()(const APInt &LHS, const APInt &RHS) const {
1264 return LHS.ult(RHS);
1265 }
1266 };
1267}
1268
Dan Gohman6c0866c2009-05-24 23:45:28 +00001269/// getAddExpr - Get a canonical add expression, or something simpler if
1270/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001271const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1272 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001273 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001274 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001275#ifndef NDEBUG
1276 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1277 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1278 getEffectiveSCEVType(Ops[0]->getType()) &&
1279 "SCEVAddExpr operand types don't match!");
1280#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001281
Dan Gohmana10756e2010-01-21 02:09:26 +00001282 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1283 if (!HasNUW && HasNSW) {
1284 bool All = true;
1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1286 if (!isKnownNonNegative(Ops[i])) {
1287 All = false;
1288 break;
1289 }
1290 if (All) HasNUW = true;
1291 }
1292
Chris Lattner53e677a2004-04-02 20:23:17 +00001293 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001294 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001295
1296 // If there are any constants, fold them together.
1297 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001298 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001299 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001300 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001301 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001303 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1304 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001305 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001306 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001307 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001308 }
1309
1310 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001311 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 Ops.erase(Ops.begin());
1313 --Idx;
1314 }
1315 }
1316
Chris Lattner627018b2004-04-07 16:16:11 +00001317 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001318
Chris Lattner53e677a2004-04-02 20:23:17 +00001319 // Okay, check to see if the same value occurs in the operand list twice. If
1320 // so, merge them together into an multiply expression. Since we sorted the
1321 // list, these values are required to be adjacent.
1322 const Type *Ty = Ops[0]->getType();
1323 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1324 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1325 // Found a match, merge the two values into a multiply, and add any
1326 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001327 const SCEV *Two = getIntegerSCEV(2, Ty);
1328 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001329 if (Ops.size() == 2)
1330 return Mul;
1331 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1332 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001333 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 }
1335
Dan Gohman728c7f32009-05-08 21:03:19 +00001336 // Check for truncates. If all the operands are truncated from the same
1337 // type, see if factoring out the truncate would permit the result to be
1338 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1339 // if the contents of the resulting outer trunc fold to something simple.
1340 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1341 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1342 const Type *DstType = Trunc->getType();
1343 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001344 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 bool Ok = true;
1346 // Check all the operands to see if they can be represented in the
1347 // source type of the truncate.
1348 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1349 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1350 if (T->getOperand()->getType() != SrcType) {
1351 Ok = false;
1352 break;
1353 }
1354 LargeOps.push_back(T->getOperand());
1355 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1356 // This could be either sign or zero extension, but sign extension
1357 // is much more likely to be foldable here.
1358 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1371 // This could be either sign or zero extension, but sign extension
1372 // is much more likely to be foldable here.
1373 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1374 } else {
1375 Ok = false;
1376 break;
1377 }
1378 }
1379 if (Ok)
1380 LargeOps.push_back(getMulExpr(LargeMulOps));
1381 } else {
1382 Ok = false;
1383 break;
1384 }
1385 }
1386 if (Ok) {
1387 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001388 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001389 // If it folds to something simple, use it. Otherwise, don't.
1390 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1391 return getTruncateExpr(Fold, DstType);
1392 }
1393 }
1394
1395 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001396 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1397 ++Idx;
1398
1399 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 if (Idx < Ops.size()) {
1401 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001402 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // If we have an add, expand the add operands onto the end of the operands
1404 // list.
1405 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1406 Ops.erase(Ops.begin()+Idx);
1407 DeletedAdd = true;
1408 }
1409
1410 // If we deleted at least one add, we added operands to the end of the list,
1411 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001412 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001414 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 }
1416
1417 // Skip over the add expression until we get to a multiply.
1418 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1419 ++Idx;
1420
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 // Check to see if there are any folding opportunities present with
1422 // operands multiplied by constant values.
1423 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1424 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001425 DenseMap<const SCEV *, APInt> M;
1426 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 APInt AccumulatedConstant(BitWidth, 0);
1428 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001429 Ops.data(), Ops.size(),
1430 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001431 // Some interesting folding opportunity is present, so its worthwhile to
1432 // re-generate the operands list. Group the operands by constant scale,
1433 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001434 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1435 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 E = NewOps.end(); I != E; ++I)
1437 MulOpLists[M.find(*I)->second].push_back(*I);
1438 // Re-generate the operands list.
1439 Ops.clear();
1440 if (AccumulatedConstant != 0)
1441 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001442 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1443 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001444 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001445 Ops.push_back(getMulExpr(getConstant(I->first),
1446 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 if (Ops.empty())
1448 return getIntegerSCEV(0, Ty);
1449 if (Ops.size() == 1)
1450 return Ops[0];
1451 return getAddExpr(Ops);
1452 }
1453 }
1454
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 // If we are adding something to a multiply expression, make sure the
1456 // something is not already an operand of the multiply. If so, merge it into
1457 // the multiply.
1458 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001461 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001463 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001465 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 if (Mul->getNumOperands() != 2) {
1467 // If the multiply has more than two operands, we must get the
1468 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001469 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001471 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001473 const SCEV *One = getIntegerSCEV(1, Ty);
1474 const SCEV *AddOne = getAddExpr(InnerMul, One);
1475 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 if (Ops.size() == 2) return OuterMul;
1477 if (AddOp < Idx) {
1478 Ops.erase(Ops.begin()+AddOp);
1479 Ops.erase(Ops.begin()+Idx-1);
1480 } else {
1481 Ops.erase(Ops.begin()+Idx);
1482 Ops.erase(Ops.begin()+AddOp-1);
1483 }
1484 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001485 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 // Check this multiply against other multiplies being added together.
1489 for (unsigned OtherMulIdx = Idx+1;
1490 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1491 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001492 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 // If MulOp occurs in OtherMul, we can fold the two multiplies
1494 // together.
1495 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1496 OMulOp != e; ++OMulOp)
1497 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1498 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001499 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001501 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1502 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001504 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001506 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001508 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1509 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001511 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001513 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1514 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (Ops.size() == 2) return OuterMul;
1516 Ops.erase(Ops.begin()+Idx);
1517 Ops.erase(Ops.begin()+OtherMulIdx-1);
1518 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001519 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
1521 }
1522 }
1523 }
1524
1525 // If there are any add recurrences in the operands list, see if any other
1526 // added values are loop invariant. If so, we can fold them into the
1527 // recurrence.
1528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1529 ++Idx;
1530
1531 // Scan over all recurrences, trying to fold loop invariants into them.
1532 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1533 // Scan all of the other operands to this add and add them to the vector if
1534 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001535 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001536 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1538 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1539 LIOps.push_back(Ops[i]);
1540 Ops.erase(Ops.begin()+i);
1541 --i; --e;
1542 }
1543
1544 // If we found some loop invariants, fold them into the recurrence.
1545 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001546 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 LIOps.push_back(AddRec->getStart());
1548
Dan Gohman0bba49c2009-07-07 17:06:11 +00001549 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001550 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001551 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552
Dan Gohman355b4f32009-12-19 01:46:34 +00001553 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001554 // is not associative so this isn't necessarily safe.
Dan Gohman3a5d4092009-12-18 03:57:04 +00001555 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohman59de33e2009-12-18 18:45:31 +00001556
Chris Lattner53e677a2004-04-02 20:23:17 +00001557 // If all of the other operands were loop invariant, we are done.
1558 if (Ops.size() == 1) return NewRec;
1559
1560 // Otherwise, add the folded AddRec by the non-liv parts.
1561 for (unsigned i = 0;; ++i)
1562 if (Ops[i] == AddRec) {
1563 Ops[i] = NewRec;
1564 break;
1565 }
Dan Gohman246b2562007-10-22 18:31:58 +00001566 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 }
1568
1569 // Okay, if there weren't any loop invariants to be folded, check to see if
1570 // there are multiple AddRec's with the same loop induction variable being
1571 // added together. If so, we can fold them.
1572 for (unsigned OtherIdx = Idx+1;
1573 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1574 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001575 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1577 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001578 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1579 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1581 if (i >= NewOps.size()) {
1582 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1583 OtherAddRec->op_end());
1584 break;
1585 }
Dan Gohman246b2562007-10-22 18:31:58 +00001586 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001588 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001589
1590 if (Ops.size() == 2) return NewAddRec;
1591
1592 Ops.erase(Ops.begin()+Idx);
1593 Ops.erase(Ops.begin()+OtherIdx-1);
1594 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001595 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 }
1597 }
1598
1599 // Otherwise couldn't fold anything into this recurrence. Move onto the
1600 // next one.
1601 }
1602
1603 // Okay, it looks like we really DO need an add expr. Check to see if we
1604 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001605 FoldingSetNodeID ID;
1606 ID.AddInteger(scAddExpr);
1607 ID.AddInteger(Ops.size());
1608 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1609 ID.AddPointer(Ops[i]);
1610 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001611 SCEVAddExpr *S =
1612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1613 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001614 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1615 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001616 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1617 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001618 UniqueSCEVs.InsertNode(S, IP);
1619 }
Dan Gohman3645b012009-10-09 00:10:36 +00001620 if (HasNUW) S->setHasNoUnsignedWrap(true);
1621 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001622 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623}
1624
Dan Gohman6c0866c2009-05-24 23:45:28 +00001625/// getMulExpr - Get a canonical multiply expression, or something simpler if
1626/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001627const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1628 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001629 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001630 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001631#ifndef NDEBUG
1632 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1633 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1634 getEffectiveSCEVType(Ops[0]->getType()) &&
1635 "SCEVMulExpr operand types don't match!");
1636#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001637
Dan Gohmana10756e2010-01-21 02:09:26 +00001638 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1639 if (!HasNUW && HasNSW) {
1640 bool All = true;
1641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1642 if (!isKnownNonNegative(Ops[i])) {
1643 All = false;
1644 break;
1645 }
1646 if (All) HasNUW = true;
1647 }
1648
Chris Lattner53e677a2004-04-02 20:23:17 +00001649 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001650 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651
1652 // If there are any constants, fold them together.
1653 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001654 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001655
1656 // C1*(C2+V) -> C1*C2 + C1*V
1657 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001658 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 if (Add->getNumOperands() == 2 &&
1660 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001661 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1662 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001665 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001667 ConstantInt *Fold = ConstantInt::get(getContext(),
1668 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001669 RHSC->getValue()->getValue());
1670 Ops[0] = getConstant(Fold);
1671 Ops.erase(Ops.begin()+1); // Erase the folded element
1672 if (Ops.size() == 1) return Ops[0];
1673 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
1675
1676 // If we are left with a constant one being multiplied, strip it off.
1677 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1678 Ops.erase(Ops.begin());
1679 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001680 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 // If we have a multiply of zero, it will always be zero.
1682 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001683 } else if (Ops[0]->isAllOnesValue()) {
1684 // If we have a mul by -1 of an add, try distributing the -1 among the
1685 // add operands.
1686 if (Ops.size() == 2)
1687 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1688 SmallVector<const SCEV *, 4> NewOps;
1689 bool AnyFolded = false;
1690 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1691 I != E; ++I) {
1692 const SCEV *Mul = getMulExpr(Ops[0], *I);
1693 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1694 NewOps.push_back(Mul);
1695 }
1696 if (AnyFolded)
1697 return getAddExpr(NewOps);
1698 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 }
1700 }
1701
1702 // Skip over the add expression until we get to a multiply.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1704 ++Idx;
1705
1706 if (Ops.size() == 1)
1707 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001708
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 // If there are mul operands inline them all into this expression.
1710 if (Idx < Ops.size()) {
1711 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001712 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 // If we have an mul, expand the mul operands onto the end of the operands
1714 // list.
1715 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1716 Ops.erase(Ops.begin()+Idx);
1717 DeletedMul = true;
1718 }
1719
1720 // If we deleted at least one mul, we added operands to the end of the list,
1721 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001722 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001724 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this mul and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1740 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1741 LIOps.push_back(Ops[i]);
1742 Ops.erase(Ops.begin()+i);
1743 --i; --e;
1744 }
1745
1746 // If we found some loop invariants, fold them into the recurrence.
1747 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001748 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 NewOps.reserve(AddRec->getNumOperands());
1751 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001752 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001754 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 } else {
1756 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001757 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001759 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001760 }
1761 }
1762
Dan Gohman355b4f32009-12-19 01:46:34 +00001763 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001764 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001765 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1766 HasNUW && AddRec->hasNoUnsignedWrap(),
1767 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001768
1769 // If all of the other operands were loop invariant, we are done.
1770 if (Ops.size() == 1) return NewRec;
1771
1772 // Otherwise, multiply the folded AddRec by the non-liv parts.
1773 for (unsigned i = 0;; ++i)
1774 if (Ops[i] == AddRec) {
1775 Ops[i] = NewRec;
1776 break;
1777 }
Dan Gohman246b2562007-10-22 18:31:58 +00001778 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 }
1780
1781 // Okay, if there weren't any loop invariants to be folded, check to see if
1782 // there are multiple AddRec's with the same loop induction variable being
1783 // multiplied together. If so, we can fold them.
1784 for (unsigned OtherIdx = Idx+1;
1785 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1786 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001787 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1789 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001790 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001791 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001793 const SCEV *B = F->getStepRecurrence(*this);
1794 const SCEV *D = G->getStepRecurrence(*this);
1795 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001796 getMulExpr(G, B),
1797 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001798 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001799 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 if (Ops.size() == 2) return NewAddRec;
1801
1802 Ops.erase(Ops.begin()+Idx);
1803 Ops.erase(Ops.begin()+OtherIdx-1);
1804 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001805 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001806 }
1807 }
1808
1809 // Otherwise couldn't fold anything into this recurrence. Move onto the
1810 // next one.
1811 }
1812
1813 // Okay, it looks like we really DO need an mul expr. Check to see if we
1814 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001815 FoldingSetNodeID ID;
1816 ID.AddInteger(scMulExpr);
1817 ID.AddInteger(Ops.size());
1818 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1819 ID.AddPointer(Ops[i]);
1820 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 SCEVMulExpr *S =
1822 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1823 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001824 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1825 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001826 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1827 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001828 UniqueSCEVs.InsertNode(S, IP);
1829 }
Dan Gohman3645b012009-10-09 00:10:36 +00001830 if (HasNUW) S->setHasNoUnsignedWrap(true);
1831 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001832 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001833}
1834
Andreas Bolka8a11c982009-08-07 22:55:26 +00001835/// getUDivExpr - Get a canonical unsigned division expression, or something
1836/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001837const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1838 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001839 assert(getEffectiveSCEVType(LHS->getType()) ==
1840 getEffectiveSCEVType(RHS->getType()) &&
1841 "SCEVUDivExpr operand types don't match!");
1842
Dan Gohman622ed672009-05-04 22:02:23 +00001843 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001844 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001845 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001846 if (RHSC->isZero())
1847 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001848
Dan Gohman185cf032009-05-08 20:18:49 +00001849 // Determine if the division can be folded into the operands of
1850 // its operands.
1851 // TODO: Generalize this to non-constants by using known-bits information.
1852 const Type *Ty = LHS->getType();
1853 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855 // For non-power-of-two values, effectively round the value up to the
1856 // nearest power of two.
1857 if (!RHSC->getValue()->getValue().isPowerOf2())
1858 ++MaxShiftAmt;
1859 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001860 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001861 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863 if (const SCEVConstant *Step =
1864 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865 if (!Step->getValue()->getValue()
1866 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001867 getZeroExtendExpr(AR, ExtTy) ==
1868 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869 getZeroExtendExpr(Step, ExtTy),
1870 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001871 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001872 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874 return getAddRecExpr(Operands, AR->getLoop());
1875 }
1876 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001877 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001878 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001882 // Find an operand that's safely divisible.
1883 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001884 const SCEV *Op = M->getOperand(i);
1885 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001886 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001887 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), M->op_end());
Dan Gohman185cf032009-05-08 20:18:49 +00001888 Operands[i] = Div;
1889 return getMulExpr(Operands);
1890 }
1891 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001892 }
Dan Gohman185cf032009-05-08 20:18:49 +00001893 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001894 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001895 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001896 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1897 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1898 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1899 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001901 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001902 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1903 break;
1904 Operands.push_back(Op);
1905 }
1906 if (Operands.size() == A->getNumOperands())
1907 return getAddExpr(Operands);
1908 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001909 }
Dan Gohman185cf032009-05-08 20:18:49 +00001910
1911 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001912 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 Constant *LHSCV = LHSC->getValue();
1914 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001915 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001916 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918 }
1919
Dan Gohman1c343752009-06-27 21:21:31 +00001920 FoldingSetNodeID ID;
1921 ID.AddInteger(scUDivExpr);
1922 ID.AddPointer(LHS);
1923 ID.AddPointer(RHS);
1924 void *IP = 0;
1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001926 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1927 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 UniqueSCEVs.InsertNode(S, IP);
1929 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001930}
1931
1932
Dan Gohman6c0866c2009-05-24 23:45:28 +00001933/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1934/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001935const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001936 const SCEV *Step, const Loop *L,
1937 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001939 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001940 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001941 if (StepChrec->getLoop() == L) {
1942 Operands.insert(Operands.end(), StepChrec->op_begin(),
1943 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001944 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
1946
1947 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001948 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001949}
1950
Dan Gohman6c0866c2009-05-24 23:45:28 +00001951/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1952/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001953const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001954ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001955 const Loop *L,
1956 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001958#ifndef NDEBUG
1959 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1960 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1961 getEffectiveSCEVType(Operands[0]->getType()) &&
1962 "SCEVAddRecExpr operand types don't match!");
1963#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001964
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001965 if (Operands.back()->isZero()) {
1966 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001967 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001968 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001969
Dan Gohmanbc028532010-02-19 18:49:22 +00001970 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1971 // use that information to infer NUW and NSW flags. However, computing a
1972 // BE count requires calling getAddRecExpr, so we may not yet have a
1973 // meaningful BE count at this point (and if we don't, we'd be stuck
1974 // with a SCEVCouldNotCompute as the cached BE count).
1975
Dan Gohmana10756e2010-01-21 02:09:26 +00001976 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1977 if (!HasNUW && HasNSW) {
1978 bool All = true;
1979 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1980 if (!isKnownNonNegative(Operands[i])) {
1981 All = false;
1982 break;
1983 }
1984 if (All) HasNUW = true;
1985 }
1986
Dan Gohmand9cc7492008-08-08 18:33:12 +00001987 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001988 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001989 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001990 if (L->contains(NestedLoop->getHeader()) ?
1991 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1992 (!NestedLoop->contains(L->getHeader()) &&
1993 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001994 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001995 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001996 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001997 // AddRecs require their operands be loop-invariant with respect to their
1998 // loops. Don't perform this transformation if it would break this
1999 // requirement.
2000 bool AllInvariant = true;
2001 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2002 if (!Operands[i]->isLoopInvariant(L)) {
2003 AllInvariant = false;
2004 break;
2005 }
2006 if (AllInvariant) {
2007 NestedOperands[0] = getAddRecExpr(Operands, L);
2008 AllInvariant = true;
2009 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2010 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2011 AllInvariant = false;
2012 break;
2013 }
2014 if (AllInvariant)
2015 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002016 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002017 }
2018 // Reset Operands to its original state.
2019 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002020 }
2021 }
2022
Dan Gohman67847532010-01-19 22:27:22 +00002023 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2024 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002025 FoldingSetNodeID ID;
2026 ID.AddInteger(scAddRecExpr);
2027 ID.AddInteger(Operands.size());
2028 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2029 ID.AddPointer(Operands[i]);
2030 ID.AddPointer(L);
2031 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002032 SCEVAddRecExpr *S =
2033 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2034 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002035 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2036 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002037 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2038 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002039 UniqueSCEVs.InsertNode(S, IP);
2040 }
Dan Gohman3645b012009-10-09 00:10:36 +00002041 if (HasNUW) S->setHasNoUnsignedWrap(true);
2042 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044}
2045
Dan Gohman9311ef62009-06-24 14:49:00 +00002046const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2047 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002048 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002049 Ops.push_back(LHS);
2050 Ops.push_back(RHS);
2051 return getSMaxExpr(Ops);
2052}
2053
Dan Gohman0bba49c2009-07-07 17:06:11 +00002054const SCEV *
2055ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002056 assert(!Ops.empty() && "Cannot get empty smax!");
2057 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002058#ifndef NDEBUG
2059 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2060 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2061 getEffectiveSCEVType(Ops[0]->getType()) &&
2062 "SCEVSMaxExpr operand types don't match!");
2063#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002064
2065 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002066 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002067
2068 // If there are any constants, fold them together.
2069 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002071 ++Idx;
2072 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002074 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002075 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002076 APIntOps::smax(LHSC->getValue()->getValue(),
2077 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002078 Ops[0] = getConstant(Fold);
2079 Ops.erase(Ops.begin()+1); // Erase the folded element
2080 if (Ops.size() == 1) return Ops[0];
2081 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002082 }
2083
Dan Gohmane5aceed2009-06-24 14:46:22 +00002084 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002085 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2086 Ops.erase(Ops.begin());
2087 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002088 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2089 // If we have an smax with a constant maximum-int, it will always be
2090 // maximum-int.
2091 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002092 }
2093 }
2094
2095 if (Ops.size() == 1) return Ops[0];
2096
2097 // Find the first SMax
2098 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2099 ++Idx;
2100
2101 // Check to see if one of the operands is an SMax. If so, expand its operands
2102 // onto our operand list, and recurse to simplify.
2103 if (Idx < Ops.size()) {
2104 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002105 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002106 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2107 Ops.erase(Ops.begin()+Idx);
2108 DeletedSMax = true;
2109 }
2110
2111 if (DeletedSMax)
2112 return getSMaxExpr(Ops);
2113 }
2114
2115 // Okay, check to see if the same value occurs in the operand list twice. If
2116 // so, delete one. Since we sorted the list, these values are required to
2117 // be adjacent.
2118 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2119 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
2120 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2121 --i; --e;
2122 }
2123
2124 if (Ops.size() == 1) return Ops[0];
2125
2126 assert(!Ops.empty() && "Reduced smax down to nothing!");
2127
Nick Lewycky3e630762008-02-20 06:48:22 +00002128 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002130 FoldingSetNodeID ID;
2131 ID.AddInteger(scSMaxExpr);
2132 ID.AddInteger(Ops.size());
2133 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2134 ID.AddPointer(Ops[i]);
2135 void *IP = 0;
2136 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002137 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2138 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002139 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2140 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002141 UniqueSCEVs.InsertNode(S, IP);
2142 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143}
2144
Dan Gohman9311ef62009-06-24 14:49:00 +00002145const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2146 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002147 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002148 Ops.push_back(LHS);
2149 Ops.push_back(RHS);
2150 return getUMaxExpr(Ops);
2151}
2152
Dan Gohman0bba49c2009-07-07 17:06:11 +00002153const SCEV *
2154ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002155 assert(!Ops.empty() && "Cannot get empty umax!");
2156 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002157#ifndef NDEBUG
2158 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2159 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2160 getEffectiveSCEVType(Ops[0]->getType()) &&
2161 "SCEVUMaxExpr operand types don't match!");
2162#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002163
2164 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002165 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002166
2167 // If there are any constants, fold them together.
2168 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002169 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002170 ++Idx;
2171 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002172 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002173 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002174 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002175 APIntOps::umax(LHSC->getValue()->getValue(),
2176 RHSC->getValue()->getValue()));
2177 Ops[0] = getConstant(Fold);
2178 Ops.erase(Ops.begin()+1); // Erase the folded element
2179 if (Ops.size() == 1) return Ops[0];
2180 LHSC = cast<SCEVConstant>(Ops[0]);
2181 }
2182
Dan Gohmane5aceed2009-06-24 14:46:22 +00002183 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2185 Ops.erase(Ops.begin());
2186 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002187 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2188 // If we have an umax with a constant maximum-int, it will always be
2189 // maximum-int.
2190 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 }
2192 }
2193
2194 if (Ops.size() == 1) return Ops[0];
2195
2196 // Find the first UMax
2197 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2198 ++Idx;
2199
2200 // Check to see if one of the operands is a UMax. If so, expand its operands
2201 // onto our operand list, and recurse to simplify.
2202 if (Idx < Ops.size()) {
2203 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002204 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2206 Ops.erase(Ops.begin()+Idx);
2207 DeletedUMax = true;
2208 }
2209
2210 if (DeletedUMax)
2211 return getUMaxExpr(Ops);
2212 }
2213
2214 // Okay, check to see if the same value occurs in the operand list twice. If
2215 // so, delete one. Since we sorted the list, these values are required to
2216 // be adjacent.
2217 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2218 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2219 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2220 --i; --e;
2221 }
2222
2223 if (Ops.size() == 1) return Ops[0];
2224
2225 assert(!Ops.empty() && "Reduced umax down to nothing!");
2226
2227 // Okay, it looks like we really DO need a umax expr. Check to see if we
2228 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002229 FoldingSetNodeID ID;
2230 ID.AddInteger(scUMaxExpr);
2231 ID.AddInteger(Ops.size());
2232 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2233 ID.AddPointer(Ops[i]);
2234 void *IP = 0;
2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002236 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2237 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002238 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2239 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002240 UniqueSCEVs.InsertNode(S, IP);
2241 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002242}
2243
Dan Gohman9311ef62009-06-24 14:49:00 +00002244const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2245 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002246 // ~smax(~x, ~y) == smin(x, y).
2247 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2248}
2249
Dan Gohman9311ef62009-06-24 14:49:00 +00002250const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2251 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002252 // ~umax(~x, ~y) == umin(x, y)
2253 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2254}
2255
Dan Gohman4f8eea82010-02-01 18:27:38 +00002256const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002257 // If we have TargetData, we can bypass creating a target-independent
2258 // constant expression and then folding it back into a ConstantInt.
2259 // This is just a compile-time optimization.
2260 if (TD)
2261 return getConstant(TD->getIntPtrType(getContext()),
2262 TD->getTypeAllocSize(AllocTy));
2263
Dan Gohman4f8eea82010-02-01 18:27:38 +00002264 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2265 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2266 C = ConstantFoldConstantExpression(CE, TD);
2267 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2268 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2269}
2270
2271const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2272 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2273 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2274 C = ConstantFoldConstantExpression(CE, TD);
2275 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2276 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2277}
2278
2279const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2280 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002281 // If we have TargetData, we can bypass creating a target-independent
2282 // constant expression and then folding it back into a ConstantInt.
2283 // This is just a compile-time optimization.
2284 if (TD)
2285 return getConstant(TD->getIntPtrType(getContext()),
2286 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2287
Dan Gohman0f5efe52010-01-28 02:15:55 +00002288 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2290 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002291 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002292 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002293}
2294
Dan Gohman4f8eea82010-02-01 18:27:38 +00002295const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2296 Constant *FieldNo) {
2297 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2299 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohman4f8eea82010-02-01 18:27:38 +00002300 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002301 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002302}
2303
Dan Gohman0bba49c2009-07-07 17:06:11 +00002304const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002305 // Don't attempt to do anything other than create a SCEVUnknown object
2306 // here. createSCEV only calls getUnknown after checking for all other
2307 // interesting possibilities, and any other code that calls getUnknown
2308 // is doing so in order to hide a value from SCEV canonicalization.
2309
Dan Gohman1c343752009-06-27 21:21:31 +00002310 FoldingSetNodeID ID;
2311 ID.AddInteger(scUnknown);
2312 ID.AddPointer(V);
2313 void *IP = 0;
2314 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002315 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002316 UniqueSCEVs.InsertNode(S, IP);
2317 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002318}
2319
Chris Lattner53e677a2004-04-02 20:23:17 +00002320//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002321// Basic SCEV Analysis and PHI Idiom Recognition Code
2322//
2323
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002324/// isSCEVable - Test if values of the given type are analyzable within
2325/// the SCEV framework. This primarily includes integer types, and it
2326/// can optionally include pointer types if the ScalarEvolution class
2327/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002328bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002329 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002330 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002331}
2332
2333/// getTypeSizeInBits - Return the size in bits of the specified type,
2334/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002335uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002336 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2337
2338 // If we have a TargetData, use it!
2339 if (TD)
2340 return TD->getTypeSizeInBits(Ty);
2341
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002342 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002343 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002344 return Ty->getPrimitiveSizeInBits();
2345
2346 // The only other support type is pointer. Without TargetData, conservatively
2347 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002348 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002349 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002350}
2351
2352/// getEffectiveSCEVType - Return a type with the same bitwidth as
2353/// the given type and which represents how SCEV will treat the given
2354/// type, for which isSCEVable must return true. For pointer types,
2355/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002356const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002357 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2358
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002359 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002360 return Ty;
2361
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002362 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002363 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002364 if (TD) return TD->getIntPtrType(getContext());
2365
2366 // Without TargetData, conservatively assume pointers are 64-bit.
2367 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002368}
Chris Lattner53e677a2004-04-02 20:23:17 +00002369
Dan Gohman0bba49c2009-07-07 17:06:11 +00002370const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002371 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002372}
2373
Chris Lattner53e677a2004-04-02 20:23:17 +00002374/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2375/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002376const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002377 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002378
Dan Gohman0bba49c2009-07-07 17:06:11 +00002379 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002380 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002382 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002383 return S;
2384}
2385
Dan Gohman6bbcba12009-06-24 00:54:57 +00002386/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002387/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002388const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002389 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002390 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002391}
2392
2393/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2394///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002395const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002396 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002397 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002398 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002399
2400 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002401 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002402 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002403 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002404}
2405
2406/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002407const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002408 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002409 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002410 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002411
2412 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002413 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002414 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002415 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002416 return getMinusSCEV(AllOnes, V);
2417}
2418
2419/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2420///
Dan Gohman9311ef62009-06-24 14:49:00 +00002421const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2422 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002423 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002424 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002425}
2426
2427/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2428/// input value to the specified type. If the type must be extended, it is zero
2429/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002430const SCEV *
2431ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002432 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002433 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002434 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2435 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002436 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002438 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002439 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002440 return getTruncateExpr(V, Ty);
2441 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002442}
2443
2444/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2445/// input value to the specified type. If the type must be extended, it is sign
2446/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002447const SCEV *
2448ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002449 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002450 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002451 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2452 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002453 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002454 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002455 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002456 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002457 return getTruncateExpr(V, Ty);
2458 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002459}
2460
Dan Gohman467c4302009-05-13 03:46:30 +00002461/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2462/// input value to the specified type. If the type must be extended, it is zero
2463/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002464const SCEV *
2465ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002466 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002467 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2468 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002469 "Cannot noop or zero extend with non-integer arguments!");
2470 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2471 "getNoopOrZeroExtend cannot truncate!");
2472 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2473 return V; // No conversion
2474 return getZeroExtendExpr(V, Ty);
2475}
2476
2477/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2478/// input value to the specified type. If the type must be extended, it is sign
2479/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002480const SCEV *
2481ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002482 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2484 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002485 "Cannot noop or sign extend with non-integer arguments!");
2486 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2487 "getNoopOrSignExtend cannot truncate!");
2488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2489 return V; // No conversion
2490 return getSignExtendExpr(V, Ty);
2491}
2492
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002493/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2494/// the input value to the specified type. If the type must be extended,
2495/// it is extended with unspecified bits. The conversion must not be
2496/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002497const SCEV *
2498ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002499 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002500 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002502 "Cannot noop or any extend with non-integer arguments!");
2503 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2504 "getNoopOrAnyExtend cannot truncate!");
2505 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2506 return V; // No conversion
2507 return getAnyExtendExpr(V, Ty);
2508}
2509
Dan Gohman467c4302009-05-13 03:46:30 +00002510/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2511/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002512const SCEV *
2513ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002514 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002515 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2516 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002517 "Cannot truncate or noop with non-integer arguments!");
2518 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2519 "getTruncateOrNoop cannot extend!");
2520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2521 return V; // No conversion
2522 return getTruncateExpr(V, Ty);
2523}
2524
Dan Gohmana334aa72009-06-22 00:31:57 +00002525/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2526/// the types using zero-extension, and then perform a umax operation
2527/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002528const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2529 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002530 const SCEV *PromotedLHS = LHS;
2531 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002532
2533 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2534 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2535 else
2536 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2537
2538 return getUMaxExpr(PromotedLHS, PromotedRHS);
2539}
2540
Dan Gohmanc9759e82009-06-22 15:03:27 +00002541/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2542/// the types using zero-extension, and then perform a umin operation
2543/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002544const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2545 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002546 const SCEV *PromotedLHS = LHS;
2547 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002548
2549 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2550 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2551 else
2552 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2553
2554 return getUMinExpr(PromotedLHS, PromotedRHS);
2555}
2556
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002557/// PushDefUseChildren - Push users of the given Instruction
2558/// onto the given Worklist.
2559static void
2560PushDefUseChildren(Instruction *I,
2561 SmallVectorImpl<Instruction *> &Worklist) {
2562 // Push the def-use children onto the Worklist stack.
2563 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2564 UI != UE; ++UI)
2565 Worklist.push_back(cast<Instruction>(UI));
2566}
2567
2568/// ForgetSymbolicValue - This looks up computed SCEV values for all
2569/// instructions that depend on the given instruction and removes them from
2570/// the Scalars map if they reference SymName. This is used during PHI
2571/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002572void
Dan Gohman85669632010-02-25 06:57:05 +00002573ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002574 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002575 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002576
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002577 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002578 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002579 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002580 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002581 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002582
Dan Gohman5d984912009-12-18 01:14:11 +00002583 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002584 Scalars.find(static_cast<Value *>(I));
2585 if (It != Scalars.end()) {
2586 // Short-circuit the def-use traversal if the symbolic name
2587 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002588 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002589 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002590
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002591 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002592 // structure, it's a PHI that's in the progress of being computed
2593 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2594 // additional loop trip count information isn't going to change anything.
2595 // In the second case, createNodeForPHI will perform the necessary
2596 // updates on its own when it gets to that point. In the third, we do
2597 // want to forget the SCEVUnknown.
2598 if (!isa<PHINode>(I) ||
2599 !isa<SCEVUnknown>(It->second) ||
2600 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002601 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002602 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002603 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002604 }
2605
2606 PushDefUseChildren(I, Worklist);
2607 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002608}
Chris Lattner53e677a2004-04-02 20:23:17 +00002609
2610/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2611/// a loop header, making it a potential recurrence, or it doesn't.
2612///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002613const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002614 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2615 if (L->getHeader() == PN->getParent()) {
2616 // The loop may have multiple entrances or multiple exits; we can analyze
2617 // this phi as an addrec if it has a unique entry value and a unique
2618 // backedge value.
2619 Value *BEValueV = 0, *StartValueV = 0;
2620 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2621 Value *V = PN->getIncomingValue(i);
2622 if (L->contains(PN->getIncomingBlock(i))) {
2623 if (!BEValueV) {
2624 BEValueV = V;
2625 } else if (BEValueV != V) {
2626 BEValueV = 0;
2627 break;
2628 }
2629 } else if (!StartValueV) {
2630 StartValueV = V;
2631 } else if (StartValueV != V) {
2632 StartValueV = 0;
2633 break;
2634 }
2635 }
2636 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002637 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002638 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002639 assert(Scalars.find(PN) == Scalars.end() &&
2640 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002641 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002642
2643 // Using this symbolic name for the PHI, analyze the value coming around
2644 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002645 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002646
2647 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2648 // has a special value for the first iteration of the loop.
2649
2650 // If the value coming around the backedge is an add with the symbolic
2651 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002652 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002653 // If there is a single occurrence of the symbolic value, replace it
2654 // with a recurrence.
2655 unsigned FoundIndex = Add->getNumOperands();
2656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2657 if (Add->getOperand(i) == SymbolicName)
2658 if (FoundIndex == e) {
2659 FoundIndex = i;
2660 break;
2661 }
2662
2663 if (FoundIndex != Add->getNumOperands()) {
2664 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002665 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2667 if (i != FoundIndex)
2668 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002669 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002670
2671 // This is not a valid addrec if the step amount is varying each
2672 // loop iteration, but is not itself an addrec in this loop.
2673 if (Accum->isLoopInvariant(L) ||
2674 (isa<SCEVAddRecExpr>(Accum) &&
2675 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002676 bool HasNUW = false;
2677 bool HasNSW = false;
2678
2679 // If the increment doesn't overflow, then neither the addrec nor
2680 // the post-increment will overflow.
2681 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2682 if (OBO->hasNoUnsignedWrap())
2683 HasNUW = true;
2684 if (OBO->hasNoSignedWrap())
2685 HasNSW = true;
2686 }
2687
Dan Gohman27dead42010-04-12 07:49:36 +00002688 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002689 const SCEV *PHISCEV =
2690 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002691
Dan Gohmana10756e2010-01-21 02:09:26 +00002692 // Since the no-wrap flags are on the increment, they apply to the
2693 // post-incremented value as well.
2694 if (Accum->isLoopInvariant(L))
2695 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2696 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002697
2698 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002699 // to be symbolic. We now need to go back and purge all of the
2700 // entries for the scalars that use the symbolic expression.
2701 ForgetSymbolicName(PN, SymbolicName);
2702 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002703 return PHISCEV;
2704 }
2705 }
Dan Gohman622ed672009-05-04 22:02:23 +00002706 } else if (const SCEVAddRecExpr *AddRec =
2707 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002708 // Otherwise, this could be a loop like this:
2709 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2710 // In this case, j = {1,+,1} and BEValue is j.
2711 // Because the other in-value of i (0) fits the evolution of BEValue
2712 // i really is an addrec evolution.
2713 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002714 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002715
2716 // If StartVal = j.start - j.stride, we can use StartVal as the
2717 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002718 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002719 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002720 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002721 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002722
2723 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002724 // to be symbolic. We now need to go back and purge all of the
2725 // entries for the scalars that use the symbolic expression.
2726 ForgetSymbolicName(PN, SymbolicName);
2727 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002728 return PHISCEV;
2729 }
2730 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002731 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002732 }
Dan Gohman27dead42010-04-12 07:49:36 +00002733 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002734
Dan Gohman85669632010-02-25 06:57:05 +00002735 // If the PHI has a single incoming value, follow that value, unless the
2736 // PHI's incoming blocks are in a different loop, in which case doing so
2737 // risks breaking LCSSA form. Instcombine would normally zap these, but
2738 // it doesn't have DominatorTree information, so it may miss cases.
2739 if (Value *V = PN->hasConstantValue(DT)) {
2740 bool AllSameLoop = true;
2741 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2742 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2743 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2744 AllSameLoop = false;
2745 break;
2746 }
2747 if (AllSameLoop)
2748 return getSCEV(V);
2749 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002750
Chris Lattner53e677a2004-04-02 20:23:17 +00002751 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002752 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002753}
2754
Dan Gohman26466c02009-05-08 20:26:55 +00002755/// createNodeForGEP - Expand GEP instructions into add and multiply
2756/// operations. This allows them to be analyzed by regular SCEV code.
2757///
Dan Gohmand281ed22009-12-18 02:09:29 +00002758const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002759
Dan Gohmand281ed22009-12-18 02:09:29 +00002760 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002761 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002762 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002763 // Don't attempt to analyze GEPs over unsized objects.
2764 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2765 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002766 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002767 gep_type_iterator GTI = gep_type_begin(GEP);
2768 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2769 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002770 I != E; ++I) {
2771 Value *Index = *I;
2772 // Compute the (potentially symbolic) offset in bytes for this index.
2773 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2774 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002775 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002776 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002777 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002778 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002779 } else {
2780 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002781 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002782 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002783 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002784 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002785 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002786 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2787 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2788 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002789 }
2790 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002791 return getAddExpr(getSCEV(Base), TotalOffset,
2792 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002793}
2794
Nick Lewycky83bb0052007-11-22 07:59:40 +00002795/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2796/// guaranteed to end in (at every loop iteration). It is, at the same time,
2797/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2798/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002799uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002800ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002801 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002802 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002803
Dan Gohman622ed672009-05-04 22:02:23 +00002804 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002805 return std::min(GetMinTrailingZeros(T->getOperand()),
2806 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002807
Dan Gohman622ed672009-05-04 22:02:23 +00002808 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002809 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2810 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2811 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002812 }
2813
Dan Gohman622ed672009-05-04 22:02:23 +00002814 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002815 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2816 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2817 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002818 }
2819
Dan Gohman622ed672009-05-04 22:02:23 +00002820 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002821 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002822 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002823 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002824 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002825 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002826 }
2827
Dan Gohman622ed672009-05-04 22:02:23 +00002828 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002829 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002830 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2831 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002832 for (unsigned i = 1, e = M->getNumOperands();
2833 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002834 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002835 BitWidth);
2836 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002837 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002838
Dan Gohman622ed672009-05-04 22:02:23 +00002839 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002841 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002843 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002844 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002845 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002846
Dan Gohman622ed672009-05-04 22:02:23 +00002847 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002848 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002849 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002850 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002851 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002852 return MinOpRes;
2853 }
2854
Dan Gohman622ed672009-05-04 22:02:23 +00002855 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002856 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002857 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002858 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002859 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002860 return MinOpRes;
2861 }
2862
Dan Gohman2c364ad2009-06-19 23:29:04 +00002863 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2864 // For a SCEVUnknown, ask ValueTracking.
2865 unsigned BitWidth = getTypeSizeInBits(U->getType());
2866 APInt Mask = APInt::getAllOnesValue(BitWidth);
2867 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2868 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2869 return Zeros.countTrailingOnes();
2870 }
2871
2872 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002873 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002874}
Chris Lattner53e677a2004-04-02 20:23:17 +00002875
Dan Gohman85b05a22009-07-13 21:35:55 +00002876/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2877///
2878ConstantRange
2879ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002880
2881 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002882 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002883
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002884 unsigned BitWidth = getTypeSizeInBits(S->getType());
2885 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2886
2887 // If the value has known zeros, the maximum unsigned value will have those
2888 // known zeros as well.
2889 uint32_t TZ = GetMinTrailingZeros(S);
2890 if (TZ != 0)
2891 ConservativeResult =
2892 ConstantRange(APInt::getMinValue(BitWidth),
2893 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2894
Dan Gohman85b05a22009-07-13 21:35:55 +00002895 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2896 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2897 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2898 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002899 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002900 }
2901
2902 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2903 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2904 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2905 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002906 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002907 }
2908
2909 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2910 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2911 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2912 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002913 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002914 }
2915
2916 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2917 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2918 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2919 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002920 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002921 }
2922
2923 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2924 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2925 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002926 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002927 }
2928
2929 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2930 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002931 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002932 }
2933
2934 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2935 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002936 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002937 }
2938
2939 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2940 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002941 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002942 }
2943
Dan Gohman85b05a22009-07-13 21:35:55 +00002944 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002945 // If there's no unsigned wrap, the value will never be less than its
2946 // initial value.
2947 if (AddRec->hasNoUnsignedWrap())
2948 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002949 if (!C->isZero())
2950 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002951 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002952
2953 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002954 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002955 const Type *Ty = AddRec->getType();
2956 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002957 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2958 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002959 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2960
2961 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002962 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002963
2964 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002965 ConstantRange StepRange = getSignedRange(Step);
2966 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2967 ConstantRange EndRange =
2968 StartRange.add(MaxBECountRange.multiply(StepRange));
2969
2970 // Check for overflow. This must be done with ConstantRange arithmetic
2971 // because we could be called from within the ScalarEvolution overflow
2972 // checking code.
2973 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2974 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2975 ConstantRange ExtMaxBECountRange =
2976 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2977 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2978 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2979 ExtEndRange)
2980 return ConservativeResult;
2981
Dan Gohman85b05a22009-07-13 21:35:55 +00002982 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2983 EndRange.getUnsignedMin());
2984 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2985 EndRange.getUnsignedMax());
2986 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002987 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002988 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002989 }
2990 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002991
2992 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002993 }
2994
2995 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2996 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002997 APInt Mask = APInt::getAllOnesValue(BitWidth);
2998 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2999 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003000 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003001 return ConservativeResult;
3002 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003003 }
3004
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003005 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003006}
3007
Dan Gohman85b05a22009-07-13 21:35:55 +00003008/// getSignedRange - Determine the signed range for a particular SCEV.
3009///
3010ConstantRange
3011ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012
Dan Gohman85b05a22009-07-13 21:35:55 +00003013 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3014 return ConstantRange(C->getValue()->getValue());
3015
Dan Gohman52fddd32010-01-26 04:40:18 +00003016 unsigned BitWidth = getTypeSizeInBits(S->getType());
3017 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3018
3019 // If the value has known zeros, the maximum signed value will have those
3020 // known zeros as well.
3021 uint32_t TZ = GetMinTrailingZeros(S);
3022 if (TZ != 0)
3023 ConservativeResult =
3024 ConstantRange(APInt::getSignedMinValue(BitWidth),
3025 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3026
Dan Gohman85b05a22009-07-13 21:35:55 +00003027 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3028 ConstantRange X = getSignedRange(Add->getOperand(0));
3029 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3030 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003031 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003032 }
3033
Dan Gohman85b05a22009-07-13 21:35:55 +00003034 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3035 ConstantRange X = getSignedRange(Mul->getOperand(0));
3036 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3037 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003038 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003039 }
3040
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3042 ConstantRange X = getSignedRange(SMax->getOperand(0));
3043 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3044 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003045 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003046 }
Dan Gohman62849c02009-06-24 01:05:09 +00003047
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3049 ConstantRange X = getSignedRange(UMax->getOperand(0));
3050 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3051 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003052 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003053 }
Dan Gohman62849c02009-06-24 01:05:09 +00003054
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3056 ConstantRange X = getSignedRange(UDiv->getLHS());
3057 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003058 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003059 }
Dan Gohman62849c02009-06-24 01:05:09 +00003060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3062 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003063 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 }
3065
3066 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3067 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003068 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003069 }
3070
3071 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3072 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003073 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
3075
Dan Gohman85b05a22009-07-13 21:35:55 +00003076 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003077 // If there's no signed wrap, and all the operands have the same sign or
3078 // zero, the value won't ever change sign.
3079 if (AddRec->hasNoSignedWrap()) {
3080 bool AllNonNeg = true;
3081 bool AllNonPos = true;
3082 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3083 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3084 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3085 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003086 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003087 ConservativeResult = ConservativeResult.intersectWith(
3088 ConstantRange(APInt(BitWidth, 0),
3089 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003090 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003091 ConservativeResult = ConservativeResult.intersectWith(
3092 ConstantRange(APInt::getSignedMinValue(BitWidth),
3093 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003094 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003095
3096 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003097 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003098 const Type *Ty = AddRec->getType();
3099 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003100 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3101 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003102 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3103
3104 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003105 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003106
3107 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003108 ConstantRange StepRange = getSignedRange(Step);
3109 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3110 ConstantRange EndRange =
3111 StartRange.add(MaxBECountRange.multiply(StepRange));
3112
3113 // Check for overflow. This must be done with ConstantRange arithmetic
3114 // because we could be called from within the ScalarEvolution overflow
3115 // checking code.
3116 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3117 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3118 ConstantRange ExtMaxBECountRange =
3119 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3120 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3121 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3122 ExtEndRange)
3123 return ConservativeResult;
3124
Dan Gohman85b05a22009-07-13 21:35:55 +00003125 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3126 EndRange.getSignedMin());
3127 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3128 EndRange.getSignedMax());
3129 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003130 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003131 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003132 }
Dan Gohman62849c02009-06-24 01:05:09 +00003133 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003134
3135 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003136 }
3137
Dan Gohman2c364ad2009-06-19 23:29:04 +00003138 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3139 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003140 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003141 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003142 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3143 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003144 return ConservativeResult;
3145 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003146 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003147 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003148 }
3149
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003151}
3152
Chris Lattner53e677a2004-04-02 20:23:17 +00003153/// createSCEV - We know that there is no SCEV for the specified value.
3154/// Analyze the expression.
3155///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003156const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003157 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003158 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003159
Dan Gohman6c459a22008-06-22 19:56:46 +00003160 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003161 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003162 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003163
3164 // Don't attempt to analyze instructions in blocks that aren't
3165 // reachable. Such instructions don't matter, and they aren't required
3166 // to obey basic rules for definitions dominating uses which this
3167 // analysis depends on.
3168 if (!DT->isReachableFromEntry(I->getParent()))
3169 return getUnknown(V);
3170 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003171 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003172 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3173 return getConstant(CI);
3174 else if (isa<ConstantPointerNull>(V))
3175 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00003176 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3177 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003178 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003179 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003180
Dan Gohmanca178902009-07-17 20:47:02 +00003181 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003182 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003183 case Instruction::Add:
3184 // Don't transfer the NSW and NUW bits from the Add instruction to the
3185 // Add expression, because the Instruction may be guarded by control
3186 // flow and the no-overflow bits may not be valid for the expression in
3187 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003188 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003189 getSCEV(U->getOperand(1)));
3190 case Instruction::Mul:
3191 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3192 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003193 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003194 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003195 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003196 return getUDivExpr(getSCEV(U->getOperand(0)),
3197 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003198 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003199 return getMinusSCEV(getSCEV(U->getOperand(0)),
3200 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003201 case Instruction::And:
3202 // For an expression like x&255 that merely masks off the high bits,
3203 // use zext(trunc(x)) as the SCEV expression.
3204 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003205 if (CI->isNullValue())
3206 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003207 if (CI->isAllOnesValue())
3208 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003209 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003210
3211 // Instcombine's ShrinkDemandedConstant may strip bits out of
3212 // constants, obscuring what would otherwise be a low-bits mask.
3213 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3214 // knew about to reconstruct a low-bits mask value.
3215 unsigned LZ = A.countLeadingZeros();
3216 unsigned BitWidth = A.getBitWidth();
3217 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3218 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3219 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3220
3221 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3222
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003223 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003224 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003225 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003226 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003227 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003228 }
3229 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003230
Dan Gohman6c459a22008-06-22 19:56:46 +00003231 case Instruction::Or:
3232 // If the RHS of the Or is a constant, we may have something like:
3233 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3234 // optimizations will transparently handle this case.
3235 //
3236 // In order for this transformation to be safe, the LHS must be of the
3237 // form X*(2^n) and the Or constant must be less than 2^n.
3238 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003239 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003240 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003241 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003242 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3243 // Build a plain add SCEV.
3244 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3245 // If the LHS of the add was an addrec and it has no-wrap flags,
3246 // transfer the no-wrap flags, since an or won't introduce a wrap.
3247 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3248 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3249 if (OldAR->hasNoUnsignedWrap())
3250 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3251 if (OldAR->hasNoSignedWrap())
3252 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3253 }
3254 return S;
3255 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003256 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003257 break;
3258 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003259 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003260 // If the RHS of the xor is a signbit, then this is just an add.
3261 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003262 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003263 return getAddExpr(getSCEV(U->getOperand(0)),
3264 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003265
3266 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003267 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003268 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003269
3270 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3271 // This is a variant of the check for xor with -1, and it handles
3272 // the case where instcombine has trimmed non-demanded bits out
3273 // of an xor with -1.
3274 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3275 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3276 if (BO->getOpcode() == Instruction::And &&
3277 LCI->getValue() == CI->getValue())
3278 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003279 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003280 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003281 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003282 const Type *Z0Ty = Z0->getType();
3283 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3284
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003285 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003286 // mask off the high bits. Complement the operand and
3287 // re-apply the zext.
3288 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3289 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3290
3291 // If C is a single bit, it may be in the sign-bit position
3292 // before the zero-extend. In this case, represent the xor
3293 // using an add, which is equivalent, and re-apply the zext.
3294 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3295 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3296 Trunc.isSignBit())
3297 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3298 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003299 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003300 }
3301 break;
3302
3303 case Instruction::Shl:
3304 // Turn shift left of a constant amount into a multiply.
3305 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003306 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003307 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003308 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003309 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003310 }
3311 break;
3312
Nick Lewycky01eaf802008-07-07 06:15:49 +00003313 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003314 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003315 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003316 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003317 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003318 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003319 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003320 }
3321 break;
3322
Dan Gohman4ee29af2009-04-21 02:26:00 +00003323 case Instruction::AShr:
3324 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3325 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3326 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3327 if (L->getOpcode() == Instruction::Shl &&
3328 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003329 unsigned BitWidth = getTypeSizeInBits(U->getType());
3330 uint64_t Amt = BitWidth - CI->getZExtValue();
3331 if (Amt == BitWidth)
3332 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3333 if (Amt > BitWidth)
3334 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003335 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003336 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003337 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003338 U->getType());
3339 }
3340 break;
3341
Dan Gohman6c459a22008-06-22 19:56:46 +00003342 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003343 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003344
3345 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003346 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003347
3348 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003349 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003350
3351 case Instruction::BitCast:
3352 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003353 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003354 return getSCEV(U->getOperand(0));
3355 break;
3356
Dan Gohman4f8eea82010-02-01 18:27:38 +00003357 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3358 // lead to pointer expressions which cannot safely be expanded to GEPs,
3359 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3360 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003361
Dan Gohman26466c02009-05-08 20:26:55 +00003362 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003363 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003364
Dan Gohman6c459a22008-06-22 19:56:46 +00003365 case Instruction::PHI:
3366 return createNodeForPHI(cast<PHINode>(U));
3367
3368 case Instruction::Select:
3369 // This could be a smax or umax that was lowered earlier.
3370 // Try to recover it.
3371 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3372 Value *LHS = ICI->getOperand(0);
3373 Value *RHS = ICI->getOperand(1);
3374 switch (ICI->getPredicate()) {
3375 case ICmpInst::ICMP_SLT:
3376 case ICmpInst::ICMP_SLE:
3377 std::swap(LHS, RHS);
3378 // fall through
3379 case ICmpInst::ICMP_SGT:
3380 case ICmpInst::ICMP_SGE:
3381 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003382 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003383 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003384 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003385 break;
3386 case ICmpInst::ICMP_ULT:
3387 case ICmpInst::ICMP_ULE:
3388 std::swap(LHS, RHS);
3389 // fall through
3390 case ICmpInst::ICMP_UGT:
3391 case ICmpInst::ICMP_UGE:
3392 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003394 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003395 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003396 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003397 case ICmpInst::ICMP_NE:
3398 // n != 0 ? n : 1 -> umax(n, 1)
3399 if (LHS == U->getOperand(1) &&
3400 isa<ConstantInt>(U->getOperand(2)) &&
3401 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3402 isa<ConstantInt>(RHS) &&
3403 cast<ConstantInt>(RHS)->isZero())
3404 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3405 break;
3406 case ICmpInst::ICMP_EQ:
3407 // n == 0 ? 1 : n -> umax(n, 1)
3408 if (LHS == U->getOperand(2) &&
3409 isa<ConstantInt>(U->getOperand(1)) &&
3410 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3411 isa<ConstantInt>(RHS) &&
3412 cast<ConstantInt>(RHS)->isZero())
3413 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3414 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003415 default:
3416 break;
3417 }
3418 }
3419
3420 default: // We cannot analyze this expression.
3421 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003422 }
3423
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003424 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003425}
3426
3427
3428
3429//===----------------------------------------------------------------------===//
3430// Iteration Count Computation Code
3431//
3432
Dan Gohman46bdfb02009-02-24 18:55:53 +00003433/// getBackedgeTakenCount - If the specified loop has a predictable
3434/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3435/// object. The backedge-taken count is the number of times the loop header
3436/// will be branched to from within the loop. This is one less than the
3437/// trip count of the loop, since it doesn't count the first iteration,
3438/// when the header is branched to from outside the loop.
3439///
3440/// Note that it is not valid to call this method on a loop without a
3441/// loop-invariant backedge-taken count (see
3442/// hasLoopInvariantBackedgeTakenCount).
3443///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003444const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003445 return getBackedgeTakenInfo(L).Exact;
3446}
3447
3448/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3449/// return the least SCEV value that is known never to be less than the
3450/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003451const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003452 return getBackedgeTakenInfo(L).Max;
3453}
3454
Dan Gohman59ae6b92009-07-08 19:23:34 +00003455/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3456/// onto the given Worklist.
3457static void
3458PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3459 BasicBlock *Header = L->getHeader();
3460
3461 // Push all Loop-header PHIs onto the Worklist stack.
3462 for (BasicBlock::iterator I = Header->begin();
3463 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3464 Worklist.push_back(PN);
3465}
3466
Dan Gohmana1af7572009-04-30 20:47:05 +00003467const ScalarEvolution::BackedgeTakenInfo &
3468ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003469 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003470 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003471 // update the value. The temporary CouldNotCompute value tells SCEV
3472 // code elsewhere that it shouldn't attempt to request a new
3473 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003474 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003475 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3476 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003477 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3478 if (BECount.Exact != getCouldNotCompute()) {
3479 assert(BECount.Exact->isLoopInvariant(L) &&
3480 BECount.Max->isLoopInvariant(L) &&
3481 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003482 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003483
Dan Gohman01ecca22009-04-27 20:16:15 +00003484 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003485 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003486 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003487 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003488 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003489 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003490 if (isa<PHINode>(L->getHeader()->begin()))
3491 // Only count loops that have phi nodes as not being computable.
3492 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003493 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003494
3495 // Now that we know more about the trip count for this loop, forget any
3496 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003497 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003498 // information. This is similar to the code in forgetLoop, except that
3499 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003500 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003501 SmallVector<Instruction *, 16> Worklist;
3502 PushLoopPHIs(L, Worklist);
3503
3504 SmallPtrSet<Instruction *, 8> Visited;
3505 while (!Worklist.empty()) {
3506 Instruction *I = Worklist.pop_back_val();
3507 if (!Visited.insert(I)) continue;
3508
Dan Gohman5d984912009-12-18 01:14:11 +00003509 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003510 Scalars.find(static_cast<Value *>(I));
3511 if (It != Scalars.end()) {
3512 // SCEVUnknown for a PHI either means that it has an unrecognized
3513 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003514 // by createNodeForPHI. In the former case, additional loop trip
3515 // count information isn't going to change anything. In the later
3516 // case, createNodeForPHI will perform the necessary updates on its
3517 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003518 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3519 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003520 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003521 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003522 if (PHINode *PN = dyn_cast<PHINode>(I))
3523 ConstantEvolutionLoopExitValue.erase(PN);
3524 }
3525
3526 PushDefUseChildren(I, Worklist);
3527 }
3528 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003529 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003530 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003531}
3532
Dan Gohman4c7279a2009-10-31 15:04:55 +00003533/// forgetLoop - This method should be called by the client when it has
3534/// changed a loop in a way that may effect ScalarEvolution's ability to
3535/// compute a trip count, or if the loop is deleted.
3536void ScalarEvolution::forgetLoop(const Loop *L) {
3537 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003538 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003539
Dan Gohman4c7279a2009-10-31 15:04:55 +00003540 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003541 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003542 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003543
Dan Gohman59ae6b92009-07-08 19:23:34 +00003544 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003545 while (!Worklist.empty()) {
3546 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003547 if (!Visited.insert(I)) continue;
3548
Dan Gohman5d984912009-12-18 01:14:11 +00003549 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003550 Scalars.find(static_cast<Value *>(I));
3551 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003552 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003553 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003554 if (PHINode *PN = dyn_cast<PHINode>(I))
3555 ConstantEvolutionLoopExitValue.erase(PN);
3556 }
3557
3558 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003559 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003560}
3561
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003562/// forgetValue - This method should be called by the client when it has
3563/// changed a value in a way that may effect its value, or which may
3564/// disconnect it from a def-use chain linking it to a loop.
3565void ScalarEvolution::forgetValue(Value *V) {
3566 Instruction *I = dyn_cast<Instruction>(V);
3567 if (!I) return;
3568
3569 // Drop information about expressions based on loop-header PHIs.
3570 SmallVector<Instruction *, 16> Worklist;
3571 Worklist.push_back(I);
3572
3573 SmallPtrSet<Instruction *, 8> Visited;
3574 while (!Worklist.empty()) {
3575 I = Worklist.pop_back_val();
3576 if (!Visited.insert(I)) continue;
3577
3578 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3579 Scalars.find(static_cast<Value *>(I));
3580 if (It != Scalars.end()) {
3581 ValuesAtScopes.erase(It->second);
3582 Scalars.erase(It);
3583 if (PHINode *PN = dyn_cast<PHINode>(I))
3584 ConstantEvolutionLoopExitValue.erase(PN);
3585 }
3586
3587 PushDefUseChildren(I, Worklist);
3588 }
3589}
3590
Dan Gohman46bdfb02009-02-24 18:55:53 +00003591/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3592/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003593ScalarEvolution::BackedgeTakenInfo
3594ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003595 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003596 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003597
Dan Gohmana334aa72009-06-22 00:31:57 +00003598 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003599 const SCEV *BECount = getCouldNotCompute();
3600 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003601 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003602 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3603 BackedgeTakenInfo NewBTI =
3604 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003605
Dan Gohman1c343752009-06-27 21:21:31 +00003606 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003607 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003608 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003609 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003610 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003611 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003612 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003613 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003614 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003615 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003616 }
Dan Gohman1c343752009-06-27 21:21:31 +00003617 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003618 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003619 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003620 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003621 }
3622
3623 return BackedgeTakenInfo(BECount, MaxBECount);
3624}
3625
3626/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3627/// of the specified loop will execute if it exits via the specified block.
3628ScalarEvolution::BackedgeTakenInfo
3629ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3630 BasicBlock *ExitingBlock) {
3631
3632 // Okay, we've chosen an exiting block. See what condition causes us to
3633 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003634 //
3635 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003636 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003637 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003638 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003639
Chris Lattner8b0e3602007-01-07 02:24:26 +00003640 // At this point, we know we have a conditional branch that determines whether
3641 // the loop is exited. However, we don't know if the branch is executed each
3642 // time through the loop. If not, then the execution count of the branch will
3643 // not be equal to the trip count of the loop.
3644 //
3645 // Currently we check for this by checking to see if the Exit branch goes to
3646 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003647 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003648 // loop header. This is common for un-rotated loops.
3649 //
3650 // If both of those tests fail, walk up the unique predecessor chain to the
3651 // header, stopping if there is an edge that doesn't exit the loop. If the
3652 // header is reached, the execution count of the branch will be equal to the
3653 // trip count of the loop.
3654 //
3655 // More extensive analysis could be done to handle more cases here.
3656 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003657 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003658 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003659 ExitBr->getParent() != L->getHeader()) {
3660 // The simple checks failed, try climbing the unique predecessor chain
3661 // up to the header.
3662 bool Ok = false;
3663 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3664 BasicBlock *Pred = BB->getUniquePredecessor();
3665 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003666 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003667 TerminatorInst *PredTerm = Pred->getTerminator();
3668 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3669 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3670 if (PredSucc == BB)
3671 continue;
3672 // If the predecessor has a successor that isn't BB and isn't
3673 // outside the loop, assume the worst.
3674 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003675 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003676 }
3677 if (Pred == L->getHeader()) {
3678 Ok = true;
3679 break;
3680 }
3681 BB = Pred;
3682 }
3683 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003684 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003685 }
3686
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003687 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003688 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3689 ExitBr->getSuccessor(0),
3690 ExitBr->getSuccessor(1));
3691}
3692
3693/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3694/// backedge of the specified loop will execute if its exit condition
3695/// were a conditional branch of ExitCond, TBB, and FBB.
3696ScalarEvolution::BackedgeTakenInfo
3697ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3698 Value *ExitCond,
3699 BasicBlock *TBB,
3700 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003701 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003702 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3703 if (BO->getOpcode() == Instruction::And) {
3704 // Recurse on the operands of the and.
3705 BackedgeTakenInfo BTI0 =
3706 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3707 BackedgeTakenInfo BTI1 =
3708 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003709 const SCEV *BECount = getCouldNotCompute();
3710 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003711 if (L->contains(TBB)) {
3712 // Both conditions must be true for the loop to continue executing.
3713 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003714 if (BTI0.Exact == getCouldNotCompute() ||
3715 BTI1.Exact == getCouldNotCompute())
3716 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003717 else
3718 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003719 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003720 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003721 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003722 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003723 else
3724 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003725 } else {
3726 // Both conditions must be true for the loop to exit.
3727 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003728 if (BTI0.Exact != getCouldNotCompute() &&
3729 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003730 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003731 if (BTI0.Max != getCouldNotCompute() &&
3732 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003733 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3734 }
3735
3736 return BackedgeTakenInfo(BECount, MaxBECount);
3737 }
3738 if (BO->getOpcode() == Instruction::Or) {
3739 // Recurse on the operands of the or.
3740 BackedgeTakenInfo BTI0 =
3741 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3742 BackedgeTakenInfo BTI1 =
3743 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003744 const SCEV *BECount = getCouldNotCompute();
3745 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 if (L->contains(FBB)) {
3747 // Both conditions must be false for the loop to continue executing.
3748 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003749 if (BTI0.Exact == getCouldNotCompute() ||
3750 BTI1.Exact == getCouldNotCompute())
3751 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003752 else
3753 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003754 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003756 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003757 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003758 else
3759 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 } else {
3761 // Both conditions must be false for the loop to exit.
3762 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003763 if (BTI0.Exact != getCouldNotCompute() &&
3764 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003766 if (BTI0.Max != getCouldNotCompute() &&
3767 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003768 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3769 }
3770
3771 return BackedgeTakenInfo(BECount, MaxBECount);
3772 }
3773 }
3774
3775 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003776 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003777 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3778 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003779
Dan Gohman00cb5b72010-02-19 18:12:07 +00003780 // Check for a constant condition. These are normally stripped out by
3781 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3782 // preserve the CFG and is temporarily leaving constant conditions
3783 // in place.
3784 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3785 if (L->contains(FBB) == !CI->getZExtValue())
3786 // The backedge is always taken.
3787 return getCouldNotCompute();
3788 else
3789 // The backedge is never taken.
3790 return getIntegerSCEV(0, CI->getType());
3791 }
3792
Eli Friedman361e54d2009-05-09 12:32:42 +00003793 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3795}
3796
3797/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3798/// backedge of the specified loop will execute if its exit condition
3799/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3800ScalarEvolution::BackedgeTakenInfo
3801ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3802 ICmpInst *ExitCond,
3803 BasicBlock *TBB,
3804 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003805
Reid Spencere4d87aa2006-12-23 06:05:41 +00003806 // If the condition was exit on true, convert the condition to exit on false
3807 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003808 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003809 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003810 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003811 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003812
3813 // Handle common loops like: for (X = "string"; *X; ++X)
3814 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3815 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003816 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003817 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003818 if (ItCnt.hasAnyInfo())
3819 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003820 }
3821
Dan Gohman0bba49c2009-07-07 17:06:11 +00003822 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3823 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003824
3825 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003826 LHS = getSCEVAtScope(LHS, L);
3827 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003828
Dan Gohman64a845e2009-06-24 04:48:43 +00003829 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003830 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003831 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3832 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003833 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003834 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003835 }
3836
Chris Lattner53e677a2004-04-02 20:23:17 +00003837 // If we have a comparison of a chrec against a constant, try to use value
3838 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003841 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003842 // Form the constant range.
3843 ConstantRange CompRange(
3844 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003845
Dan Gohman0bba49c2009-07-07 17:06:11 +00003846 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003847 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003848 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003849
Chris Lattner53e677a2004-04-02 20:23:17 +00003850 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003851 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003852 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003853 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3854 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003855 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003856 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003857 case ICmpInst::ICMP_EQ: { // while (X == Y)
3858 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003859 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3860 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003861 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003862 }
3863 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003864 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3865 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003866 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003867 }
3868 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003869 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3870 getNotSCEV(RHS), L, true);
3871 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003872 break;
3873 }
3874 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003875 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3876 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003877 break;
3878 }
3879 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003880 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3881 getNotSCEV(RHS), L, false);
3882 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003883 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003884 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003885 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003886#if 0
David Greene25e0e872009-12-23 22:18:14 +00003887 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003888 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003889 dbgs() << "[unsigned] ";
3890 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003891 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003892 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003893#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003894 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003895 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003896 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003897 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003898}
3899
Chris Lattner673e02b2004-10-12 01:49:27 +00003900static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003901EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3902 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003903 const SCEV *InVal = SE.getConstant(C);
3904 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003905 assert(isa<SCEVConstant>(Val) &&
3906 "Evaluation of SCEV at constant didn't fold correctly?");
3907 return cast<SCEVConstant>(Val)->getValue();
3908}
3909
3910/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3911/// and a GEP expression (missing the pointer index) indexing into it, return
3912/// the addressed element of the initializer or null if the index expression is
3913/// invalid.
3914static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003915GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003916 const std::vector<ConstantInt*> &Indices) {
3917 Constant *Init = GV->getInitializer();
3918 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003919 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003920 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3921 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3922 Init = cast<Constant>(CS->getOperand(Idx));
3923 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3924 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3925 Init = cast<Constant>(CA->getOperand(Idx));
3926 } else if (isa<ConstantAggregateZero>(Init)) {
3927 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3928 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003929 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003930 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3931 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003932 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003933 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003934 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003935 }
3936 return 0;
3937 } else {
3938 return 0; // Unknown initializer type
3939 }
3940 }
3941 return Init;
3942}
3943
Dan Gohman46bdfb02009-02-24 18:55:53 +00003944/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3945/// 'icmp op load X, cst', try to see if we can compute the backedge
3946/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003947ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00003948ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3949 LoadInst *LI,
3950 Constant *RHS,
3951 const Loop *L,
3952 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003953 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003954
3955 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003956 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00003957 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003958 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003959
3960 // Make sure that it is really a constant global we are gepping, with an
3961 // initializer, and make sure the first IDX is really 0.
3962 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003963 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003964 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3965 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003966 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003967
3968 // Okay, we allow one non-constant index into the GEP instruction.
3969 Value *VarIdx = 0;
3970 std::vector<ConstantInt*> Indexes;
3971 unsigned VarIdxNum = 0;
3972 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3973 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3974 Indexes.push_back(CI);
3975 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003976 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003977 VarIdx = GEP->getOperand(i);
3978 VarIdxNum = i-2;
3979 Indexes.push_back(0);
3980 }
3981
3982 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3983 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003984 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003985 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003986
3987 // We can only recognize very limited forms of loop index expressions, in
3988 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003989 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003990 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3991 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3992 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003993 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003994
3995 unsigned MaxSteps = MaxBruteForceIterations;
3996 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003997 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003998 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003999 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004000
4001 // Form the GEP offset.
4002 Indexes[VarIdxNum] = Val;
4003
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004004 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004005 if (Result == 0) break; // Cannot compute!
4006
4007 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004008 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004009 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004010 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004011#if 0
David Greene25e0e872009-12-23 22:18:14 +00004012 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004013 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4014 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004015#endif
4016 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004017 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004018 }
4019 }
Dan Gohman1c343752009-06-27 21:21:31 +00004020 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004021}
4022
4023
Chris Lattner3221ad02004-04-17 22:58:41 +00004024/// CanConstantFold - Return true if we can constant fold an instruction of the
4025/// specified type, assuming that all operands were constants.
4026static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004027 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004028 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4029 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004030
Chris Lattner3221ad02004-04-17 22:58:41 +00004031 if (const CallInst *CI = dyn_cast<CallInst>(I))
4032 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004033 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004034 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004035}
4036
Chris Lattner3221ad02004-04-17 22:58:41 +00004037/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4038/// in the loop that V is derived from. We allow arbitrary operations along the
4039/// way, but the operands of an operation must either be constants or a value
4040/// derived from a constant PHI. If this expression does not fit with these
4041/// constraints, return null.
4042static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4043 // If this is not an instruction, or if this is an instruction outside of the
4044 // loop, it can't be derived from a loop PHI.
4045 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004046 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004047
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004048 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004049 if (L->getHeader() == I->getParent())
4050 return PN;
4051 else
4052 // We don't currently keep track of the control flow needed to evaluate
4053 // PHIs, so we cannot handle PHIs inside of loops.
4054 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004055 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004056
4057 // If we won't be able to constant fold this expression even if the operands
4058 // are constants, return early.
4059 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004060
Chris Lattner3221ad02004-04-17 22:58:41 +00004061 // Otherwise, we can evaluate this instruction if all of its operands are
4062 // constant or derived from a PHI node themselves.
4063 PHINode *PHI = 0;
4064 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4065 if (!(isa<Constant>(I->getOperand(Op)) ||
4066 isa<GlobalValue>(I->getOperand(Op)))) {
4067 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4068 if (P == 0) return 0; // Not evolving from PHI
4069 if (PHI == 0)
4070 PHI = P;
4071 else if (PHI != P)
4072 return 0; // Evolving from multiple different PHIs.
4073 }
4074
4075 // This is a expression evolving from a constant PHI!
4076 return PHI;
4077}
4078
4079/// EvaluateExpression - Given an expression that passes the
4080/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4081/// in the loop has the value PHIVal. If we can't fold this expression for some
4082/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004083static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4084 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004085 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004086 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004087 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004088 Instruction *I = cast<Instruction>(V);
4089
4090 std::vector<Constant*> Operands;
4091 Operands.resize(I->getNumOperands());
4092
4093 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004094 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004095 if (Operands[i] == 0) return 0;
4096 }
4097
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004098 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004099 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004100 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004101 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004102 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004103}
4104
4105/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4106/// in the header of its containing loop, we know the loop executes a
4107/// constant number of times, and the PHI node is just a recurrence
4108/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004109Constant *
4110ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004111 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004112 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004113 std::map<PHINode*, Constant*>::iterator I =
4114 ConstantEvolutionLoopExitValue.find(PN);
4115 if (I != ConstantEvolutionLoopExitValue.end())
4116 return I->second;
4117
Dan Gohmane0567812010-04-08 23:03:40 +00004118 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004119 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4120
4121 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4122
4123 // Since the loop is canonicalized, the PHI node must have two entries. One
4124 // entry must be a constant (coming in from outside of the loop), and the
4125 // second must be derived from the same PHI.
4126 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4127 Constant *StartCST =
4128 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4129 if (StartCST == 0)
4130 return RetVal = 0; // Must be a constant.
4131
4132 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4133 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4134 if (PN2 != PN)
4135 return RetVal = 0; // Not derived from same PHI.
4136
4137 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004138 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004139 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004140
Dan Gohman46bdfb02009-02-24 18:55:53 +00004141 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004142 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004143 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4144 if (IterationNum == NumIterations)
4145 return RetVal = PHIVal; // Got exit value!
4146
4147 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004148 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004149 if (NextPHI == PHIVal)
4150 return RetVal = NextPHI; // Stopped evolving!
4151 if (NextPHI == 0)
4152 return 0; // Couldn't evaluate!
4153 PHIVal = NextPHI;
4154 }
4155}
4156
Dan Gohman07ad19b2009-07-27 16:09:48 +00004157/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004158/// constant number of times (the condition evolves only from constants),
4159/// try to evaluate a few iterations of the loop until we get the exit
4160/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004161/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004162const SCEV *
4163ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4164 Value *Cond,
4165 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004166 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004167 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004168
4169 // Since the loop is canonicalized, the PHI node must have two entries. One
4170 // entry must be a constant (coming in from outside of the loop), and the
4171 // second must be derived from the same PHI.
4172 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4173 Constant *StartCST =
4174 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004175 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004176
4177 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4178 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004179 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004180
4181 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4182 // the loop symbolically to determine when the condition gets a value of
4183 // "ExitWhen".
4184 unsigned IterationNum = 0;
4185 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4186 for (Constant *PHIVal = StartCST;
4187 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004188 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004189 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004190
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004191 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004192 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004193
Reid Spencere8019bb2007-03-01 07:25:48 +00004194 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004195 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004196 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004197 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004198
Chris Lattner3221ad02004-04-17 22:58:41 +00004199 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004200 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004201 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004202 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004203 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004204 }
4205
4206 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004207 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004208}
4209
Dan Gohmane7125f42009-09-03 15:00:26 +00004210/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004211/// at the specified scope in the program. The L value specifies a loop
4212/// nest to evaluate the expression at, where null is the top-level or a
4213/// specified loop is immediately inside of the loop.
4214///
4215/// This method can be used to compute the exit value for a variable defined
4216/// in a loop by querying what the value will hold in the parent loop.
4217///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004218/// In the case that a relevant loop exit value cannot be computed, the
4219/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004220const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004221 // Check to see if we've folded this expression at this loop before.
4222 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4223 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4224 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4225 if (!Pair.second)
4226 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004227
Dan Gohman42214892009-08-31 21:15:23 +00004228 // Otherwise compute it.
4229 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004230 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004231 return C;
4232}
4233
4234const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004235 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004236
Nick Lewycky3e630762008-02-20 06:48:22 +00004237 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004238 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004239 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004240 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004241 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004242 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4243 if (PHINode *PN = dyn_cast<PHINode>(I))
4244 if (PN->getParent() == LI->getHeader()) {
4245 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004246 // to see if the loop that contains it has a known backedge-taken
4247 // count. If so, we may be able to force computation of the exit
4248 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004249 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004250 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004251 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004252 // Okay, we know how many times the containing loop executes. If
4253 // this is a constant evolving PHI node, get the final value at
4254 // the specified iteration number.
4255 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004256 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004257 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004258 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004259 }
4260 }
4261
Reid Spencer09906f32006-12-04 21:33:23 +00004262 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004263 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004264 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004265 // result. This is particularly useful for computing loop exit values.
4266 if (CanConstantFold(I)) {
4267 std::vector<Constant*> Operands;
4268 Operands.reserve(I->getNumOperands());
4269 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4270 Value *Op = I->getOperand(i);
4271 if (Constant *C = dyn_cast<Constant>(Op)) {
4272 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004273 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004274 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004275 // non-integer and non-pointer, don't even try to analyze them
4276 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004277 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004278 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004279
Dan Gohman5d984912009-12-18 01:14:11 +00004280 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004282 Constant *C = SC->getValue();
4283 if (C->getType() != Op->getType())
4284 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4285 Op->getType(),
4286 false),
4287 C, Op->getType());
4288 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004289 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004290 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4291 if (C->getType() != Op->getType())
4292 C =
4293 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4294 Op->getType(),
4295 false),
4296 C, Op->getType());
4297 Operands.push_back(C);
4298 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004299 return V;
4300 } else {
4301 return V;
4302 }
4303 }
4304 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004305
Dan Gohmane177c9a2010-02-24 19:31:47 +00004306 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004307 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4308 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004309 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004310 else
4311 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004312 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004313 if (C)
4314 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 }
4316 }
4317
4318 // This is some other type of SCEVUnknown, just return it.
4319 return V;
4320 }
4321
Dan Gohman622ed672009-05-04 22:02:23 +00004322 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004323 // Avoid performing the look-up in the common case where the specified
4324 // expression has no loop-variant portions.
4325 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004326 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004327 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004328 // Okay, at least one of these operands is loop variant but might be
4329 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004330 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4331 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004332 NewOps.push_back(OpAtScope);
4333
4334 for (++i; i != e; ++i) {
4335 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004336 NewOps.push_back(OpAtScope);
4337 }
4338 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004339 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004340 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004341 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004342 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004343 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004344 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004345 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004346 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004347 }
4348 }
4349 // If we got here, all operands are loop invariant.
4350 return Comm;
4351 }
4352
Dan Gohman622ed672009-05-04 22:02:23 +00004353 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004354 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4355 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004356 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4357 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004358 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004359 }
4360
4361 // If this is a loop recurrence for a loop that does not contain L, then we
4362 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004363 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004364 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004365 // To evaluate this recurrence, we need to know how many times the AddRec
4366 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004367 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004368 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004369
Eli Friedmanb42a6262008-08-04 23:49:06 +00004370 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004371 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004372 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004373 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004374 }
4375
Dan Gohman622ed672009-05-04 22:02:23 +00004376 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004377 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004378 if (Op == Cast->getOperand())
4379 return Cast; // must be loop invariant
4380 return getZeroExtendExpr(Op, Cast->getType());
4381 }
4382
Dan Gohman622ed672009-05-04 22:02:23 +00004383 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004384 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004385 if (Op == Cast->getOperand())
4386 return Cast; // must be loop invariant
4387 return getSignExtendExpr(Op, Cast->getType());
4388 }
4389
Dan Gohman622ed672009-05-04 22:02:23 +00004390 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004391 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004392 if (Op == Cast->getOperand())
4393 return Cast; // must be loop invariant
4394 return getTruncateExpr(Op, Cast->getType());
4395 }
4396
Torok Edwinc23197a2009-07-14 16:55:14 +00004397 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004398 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004399}
4400
Dan Gohman66a7e852009-05-08 20:38:54 +00004401/// getSCEVAtScope - This is a convenience function which does
4402/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004403const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004404 return getSCEVAtScope(getSCEV(V), L);
4405}
4406
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004407/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4408/// following equation:
4409///
4410/// A * X = B (mod N)
4411///
4412/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4413/// A and B isn't important.
4414///
4415/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004416static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004417 ScalarEvolution &SE) {
4418 uint32_t BW = A.getBitWidth();
4419 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4420 assert(A != 0 && "A must be non-zero.");
4421
4422 // 1. D = gcd(A, N)
4423 //
4424 // The gcd of A and N may have only one prime factor: 2. The number of
4425 // trailing zeros in A is its multiplicity
4426 uint32_t Mult2 = A.countTrailingZeros();
4427 // D = 2^Mult2
4428
4429 // 2. Check if B is divisible by D.
4430 //
4431 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4432 // is not less than multiplicity of this prime factor for D.
4433 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004434 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004435
4436 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4437 // modulo (N / D).
4438 //
4439 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4440 // bit width during computations.
4441 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4442 APInt Mod(BW + 1, 0);
4443 Mod.set(BW - Mult2); // Mod = N / D
4444 APInt I = AD.multiplicativeInverse(Mod);
4445
4446 // 4. Compute the minimum unsigned root of the equation:
4447 // I * (B / D) mod (N / D)
4448 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4449
4450 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4451 // bits.
4452 return SE.getConstant(Result.trunc(BW));
4453}
Chris Lattner53e677a2004-04-02 20:23:17 +00004454
4455/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4456/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4457/// might be the same) or two SCEVCouldNotCompute objects.
4458///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004459static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004460SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004461 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004462 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4463 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4464 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004465
Chris Lattner53e677a2004-04-02 20:23:17 +00004466 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004467 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004468 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004469 return std::make_pair(CNC, CNC);
4470 }
4471
Reid Spencere8019bb2007-03-01 07:25:48 +00004472 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004473 const APInt &L = LC->getValue()->getValue();
4474 const APInt &M = MC->getValue()->getValue();
4475 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004476 APInt Two(BitWidth, 2);
4477 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004478
Dan Gohman64a845e2009-06-24 04:48:43 +00004479 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004480 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004481 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004482 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4483 // The B coefficient is M-N/2
4484 APInt B(M);
4485 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004486
Reid Spencere8019bb2007-03-01 07:25:48 +00004487 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004488 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004489
Reid Spencere8019bb2007-03-01 07:25:48 +00004490 // Compute the B^2-4ac term.
4491 APInt SqrtTerm(B);
4492 SqrtTerm *= B;
4493 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004494
Reid Spencere8019bb2007-03-01 07:25:48 +00004495 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4496 // integer value or else APInt::sqrt() will assert.
4497 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004498
Dan Gohman64a845e2009-06-24 04:48:43 +00004499 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004500 // The divisions must be performed as signed divisions.
4501 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004502 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004503 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004504 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004505 return std::make_pair(CNC, CNC);
4506 }
4507
Owen Andersone922c022009-07-22 00:24:57 +00004508 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004509
4510 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004511 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004512 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004513 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004514
Dan Gohman64a845e2009-06-24 04:48:43 +00004515 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004516 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004517 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004518}
4519
4520/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004521/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004522ScalarEvolution::BackedgeTakenInfo
4523ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004525 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004526 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004527 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004528 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004529 }
4530
Dan Gohman35738ac2009-05-04 22:30:44 +00004531 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004532 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004533 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004534
4535 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004536 // If this is an affine expression, the execution count of this branch is
4537 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004538 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004539 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004540 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004541 // equivalent to:
4542 //
4543 // Step*N = -Start (mod 2^BW)
4544 //
4545 // where BW is the common bit width of Start and Step.
4546
Chris Lattner53e677a2004-04-02 20:23:17 +00004547 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004548 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4549 L->getParentLoop());
4550 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4551 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004552
Dan Gohman622ed672009-05-04 22:02:23 +00004553 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004554 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004555
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004556 // First, handle unitary steps.
4557 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004558 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004559 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4560 return Start; // N = Start (as unsigned)
4561
4562 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004563 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004564 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004565 -StartC->getValue()->getValue(),
4566 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004567 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004568 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004569 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4570 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004571 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004572 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004573 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4574 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004575 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004576#if 0
David Greene25e0e872009-12-23 22:18:14 +00004577 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004578 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004579#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004580 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004581 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004582 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004583 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004584 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004585 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004586
Chris Lattner53e677a2004-04-02 20:23:17 +00004587 // We can only use this value if the chrec ends up with an exact zero
4588 // value at this index. When solving for "X*X != 5", for example, we
4589 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004590 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004591 if (Val->isZero())
4592 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004593 }
4594 }
4595 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004596
Dan Gohman1c343752009-06-27 21:21:31 +00004597 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004598}
4599
4600/// HowFarToNonZero - Return the number of times a backedge checking the
4601/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004602/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004603ScalarEvolution::BackedgeTakenInfo
4604ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 // Loops that look like: while (X == 0) are very strange indeed. We don't
4606 // handle them yet except for the trivial case. This could be expanded in the
4607 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004608
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 // If the value is a constant, check to see if it is known to be non-zero
4610 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004611 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004612 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004613 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004614 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004615 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004616
Chris Lattner53e677a2004-04-02 20:23:17 +00004617 // We could implement others, but I really doubt anyone writes loops like
4618 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004619 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004620}
4621
Dan Gohman859b4822009-05-18 15:36:09 +00004622/// getLoopPredecessor - If the given loop's header has exactly one unique
4623/// predecessor outside the loop, return it. Otherwise return null.
4624///
4625BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4626 BasicBlock *Header = L->getHeader();
4627 BasicBlock *Pred = 0;
4628 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4629 PI != E; ++PI)
4630 if (!L->contains(*PI)) {
4631 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4632 Pred = *PI;
4633 }
4634 return Pred;
4635}
4636
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004637/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4638/// (which may not be an immediate predecessor) which has exactly one
4639/// successor from which BB is reachable, or null if no such block is
4640/// found.
4641///
4642BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004643ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004644 // If the block has a unique predecessor, then there is no path from the
4645 // predecessor to the block that does not go through the direct edge
4646 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004647 if (BasicBlock *Pred = BB->getSinglePredecessor())
4648 return Pred;
4649
4650 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004651 // If the header has a unique predecessor outside the loop, it must be
4652 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004653 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004654 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004655
4656 return 0;
4657}
4658
Dan Gohman763bad12009-06-20 00:35:32 +00004659/// HasSameValue - SCEV structural equivalence is usually sufficient for
4660/// testing whether two expressions are equal, however for the purposes of
4661/// looking for a condition guarding a loop, it can be useful to be a little
4662/// more general, since a front-end may have replicated the controlling
4663/// expression.
4664///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004665static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004666 // Quick check to see if they are the same SCEV.
4667 if (A == B) return true;
4668
4669 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4670 // two different instructions with the same value. Check for this case.
4671 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4672 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4673 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4674 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004675 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004676 return true;
4677
4678 // Otherwise assume they may have a different value.
4679 return false;
4680}
4681
Dan Gohman85b05a22009-07-13 21:35:55 +00004682bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4683 return getSignedRange(S).getSignedMax().isNegative();
4684}
4685
4686bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4687 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4688}
4689
4690bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4691 return !getSignedRange(S).getSignedMin().isNegative();
4692}
4693
4694bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4695 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4696}
4697
4698bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4699 return isKnownNegative(S) || isKnownPositive(S);
4700}
4701
4702bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4703 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman53c66ea2010-04-11 22:16:48 +00004704 // If LHS or RHS is an addrec, check to see if the condition is true in
4705 // every iteration of the loop.
4706 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
4707 if (isLoopEntryGuardedByCond(
4708 AR->getLoop(), Pred, AR->getStart(), RHS) &&
4709 isLoopBackedgeGuardedByCond(
4710 AR->getLoop(), Pred,
4711 getAddExpr(AR, AR->getStepRecurrence(*this)), RHS))
4712 return true;
4713 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
4714 if (isLoopEntryGuardedByCond(
4715 AR->getLoop(), Pred, LHS, AR->getStart()) &&
4716 isLoopBackedgeGuardedByCond(
4717 AR->getLoop(), Pred,
4718 LHS, getAddExpr(AR, AR->getStepRecurrence(*this))))
4719 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00004720
Dan Gohman53c66ea2010-04-11 22:16:48 +00004721 // Otherwise see what can be done with known constant ranges.
4722 return isKnownPredicateWithRanges(Pred, LHS, RHS);
4723}
4724
4725bool
4726ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
4727 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004728 if (HasSameValue(LHS, RHS))
4729 return ICmpInst::isTrueWhenEqual(Pred);
4730
Dan Gohman53c66ea2010-04-11 22:16:48 +00004731 // This code is split out from isKnownPredicate because it is called from
4732 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00004733 switch (Pred) {
4734 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004735 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004736 break;
4737 case ICmpInst::ICMP_SGT:
4738 Pred = ICmpInst::ICMP_SLT;
4739 std::swap(LHS, RHS);
4740 case ICmpInst::ICMP_SLT: {
4741 ConstantRange LHSRange = getSignedRange(LHS);
4742 ConstantRange RHSRange = getSignedRange(RHS);
4743 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4744 return true;
4745 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4746 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004747 break;
4748 }
4749 case ICmpInst::ICMP_SGE:
4750 Pred = ICmpInst::ICMP_SLE;
4751 std::swap(LHS, RHS);
4752 case ICmpInst::ICMP_SLE: {
4753 ConstantRange LHSRange = getSignedRange(LHS);
4754 ConstantRange RHSRange = getSignedRange(RHS);
4755 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4756 return true;
4757 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4758 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004759 break;
4760 }
4761 case ICmpInst::ICMP_UGT:
4762 Pred = ICmpInst::ICMP_ULT;
4763 std::swap(LHS, RHS);
4764 case ICmpInst::ICMP_ULT: {
4765 ConstantRange LHSRange = getUnsignedRange(LHS);
4766 ConstantRange RHSRange = getUnsignedRange(RHS);
4767 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4768 return true;
4769 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4770 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004771 break;
4772 }
4773 case ICmpInst::ICMP_UGE:
4774 Pred = ICmpInst::ICMP_ULE;
4775 std::swap(LHS, RHS);
4776 case ICmpInst::ICMP_ULE: {
4777 ConstantRange LHSRange = getUnsignedRange(LHS);
4778 ConstantRange RHSRange = getUnsignedRange(RHS);
4779 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4780 return true;
4781 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4782 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004783 break;
4784 }
4785 case ICmpInst::ICMP_NE: {
4786 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4787 return true;
4788 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4789 return true;
4790
4791 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4792 if (isKnownNonZero(Diff))
4793 return true;
4794 break;
4795 }
4796 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004797 // The check at the top of the function catches the case where
4798 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004799 break;
4800 }
4801 return false;
4802}
4803
4804/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4805/// protected by a conditional between LHS and RHS. This is used to
4806/// to eliminate casts.
4807bool
4808ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4809 ICmpInst::Predicate Pred,
4810 const SCEV *LHS, const SCEV *RHS) {
4811 // Interpret a null as meaning no loop, where there is obviously no guard
4812 // (interprocedural conditions notwithstanding).
4813 if (!L) return true;
4814
4815 BasicBlock *Latch = L->getLoopLatch();
4816 if (!Latch)
4817 return false;
4818
4819 BranchInst *LoopContinuePredicate =
4820 dyn_cast<BranchInst>(Latch->getTerminator());
4821 if (!LoopContinuePredicate ||
4822 LoopContinuePredicate->isUnconditional())
4823 return false;
4824
Dan Gohman0f4b2852009-07-21 23:03:19 +00004825 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4826 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004827}
4828
Dan Gohman3948d0b2010-04-11 19:27:13 +00004829/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00004830/// by a conditional between LHS and RHS. This is used to help avoid max
4831/// expressions in loop trip counts, and to eliminate casts.
4832bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00004833ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
4834 ICmpInst::Predicate Pred,
4835 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004836 // Interpret a null as meaning no loop, where there is obviously no guard
4837 // (interprocedural conditions notwithstanding).
4838 if (!L) return false;
4839
Dan Gohman859b4822009-05-18 15:36:09 +00004840 BasicBlock *Predecessor = getLoopPredecessor(L);
4841 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004842
Dan Gohman859b4822009-05-18 15:36:09 +00004843 // Starting at the loop predecessor, climb up the predecessor chain, as long
4844 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004845 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004846 for (; Predecessor;
4847 PredecessorDest = Predecessor,
4848 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004849
4850 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004851 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004852 if (!LoopEntryPredicate ||
4853 LoopEntryPredicate->isUnconditional())
4854 continue;
4855
Dan Gohman0f4b2852009-07-21 23:03:19 +00004856 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4857 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004858 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004859 }
4860
Dan Gohman38372182008-08-12 20:17:31 +00004861 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004862}
4863
Dan Gohman0f4b2852009-07-21 23:03:19 +00004864/// isImpliedCond - Test whether the condition described by Pred, LHS,
4865/// and RHS is true whenever the given Cond value evaluates to true.
4866bool ScalarEvolution::isImpliedCond(Value *CondValue,
4867 ICmpInst::Predicate Pred,
4868 const SCEV *LHS, const SCEV *RHS,
4869 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004870 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004871 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4872 if (BO->getOpcode() == Instruction::And) {
4873 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004874 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4875 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004876 } else if (BO->getOpcode() == Instruction::Or) {
4877 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004878 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4879 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004880 }
4881 }
4882
4883 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4884 if (!ICI) return false;
4885
Dan Gohman85b05a22009-07-13 21:35:55 +00004886 // Bail if the ICmp's operands' types are wider than the needed type
4887 // before attempting to call getSCEV on them. This avoids infinite
4888 // recursion, since the analysis of widening casts can require loop
4889 // exit condition information for overflow checking, which would
4890 // lead back here.
4891 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004892 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004893 return false;
4894
Dan Gohman0f4b2852009-07-21 23:03:19 +00004895 // Now that we found a conditional branch that dominates the loop, check to
4896 // see if it is the comparison we are looking for.
4897 ICmpInst::Predicate FoundPred;
4898 if (Inverse)
4899 FoundPred = ICI->getInversePredicate();
4900 else
4901 FoundPred = ICI->getPredicate();
4902
4903 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4904 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004905
4906 // Balance the types. The case where FoundLHS' type is wider than
4907 // LHS' type is checked for above.
4908 if (getTypeSizeInBits(LHS->getType()) >
4909 getTypeSizeInBits(FoundLHS->getType())) {
4910 if (CmpInst::isSigned(Pred)) {
4911 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4912 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4913 } else {
4914 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4915 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4916 }
4917 }
4918
Dan Gohman0f4b2852009-07-21 23:03:19 +00004919 // Canonicalize the query to match the way instcombine will have
4920 // canonicalized the comparison.
4921 // First, put a constant operand on the right.
4922 if (isa<SCEVConstant>(LHS)) {
4923 std::swap(LHS, RHS);
4924 Pred = ICmpInst::getSwappedPredicate(Pred);
4925 }
4926 // Then, canonicalize comparisons with boundary cases.
4927 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4928 const APInt &RA = RC->getValue()->getValue();
4929 switch (Pred) {
4930 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4931 case ICmpInst::ICMP_EQ:
4932 case ICmpInst::ICMP_NE:
4933 break;
4934 case ICmpInst::ICMP_UGE:
4935 if ((RA - 1).isMinValue()) {
4936 Pred = ICmpInst::ICMP_NE;
4937 RHS = getConstant(RA - 1);
4938 break;
4939 }
4940 if (RA.isMaxValue()) {
4941 Pred = ICmpInst::ICMP_EQ;
4942 break;
4943 }
4944 if (RA.isMinValue()) return true;
4945 break;
4946 case ICmpInst::ICMP_ULE:
4947 if ((RA + 1).isMaxValue()) {
4948 Pred = ICmpInst::ICMP_NE;
4949 RHS = getConstant(RA + 1);
4950 break;
4951 }
4952 if (RA.isMinValue()) {
4953 Pred = ICmpInst::ICMP_EQ;
4954 break;
4955 }
4956 if (RA.isMaxValue()) return true;
4957 break;
4958 case ICmpInst::ICMP_SGE:
4959 if ((RA - 1).isMinSignedValue()) {
4960 Pred = ICmpInst::ICMP_NE;
4961 RHS = getConstant(RA - 1);
4962 break;
4963 }
4964 if (RA.isMaxSignedValue()) {
4965 Pred = ICmpInst::ICMP_EQ;
4966 break;
4967 }
4968 if (RA.isMinSignedValue()) return true;
4969 break;
4970 case ICmpInst::ICMP_SLE:
4971 if ((RA + 1).isMaxSignedValue()) {
4972 Pred = ICmpInst::ICMP_NE;
4973 RHS = getConstant(RA + 1);
4974 break;
4975 }
4976 if (RA.isMinSignedValue()) {
4977 Pred = ICmpInst::ICMP_EQ;
4978 break;
4979 }
4980 if (RA.isMaxSignedValue()) return true;
4981 break;
4982 case ICmpInst::ICMP_UGT:
4983 if (RA.isMinValue()) {
4984 Pred = ICmpInst::ICMP_NE;
4985 break;
4986 }
4987 if ((RA + 1).isMaxValue()) {
4988 Pred = ICmpInst::ICMP_EQ;
4989 RHS = getConstant(RA + 1);
4990 break;
4991 }
4992 if (RA.isMaxValue()) return false;
4993 break;
4994 case ICmpInst::ICMP_ULT:
4995 if (RA.isMaxValue()) {
4996 Pred = ICmpInst::ICMP_NE;
4997 break;
4998 }
4999 if ((RA - 1).isMinValue()) {
5000 Pred = ICmpInst::ICMP_EQ;
5001 RHS = getConstant(RA - 1);
5002 break;
5003 }
5004 if (RA.isMinValue()) return false;
5005 break;
5006 case ICmpInst::ICMP_SGT:
5007 if (RA.isMinSignedValue()) {
5008 Pred = ICmpInst::ICMP_NE;
5009 break;
5010 }
5011 if ((RA + 1).isMaxSignedValue()) {
5012 Pred = ICmpInst::ICMP_EQ;
5013 RHS = getConstant(RA + 1);
5014 break;
5015 }
5016 if (RA.isMaxSignedValue()) return false;
5017 break;
5018 case ICmpInst::ICMP_SLT:
5019 if (RA.isMaxSignedValue()) {
5020 Pred = ICmpInst::ICMP_NE;
5021 break;
5022 }
5023 if ((RA - 1).isMinSignedValue()) {
5024 Pred = ICmpInst::ICMP_EQ;
5025 RHS = getConstant(RA - 1);
5026 break;
5027 }
5028 if (RA.isMinSignedValue()) return false;
5029 break;
5030 }
5031 }
5032
5033 // Check to see if we can make the LHS or RHS match.
5034 if (LHS == FoundRHS || RHS == FoundLHS) {
5035 if (isa<SCEVConstant>(RHS)) {
5036 std::swap(FoundLHS, FoundRHS);
5037 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5038 } else {
5039 std::swap(LHS, RHS);
5040 Pred = ICmpInst::getSwappedPredicate(Pred);
5041 }
5042 }
5043
5044 // Check whether the found predicate is the same as the desired predicate.
5045 if (FoundPred == Pred)
5046 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5047
5048 // Check whether swapping the found predicate makes it the same as the
5049 // desired predicate.
5050 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5051 if (isa<SCEVConstant>(RHS))
5052 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5053 else
5054 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5055 RHS, LHS, FoundLHS, FoundRHS);
5056 }
5057
5058 // Check whether the actual condition is beyond sufficient.
5059 if (FoundPred == ICmpInst::ICMP_EQ)
5060 if (ICmpInst::isTrueWhenEqual(Pred))
5061 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5062 return true;
5063 if (Pred == ICmpInst::ICMP_NE)
5064 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5065 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5066 return true;
5067
5068 // Otherwise assume the worst.
5069 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005070}
5071
Dan Gohman0f4b2852009-07-21 23:03:19 +00005072/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005073/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005074/// and FoundRHS is true.
5075bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5076 const SCEV *LHS, const SCEV *RHS,
5077 const SCEV *FoundLHS,
5078 const SCEV *FoundRHS) {
5079 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5080 FoundLHS, FoundRHS) ||
5081 // ~x < ~y --> x > y
5082 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5083 getNotSCEV(FoundRHS),
5084 getNotSCEV(FoundLHS));
5085}
5086
5087/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005088/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005089/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005090bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005091ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5092 const SCEV *LHS, const SCEV *RHS,
5093 const SCEV *FoundLHS,
5094 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005095 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005096 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5097 case ICmpInst::ICMP_EQ:
5098 case ICmpInst::ICMP_NE:
5099 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5100 return true;
5101 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005102 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005103 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005104 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5105 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005106 return true;
5107 break;
5108 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005109 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005110 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5111 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005112 return true;
5113 break;
5114 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005115 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005116 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5117 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005118 return true;
5119 break;
5120 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005121 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005122 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5123 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005124 return true;
5125 break;
5126 }
5127
5128 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005129}
5130
Dan Gohman51f53b72009-06-21 23:46:38 +00005131/// getBECount - Subtract the end and start values and divide by the step,
5132/// rounding up, to get the number of times the backedge is executed. Return
5133/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005134const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005135 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005136 const SCEV *Step,
5137 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005138 assert(!isKnownNegative(Step) &&
5139 "This code doesn't handle negative strides yet!");
5140
Dan Gohman51f53b72009-06-21 23:46:38 +00005141 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00005142 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
5143 const SCEV *Diff = getMinusSCEV(End, Start);
5144 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005145
5146 // Add an adjustment to the difference between End and Start so that
5147 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005148 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005149
Dan Gohman1f96e672009-09-17 18:05:20 +00005150 if (!NoWrap) {
5151 // Check Add for unsigned overflow.
5152 // TODO: More sophisticated things could be done here.
5153 const Type *WideTy = IntegerType::get(getContext(),
5154 getTypeSizeInBits(Ty) + 1);
5155 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5156 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5157 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5158 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5159 return getCouldNotCompute();
5160 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005161
5162 return getUDivExpr(Add, Step);
5163}
5164
Chris Lattnerdb25de42005-08-15 23:33:51 +00005165/// HowManyLessThans - Return the number of times a backedge containing the
5166/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005167/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005168ScalarEvolution::BackedgeTakenInfo
5169ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5170 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005171 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005172 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005173
Dan Gohman35738ac2009-05-04 22:30:44 +00005174 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005175 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005176 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005177
Dan Gohman1f96e672009-09-17 18:05:20 +00005178 // Check to see if we have a flag which makes analysis easy.
5179 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5180 AddRec->hasNoUnsignedWrap();
5181
Chris Lattnerdb25de42005-08-15 23:33:51 +00005182 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005183 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005184 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005185
Dan Gohman52fddd32010-01-26 04:40:18 +00005186 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005187 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005188 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005189 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005190 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005191 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005192 // value and past the maximum value for its type in a single step.
5193 // Note that it's not sufficient to check NoWrap here, because even
5194 // though the value after a wrap is undefined, it's not undefined
5195 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005196 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005197 // iterate at least until the iteration where the wrapping occurs.
5198 const SCEV *One = getIntegerSCEV(1, Step->getType());
5199 if (isSigned) {
5200 APInt Max = APInt::getSignedMaxValue(BitWidth);
5201 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5202 .slt(getSignedRange(RHS).getSignedMax()))
5203 return getCouldNotCompute();
5204 } else {
5205 APInt Max = APInt::getMaxValue(BitWidth);
5206 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5207 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5208 return getCouldNotCompute();
5209 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005210 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005211 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005212 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005213
Dan Gohmana1af7572009-04-30 20:47:05 +00005214 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5215 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5216 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005217 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005218
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005219 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005220 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005221
Dan Gohmana1af7572009-04-30 20:47:05 +00005222 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005223 const SCEV *MinStart = getConstant(isSigned ?
5224 getSignedRange(Start).getSignedMin() :
5225 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005226
Dan Gohmana1af7572009-04-30 20:47:05 +00005227 // If we know that the condition is true in order to enter the loop,
5228 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005229 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5230 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005231 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005232 if (!isLoopEntryGuardedByCond(L,
5233 isSigned ? ICmpInst::ICMP_SLT :
5234 ICmpInst::ICMP_ULT,
5235 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005236 End = isSigned ? getSMaxExpr(RHS, Start)
5237 : getUMaxExpr(RHS, Start);
5238
5239 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005240 const SCEV *MaxEnd = getConstant(isSigned ?
5241 getSignedRange(End).getSignedMax() :
5242 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005243
Dan Gohman52fddd32010-01-26 04:40:18 +00005244 // If MaxEnd is within a step of the maximum integer value in its type,
5245 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005246 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005247 // compute the correct value.
5248 const SCEV *StepMinusOne = getMinusSCEV(Step,
5249 getIntegerSCEV(1, Step->getType()));
5250 MaxEnd = isSigned ?
5251 getSMinExpr(MaxEnd,
5252 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5253 StepMinusOne)) :
5254 getUMinExpr(MaxEnd,
5255 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5256 StepMinusOne));
5257
Dan Gohmana1af7572009-04-30 20:47:05 +00005258 // Finally, we subtract these two values and divide, rounding up, to get
5259 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005260 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005261
5262 // The maximum backedge count is similar, except using the minimum start
5263 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005264 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005265
5266 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005267 }
5268
Dan Gohman1c343752009-06-27 21:21:31 +00005269 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005270}
5271
Chris Lattner53e677a2004-04-02 20:23:17 +00005272/// getNumIterationsInRange - Return the number of iterations of this loop that
5273/// produce values in the specified constant range. Another way of looking at
5274/// this is that it returns the first iteration number where the value is not in
5275/// the condition, thus computing the exit count. If the iteration count can't
5276/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005277const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005278 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005279 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005280 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005281
5282 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005283 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005284 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005285 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005286 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005287 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005288 if (const SCEVAddRecExpr *ShiftedAddRec =
5289 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005290 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005291 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005292 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005293 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005294 }
5295
5296 // The only time we can solve this is when we have all constant indices.
5297 // Otherwise, we cannot determine the overflow conditions.
5298 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5299 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005300 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005301
5302
5303 // Okay at this point we know that all elements of the chrec are constants and
5304 // that the start element is zero.
5305
5306 // First check to see if the range contains zero. If not, the first
5307 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005308 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005309 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005310 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005311
Chris Lattner53e677a2004-04-02 20:23:17 +00005312 if (isAffine()) {
5313 // If this is an affine expression then we have this situation:
5314 // Solve {0,+,A} in Range === Ax in Range
5315
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005316 // We know that zero is in the range. If A is positive then we know that
5317 // the upper value of the range must be the first possible exit value.
5318 // If A is negative then the lower of the range is the last possible loop
5319 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005320 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005321 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5322 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005323
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005324 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005325 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005326 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005327
5328 // Evaluate at the exit value. If we really did fall out of the valid
5329 // range, then we computed our trip count, otherwise wrap around or other
5330 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005331 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005332 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005333 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005334
5335 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005336 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005337 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005338 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005339 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005340 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005341 } else if (isQuadratic()) {
5342 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5343 // quadratic equation to solve it. To do this, we must frame our problem in
5344 // terms of figuring out when zero is crossed, instead of when
5345 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005346 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005347 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005348 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005349
5350 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005351 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005352 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005353 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5354 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005355 if (R1) {
5356 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005357 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005358 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005359 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005360 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005361 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005362
Chris Lattner53e677a2004-04-02 20:23:17 +00005363 // Make sure the root is not off by one. The returned iteration should
5364 // not be in the range, but the previous one should be. When solving
5365 // for "X*X < 5", for example, we should not return a root of 2.
5366 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005367 R1->getValue(),
5368 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005369 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005370 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005371 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005372 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005373
Dan Gohman246b2562007-10-22 18:31:58 +00005374 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005375 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005376 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005377 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005378 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005379
Chris Lattner53e677a2004-04-02 20:23:17 +00005380 // If R1 was not in the range, then it is a good return value. Make
5381 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005382 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005383 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005384 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005385 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005386 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005387 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005388 }
5389 }
5390 }
5391
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005392 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005393}
5394
5395
5396
5397//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005398// SCEVCallbackVH Class Implementation
5399//===----------------------------------------------------------------------===//
5400
Dan Gohman1959b752009-05-19 19:22:47 +00005401void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005402 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005403 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5404 SE->ConstantEvolutionLoopExitValue.erase(PN);
5405 SE->Scalars.erase(getValPtr());
5406 // this now dangles!
5407}
5408
Dan Gohman1959b752009-05-19 19:22:47 +00005409void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005410 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005411
5412 // Forget all the expressions associated with users of the old value,
5413 // so that future queries will recompute the expressions using the new
5414 // value.
5415 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005416 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005417 Value *Old = getValPtr();
5418 bool DeleteOld = false;
5419 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5420 UI != UE; ++UI)
5421 Worklist.push_back(*UI);
5422 while (!Worklist.empty()) {
5423 User *U = Worklist.pop_back_val();
5424 // Deleting the Old value will cause this to dangle. Postpone
5425 // that until everything else is done.
5426 if (U == Old) {
5427 DeleteOld = true;
5428 continue;
5429 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005430 if (!Visited.insert(U))
5431 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005432 if (PHINode *PN = dyn_cast<PHINode>(U))
5433 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005434 SE->Scalars.erase(U);
5435 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5436 UI != UE; ++UI)
5437 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005438 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005439 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005440 if (DeleteOld) {
5441 if (PHINode *PN = dyn_cast<PHINode>(Old))
5442 SE->ConstantEvolutionLoopExitValue.erase(PN);
5443 SE->Scalars.erase(Old);
5444 // this now dangles!
5445 }
5446 // this may dangle!
5447}
5448
Dan Gohman1959b752009-05-19 19:22:47 +00005449ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005450 : CallbackVH(V), SE(se) {}
5451
5452//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005453// ScalarEvolution Class Implementation
5454//===----------------------------------------------------------------------===//
5455
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005456ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005457 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005458}
5459
Chris Lattner53e677a2004-04-02 20:23:17 +00005460bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005461 this->F = &F;
5462 LI = &getAnalysis<LoopInfo>();
5463 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005464 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005465 return false;
5466}
5467
5468void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005469 Scalars.clear();
5470 BackedgeTakenCounts.clear();
5471 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005472 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005473 UniqueSCEVs.clear();
5474 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005475}
5476
5477void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5478 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005479 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005480 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005481}
5482
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005483bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005484 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005485}
5486
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005487static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005488 const Loop *L) {
5489 // Print all inner loops first
5490 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5491 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005492
Dan Gohman30733292010-01-09 18:17:45 +00005493 OS << "Loop ";
5494 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5495 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005496
Dan Gohman5d984912009-12-18 01:14:11 +00005497 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005498 L->getExitBlocks(ExitBlocks);
5499 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005500 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005501
Dan Gohman46bdfb02009-02-24 18:55:53 +00005502 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5503 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005504 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005505 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005506 }
5507
Dan Gohman30733292010-01-09 18:17:45 +00005508 OS << "\n"
5509 "Loop ";
5510 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5511 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005512
5513 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5514 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5515 } else {
5516 OS << "Unpredictable max backedge-taken count. ";
5517 }
5518
5519 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005520}
5521
Dan Gohman5d984912009-12-18 01:14:11 +00005522void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005523 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005524 // out SCEV values of all instructions that are interesting. Doing
5525 // this potentially causes it to create new SCEV objects though,
5526 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005527 // observable from outside the class though, so casting away the
5528 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005529 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005530
Dan Gohman30733292010-01-09 18:17:45 +00005531 OS << "Classifying expressions for: ";
5532 WriteAsOperand(OS, F, /*PrintType=*/false);
5533 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005534 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005535 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005536 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005537 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005538 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005539 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005540
Dan Gohman0c689c52009-06-19 17:49:54 +00005541 const Loop *L = LI->getLoopFor((*I).getParent());
5542
Dan Gohman0bba49c2009-07-07 17:06:11 +00005543 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005544 if (AtUse != SV) {
5545 OS << " --> ";
5546 AtUse->print(OS);
5547 }
5548
5549 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005550 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005551 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005552 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005553 OS << "<<Unknown>>";
5554 } else {
5555 OS << *ExitValue;
5556 }
5557 }
5558
Chris Lattner53e677a2004-04-02 20:23:17 +00005559 OS << "\n";
5560 }
5561
Dan Gohman30733292010-01-09 18:17:45 +00005562 OS << "Determining loop execution counts for: ";
5563 WriteAsOperand(OS, F, /*PrintType=*/false);
5564 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005565 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5566 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005567}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005568