blob: 45002d29ea1014a1cbf0f2db8cc476c27a63ab27 [file] [log] [blame]
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <link rel="stylesheet" href="../llvm.css" type="text/css">
10</head>
11
12<body>
13
14<div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div>
15
Chris Lattner128eb862007-11-05 19:06:59 +000016<ul>
Chris Lattner0e555b12007-11-05 20:04:56 +000017<li><a href="index.html">Up to Tutorial Index</a></li>
Chris Lattner128eb862007-11-05 19:06:59 +000018<li>Chapter 4
19 <ol>
20 <li><a href="#intro">Chapter 4 Introduction</a></li>
21 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
22 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
23 <li><a href="#jit">Adding a JIT Compiler</a></li>
24 <li><a href="#code">Full Code Listing</a></li>
25 </ol>
26</li>
Chris Lattner0e555b12007-11-05 20:04:56 +000027<li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control
28Flow</li>
Chris Lattner128eb862007-11-05 19:06:59 +000029</ul>
30
Chris Lattnerc0b42e92007-10-23 06:27:55 +000031<div class="doc_author">
32 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
33</div>
34
35<!-- *********************************************************************** -->
Chris Lattner128eb862007-11-05 19:06:59 +000036<div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000037<!-- *********************************************************************** -->
38
39<div class="doc_text">
40
Chris Lattner128eb862007-11-05 19:06:59 +000041<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
Chris Lattnera54c2012007-11-07 05:28:43 +000042with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
43language and added support for generating LLVM IR. This chapter describes
Chris Lattner128eb862007-11-05 19:06:59 +000044two new techniques: adding optimizer support to your language, and adding JIT
Chris Lattner41fcea32007-11-13 07:06:30 +000045compiler support. These additions will demonstrate how to get nice, efficient code
46for the Kaleidoscope language.</p>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000047
48</div>
49
50<!-- *********************************************************************** -->
Chris Lattner118749e2007-10-25 06:23:36 +000051<div class="doc_section"><a name="trivialconstfold">Trivial Constant
52Folding</a></div>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000053<!-- *********************************************************************** -->
54
55<div class="doc_text">
56
57<p>
Chris Lattner118749e2007-10-25 06:23:36 +000058Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
Duncan Sands89f6d882008-04-13 06:22:09 +000059it does not produce wonderful code. The IRBuilder, however, does give us
60obvious optimizations when compiling simple code:</p>
Chris Lattner118749e2007-10-25 06:23:36 +000061
62<div class="doc_code">
63<pre>
64ready&gt; <b>def test(x) 1+2+x;</b>
65Read function definition:
66define double @test(double %x) {
67entry:
68 %addtmp = add double 3.000000e+00, %x
69 ret double %addtmp
70}
71</pre>
72</div>
73
Duncan Sands89f6d882008-04-13 06:22:09 +000074<p>This code is not a literal transcription of the AST built by parsing the
75input. That would be:
76
77<div class="doc_code">
78<pre>
79ready&gt; <b>def test(x) 1+2+x;</b>
80Read function definition:
81define double @test(double %x) {
82entry:
83 %addtmp = add double 2.000000e+00, 1.000000e+00
84 %addtmp1 = add double %addtmp, %x
85 ret double %addtmp1
86}
87</pre>
88</div>
89
Gabor Greif94244f32009-03-11 20:04:08 +000090<p>Constant folding, as seen above, in particular, is a very common and very
Duncan Sands89f6d882008-04-13 06:22:09 +000091important optimization: so much so that many language implementors implement
92constant folding support in their AST representation.</p>
93
94<p>With LLVM, you don't need this support in the AST. Since all calls to build
95LLVM IR go through the LLVM IR builder, the builder itself checked to see if
96there was a constant folding opportunity when you call it. If so, it just does
97the constant fold and return the constant instead of creating an instruction.
98
Chris Lattnera54c2012007-11-07 05:28:43 +000099<p>Well, that was easy :). In practice, we recommend always using
Duncan Sands89f6d882008-04-13 06:22:09 +0000100<tt>IRBuilder</tt> when generating code like this. It has no
Chris Lattner118749e2007-10-25 06:23:36 +0000101"syntactic overhead" for its use (you don't have to uglify your compiler with
102constant checks everywhere) and it can dramatically reduce the amount of
103LLVM IR that is generated in some cases (particular for languages with a macro
104preprocessor or that use a lot of constants).</p>
105
Duncan Sands89f6d882008-04-13 06:22:09 +0000106<p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
Chris Lattner118749e2007-10-25 06:23:36 +0000107that it does all of its analysis inline with the code as it is built. If you
108take a slightly more complex example:</p>
109
110<div class="doc_code">
111<pre>
112ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
113ready> Read function definition:
114define double @test(double %x) {
115entry:
116 %addtmp = add double 3.000000e+00, %x
117 %addtmp1 = add double %x, 3.000000e+00
118 %multmp = mul double %addtmp, %addtmp1
119 ret double %multmp
120}
121</pre>
122</div>
123
124<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
125really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
Chris Lattner1ace67c2008-04-15 16:59:22 +0000126of computing "<tt>x+3</tt>" twice.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000127
128<p>Unfortunately, no amount of local analysis will be able to detect and correct
129this. This requires two transformations: reassociation of expressions (to
130make the add's lexically identical) and Common Subexpression Elimination (CSE)
131to delete the redundant add instruction. Fortunately, LLVM provides a broad
132range of optimizations that you can use, in the form of "passes".</p>
133
134</div>
135
136<!-- *********************************************************************** -->
137<div class="doc_section"><a name="optimizerpasses">LLVM Optimization
138 Passes</a></div>
139<!-- *********************************************************************** -->
140
141<div class="doc_text">
142
Chris Lattner41fcea32007-11-13 07:06:30 +0000143<p>LLVM provides many optimization passes, which do many different sorts of
Chris Lattner118749e2007-10-25 06:23:36 +0000144things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
145to the mistaken notion that one set of optimizations is right for all languages
146and for all situations. LLVM allows a compiler implementor to make complete
147decisions about what optimizations to use, in which order, and in what
148situation.</p>
149
150<p>As a concrete example, LLVM supports both "whole module" passes, which look
151across as large of body of code as they can (often a whole file, but if run
152at link time, this can be a substantial portion of the whole program). It also
153supports and includes "per-function" passes which just operate on a single
154function at a time, without looking at other functions. For more information
Chris Lattner41fcea32007-11-13 07:06:30 +0000155on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
Chris Lattnera54c2012007-11-07 05:28:43 +0000156to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
157Passes</a>.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000158
159<p>For Kaleidoscope, we are currently generating functions on the fly, one at
160a time, as the user types them in. We aren't shooting for the ultimate
161optimization experience in this setting, but we also want to catch the easy and
162quick stuff where possible. As such, we will choose to run a few per-function
163optimizations as the user types the function in. If we wanted to make a "static
164Kaleidoscope compiler", we would use exactly the code we have now, except that
165we would defer running the optimizer until the entire file has been parsed.</p>
166
167<p>In order to get per-function optimizations going, we need to set up a
168<a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
169organize the LLVM optimizations that we want to run. Once we have that, we can
170add a set of optimizations to run. The code looks like this:</p>
171
172<div class="doc_code">
173<pre>
174 ExistingModuleProvider OurModuleProvider(TheModule);
175 FunctionPassManager OurFPM(&amp;OurModuleProvider);
176
177 // Set up the optimizer pipeline. Start with registering info about how the
178 // target lays out data structures.
179 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
180 // Do simple "peephole" optimizations and bit-twiddling optzns.
181 OurFPM.add(createInstructionCombiningPass());
182 // Reassociate expressions.
183 OurFPM.add(createReassociatePass());
184 // Eliminate Common SubExpressions.
185 OurFPM.add(createGVNPass());
186 // Simplify the control flow graph (deleting unreachable blocks, etc).
187 OurFPM.add(createCFGSimplificationPass());
188
189 // Set the global so the code gen can use this.
190 TheFPM = &amp;OurFPM;
191
192 // Run the main "interpreter loop" now.
193 MainLoop();
194</pre>
195</div>
196
Chris Lattner41fcea32007-11-13 07:06:30 +0000197<p>This code defines two objects, an <tt>ExistingModuleProvider</tt> and a
Chris Lattner118749e2007-10-25 06:23:36 +0000198<tt>FunctionPassManager</tt>. The former is basically a wrapper around our
199<tt>Module</tt> that the PassManager requires. It provides certain flexibility
Chris Lattner41fcea32007-11-13 07:06:30 +0000200that we're not going to take advantage of here, so I won't dive into any details
201about it.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000202
Chris Lattner41fcea32007-11-13 07:06:30 +0000203<p>The meat of the matter here, is the definition of "<tt>OurFPM</tt>". It
Chris Lattner118749e2007-10-25 06:23:36 +0000204requires a pointer to the <tt>Module</tt> (through the <tt>ModuleProvider</tt>)
205to construct itself. Once it is set up, we use a series of "add" calls to add
206a bunch of LLVM passes. The first pass is basically boilerplate, it adds a pass
207so that later optimizations know how the data structures in the program are
208layed out. The "<tt>TheExecutionEngine</tt>" variable is related to the JIT,
209which we will get to in the next section.</p>
210
211<p>In this case, we choose to add 4 optimization passes. The passes we chose
212here are a pretty standard set of "cleanup" optimizations that are useful for
Chris Lattner41fcea32007-11-13 07:06:30 +0000213a wide variety of code. I won't delve into what they do but, believe me,
Chris Lattnera54c2012007-11-07 05:28:43 +0000214they are a good starting place :).</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000215
Chris Lattnera54c2012007-11-07 05:28:43 +0000216<p>Once the PassManager is set up, we need to make use of it. We do this by
Chris Lattner118749e2007-10-25 06:23:36 +0000217running it after our newly created function is constructed (in
218<tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
219
220<div class="doc_code">
221<pre>
222 if (Value *RetVal = Body->Codegen()) {
223 // Finish off the function.
224 Builder.CreateRet(RetVal);
225
226 // Validate the generated code, checking for consistency.
227 verifyFunction(*TheFunction);
228
Chris Lattnera54c2012007-11-07 05:28:43 +0000229 <b>// Optimize the function.
230 TheFPM-&gt;run(*TheFunction);</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000231
232 return TheFunction;
233 }
234</pre>
235</div>
236
Chris Lattner41fcea32007-11-13 07:06:30 +0000237<p>As you can see, this is pretty straightforward. The
Chris Lattner118749e2007-10-25 06:23:36 +0000238<tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
239improving (hopefully) its body. With this in place, we can try our test above
240again:</p>
241
242<div class="doc_code">
243<pre>
244ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
245ready> Read function definition:
246define double @test(double %x) {
247entry:
248 %addtmp = add double %x, 3.000000e+00
249 %multmp = mul double %addtmp, %addtmp
250 ret double %multmp
251}
252</pre>
253</div>
254
255<p>As expected, we now get our nicely optimized code, saving a floating point
Chris Lattnera54c2012007-11-07 05:28:43 +0000256add instruction from every execution of this function.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000257
258<p>LLVM provides a wide variety of optimizations that can be used in certain
Chris Lattner72714232007-10-25 17:52:39 +0000259circumstances. Some <a href="../Passes.html">documentation about the various
260passes</a> is available, but it isn't very complete. Another good source of
Chris Lattner41fcea32007-11-13 07:06:30 +0000261ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
Chris Lattner118749e2007-10-25 06:23:36 +0000262<tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to
263experiment with passes from the command line, so you can see if they do
264anything.</p>
265
266<p>Now that we have reasonable code coming out of our front-end, lets talk about
267executing it!</p>
268
269</div>
270
271<!-- *********************************************************************** -->
272<div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div>
273<!-- *********************************************************************** -->
274
275<div class="doc_text">
276
Chris Lattnera54c2012007-11-07 05:28:43 +0000277<p>Code that is available in LLVM IR can have a wide variety of tools
Chris Lattner118749e2007-10-25 06:23:36 +0000278applied to it. For example, you can run optimizations on it (as we did above),
279you can dump it out in textual or binary forms, you can compile the code to an
280assembly file (.s) for some target, or you can JIT compile it. The nice thing
Chris Lattnera54c2012007-11-07 05:28:43 +0000281about the LLVM IR representation is that it is the "common currency" between
282many different parts of the compiler.
Chris Lattner118749e2007-10-25 06:23:36 +0000283</p>
284
Chris Lattnera54c2012007-11-07 05:28:43 +0000285<p>In this section, we'll add JIT compiler support to our interpreter. The
Chris Lattner118749e2007-10-25 06:23:36 +0000286basic idea that we want for Kaleidoscope is to have the user enter function
287bodies as they do now, but immediately evaluate the top-level expressions they
288type in. For example, if they type in "1 + 2;", we should evaluate and print
289out 3. If they define a function, they should be able to call it from the
290command line.</p>
291
292<p>In order to do this, we first declare and initialize the JIT. This is done
293by adding a global variable and a call in <tt>main</tt>:</p>
294
295<div class="doc_code">
296<pre>
Chris Lattnera54c2012007-11-07 05:28:43 +0000297<b>static ExecutionEngine *TheExecutionEngine;</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000298...
299int main() {
300 ..
Chris Lattnera54c2012007-11-07 05:28:43 +0000301 <b>// Create the JIT.
Reid Kleckner4b1511b2009-07-18 00:42:18 +0000302 TheExecutionEngine = EngineBuilder(TheModule).create();</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000303 ..
304}
305</pre>
306</div>
307
308<p>This creates an abstract "Execution Engine" which can be either a JIT
309compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
310for you if one is available for your platform, otherwise it will fall back to
311the interpreter.</p>
312
313<p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
Chris Lattner41fcea32007-11-13 07:06:30 +0000314There are a variety of APIs that are useful, but the simplest one is the
Chris Lattner118749e2007-10-25 06:23:36 +0000315"<tt>getPointerToFunction(F)</tt>" method. This method JIT compiles the
316specified LLVM Function and returns a function pointer to the generated machine
317code. In our case, this means that we can change the code that parses a
318top-level expression to look like this:</p>
319
320<div class="doc_code">
321<pre>
322static void HandleTopLevelExpression() {
323 // Evaluate a top level expression into an anonymous function.
324 if (FunctionAST *F = ParseTopLevelExpr()) {
325 if (Function *LF = F-&gt;Codegen()) {
326 LF->dump(); // Dump the function for exposition purposes.
327
Chris Lattnera54c2012007-11-07 05:28:43 +0000328 <b>// JIT the function, returning a function pointer.
Chris Lattner118749e2007-10-25 06:23:36 +0000329 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
330
331 // Cast it to the right type (takes no arguments, returns a double) so we
332 // can call it as a native function.
333 double (*FP)() = (double (*)())FPtr;
Chris Lattnera54c2012007-11-07 05:28:43 +0000334 fprintf(stderr, "Evaluated to %f\n", FP());</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000335 }
336</pre>
337</div>
338
339<p>Recall that we compile top-level expressions into a self-contained LLVM
340function that takes no arguments and returns the computed double. Because the
341LLVM JIT compiler matches the native platform ABI, this means that you can just
342cast the result pointer to a function pointer of that type and call it directly.
Chris Lattner41fcea32007-11-13 07:06:30 +0000343This means, there is no difference between JIT compiled code and native machine
Chris Lattner118749e2007-10-25 06:23:36 +0000344code that is statically linked into your application.</p>
345
346<p>With just these two changes, lets see how Kaleidoscope works now!</p>
347
348<div class="doc_code">
349<pre>
350ready&gt; <b>4+5;</b>
351define double @""() {
352entry:
353 ret double 9.000000e+00
354}
355
356<em>Evaluated to 9.000000</em>
357</pre>
358</div>
359
360<p>Well this looks like it is basically working. The dump of the function
361shows the "no argument function that always returns double" that we synthesize
Chris Lattner41fcea32007-11-13 07:06:30 +0000362for each top level expression that is typed in. This demonstrates very basic
Chris Lattner118749e2007-10-25 06:23:36 +0000363functionality, but can we do more?</p>
364
365<div class="doc_code">
366<pre>
Chris Lattner2e89f3a2007-10-31 07:30:39 +0000367ready&gt; <b>def testfunc(x y) x + y*2; </b>
Chris Lattner118749e2007-10-25 06:23:36 +0000368Read function definition:
369define double @testfunc(double %x, double %y) {
370entry:
371 %multmp = mul double %y, 2.000000e+00
372 %addtmp = add double %multmp, %x
373 ret double %addtmp
374}
375
376ready&gt; <b>testfunc(4, 10);</b>
377define double @""() {
378entry:
379 %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 )
380 ret double %calltmp
381}
382
383<em>Evaluated to 24.000000</em>
384</pre>
385</div>
386
Chris Lattner41fcea32007-11-13 07:06:30 +0000387<p>This illustrates that we can now call user code, but there is something a bit subtle
388going on here. Note that we only invoke the JIT on the anonymous functions
389that <em>call testfunc</em>, but we never invoked it on <em>testfunc
390</em>itself.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000391
Chris Lattner41fcea32007-11-13 07:06:30 +0000392<p>What actually happened here is that the anonymous function was
Chris Lattner118749e2007-10-25 06:23:36 +0000393JIT'd when requested. When the Kaleidoscope app calls through the function
394pointer that is returned, the anonymous function starts executing. It ends up
Chris Lattnera54c2012007-11-07 05:28:43 +0000395making the call to the "testfunc" function, and ends up in a stub that invokes
Chris Lattner118749e2007-10-25 06:23:36 +0000396the JIT, lazily, on testfunc. Once the JIT finishes lazily compiling testfunc,
Chris Lattnera54c2012007-11-07 05:28:43 +0000397it returns and the code re-executes the call.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000398
Chris Lattner41fcea32007-11-13 07:06:30 +0000399<p>In summary, the JIT will lazily JIT code, on the fly, as it is needed. The
Chris Lattner118749e2007-10-25 06:23:36 +0000400JIT provides a number of other more advanced interfaces for things like freeing
401allocated machine code, rejit'ing functions to update them, etc. However, even
402with this simple code, we get some surprisingly powerful capabilities - check
403this out (I removed the dump of the anonymous functions, you should get the idea
404by now :) :</p>
405
406<div class="doc_code">
407<pre>
408ready&gt; <b>extern sin(x);</b>
409Read extern:
410declare double @sin(double)
411
412ready&gt; <b>extern cos(x);</b>
413Read extern:
414declare double @cos(double)
415
416ready&gt; <b>sin(1.0);</b>
417<em>Evaluated to 0.841471</em>
Chris Lattner72714232007-10-25 17:52:39 +0000418
Chris Lattner118749e2007-10-25 06:23:36 +0000419ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
420Read function definition:
421define double @foo(double %x) {
422entry:
423 %calltmp = call double @sin( double %x )
424 %multmp = mul double %calltmp, %calltmp
425 %calltmp2 = call double @cos( double %x )
426 %multmp4 = mul double %calltmp2, %calltmp2
427 %addtmp = add double %multmp, %multmp4
428 ret double %addtmp
429}
430
431ready&gt; <b>foo(4.0);</b>
432<em>Evaluated to 1.000000</em>
433</pre>
434</div>
435
Chris Lattnera54c2012007-11-07 05:28:43 +0000436<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
437simple: in this
Chris Lattner118749e2007-10-25 06:23:36 +0000438example, the JIT started execution of a function and got to a function call. It
439realized that the function was not yet JIT compiled and invoked the standard set
440of routines to resolve the function. In this case, there is no body defined
Chris Lattnera54c2012007-11-07 05:28:43 +0000441for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
442Kaleidoscope process itself.
Chris Lattner118749e2007-10-25 06:23:36 +0000443Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
444patches up calls in the module to call the libm version of <tt>sin</tt>
445directly.</p>
446
447<p>The LLVM JIT provides a number of interfaces (look in the
448<tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
449resolved. It allows you to establish explicit mappings between IR objects and
450addresses (useful for LLVM global variables that you want to map to static
451tables, for example), allows you to dynamically decide on the fly based on the
452function name, and even allows you to have the JIT abort itself if any lazy
453compilation is attempted.</p>
454
Chris Lattner72714232007-10-25 17:52:39 +0000455<p>One interesting application of this is that we can now extend the language
456by writing arbitrary C++ code to implement operations. For example, if we add:
457</p>
458
459<div class="doc_code">
460<pre>
461/// putchard - putchar that takes a double and returns 0.
462extern "C"
463double putchard(double X) {
464 putchar((char)X);
465 return 0;
466}
467</pre>
468</div>
469
470<p>Now we can produce simple output to the console by using things like:
471"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
Chris Lattnera54c2012007-11-07 05:28:43 +0000472the console (120 is the ASCII code for 'x'). Similar code could be used to
Chris Lattner72714232007-10-25 17:52:39 +0000473implement file I/O, console input, and many other capabilities in
474Kaleidoscope.</p>
475
Chris Lattner118749e2007-10-25 06:23:36 +0000476<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
477this point, we can compile a non-Turing-complete programming language, optimize
478and JIT compile it in a user-driven way. Next up we'll look into <a
479href="LangImpl5.html">extending the language with control flow constructs</a>,
480tackling some interesting LLVM IR issues along the way.</p>
481
482</div>
483
484<!-- *********************************************************************** -->
485<div class="doc_section"><a name="code">Full Code Listing</a></div>
486<!-- *********************************************************************** -->
487
488<div class="doc_text">
489
490<p>
491Here is the complete code listing for our running example, enhanced with the
492LLVM JIT and optimizer. To build this example, use:
493</p>
494
495<div class="doc_code">
496<pre>
497 # Compile
498 g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
499 # Run
500 ./toy
501</pre>
502</div>
503
Chris Lattner7c770892009-02-09 00:04:40 +0000504<p>
505If you are compiling this on Linux, make sure to add the "-rdynamic" option
506as well. This makes sure that the external functions are resolved properly
507at runtime.</p>
508
Chris Lattner118749e2007-10-25 06:23:36 +0000509<p>Here is the code:</p>
510
511<div class="doc_code">
512<pre>
513#include "llvm/DerivedTypes.h"
514#include "llvm/ExecutionEngine/ExecutionEngine.h"
Owen Andersond1fbd142009-07-08 20:50:47 +0000515#include "llvm/LLVMContext.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000516#include "llvm/Module.h"
517#include "llvm/ModuleProvider.h"
518#include "llvm/PassManager.h"
519#include "llvm/Analysis/Verifier.h"
520#include "llvm/Target/TargetData.h"
521#include "llvm/Transforms/Scalar.h"
Duncan Sands89f6d882008-04-13 06:22:09 +0000522#include "llvm/Support/IRBuilder.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000523#include &lt;cstdio&gt;
524#include &lt;string&gt;
525#include &lt;map&gt;
526#include &lt;vector&gt;
527using namespace llvm;
528
529//===----------------------------------------------------------------------===//
530// Lexer
531//===----------------------------------------------------------------------===//
532
533// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
534// of these for known things.
535enum Token {
536 tok_eof = -1,
537
538 // commands
539 tok_def = -2, tok_extern = -3,
540
541 // primary
542 tok_identifier = -4, tok_number = -5,
543};
544
545static std::string IdentifierStr; // Filled in if tok_identifier
546static double NumVal; // Filled in if tok_number
547
548/// gettok - Return the next token from standard input.
549static int gettok() {
550 static int LastChar = ' ';
551
552 // Skip any whitespace.
553 while (isspace(LastChar))
554 LastChar = getchar();
555
556 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
557 IdentifierStr = LastChar;
558 while (isalnum((LastChar = getchar())))
559 IdentifierStr += LastChar;
560
561 if (IdentifierStr == "def") return tok_def;
562 if (IdentifierStr == "extern") return tok_extern;
563 return tok_identifier;
564 }
565
566 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
567 std::string NumStr;
568 do {
569 NumStr += LastChar;
570 LastChar = getchar();
571 } while (isdigit(LastChar) || LastChar == '.');
572
573 NumVal = strtod(NumStr.c_str(), 0);
574 return tok_number;
575 }
576
577 if (LastChar == '#') {
578 // Comment until end of line.
579 do LastChar = getchar();
Chris Lattnerc80c23f2007-12-02 22:46:01 +0000580 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
Chris Lattner118749e2007-10-25 06:23:36 +0000581
582 if (LastChar != EOF)
583 return gettok();
584 }
585
586 // Check for end of file. Don't eat the EOF.
587 if (LastChar == EOF)
588 return tok_eof;
589
590 // Otherwise, just return the character as its ascii value.
591 int ThisChar = LastChar;
592 LastChar = getchar();
593 return ThisChar;
594}
595
596//===----------------------------------------------------------------------===//
597// Abstract Syntax Tree (aka Parse Tree)
598//===----------------------------------------------------------------------===//
599
Chris Lattnerc0b42e92007-10-23 06:27:55 +0000600/// ExprAST - Base class for all expression nodes.
601class ExprAST {
602public:
603 virtual ~ExprAST() {}
604 virtual Value *Codegen() = 0;
605};
606
607/// NumberExprAST - Expression class for numeric literals like "1.0".
608class NumberExprAST : public ExprAST {
609 double Val;
610public:
Chris Lattner118749e2007-10-25 06:23:36 +0000611 NumberExprAST(double val) : Val(val) {}
Chris Lattnerc0b42e92007-10-23 06:27:55 +0000612 virtual Value *Codegen();
613};
Chris Lattner118749e2007-10-25 06:23:36 +0000614
615/// VariableExprAST - Expression class for referencing a variable, like "a".
616class VariableExprAST : public ExprAST {
617 std::string Name;
618public:
619 VariableExprAST(const std::string &amp;name) : Name(name) {}
620 virtual Value *Codegen();
621};
622
623/// BinaryExprAST - Expression class for a binary operator.
624class BinaryExprAST : public ExprAST {
625 char Op;
626 ExprAST *LHS, *RHS;
627public:
628 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
629 : Op(op), LHS(lhs), RHS(rhs) {}
630 virtual Value *Codegen();
631};
632
633/// CallExprAST - Expression class for function calls.
634class CallExprAST : public ExprAST {
635 std::string Callee;
636 std::vector&lt;ExprAST*&gt; Args;
637public:
638 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
639 : Callee(callee), Args(args) {}
640 virtual Value *Codegen();
641};
642
643/// PrototypeAST - This class represents the "prototype" for a function,
644/// which captures its argument names as well as if it is an operator.
645class PrototypeAST {
646 std::string Name;
647 std::vector&lt;std::string&gt; Args;
648public:
649 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
650 : Name(name), Args(args) {}
651
652 Function *Codegen();
653};
654
655/// FunctionAST - This class represents a function definition itself.
656class FunctionAST {
657 PrototypeAST *Proto;
658 ExprAST *Body;
659public:
660 FunctionAST(PrototypeAST *proto, ExprAST *body)
661 : Proto(proto), Body(body) {}
662
663 Function *Codegen();
664};
665
666//===----------------------------------------------------------------------===//
667// Parser
668//===----------------------------------------------------------------------===//
669
670/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
671/// token the parser it looking at. getNextToken reads another token from the
672/// lexer and updates CurTok with its results.
673static int CurTok;
674static int getNextToken() {
675 return CurTok = gettok();
676}
677
678/// BinopPrecedence - This holds the precedence for each binary operator that is
679/// defined.
680static std::map&lt;char, int&gt; BinopPrecedence;
681
682/// GetTokPrecedence - Get the precedence of the pending binary operator token.
683static int GetTokPrecedence() {
684 if (!isascii(CurTok))
685 return -1;
686
687 // Make sure it's a declared binop.
688 int TokPrec = BinopPrecedence[CurTok];
689 if (TokPrec &lt;= 0) return -1;
690 return TokPrec;
691}
692
693/// Error* - These are little helper functions for error handling.
694ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
695PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
696FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
697
698static ExprAST *ParseExpression();
699
700/// identifierexpr
Chris Lattner20a0c802007-11-05 17:54:34 +0000701/// ::= identifier
702/// ::= identifier '(' expression* ')'
Chris Lattner118749e2007-10-25 06:23:36 +0000703static ExprAST *ParseIdentifierExpr() {
704 std::string IdName = IdentifierStr;
705
Chris Lattner20a0c802007-11-05 17:54:34 +0000706 getNextToken(); // eat identifier.
Chris Lattner118749e2007-10-25 06:23:36 +0000707
708 if (CurTok != '(') // Simple variable ref.
709 return new VariableExprAST(IdName);
710
711 // Call.
712 getNextToken(); // eat (
713 std::vector&lt;ExprAST*&gt; Args;
Chris Lattner71155212007-11-06 01:39:12 +0000714 if (CurTok != ')') {
715 while (1) {
716 ExprAST *Arg = ParseExpression();
717 if (!Arg) return 0;
718 Args.push_back(Arg);
Chris Lattner118749e2007-10-25 06:23:36 +0000719
Chris Lattner71155212007-11-06 01:39:12 +0000720 if (CurTok == ')') break;
Chris Lattner118749e2007-10-25 06:23:36 +0000721
Chris Lattner71155212007-11-06 01:39:12 +0000722 if (CurTok != ',')
Chris Lattner6c4be9c2008-04-14 16:44:41 +0000723 return Error("Expected ')' or ',' in argument list");
Chris Lattner71155212007-11-06 01:39:12 +0000724 getNextToken();
725 }
Chris Lattner118749e2007-10-25 06:23:36 +0000726 }
727
728 // Eat the ')'.
729 getNextToken();
730
731 return new CallExprAST(IdName, Args);
732}
733
734/// numberexpr ::= number
735static ExprAST *ParseNumberExpr() {
736 ExprAST *Result = new NumberExprAST(NumVal);
737 getNextToken(); // consume the number
738 return Result;
739}
740
741/// parenexpr ::= '(' expression ')'
742static ExprAST *ParseParenExpr() {
743 getNextToken(); // eat (.
744 ExprAST *V = ParseExpression();
745 if (!V) return 0;
746
747 if (CurTok != ')')
748 return Error("expected ')'");
749 getNextToken(); // eat ).
750 return V;
751}
752
753/// primary
754/// ::= identifierexpr
755/// ::= numberexpr
756/// ::= parenexpr
757static ExprAST *ParsePrimary() {
758 switch (CurTok) {
759 default: return Error("unknown token when expecting an expression");
760 case tok_identifier: return ParseIdentifierExpr();
761 case tok_number: return ParseNumberExpr();
762 case '(': return ParseParenExpr();
763 }
764}
765
766/// binoprhs
767/// ::= ('+' primary)*
768static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
769 // If this is a binop, find its precedence.
770 while (1) {
771 int TokPrec = GetTokPrecedence();
772
773 // If this is a binop that binds at least as tightly as the current binop,
774 // consume it, otherwise we are done.
775 if (TokPrec &lt; ExprPrec)
776 return LHS;
777
778 // Okay, we know this is a binop.
779 int BinOp = CurTok;
780 getNextToken(); // eat binop
781
782 // Parse the primary expression after the binary operator.
783 ExprAST *RHS = ParsePrimary();
784 if (!RHS) return 0;
785
786 // If BinOp binds less tightly with RHS than the operator after RHS, let
787 // the pending operator take RHS as its LHS.
788 int NextPrec = GetTokPrecedence();
789 if (TokPrec &lt; NextPrec) {
790 RHS = ParseBinOpRHS(TokPrec+1, RHS);
791 if (RHS == 0) return 0;
792 }
793
794 // Merge LHS/RHS.
795 LHS = new BinaryExprAST(BinOp, LHS, RHS);
796 }
797}
798
799/// expression
800/// ::= primary binoprhs
801///
802static ExprAST *ParseExpression() {
803 ExprAST *LHS = ParsePrimary();
804 if (!LHS) return 0;
805
806 return ParseBinOpRHS(0, LHS);
807}
808
809/// prototype
810/// ::= id '(' id* ')'
811static PrototypeAST *ParsePrototype() {
812 if (CurTok != tok_identifier)
813 return ErrorP("Expected function name in prototype");
814
815 std::string FnName = IdentifierStr;
816 getNextToken();
817
818 if (CurTok != '(')
819 return ErrorP("Expected '(' in prototype");
820
821 std::vector&lt;std::string&gt; ArgNames;
822 while (getNextToken() == tok_identifier)
823 ArgNames.push_back(IdentifierStr);
824 if (CurTok != ')')
825 return ErrorP("Expected ')' in prototype");
826
827 // success.
828 getNextToken(); // eat ')'.
829
830 return new PrototypeAST(FnName, ArgNames);
831}
832
833/// definition ::= 'def' prototype expression
834static FunctionAST *ParseDefinition() {
835 getNextToken(); // eat def.
836 PrototypeAST *Proto = ParsePrototype();
837 if (Proto == 0) return 0;
838
839 if (ExprAST *E = ParseExpression())
840 return new FunctionAST(Proto, E);
841 return 0;
842}
843
844/// toplevelexpr ::= expression
845static FunctionAST *ParseTopLevelExpr() {
846 if (ExprAST *E = ParseExpression()) {
847 // Make an anonymous proto.
848 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
849 return new FunctionAST(Proto, E);
850 }
851 return 0;
852}
853
854/// external ::= 'extern' prototype
855static PrototypeAST *ParseExtern() {
856 getNextToken(); // eat extern.
857 return ParsePrototype();
858}
859
860//===----------------------------------------------------------------------===//
861// Code Generation
862//===----------------------------------------------------------------------===//
863
864static Module *TheModule;
Owen Andersond1fbd142009-07-08 20:50:47 +0000865static IRBuilder&lt;&gt; Builder(getGlobalContext());
Chris Lattner118749e2007-10-25 06:23:36 +0000866static std::map&lt;std::string, Value*&gt; NamedValues;
867static FunctionPassManager *TheFPM;
868
869Value *ErrorV(const char *Str) { Error(Str); return 0; }
870
871Value *NumberExprAST::Codegen() {
Owen Anderson6f83c9c2009-07-27 20:59:43 +0000872 return ConstantFP::get(getGlobalContext(), APFloat(Val));
Chris Lattner118749e2007-10-25 06:23:36 +0000873}
874
875Value *VariableExprAST::Codegen() {
876 // Look this variable up in the function.
877 Value *V = NamedValues[Name];
878 return V ? V : ErrorV("Unknown variable name");
879}
880
881Value *BinaryExprAST::Codegen() {
882 Value *L = LHS-&gt;Codegen();
883 Value *R = RHS-&gt;Codegen();
884 if (L == 0 || R == 0) return 0;
885
886 switch (Op) {
887 case '+': return Builder.CreateAdd(L, R, "addtmp");
888 case '-': return Builder.CreateSub(L, R, "subtmp");
889 case '*': return Builder.CreateMul(L, R, "multmp");
890 case '&lt;':
Chris Lattner71155212007-11-06 01:39:12 +0000891 L = Builder.CreateFCmpULT(L, R, "cmptmp");
Chris Lattner118749e2007-10-25 06:23:36 +0000892 // Convert bool 0/1 to double 0.0 or 1.0
893 return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
894 default: return ErrorV("invalid binary operator");
895 }
896}
897
898Value *CallExprAST::Codegen() {
899 // Look up the name in the global module table.
900 Function *CalleeF = TheModule-&gt;getFunction(Callee);
901 if (CalleeF == 0)
902 return ErrorV("Unknown function referenced");
903
904 // If argument mismatch error.
905 if (CalleeF-&gt;arg_size() != Args.size())
906 return ErrorV("Incorrect # arguments passed");
907
908 std::vector&lt;Value*&gt; ArgsV;
909 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
910 ArgsV.push_back(Args[i]-&gt;Codegen());
911 if (ArgsV.back() == 0) return 0;
912 }
913
914 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
915}
916
917Function *PrototypeAST::Codegen() {
918 // Make the function type: double(double,double) etc.
919 std::vector&lt;const Type*&gt; Doubles(Args.size(), Type::DoubleTy);
Owen Anderson914e50c2009-07-16 19:05:41 +0000920 FunctionType *FT = getGlobalContext().getFunctionType(Type::DoubleTy, Doubles, false);
Chris Lattner118749e2007-10-25 06:23:36 +0000921
Gabor Greifdf7d2b42008-04-19 22:25:09 +0000922 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
Chris Lattner118749e2007-10-25 06:23:36 +0000923
924 // If F conflicted, there was already something named 'Name'. If it has a
925 // body, don't allow redefinition or reextern.
926 if (F-&gt;getName() != Name) {
927 // Delete the one we just made and get the existing one.
928 F-&gt;eraseFromParent();
929 F = TheModule-&gt;getFunction(Name);
930
931 // If F already has a body, reject this.
932 if (!F-&gt;empty()) {
933 ErrorF("redefinition of function");
934 return 0;
935 }
936
937 // If F took a different number of args, reject.
938 if (F-&gt;arg_size() != Args.size()) {
939 ErrorF("redefinition of function with different # args");
940 return 0;
941 }
942 }
943
944 // Set names for all arguments.
945 unsigned Idx = 0;
946 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
947 ++AI, ++Idx) {
948 AI-&gt;setName(Args[Idx]);
949
950 // Add arguments to variable symbol table.
951 NamedValues[Args[Idx]] = AI;
952 }
953
954 return F;
955}
956
957Function *FunctionAST::Codegen() {
958 NamedValues.clear();
959
960 Function *TheFunction = Proto-&gt;Codegen();
961 if (TheFunction == 0)
962 return 0;
963
964 // Create a new basic block to start insertion into.
Gabor Greifdf7d2b42008-04-19 22:25:09 +0000965 BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
Chris Lattner118749e2007-10-25 06:23:36 +0000966 Builder.SetInsertPoint(BB);
967
968 if (Value *RetVal = Body-&gt;Codegen()) {
969 // Finish off the function.
970 Builder.CreateRet(RetVal);
971
972 // Validate the generated code, checking for consistency.
973 verifyFunction(*TheFunction);
974
975 // Optimize the function.
976 TheFPM-&gt;run(*TheFunction);
977
978 return TheFunction;
979 }
980
981 // Error reading body, remove function.
982 TheFunction-&gt;eraseFromParent();
983 return 0;
984}
985
986//===----------------------------------------------------------------------===//
987// Top-Level parsing and JIT Driver
988//===----------------------------------------------------------------------===//
989
990static ExecutionEngine *TheExecutionEngine;
991
992static void HandleDefinition() {
993 if (FunctionAST *F = ParseDefinition()) {
994 if (Function *LF = F-&gt;Codegen()) {
995 fprintf(stderr, "Read function definition:");
996 LF-&gt;dump();
997 }
998 } else {
999 // Skip token for error recovery.
1000 getNextToken();
1001 }
1002}
1003
1004static void HandleExtern() {
1005 if (PrototypeAST *P = ParseExtern()) {
1006 if (Function *F = P-&gt;Codegen()) {
1007 fprintf(stderr, "Read extern: ");
1008 F-&gt;dump();
1009 }
1010 } else {
1011 // Skip token for error recovery.
1012 getNextToken();
1013 }
1014}
1015
1016static void HandleTopLevelExpression() {
1017 // Evaluate a top level expression into an anonymous function.
1018 if (FunctionAST *F = ParseTopLevelExpr()) {
1019 if (Function *LF = F-&gt;Codegen()) {
1020 // JIT the function, returning a function pointer.
1021 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
1022
1023 // Cast it to the right type (takes no arguments, returns a double) so we
1024 // can call it as a native function.
1025 double (*FP)() = (double (*)())FPtr;
1026 fprintf(stderr, "Evaluated to %f\n", FP());
1027 }
1028 } else {
1029 // Skip token for error recovery.
1030 getNextToken();
1031 }
1032}
1033
1034/// top ::= definition | external | expression | ';'
1035static void MainLoop() {
1036 while (1) {
1037 fprintf(stderr, "ready&gt; ");
1038 switch (CurTok) {
1039 case tok_eof: return;
1040 case ';': getNextToken(); break; // ignore top level semicolons.
1041 case tok_def: HandleDefinition(); break;
1042 case tok_extern: HandleExtern(); break;
1043 default: HandleTopLevelExpression(); break;
1044 }
1045 }
1046}
1047
1048
1049
1050//===----------------------------------------------------------------------===//
1051// "Library" functions that can be "extern'd" from user code.
1052//===----------------------------------------------------------------------===//
1053
1054/// putchard - putchar that takes a double and returns 0.
1055extern "C"
1056double putchard(double X) {
1057 putchar((char)X);
1058 return 0;
1059}
1060
1061//===----------------------------------------------------------------------===//
1062// Main driver code.
1063//===----------------------------------------------------------------------===//
1064
1065int main() {
1066 // Install standard binary operators.
1067 // 1 is lowest precedence.
1068 BinopPrecedence['&lt;'] = 10;
1069 BinopPrecedence['+'] = 20;
1070 BinopPrecedence['-'] = 20;
1071 BinopPrecedence['*'] = 40; // highest.
1072
1073 // Prime the first token.
1074 fprintf(stderr, "ready&gt; ");
1075 getNextToken();
1076
1077 // Make the module, which holds all the code.
Owen Andersond1fbd142009-07-08 20:50:47 +00001078 TheModule = new Module("my cool jit", getGlobalContext());
Chris Lattner118749e2007-10-25 06:23:36 +00001079
1080 // Create the JIT.
Reid Kleckner4b1511b2009-07-18 00:42:18 +00001081 TheExecutionEngine = EngineBuilder(TheModule).create();
Chris Lattner118749e2007-10-25 06:23:36 +00001082
1083 {
1084 ExistingModuleProvider OurModuleProvider(TheModule);
1085 FunctionPassManager OurFPM(&amp;OurModuleProvider);
1086
1087 // Set up the optimizer pipeline. Start with registering info about how the
1088 // target lays out data structures.
1089 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
1090 // Do simple "peephole" optimizations and bit-twiddling optzns.
1091 OurFPM.add(createInstructionCombiningPass());
1092 // Reassociate expressions.
1093 OurFPM.add(createReassociatePass());
1094 // Eliminate Common SubExpressions.
1095 OurFPM.add(createGVNPass());
1096 // Simplify the control flow graph (deleting unreachable blocks, etc).
1097 OurFPM.add(createCFGSimplificationPass());
1098
1099 // Set the global so the code gen can use this.
1100 TheFPM = &amp;OurFPM;
1101
1102 // Run the main "interpreter loop" now.
1103 MainLoop();
1104
1105 TheFPM = 0;
Chris Lattner515686b2008-02-05 06:18:42 +00001106
1107 // Print out all of the generated code.
1108 TheModule-&gt;dump();
1109 } // Free module provider (and thus the module) and pass manager.
Chris Lattner118749e2007-10-25 06:23:36 +00001110
Chris Lattner118749e2007-10-25 06:23:36 +00001111 return 0;
1112}
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001113</pre>
1114</div>
1115
Chris Lattner729eb142008-02-10 19:11:04 +00001116<a href="LangImpl5.html">Next: Extending the language: control flow</a>
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001117</div>
1118
1119<!-- *********************************************************************** -->
1120<hr>
1121<address>
1122 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1123 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1124 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner8eef4b22007-10-23 06:30:50 +00001125 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001126
1127 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1128 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1129 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1130</address>
1131</body>
1132</html>