Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 1 | #include <math.h> |
| 2 | #include "ModuloSchedGraph.h" |
| 3 | #include "llvm/CodeGen/InstrSelection.h" |
| 4 | #include "llvm/BasicBlock.h" |
| 5 | #include "llvm/Function.h" |
| 6 | #include "llvm/iOther.h" |
| 7 | #include "Support/StringExtras.h" |
| 8 | #include "Support/STLExtras.h" |
| 9 | #include <iostream> |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 10 | //#include <swig.h> |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 11 | #include "llvm/iOperators.h" |
| 12 | #include "llvm/iOther.h" |
| 13 | #include "llvm/iPHINode.h" |
| 14 | #include "llvm/iTerminators.h" |
| 15 | #include "llvm/iMemory.h" |
| 16 | #include "llvm/Type.h" |
| 17 | #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| 18 | #include "llvm/CodeGen/MachineInstr.h" |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 19 | #include "llvm/Target/TargetSchedInfo.h" |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 20 | |
| 21 | #define UNIDELAY 1 |
| 22 | #define min(a, b) ((a) < (b) ? (a) : (b)) |
| 23 | #define max(a, b) ((a) < (b) ? (b) : (a)) |
| 24 | |
| 25 | using std::vector; |
| 26 | using std::pair; |
| 27 | //using std::hash_map; |
| 28 | using std::cerr; |
| 29 | extern std::ostream modSched_os; |
| 30 | extern ModuloSchedDebugLevel_t ModuloSchedDebugLevel; |
| 31 | //*********************** Internal Data Structures *************************/ |
| 32 | |
| 33 | // The following two types need to be classes, not typedefs, so we can use |
| 34 | // opaque declarations in SchedGraph.h |
| 35 | // |
| 36 | struct RefVec: public vector< pair<ModuloSchedGraphNode*, int> > { |
| 37 | typedef vector< pair<ModuloSchedGraphNode*, int> >:: iterator iterator; |
| 38 | typedef vector< pair<ModuloSchedGraphNode*, int> >::const_iterator const_iterator; |
| 39 | }; |
| 40 | |
| 41 | struct RegToRefVecMap: public hash_map<int, RefVec> { |
| 42 | typedef hash_map<int, RefVec>:: iterator iterator; |
| 43 | typedef hash_map<int, RefVec>::const_iterator const_iterator; |
| 44 | }; |
| 45 | |
| 46 | struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> { |
| 47 | typedef hash_map<const Instruction*, RefVec>:: iterator iterator; |
| 48 | typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator; |
| 49 | }; |
| 50 | |
| 51 | |
| 52 | |
| 53 | // class Modulo SchedGraphNode |
| 54 | |
| 55 | /*ctor*/ |
| 56 | ModuloSchedGraphNode::ModuloSchedGraphNode(unsigned int _nodeId, |
| 57 | const BasicBlock* _bb, |
| 58 | const Instruction* _inst, |
| 59 | int indexInBB, |
| 60 | const TargetMachine& target) |
| 61 | : |
| 62 | SchedGraphNodeCommon(_nodeId, _bb, indexInBB), |
| 63 | inst(_inst) |
| 64 | { |
| 65 | if(inst) |
| 66 | { |
| 67 | //FIXME: find the latency |
| 68 | //currently setthe latency to zero |
| 69 | latency =0; |
| 70 | } |
| 71 | |
| 72 | } |
| 73 | |
| 74 | //class ModuloScheGraph |
| 75 | |
| 76 | |
| 77 | void |
| 78 | ModuloSchedGraph::addDummyEdges() |
| 79 | { |
| 80 | assert(graphRoot->outEdges.size() == 0); |
| 81 | |
| 82 | for (const_iterator I=begin(); I != end(); ++I) |
| 83 | { |
| 84 | ModuloSchedGraphNode* node = (ModuloSchedGraphNode*)( (*I).second); |
| 85 | assert(node != graphRoot && node != graphLeaf); |
| 86 | if (node->beginInEdges() == node->endInEdges()) |
| 87 | (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep, |
| 88 | SchedGraphEdge::NonDataDep, 0); |
| 89 | if (node->beginOutEdges() == node->endOutEdges()) |
| 90 | (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep, |
| 91 | SchedGraphEdge::NonDataDep, 0); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | bool isDefinition(const Instruction* I) |
| 96 | { |
| 97 | //if(TerminatorInst::classof(I)||FreeInst::classof(I) || StoreInst::classof(I) || CallInst::classof(I)) |
| 98 | if(!I->hasName()) |
| 99 | return false; |
| 100 | else |
| 101 | return true; |
| 102 | } |
| 103 | |
| 104 | void ModuloSchedGraph::addDefUseEdges(const BasicBlock* bb) |
| 105 | { |
| 106 | //collect def instructions, store them in vector |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 107 | // const TargetInstrInfo& mii = target.getInstrInfo(); |
| 108 | const TargetInstrInfo& mii = target.getInstrInfo(); |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 109 | |
| 110 | typedef std::vector<ModuloSchedGraphNode*> DefVec; |
| 111 | DefVec defVec; |
| 112 | |
| 113 | //find those def instructions |
| 114 | for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++) |
| 115 | if(I->getType() != Type::VoidTy) |
| 116 | { |
| 117 | defVec.push_back(this->getGraphNodeForInst(I)) ; |
| 118 | } |
| 119 | |
| 120 | for(unsigned int i=0; i < defVec.size();i++) |
| 121 | for(Value::use_const_iterator I=defVec[i]->getInst()->use_begin();I !=defVec[i]->getInst()->use_end() ;I++) |
| 122 | { |
| 123 | //for each use of a def, add a flow edge from the def instruction to the ref instruction |
| 124 | |
| 125 | |
| 126 | const Instruction* value=defVec[i]->getInst(); |
| 127 | Instruction *inst=(Instruction*)(*I); |
| 128 | ModuloSchedGraphNode* node=NULL; |
| 129 | |
| 130 | for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++) |
| 131 | if((const Instruction*)I == inst) |
| 132 | { |
| 133 | node=(*this)[inst]; |
| 134 | break; |
| 135 | } |
| 136 | |
| 137 | assert(inst != NULL &&" Use not an Instruction ?" ); |
| 138 | |
| 139 | if(node == NULL) //inst is not an instruction in this block |
| 140 | {} |
| 141 | else |
| 142 | { |
| 143 | //add a flow edge from the def instruction to the ref instruction |
| 144 | |
| 145 | //self loop will not happen in SSA form |
| 146 | assert(defVec[i] != node && "same node?"); |
| 147 | |
| 148 | |
| 149 | //this is a true dependence, so the delay is equal to the delay of the pred node. |
| 150 | int delay=0; |
| 151 | MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(value); |
| 152 | for(unsigned j=0;j< tempMvec.size();j++) |
| 153 | { |
| 154 | MachineInstr* temp=tempMvec[j]; |
| 155 | //delay +=mii.minLatency(temp->getOpCode()); |
| 156 | delay = max(delay, mii.minLatency(temp->getOpCode())); |
| 157 | } |
| 158 | |
| 159 | SchedGraphEdge* trueEdge=new SchedGraphEdge(defVec[i],node,value, SchedGraphEdge::TrueDep,delay); |
| 160 | |
| 161 | //if the ref instruction is before the def instrution |
| 162 | //then the def instruction must be a phi instruction |
| 163 | //add an anti-dependence edge to from the ref instruction to the def instruction |
| 164 | if( node->getOrigIndexInBB() < defVec[i]->getOrigIndexInBB()) |
| 165 | { |
| 166 | assert(PHINode::classof(inst) && "the ref instruction befre def is not PHINode?"); |
| 167 | trueEdge->setIteDiff(1); |
| 168 | } |
| 169 | |
| 170 | } |
| 171 | |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | void ModuloSchedGraph::addCDEdges(const BasicBlock* bb) |
| 176 | { |
| 177 | //find the last instruction in the basic block |
| 178 | //see if it is an branch instruction. |
| 179 | //If yes, then add an edge from each node expcept the last node to the last node |
| 180 | |
| 181 | const Instruction* inst=&(bb->back()); |
| 182 | ModuloSchedGraphNode* lastNode=(*this)[inst]; |
| 183 | if( TerminatorInst::classof(inst)) |
| 184 | for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I != E; I++) |
| 185 | { |
| 186 | if(inst != I) |
| 187 | { |
| 188 | ModuloSchedGraphNode* node = (*this)[I]; |
| 189 | //use latency of 0 |
| 190 | (void) new SchedGraphEdge(node,lastNode,SchedGraphEdge::CtrlDep, |
| 191 | SchedGraphEdge::NonDataDep,0); |
| 192 | } |
| 193 | |
| 194 | } |
| 195 | |
| 196 | |
| 197 | } |
| 198 | |
| 199 | |
| 200 | |
| 201 | |
| 202 | static const int SG_LOAD_REF = 0; |
| 203 | static const int SG_STORE_REF = 1; |
| 204 | static const int SG_CALL_REF = 2; |
| 205 | |
| 206 | static const unsigned int SG_DepOrderArray[][3] = { |
| 207 | { SchedGraphEdge::NonDataDep, |
| 208 | SchedGraphEdge::AntiDep, |
| 209 | SchedGraphEdge::AntiDep }, |
| 210 | { SchedGraphEdge::TrueDep, |
| 211 | SchedGraphEdge::OutputDep, |
| 212 | SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep }, |
| 213 | { SchedGraphEdge::TrueDep, |
| 214 | SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep, |
| 215 | SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep |
| 216 | | SchedGraphEdge::OutputDep } |
| 217 | }; |
| 218 | |
| 219 | |
| 220 | // Add a dependence edge between every pair of machine load/store/call |
| 221 | // instructions, where at least one is a store or a call. |
| 222 | // Use latency 1 just to ensure that memory operations are ordered; |
| 223 | // latency does not otherwise matter (true dependences enforce that). |
| 224 | // |
| 225 | void |
| 226 | ModuloSchedGraph::addMemEdges(const BasicBlock* bb) |
| 227 | { |
| 228 | |
| 229 | vector<ModuloSchedGraphNode*> memNodeVec; |
| 230 | |
| 231 | //construct the memNodeVec |
| 232 | |
| 233 | for( BasicBlock::const_iterator I=bb->begin(), E=bb->end();I != E; I++) |
| 234 | if(LoadInst::classof(I) ||StoreInst::classof(I) || CallInst::classof(I)) |
| 235 | { |
| 236 | ModuloSchedGraphNode* node =(*this)[(const Instruction*)I]; |
| 237 | memNodeVec.push_back(node); |
| 238 | } |
| 239 | // Instructions in memNodeVec are in execution order within the basic block, |
| 240 | // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>. |
| 241 | // |
| 242 | for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) |
| 243 | { |
| 244 | const Instruction* fromInst = memNodeVec[im]->getInst(); |
| 245 | int fromType = CallInst::classof(fromInst)? SG_CALL_REF |
| 246 | : LoadInst::classof(fromInst)? SG_LOAD_REF |
| 247 | : SG_STORE_REF; |
| 248 | for (unsigned jm=im+1; jm < NM; jm++) |
| 249 | { |
| 250 | const Instruction* toInst=memNodeVec[jm]->getInst(); |
| 251 | int toType = CallInst::classof(toInst)? SG_CALL_REF |
| 252 | : LoadInst::classof(toInst)? SG_LOAD_REF |
| 253 | : SG_STORE_REF; |
| 254 | if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF) |
| 255 | { |
| 256 | (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm], |
| 257 | SchedGraphEdge::MemoryDep, |
| 258 | SG_DepOrderArray[fromType][toType], 1); |
| 259 | |
| 260 | SchedGraphEdge* edge=new SchedGraphEdge(memNodeVec[jm],memNodeVec[im], |
| 261 | SchedGraphEdge::MemoryDep, |
| 262 | SG_DepOrderArray[toType][fromType],1); |
| 263 | edge->setIteDiff(1); |
| 264 | |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | |
| 271 | |
| 272 | void ModuloSchedGraph::buildNodesforBB (const TargetMachine& target, |
| 273 | const BasicBlock* bb, |
| 274 | std::vector<ModuloSchedGraphNode*>& memNode, |
| 275 | RegToRefVecMap& regToRefVecMap, |
| 276 | ValueToDefVecMap& valueToDefVecMap) |
| 277 | { |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 278 | //const TargetInstrInfo& mii=target.getInstrInfo(); |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 279 | |
| 280 | //Build graph nodes for each LLVM instruction and gather def/use info. |
| 281 | //Do both together in a single pass over all machine instructions. |
| 282 | |
| 283 | int i=0; |
| 284 | for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I!=E; I++) |
| 285 | { |
| 286 | ModuloSchedGraphNode* node=new ModuloSchedGraphNode(getNumNodes(), bb,I,i, target); |
| 287 | i++; |
| 288 | this->noteModuloSchedGraphNodeForInst(I,node); |
| 289 | } |
| 290 | |
| 291 | //this function finds some info about instruction in basic block for later use |
| 292 | //findDefUseInfoAtInstr(target, node, memNode,regToRefVecMap,valueToDefVecMap); |
| 293 | |
| 294 | |
| 295 | } |
| 296 | |
| 297 | |
| 298 | bool ModuloSchedGraph::isLoop(const BasicBlock* bb) |
| 299 | { |
| 300 | //only if the last instruction in the basicblock is branch instruction and |
| 301 | //there is at least an option to branch itself |
| 302 | |
| 303 | |
| 304 | const Instruction* inst=&(bb->back()); |
| 305 | if( BranchInst::classof(inst)) |
| 306 | for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++) |
| 307 | { |
| 308 | BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i); |
| 309 | if(sb ==bb) return true; |
| 310 | } |
| 311 | |
| 312 | return false; |
| 313 | |
| 314 | } |
| 315 | bool ModuloSchedGraph::isLoop() |
| 316 | { |
| 317 | //only if the last instruction in the basicblock is branch instruction and |
| 318 | //there is at least an option to branch itself |
| 319 | |
| 320 | assert(bbVec.size() ==1 &&"only 1 basicblock in a graph"); |
| 321 | const BasicBlock* bb=bbVec[0]; |
| 322 | const Instruction* inst=&(bb->back()); |
| 323 | if( BranchInst::classof(inst)) |
| 324 | for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++) |
| 325 | { |
| 326 | BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i); |
| 327 | if(sb ==bb) return true; |
| 328 | } |
| 329 | |
| 330 | return false; |
| 331 | |
| 332 | } |
| 333 | |
| 334 | void ModuloSchedGraph::computeNodeASAP(const BasicBlock* bb) |
| 335 | { |
| 336 | |
| 337 | //FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node |
| 338 | //so i will ignore all edges to the phi node; after this, there shall be no recurrence. |
| 339 | |
| 340 | unsigned numNodes=bb->size(); |
| 341 | for(unsigned i=2;i < numNodes+2;i++) |
| 342 | { |
| 343 | ModuloSchedGraphNode* node=getNode(i); |
| 344 | node->setPropertyComputed(false); |
| 345 | } |
| 346 | |
| 347 | for(unsigned i=2;i < numNodes+2; i++) |
| 348 | { |
| 349 | ModuloSchedGraphNode* node=getNode(i); |
| 350 | node->ASAP=0; |
| 351 | if(i==2 ||node->getNumInEdges() ==0) |
| 352 | { node->setPropertyComputed(true);continue;} |
| 353 | for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++) |
| 354 | { |
| 355 | SchedGraphEdge* edge=*I; |
| 356 | ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc()); |
| 357 | assert(pred->getPropertyComputed()&&"pred node property is not computed!"); |
| 358 | int temp=pred->ASAP + edge->getMinDelay() - edge->getIteDiff()*this->MII; |
| 359 | node->ASAP= max(node->ASAP,temp); |
| 360 | } |
| 361 | node->setPropertyComputed(true); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | void ModuloSchedGraph::computeNodeALAP(const BasicBlock* bb) |
| 366 | { |
| 367 | |
| 368 | unsigned numNodes=bb->size(); |
| 369 | int maxASAP=0; |
| 370 | for(unsigned i=numNodes+1;i >= 2;i--) |
| 371 | { |
| 372 | ModuloSchedGraphNode* node=getNode(i); |
| 373 | node->setPropertyComputed(false); |
| 374 | //cerr<< " maxASAP= " <<maxASAP<<" node->ASAP= "<< node->ASAP<<"\n"; |
| 375 | maxASAP=max(maxASAP,node->ASAP); |
| 376 | } |
| 377 | |
| 378 | //cerr<<"maxASAP is "<<maxASAP<<"\n"; |
| 379 | |
| 380 | for(unsigned i=numNodes+1;i >= 2; i--) |
| 381 | { |
| 382 | ModuloSchedGraphNode* node=getNode(i); |
| 383 | node->ALAP=maxASAP; |
| 384 | for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++) |
| 385 | { |
| 386 | SchedGraphEdge* edge= *I; |
| 387 | ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*) (edge->getSink()); |
| 388 | if(PHINode::classof(succ->getInst()))continue; |
| 389 | assert(succ->getPropertyComputed()&&"succ node property is not computed!"); |
| 390 | int temp=succ->ALAP - edge->getMinDelay()+edge->getIteDiff()*this->MII; |
| 391 | node->ALAP =min(node->ALAP,temp); |
| 392 | } |
| 393 | node->setPropertyComputed(true); |
| 394 | |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | void ModuloSchedGraph::computeNodeMov(const BasicBlock* bb) |
| 399 | { |
| 400 | unsigned numNodes=bb->size(); |
| 401 | for(unsigned i =2;i < numNodes +2 ;i++) |
| 402 | { |
| 403 | ModuloSchedGraphNode* node=getNode(i); |
| 404 | node->mov=node->ALAP-node->ASAP; |
| 405 | assert(node->mov >=0 &&"move freedom for this node is less than zero? "); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | |
| 410 | void ModuloSchedGraph::computeNodeDepth(const BasicBlock* bb) |
| 411 | { |
| 412 | |
| 413 | unsigned numNodes=bb->size(); |
| 414 | for(unsigned i=2;i < numNodes+2;i++) |
| 415 | { |
| 416 | ModuloSchedGraphNode* node=getNode(i); |
| 417 | node->setPropertyComputed(false); |
| 418 | } |
| 419 | |
| 420 | for(unsigned i=2;i < numNodes+2; i++) |
| 421 | { |
| 422 | ModuloSchedGraphNode* node=getNode(i); |
| 423 | node->depth=0; |
| 424 | if(i==2 ||node->getNumInEdges() ==0) |
| 425 | { node->setPropertyComputed(true);continue;} |
| 426 | for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++) |
| 427 | { |
| 428 | SchedGraphEdge* edge=*I; |
| 429 | ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc()); |
| 430 | assert(pred->getPropertyComputed()&&"pred node property is not computed!"); |
| 431 | int temp=pred->depth + edge->getMinDelay(); |
| 432 | node->depth= max(node->depth,temp); |
| 433 | } |
| 434 | node->setPropertyComputed(true); |
| 435 | } |
| 436 | |
| 437 | } |
| 438 | |
| 439 | |
| 440 | void ModuloSchedGraph::computeNodeHeight(const BasicBlock* bb) |
| 441 | { |
| 442 | unsigned numNodes=bb->size(); |
| 443 | for(unsigned i=numNodes+1;i >= 2;i--) |
| 444 | { |
| 445 | ModuloSchedGraphNode* node=getNode(i); |
| 446 | node->setPropertyComputed(false); |
| 447 | } |
| 448 | |
| 449 | for(unsigned i=numNodes+1;i >= 2; i--) |
| 450 | { |
| 451 | ModuloSchedGraphNode* node=getNode(i); |
| 452 | node->height=0; |
| 453 | for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++) |
| 454 | { |
| 455 | SchedGraphEdge* edge= *I; |
| 456 | ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*)(edge->getSink()); |
| 457 | if(PHINode::classof(succ->getInst())) continue; |
| 458 | assert(succ->getPropertyComputed()&&"succ node property is not computed!"); |
| 459 | node->height=max(node->height, succ->height+edge->getMinDelay()); |
| 460 | |
| 461 | } |
| 462 | node->setPropertyComputed(true); |
| 463 | |
| 464 | } |
| 465 | |
| 466 | } |
| 467 | |
| 468 | void ModuloSchedGraph::computeNodeProperty(const BasicBlock* bb) |
| 469 | { |
| 470 | //FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node |
| 471 | //so i will ignore all edges to the phi node; after this, there shall be no recurrence. |
| 472 | |
| 473 | this->computeNodeASAP(bb); |
| 474 | this->computeNodeALAP(bb); |
| 475 | this->computeNodeMov(bb); |
| 476 | this->computeNodeDepth(bb); |
| 477 | this->computeNodeHeight(bb); |
| 478 | } |
| 479 | |
| 480 | |
| 481 | //do not consider the backedge in these two functions: |
| 482 | // i.e. don't consider the edge with destination in phi node |
| 483 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(std::vector<ModuloSchedGraphNode*> set, unsigned backEdgeSrc, unsigned backEdgeSink) |
| 484 | { |
| 485 | std::vector<ModuloSchedGraphNode*> predS; |
| 486 | for(unsigned i=0; i < set.size(); i++) |
| 487 | { |
| 488 | ModuloSchedGraphNode* node = set[i]; |
| 489 | for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges(); I !=E; I++) |
| 490 | { |
| 491 | SchedGraphEdge* edge= *I; |
| 492 | if(edge->getSrc()->getNodeId() ==backEdgeSrc && edge->getSink()->getNodeId() == backEdgeSink) continue; |
| 493 | ModuloSchedGraphNode* pred= (ModuloSchedGraphNode*)(edge->getSrc()); |
| 494 | //if pred is not in the predSet, push it in vector |
| 495 | bool alreadyInset=false; |
| 496 | for(unsigned j=0; j < predS.size(); j++) |
| 497 | if(predS[j]->getNodeId() == pred->getNodeId() ) |
| 498 | {alreadyInset=true;break;} |
| 499 | |
| 500 | for(unsigned j=0; j < set.size(); j++) |
| 501 | if(set[j]->getNodeId() == pred->getNodeId() ) |
| 502 | {alreadyInset=true; break;} |
| 503 | |
| 504 | if(! alreadyInset) |
| 505 | predS.push_back(pred); |
| 506 | } |
| 507 | } |
| 508 | return predS; |
| 509 | } |
| 510 | |
| 511 | ModuloSchedGraph::NodeVec ModuloSchedGraph::predSet(NodeVec set) |
| 512 | { |
| 513 | //node number increases from 2 |
| 514 | return predSet(set,0, 0); |
| 515 | } |
| 516 | |
| 517 | |
| 518 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node, unsigned backEdgeSrc, unsigned backEdgeSink) |
| 519 | { |
| 520 | |
| 521 | std::vector<ModuloSchedGraphNode*> set; |
| 522 | set.push_back(_node); |
| 523 | return predSet(set, backEdgeSrc, backEdgeSink); |
| 524 | |
| 525 | } |
| 526 | |
| 527 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node) |
| 528 | { |
| 529 | return predSet(_node,0,0); |
| 530 | } |
| 531 | |
| 532 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(std::vector<ModuloSchedGraphNode*> set,unsigned src, unsigned sink) |
| 533 | { |
| 534 | vector<ModuloSchedGraphNode*> succS; |
| 535 | for(unsigned i=0; i < set.size(); i++) |
| 536 | { |
| 537 | ModuloSchedGraphNode* node = set[i]; |
| 538 | for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I !=E; I++) |
| 539 | { |
| 540 | SchedGraphEdge* edge= *I; |
| 541 | if(edge->getSrc()->getNodeId() == src && edge->getSink()->getNodeId() == sink) continue; |
| 542 | ModuloSchedGraphNode* succ= (ModuloSchedGraphNode*)(edge->getSink()); |
| 543 | //if pred is not in the predSet, push it in vector |
| 544 | bool alreadyInset=false; |
| 545 | for(unsigned j=0; j < succS.size(); j++) |
| 546 | if(succS[j]->getNodeId() == succ->getNodeId() ) |
| 547 | {alreadyInset=true;break;} |
| 548 | |
| 549 | for(unsigned j=0; j < set.size(); j++) |
| 550 | if(set[j]->getNodeId() == succ->getNodeId() ) |
| 551 | {alreadyInset=true;break;} |
| 552 | if(! alreadyInset) |
| 553 | succS.push_back(succ); |
| 554 | } |
| 555 | } |
| 556 | return succS; |
| 557 | } |
| 558 | |
| 559 | ModuloSchedGraph::NodeVec ModuloSchedGraph::succSet(NodeVec set) |
| 560 | { |
| 561 | return succSet(set,0,0); |
| 562 | } |
| 563 | |
| 564 | |
| 565 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node,unsigned src, unsigned sink) |
| 566 | { |
| 567 | std::vector<ModuloSchedGraphNode*> set; |
| 568 | set.push_back(_node); |
| 569 | return succSet(set, src, sink); |
| 570 | |
| 571 | |
| 572 | } |
| 573 | |
| 574 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node) |
| 575 | { |
| 576 | return succSet(_node, 0, 0); |
| 577 | } |
| 578 | |
| 579 | SchedGraphEdge* ModuloSchedGraph::getMaxDelayEdge(unsigned srcId, unsigned sinkId) |
| 580 | { |
| 581 | |
| 582 | ModuloSchedGraphNode* node =getNode(srcId); |
| 583 | SchedGraphEdge* maxDelayEdge=NULL; |
| 584 | int maxDelay=-1; |
| 585 | for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++) |
| 586 | { |
| 587 | SchedGraphEdge* edge= *I; |
| 588 | if(edge->getSink()->getNodeId() == sinkId) |
| 589 | if(edge->getMinDelay() > maxDelay){ |
| 590 | maxDelayEdge=edge; |
| 591 | maxDelay=edge->getMinDelay(); |
| 592 | } |
| 593 | } |
| 594 | assert(maxDelayEdge != NULL&&"no edge between the srcId and sinkId?"); |
| 595 | return maxDelayEdge; |
| 596 | } |
| 597 | |
| 598 | void ModuloSchedGraph::dumpCircuits() |
| 599 | { |
| 600 | modSched_os<<"dumping circuits for graph: "<<"\n"; |
| 601 | int j=-1; |
| 602 | while(circuits[++j][0] !=0){ |
| 603 | int k=-1; |
| 604 | while(circuits[j][++k] !=0) |
| 605 | modSched_os<< circuits[j][k]<<"\t"; |
| 606 | modSched_os<<"\n"; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | void ModuloSchedGraph::dumpSet(std::vector<ModuloSchedGraphNode*> set) |
| 611 | { |
| 612 | for(unsigned i=0;i < set.size() ; i++) |
| 613 | modSched_os<< set[i]->getNodeId()<<"\t"; |
| 614 | modSched_os<<"\n"; |
| 615 | } |
| 616 | |
| 617 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorUnion(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 ) |
| 618 | { |
| 619 | std::vector<ModuloSchedGraphNode*> unionVec; |
| 620 | for(unsigned i=0;i<set1.size();i++) |
| 621 | unionVec.push_back(set1[i]); |
| 622 | for(unsigned j=0;j < set2.size();j++){ |
| 623 | bool inset=false; |
| 624 | for(unsigned i=0;i < unionVec.size();i++) |
| 625 | if(set2[j]==unionVec[i]) inset=true; |
| 626 | if(!inset)unionVec.push_back(set2[j]); |
| 627 | } |
| 628 | return unionVec; |
| 629 | } |
| 630 | std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorConj(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 ) |
| 631 | { |
| 632 | std::vector<ModuloSchedGraphNode*> conjVec; |
| 633 | for(unsigned i=0;i<set1.size();i++) |
| 634 | for(unsigned j=0;j < set2.size();j++) |
| 635 | if(set1[i]==set2[j]) conjVec.push_back(set1[i]); |
| 636 | return conjVec; |
| 637 | } |
| 638 | |
| 639 | ModuloSchedGraph::NodeVec ModuloSchedGraph::vectorSub(NodeVec set1, NodeVec set2) |
| 640 | { |
| 641 | NodeVec newVec; |
| 642 | for(NodeVec::iterator I=set1.begin(); I != set1.end(); I++){ |
| 643 | bool inset=false; |
| 644 | for(NodeVec::iterator II=set2.begin(); II!=set2.end(); II++) |
| 645 | if( (*I)->getNodeId() ==(*II)->getNodeId()) |
| 646 | {inset=true;break;} |
| 647 | if(!inset) newVec.push_back(*I); |
| 648 | } |
| 649 | return newVec; |
| 650 | } |
| 651 | |
| 652 | void ModuloSchedGraph::orderNodes(){ |
| 653 | oNodes.clear(); |
| 654 | |
| 655 | std::vector<ModuloSchedGraphNode*> set; |
| 656 | const BasicBlock* bb=bbVec[0]; |
| 657 | unsigned numNodes = bb->size(); |
| 658 | |
| 659 | //first order all the sets |
| 660 | int j=-1; |
| 661 | int totalDelay=-1; |
| 662 | int preDelay=-1; |
| 663 | while(circuits[++j][0] !=0){ |
| 664 | int k=-1; |
| 665 | preDelay=totalDelay; |
| 666 | |
| 667 | while(circuits[j][++k] !=0){ |
| 668 | ModuloSchedGraphNode* node =getNode(circuits[j][k]); |
| 669 | unsigned nextNodeId; |
| 670 | nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0]; |
| 671 | SchedGraphEdge* edge = getMaxDelayEdge(circuits[j][k], nextNodeId); |
| 672 | totalDelay += edge->getMinDelay(); |
| 673 | } |
| 674 | if(preDelay != -1 && totalDelay > preDelay){ |
| 675 | //swap circuits[j][] and cuicuits[j-1][] |
| 676 | unsigned temp[MAXNODE]; |
| 677 | for(int k=0;k<MAXNODE;k++){ |
| 678 | temp[k]=circuits[j-1][k]; |
| 679 | circuits[j-1][k]=circuits[j][k]; |
| 680 | circuits[j][k]=temp[k]; |
| 681 | } |
| 682 | //restart |
| 683 | j=-1; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | //build the first set |
| 688 | int backEdgeSrc; |
| 689 | int backEdgeSink; |
| 690 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 691 | modSched_os<<"building the first set"<<"\n"; |
| 692 | int setSeq=-1; |
| 693 | int k=-1; |
| 694 | setSeq++; |
| 695 | while(circuits[setSeq][++k]!=0) |
| 696 | set.push_back(getNode(circuits[setSeq][k])); |
| 697 | if(circuits[setSeq][0]!=0){ |
| 698 | backEdgeSrc=circuits[setSeq][k-1]; |
| 699 | backEdgeSink=circuits[setSeq][0]; |
| 700 | } |
| 701 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| 702 | modSched_os<<"the first set is:"; |
| 703 | dumpSet(set); |
| 704 | } |
| 705 | |
| 706 | //implement the ordering algorithm |
| 707 | enum OrderSeq{ bottom_up, top_down}; |
| 708 | OrderSeq order; |
| 709 | std::vector<ModuloSchedGraphNode*> R; |
| 710 | while(!set.empty()) |
| 711 | { |
| 712 | std::vector<ModuloSchedGraphNode*> pset=predSet(oNodes); |
| 713 | std::vector<ModuloSchedGraphNode*> sset=succSet(oNodes); |
| 714 | |
| 715 | if(!pset.empty() && !vectorConj(pset,set).empty()) |
| 716 | {R=vectorConj(pset,set);order=bottom_up;} |
| 717 | else if( !sset.empty() && !vectorConj(sset,set).empty()) |
| 718 | {R=vectorConj(sset,set);order=top_down;} |
| 719 | else |
| 720 | { |
| 721 | int maxASAP=-1; |
| 722 | int position=-1; |
| 723 | for(unsigned i=0;i<set.size();i++){ |
| 724 | int temp= set[i]->getASAP(); |
| 725 | if(temp>maxASAP ) { |
| 726 | maxASAP=temp; |
| 727 | position=i; |
| 728 | } |
| 729 | } |
| 730 | R.push_back(set[position]); |
| 731 | order=bottom_up; |
| 732 | } |
| 733 | |
| 734 | while(!R.empty()){ |
| 735 | if(order== top_down){ |
| 736 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 737 | modSched_os<<"in top_down round"<<"\n"; |
| 738 | while(!R.empty()){ |
| 739 | int maxHeight=-1; |
| 740 | NodeVec::iterator chosenI; |
| 741 | for(NodeVec::iterator I=R.begin();I != R.end();I++){ |
| 742 | int temp=(*I)->height; |
| 743 | if( (temp > maxHeight) || ( temp == maxHeight && (*I)->mov <= (*chosenI)->mov ) ){ |
| 744 | |
| 745 | if((temp > maxHeight) || ( temp == maxHeight && (*I)->mov < (*chosenI)->mov )){ |
| 746 | maxHeight=temp; |
| 747 | chosenI=I; |
| 748 | continue; |
| 749 | } |
| 750 | //possible case: instruction A and B has the same height and mov, but A has dependence to B |
| 751 | //e.g B is the branch instruction in the end, or A is the phi instruction at the beginning |
| 752 | if((*I)->mov == (*chosenI)->mov) |
| 753 | for(ModuloSchedGraphNode::const_iterator oe=(*I)->beginOutEdges(), end=(*I)->endOutEdges();oe !=end; oe++){ |
| 754 | if((*oe)->getSink() == (*chosenI)){ |
| 755 | maxHeight=temp; |
| 756 | chosenI=I; |
| 757 | continue; |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | ModuloSchedGraphNode* mu= *chosenI; |
| 763 | oNodes.push_back(mu); |
| 764 | R.erase(chosenI); |
| 765 | std::vector<ModuloSchedGraphNode*> succ_mu= succSet(mu,backEdgeSrc,backEdgeSink); |
| 766 | std::vector<ModuloSchedGraphNode*> comm=vectorConj(succ_mu,set); |
| 767 | comm=vectorSub(comm,oNodes); |
| 768 | R = vectorUnion(comm, R); |
| 769 | } |
| 770 | order=bottom_up; |
| 771 | R= vectorConj(predSet(oNodes), set); |
| 772 | } else{ |
| 773 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 774 | modSched_os<<"in bottom up round"<<"\n"; |
| 775 | while(!R.empty()){ |
| 776 | int maxDepth=-1; |
| 777 | NodeVec::iterator chosenI; |
| 778 | for(NodeVec::iterator I=R.begin();I != R.end();I++){ |
| 779 | int temp=(*I)->depth; |
| 780 | if( (temp > maxDepth) || ( temp == maxDepth && (*I)->mov < (*chosenI)->mov )){ |
| 781 | maxDepth=temp; |
| 782 | chosenI=I; |
| 783 | } |
| 784 | } |
| 785 | ModuloSchedGraphNode* mu=*chosenI; |
| 786 | oNodes.push_back(mu); |
| 787 | R.erase(chosenI); |
| 788 | std::vector<ModuloSchedGraphNode*> pred_mu= predSet(mu,backEdgeSrc,backEdgeSink); |
| 789 | std::vector<ModuloSchedGraphNode*> comm=vectorConj(pred_mu,set); |
| 790 | comm=vectorSub(comm,oNodes); |
| 791 | R = vectorUnion(comm, R); |
| 792 | } |
| 793 | order=top_down; |
| 794 | R= vectorConj(succSet(oNodes), set); |
| 795 | } |
| 796 | } |
| 797 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| 798 | modSched_os<<"order finished"<<"\n"; |
| 799 | modSched_os<<"dumping the ordered nodes: "<<"\n"; |
| 800 | dumpSet(oNodes); |
| 801 | dumpCircuits(); |
| 802 | } |
| 803 | //create a new set |
| 804 | //FIXME: the nodes between onodes and this circuit should also be include in this set |
| 805 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 806 | modSched_os<<"building the next set"<<"\n"; |
| 807 | set.clear(); |
| 808 | int k=-1; |
| 809 | setSeq++; |
| 810 | while(circuits[setSeq][++k]!=0) |
| 811 | set.push_back(getNode(circuits[setSeq][k])); |
| 812 | if(circuits[setSeq][0]!=0){ |
| 813 | backEdgeSrc=circuits[setSeq][k-1]; |
| 814 | backEdgeSink=circuits[setSeq][0]; |
| 815 | } |
| 816 | if(set.empty()){ |
| 817 | //no circuits any more |
| 818 | //collect all other nodes |
| 819 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 820 | modSched_os<<"no circuits any more, collect the rest nodes"<<"\n"; |
| 821 | for(unsigned i=2;i<numNodes+2;i++){ |
| 822 | bool inset=false; |
| 823 | for(unsigned j=0;j< oNodes.size();j++) |
| 824 | if(oNodes[j]->getNodeId() == i) |
| 825 | {inset=true;break;} |
| 826 | if(!inset)set.push_back(getNode(i)); |
| 827 | } |
| 828 | } |
| 829 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| 830 | modSched_os<<"next set is: "<<"\n"; |
| 831 | dumpSet(set); |
| 832 | } |
| 833 | }//while(!set.empty()) |
| 834 | |
| 835 | } |
| 836 | |
| 837 | |
| 838 | |
| 839 | |
| 840 | |
| 841 | |
| 842 | void ModuloSchedGraph::buildGraph (const TargetMachine& target) |
| 843 | { |
| 844 | const BasicBlock* bb=bbVec[0]; |
| 845 | |
| 846 | assert(bbVec.size() ==1 &&"only handling a single basic block here"); |
| 847 | |
| 848 | // Use this data structure to note all machine operands that compute |
| 849 | // ordinary LLVM values. These must be computed defs (i.e., instructions). |
| 850 | // Note that there may be multiple machine instructions that define |
| 851 | // each Value. |
| 852 | ValueToDefVecMap valueToDefVecMap; |
| 853 | |
| 854 | // Use this data structure to note all memory instructions. |
| 855 | // We use this to add memory dependence edges without a second full walk. |
| 856 | // |
| 857 | // vector<const Instruction*> memVec; |
| 858 | vector<ModuloSchedGraphNode*> memNodeVec; |
| 859 | |
| 860 | // Use this data structure to note any uses or definitions of |
| 861 | // machine registers so we can add edges for those later without |
| 862 | // extra passes over the nodes. |
| 863 | // The vector holds an ordered list of references to the machine reg, |
| 864 | // ordered according to control-flow order. This only works for a |
| 865 | // single basic block, hence the assertion. Each reference is identified |
| 866 | // by the pair: <node, operand-number>. |
| 867 | // |
| 868 | RegToRefVecMap regToRefVecMap; |
| 869 | |
| 870 | |
| 871 | |
| 872 | // Make a dummy root node. We'll add edges to the real roots later. |
| 873 | graphRoot = new ModuloSchedGraphNode(0, NULL, NULL, -1,target); |
| 874 | graphLeaf = new ModuloSchedGraphNode(1, NULL, NULL, -1,target); |
| 875 | |
| 876 | //---------------------------------------------------------------- |
| 877 | // First add nodes for all the LLVM instructions in the basic block |
| 878 | // because this greatly simplifies identifying which edges to add. |
| 879 | // Do this one VM instruction at a time since the ModuloSchedGraphNode needs that. |
| 880 | // Also, remember the load/store instructions to add memory deps later. |
| 881 | //---------------------------------------------------------------- |
| 882 | |
| 883 | //FIXME:if there is call instruction, then we shall quit somewhere |
| 884 | // currently we leave call instruction and continue construct graph |
| 885 | |
| 886 | //dump only the blocks which are from loops |
| 887 | |
| 888 | |
| 889 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 890 | this->dump(bb); |
| 891 | |
| 892 | if(!isLoop(bb)){ |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 893 | modSched_os <<" dumping non-loop BB:\n"; |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 894 | dump(bb); |
| 895 | } |
| 896 | if( isLoop(bb)) |
| 897 | { |
| 898 | buildNodesforBB(target, bb, memNodeVec, regToRefVecMap, valueToDefVecMap); |
| 899 | |
| 900 | this->addDefUseEdges(bb); |
| 901 | |
| 902 | this->addCDEdges(bb); |
| 903 | |
| 904 | this->addMemEdges(bb); |
| 905 | |
| 906 | //this->dump(); |
| 907 | |
| 908 | int ResII=this->computeResII(bb); |
| 909 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 910 | modSched_os << "ResII is " << ResII<<"\n";; |
| 911 | int RecII=this->computeRecII(bb); |
| 912 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 913 | modSched_os << "RecII is " <<RecII<<"\n"; |
| 914 | |
| 915 | this->MII=max(ResII, RecII); |
| 916 | |
| 917 | this->computeNodeProperty(bb); |
| 918 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 919 | this->dumpNodeProperty(); |
| 920 | |
| 921 | this->orderNodes(); |
| 922 | |
| 923 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 924 | this->dump(); |
| 925 | //this->instrScheduling(); |
| 926 | |
| 927 | //this->dumpScheduling(); |
| 928 | |
| 929 | |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | ModuloSchedGraphNode* ModuloSchedGraph::getNode (const unsigned nodeId) const |
| 934 | { |
| 935 | for(const_iterator I=begin(), E=end();I !=E;I++) |
| 936 | if((*I).second->getNodeId() ==nodeId) |
| 937 | return (ModuloSchedGraphNode*)(*I).second; |
| 938 | return NULL; |
| 939 | } |
| 940 | |
| 941 | int ModuloSchedGraph::computeRecII(const BasicBlock* bb) |
| 942 | { |
| 943 | |
| 944 | int RecII=0; |
| 945 | |
| 946 | //os<<"begining computerRecII()"<<"\n"; |
| 947 | |
| 948 | |
| 949 | //FIXME: only deal with circuits starting at the first node: the phi node nodeId=2; |
| 950 | |
| 951 | //search all elementary circuits in the dependance graph |
| 952 | //assume maximum number of nodes is MAXNODE |
| 953 | |
| 954 | unsigned path[MAXNODE]; |
| 955 | unsigned stack[MAXNODE][MAXNODE]; |
| 956 | |
| 957 | |
| 958 | for(int j=0;j<MAXNODE;j++) |
| 959 | {path[j]=0; |
| 960 | for(int k=0;k<MAXNODE;k++) |
| 961 | stack[j][k]=0; |
| 962 | } |
| 963 | //in our graph, the node number starts at 2 |
| 964 | |
| 965 | //number of nodes, because each instruction will result in one node |
| 966 | const unsigned numNodes= bb->size(); |
| 967 | |
| 968 | int i=0; |
| 969 | path[i]=2; |
| 970 | |
| 971 | ModuloSchedGraphNode* initNode=getNode(path[0]); |
| 972 | unsigned initNodeId=initNode->getNodeId(); |
| 973 | ModuloSchedGraphNode* currentNode=initNode; |
| 974 | |
| 975 | while(currentNode != NULL) |
| 976 | { |
| 977 | unsigned currentNodeId=currentNode->getNodeId(); |
| 978 | // modSched_os<<"current node is "<<currentNodeId<<"\n"; |
| 979 | |
| 980 | ModuloSchedGraphNode* nextNode=NULL; |
| 981 | for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges(); I !=E; I++) |
| 982 | { |
| 983 | //modSched_os <<" searching in outgoint edges of node "<<currentNodeId<<"\n"; |
| 984 | unsigned nodeId=((SchedGraphEdge*) *I)->getSink()->getNodeId(); |
| 985 | bool inpath=false,instack=false; |
| 986 | int k; |
| 987 | |
| 988 | //modSched_os<<"nodeId is "<<nodeId<<"\n"; |
| 989 | |
| 990 | k=-1; |
| 991 | while(path[++k] !=0) |
| 992 | if(nodeId == path[k]) |
| 993 | {inpath=true;break;} |
| 994 | |
| 995 | |
| 996 | |
| 997 | k=-1; |
| 998 | while(stack[i][++k] !=0 ) |
| 999 | if(nodeId == stack[i][k]) |
| 1000 | {instack =true; break;} |
| 1001 | |
| 1002 | |
| 1003 | if( nodeId > currentNodeId && !inpath && !instack) |
| 1004 | {nextNode=(ModuloSchedGraphNode*) ((SchedGraphEdge*)*I)->getSink();break;} |
| 1005 | |
| 1006 | } |
| 1007 | if(nextNode != NULL) |
| 1008 | { |
| 1009 | //modSched_os<<"find the next Node "<<nextNode->getNodeId()<<"\n"; |
| 1010 | |
| 1011 | |
| 1012 | int j=0; |
| 1013 | while( stack[i][j] !=0) j++; |
| 1014 | stack[i][j]=nextNode->getNodeId(); |
| 1015 | |
| 1016 | |
| 1017 | i++; |
| 1018 | path[i]=nextNode->getNodeId(); |
| 1019 | currentNode=nextNode; |
| 1020 | } |
| 1021 | else |
| 1022 | { |
| 1023 | //modSched_os<<"no expansion any more"<<"\n"; |
| 1024 | //confirmCircuit(); |
| 1025 | for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges() ; I != E; I++) |
| 1026 | { |
| 1027 | unsigned nodeId=((SchedGraphEdge*)*I)->getSink()->getNodeId(); |
| 1028 | if(nodeId == initNodeId) |
| 1029 | { |
| 1030 | |
| 1031 | int j=-1; |
| 1032 | while(circuits[++j][0] !=0); |
| 1033 | for(int k=0;k<MAXNODE;k++)circuits[j][k]=path[k]; |
| 1034 | |
| 1035 | } |
| 1036 | } |
| 1037 | //remove this node in the path and clear the corresponding entries in the stack |
| 1038 | path[i]=0; |
| 1039 | int j=0; |
| 1040 | for(j=0;j<MAXNODE;j++)stack[i][j]=0; |
| 1041 | i--; |
| 1042 | currentNode=getNode(path[i]); |
| 1043 | } |
| 1044 | if(i==0) |
| 1045 | { |
| 1046 | |
| 1047 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1048 | modSched_os<<"circuits found are: "<<"\n"; |
| 1049 | int j=-1; |
| 1050 | while(circuits[++j][0] !=0){ |
| 1051 | int k=-1; |
| 1052 | while(circuits[j][++k] !=0) |
| 1053 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1054 | modSched_os<< circuits[j][k]<<"\t"; |
| 1055 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1056 | modSched_os<<"\n"; |
| 1057 | |
| 1058 | |
| 1059 | //for this circuit, compute the sum of all edge delay |
| 1060 | int sumDelay=0; |
| 1061 | k=-1; |
| 1062 | while(circuits[j][++k] !=0) |
| 1063 | { |
| 1064 | //ModuloSchedGraphNode* node =getNode(circuits[j][k]); |
| 1065 | unsigned nextNodeId; |
| 1066 | nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0]; |
| 1067 | |
| 1068 | /* |
| 1069 | for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++) |
| 1070 | { |
| 1071 | SchedGraphEdge* edge= *I; |
| 1072 | if(edge->getSink()->getNodeId() == nextNodeId) |
| 1073 | {sumDelay += edge->getMinDelay();break;} |
| 1074 | } |
| 1075 | */ |
| 1076 | |
| 1077 | sumDelay += getMaxDelayEdge(circuits[j][k],nextNodeId)->getMinDelay(); |
| 1078 | |
| 1079 | } |
| 1080 | // assume we have distance 1, in this case the sumDelay is RecII |
| 1081 | // this is correct for SSA form only |
| 1082 | // |
| 1083 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1084 | modSched_os<<"The total Delay in the circuit is " <<sumDelay<<"\n"; |
| 1085 | |
| 1086 | RecII= RecII > sumDelay? RecII: sumDelay; |
| 1087 | |
| 1088 | } |
| 1089 | return RecII; |
| 1090 | } |
| 1091 | |
| 1092 | } |
| 1093 | |
| 1094 | return -1; |
| 1095 | } |
| 1096 | |
| 1097 | void ModuloSchedGraph::addResourceUsage(std::vector<pair<int,int> >& ruVec, int rid){ |
| 1098 | //modSched_os<<"\nadding a resouce , current resouceUsage vector size is "<<ruVec.size()<<"\n"; |
| 1099 | bool alreadyExists=false; |
| 1100 | for(unsigned i=0;i <ruVec.size() ; i++){ |
| 1101 | if(rid == ruVec[i].first) { |
| 1102 | ruVec[i].second++; |
| 1103 | alreadyExists=true; |
| 1104 | break; |
| 1105 | } |
| 1106 | } |
| 1107 | if( !alreadyExists) ruVec.push_back(std::make_pair(rid, 1)); |
| 1108 | //modSched_os<<"current resouceUsage vector size is "<<ruVec.size()<<"\n"; |
| 1109 | |
| 1110 | } |
| 1111 | void ModuloSchedGraph::dumpResourceUsage(std::vector< pair<int,int> > &ru) |
| 1112 | { |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 1113 | TargetSchedInfo& msi = (TargetSchedInfo&)target.getSchedInfo(); |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 1114 | |
| 1115 | std::vector<pair<int,int> > resourceNumVector = msi.resourceNumVector; |
| 1116 | modSched_os <<"resourceID\t"<<"resourceNum"<<"\n"; |
| 1117 | for(unsigned i=0;i<resourceNumVector.size();i++) |
| 1118 | modSched_os <<resourceNumVector[i].first<<"\t"<<resourceNumVector[i].second<<"\n"; |
| 1119 | |
| 1120 | modSched_os <<" maxNumIssueTotal(issue slot in one cycle) = "<<msi.maxNumIssueTotal<<"\n"; |
| 1121 | modSched_os<<"resourceID\t resourceUsage\t ResourceNum"<<"\n"; |
| 1122 | for(unsigned i=0;i<ru.size();i++){ |
| 1123 | modSched_os<<ru[i].first<<"\t"<<ru[i].second; |
| 1124 | const unsigned resNum=msi.getCPUResourceNum(ru[i].first); |
| 1125 | modSched_os<<"\t"<<resNum<<"\n"; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | int ModuloSchedGraph::computeResII(const BasicBlock* bb) |
| 1130 | { |
| 1131 | |
Guochun Shi | 6fbe5fb | 2003-04-06 23:56:19 +0000 | [diff] [blame^] | 1132 | const TargetInstrInfo& mii = target.getInstrInfo(); |
| 1133 | const TargetSchedInfo& msi = target.getSchedInfo(); |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 1134 | |
| 1135 | int ResII; |
| 1136 | std::vector<pair<int,int> > resourceUsage; //pair<int resourceid, int resourceUsageTimes_in_the_whole_block> |
| 1137 | |
| 1138 | //FIXME: number of functional units the target machine can provide should be get from Target |
| 1139 | // here I temporary hardcode it |
| 1140 | |
| 1141 | for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I !=E; I++) |
| 1142 | { |
| 1143 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| 1144 | modSched_os<<"machine instruction for llvm instruction( node "<<getGraphNodeForInst(I)->getNodeId()<<")" <<"\n"; |
| 1145 | modSched_os<<"\t"<<*I; |
| 1146 | } |
| 1147 | MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(I); |
| 1148 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1149 | modSched_os <<"size =" <<tempMvec.size()<<"\n"; |
| 1150 | for(unsigned i=0;i< tempMvec.size();i++) |
| 1151 | { |
| 1152 | MachineInstr* minstr=tempMvec[i]; |
| 1153 | |
| 1154 | unsigned minDelay=mii.minLatency(minstr->getOpCode()); |
| 1155 | InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode()); |
| 1156 | InstrClassRUsage classRUsage=msi.getClassRUsage(mii.getSchedClass(minstr->getOpCode())); |
| 1157 | unsigned totCycles= classRUsage.totCycles; |
| 1158 | |
| 1159 | std::vector<std::vector<resourceId_t> > resources |
| 1160 | =rUsage.resourcesByCycle; |
| 1161 | assert(totCycles == resources.size()); |
| 1162 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1163 | modSched_os <<"resources Usage for this Instr(totCycles=" << totCycles << ",mindLatency="<<mii.minLatency(minstr->getOpCode())<<"): "<< *minstr <<"\n"; |
| 1164 | for(unsigned j=0;j< resources.size();j++){ |
| 1165 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1166 | modSched_os<<"cycle "<<j<<": "; |
| 1167 | for(unsigned k=0;k< resources[j].size(); k++){ |
| 1168 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1169 | modSched_os<<"\t"<<resources[j][k]; |
| 1170 | addResourceUsage(resourceUsage,resources[j][k]); |
| 1171 | } |
| 1172 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1173 | modSched_os<<"\n"; |
| 1174 | } |
| 1175 | } |
| 1176 | } |
| 1177 | if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| 1178 | this->dumpResourceUsage(resourceUsage); |
| 1179 | |
| 1180 | //compute ResII |
| 1181 | ResII=0; |
| 1182 | int issueSlots=msi.maxNumIssueTotal; |
| 1183 | for(unsigned i=0;i<resourceUsage.size();i++){ |
| 1184 | int resourceNum=msi.getCPUResourceNum(resourceUsage[i].first); |
| 1185 | int useNum=resourceUsage[i].second; |
| 1186 | double tempII; |
| 1187 | if(resourceNum <= issueSlots) |
| 1188 | tempII=ceil(1.0*useNum/resourceNum); |
| 1189 | else |
| 1190 | tempII=ceil(1.0*useNum/issueSlots); |
| 1191 | ResII=max((int)tempII,ResII); |
| 1192 | } |
| 1193 | return ResII; |
| 1194 | } |
| 1195 | |
| 1196 | ModuloSchedGraphSet::ModuloSchedGraphSet(const Function* function, const TargetMachine& target) |
| 1197 | :method(function) |
| 1198 | { |
| 1199 | buildGraphsForMethod(method,target); |
| 1200 | |
| 1201 | } |
| 1202 | |
| 1203 | |
| 1204 | ModuloSchedGraphSet::~ModuloSchedGraphSet() |
| 1205 | { |
| 1206 | //delete all the graphs |
| 1207 | for(iterator I=begin(), E=end();I !=E; ++I) |
| 1208 | delete *I; |
| 1209 | } |
| 1210 | |
| 1211 | void ModuloSchedGraphSet::dump() const |
| 1212 | { |
| 1213 | modSched_os << " ====== ModuloSched graphs for function `" <<method->getName() |
| 1214 | << "' =========\n\n"; |
| 1215 | for(const_iterator I=begin(); I != end(); ++I) |
| 1216 | (*I)->dump(); |
| 1217 | |
| 1218 | modSched_os << "\n=========End graphs for funtion` "<<method->getName() |
| 1219 | << "' ==========\n\n"; |
| 1220 | } |
| 1221 | |
| 1222 | void ModuloSchedGraph::dump(const BasicBlock* bb) |
| 1223 | { |
| 1224 | modSched_os<<"dumping basic block:"; |
| 1225 | modSched_os<<(bb->hasName()?bb->getName(): "block") |
| 1226 | <<" (" << bb << ")"<<"\n"; |
| 1227 | |
| 1228 | } |
| 1229 | |
| 1230 | void ModuloSchedGraph::dump(const BasicBlock* bb, std::ostream& os) |
| 1231 | { |
| 1232 | os<<"dumping basic block:"; |
| 1233 | os<<(bb->hasName()?bb->getName(): "block") |
| 1234 | <<" (" << bb << ")"<<"\n"; |
| 1235 | } |
| 1236 | |
| 1237 | void |
| 1238 | ModuloSchedGraph::dump() const |
| 1239 | { |
| 1240 | modSched_os << " ModuloSchedGraph for basic Blocks:"; |
| 1241 | for(unsigned i=0, N =bbVec.size(); i< N; i++) |
| 1242 | { |
| 1243 | modSched_os<<(bbVec[i]->hasName()?bbVec[i]->getName(): "block") |
| 1244 | <<" (" << bbVec[i] << ")" |
| 1245 | << ((i==N-1)?"":", "); |
| 1246 | } |
| 1247 | |
| 1248 | modSched_os <<"\n\n Actual Root nodes : "; |
| 1249 | for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++) |
| 1250 | modSched_os << graphRoot->outEdges[i]->getSink()->getNodeId() |
| 1251 | << ((i == N-1)? "" : ", "); |
| 1252 | |
| 1253 | modSched_os << "\n Graph Nodes:\n"; |
| 1254 | //for (const_iterator I=begin(); I != end(); ++I) |
| 1255 | //modSched_os << "\n" << *I->second; |
| 1256 | unsigned numNodes=bbVec[0]->size(); |
| 1257 | for(unsigned i=2;i< numNodes+2;i++) |
| 1258 | { |
| 1259 | ModuloSchedGraphNode* node= getNode(i); |
| 1260 | modSched_os << "\n" << *node; |
| 1261 | } |
| 1262 | |
| 1263 | modSched_os << "\n"; |
| 1264 | } |
| 1265 | void |
| 1266 | ModuloSchedGraph::dumpNodeProperty() const |
| 1267 | { |
| 1268 | const BasicBlock* bb=bbVec[0]; |
| 1269 | unsigned numNodes=bb->size(); |
| 1270 | for(unsigned i=2;i < numNodes+2;i++) |
| 1271 | { |
| 1272 | ModuloSchedGraphNode* node=getNode(i); |
| 1273 | modSched_os<<"NodeId "<<node->getNodeId()<<"\t"; |
| 1274 | modSched_os<<"ASAP "<<node->getASAP()<<"\t"; |
| 1275 | modSched_os<<"ALAP "<<node->getALAP()<<"\t"; |
| 1276 | modSched_os<<"mov " <<node->getMov() <<"\t"; |
| 1277 | modSched_os<<"depth "<<node->getDepth()<<"\t"; |
| 1278 | modSched_os<<"height "<<node->getHeight()<<"\t"; |
| 1279 | modSched_os<<"\n"; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | void ModuloSchedGraphSet::buildGraphsForMethod (const Function *F, const TargetMachine& target) |
| 1284 | { |
| 1285 | for(Function::const_iterator BI = F->begin(); BI != F->end(); ++BI) |
| 1286 | addGraph(new ModuloSchedGraph(BI,target)); |
| 1287 | } |
| 1288 | |
| 1289 | std::ostream &operator<<(std::ostream &os, const ModuloSchedGraphNode& node) |
| 1290 | { |
| 1291 | os << std::string(8, ' ') |
| 1292 | << "Node " << node.nodeId << " : " |
| 1293 | << "latency = " << node.latency << "\n" << std::string(12, ' '); |
| 1294 | |
| 1295 | |
| 1296 | |
| 1297 | if (node.getInst() == NULL) |
| 1298 | os << "(Dummy node)\n"; |
| 1299 | else |
| 1300 | { |
| 1301 | os << *node.getInst() << "\n" << std::string(12, ' '); |
| 1302 | os << node.inEdges.size() << " Incoming Edges:\n"; |
| 1303 | for (unsigned i=0, N=node.inEdges.size(); i < N; i++) |
| 1304 | os << std::string(16, ' ') << *node.inEdges[i]; |
| 1305 | |
| 1306 | os << std::string(12, ' ') << node.outEdges.size() |
| 1307 | << " Outgoing Edges:\n"; |
| 1308 | for (unsigned i=0, N=node.outEdges.size(); i < N; i++) |
| 1309 | os << std::string(16, ' ') << *node.outEdges[i]; |
| 1310 | } |
| 1311 | |
| 1312 | |
| 1313 | return os; |
| 1314 | } |