blob: 38c216a8f07f211ec10252ec48e056ab49e5400c [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000017#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000018#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000019#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner72614082002-10-25 22:55:53 +000020#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000021
22namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000023 struct ISel : public FunctionPass, InstVisitor<ISel> {
24 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000025 MachineFunction *F; // The function we are compiling into
26 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000027
28 unsigned CurReg;
29 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
30
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000031 ISel(TargetMachine &tm)
32 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000033
34 /// runOnFunction - Top level implementation of instruction selection for
35 /// the entire function.
36 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000037 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000038 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000039 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000040 RegMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000041 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000042 return false; // We never modify the LLVM itself.
43 }
44
45 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000046 /// block. This simply creates a new MachineBasicBlock to emit code into
47 /// and adds it to the current MachineFunction. Subsequent visit* for
48 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000049 ///
50 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000051 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000052 // FIXME: Use the auto-insert form when it's available
53 F->getBasicBlockList().push_back(BB);
54 }
55
56 // Visitation methods for various instructions. These methods simply emit
57 // fixed X86 code for each instruction.
58 //
59 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000060 void visitBranchInst(BranchInst &BI);
Chris Lattnere2954c82002-11-02 20:04:26 +000061
62 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000063 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000064 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
65 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000066 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000067
Chris Lattnerf01729e2002-11-02 20:54:46 +000068 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
69 void visitRem(BinaryOperator &B) { visitDivRem(B); }
70 void visitDivRem(BinaryOperator &B);
71
Chris Lattnere2954c82002-11-02 20:04:26 +000072 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000073 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
74 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
75 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000076
77 // Binary comparison operators
Chris Lattner6fc3c522002-11-17 21:11:55 +000078 void visitSetCondInst(SetCondInst &I);
79
80 // Memory Instructions
81 void visitLoadInst(LoadInst &I);
82 void visitStoreInst(StoreInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000083
84 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +000085 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000086 void visitPHINode(PHINode &I);
Chris Lattner72614082002-10-25 22:55:53 +000087
88 void visitInstruction(Instruction &I) {
89 std::cerr << "Cannot instruction select: " << I;
90 abort();
91 }
92
Chris Lattnerc5291f52002-10-27 21:16:59 +000093
94 /// copyConstantToRegister - Output the instructions required to put the
95 /// specified constant into the specified register.
96 ///
97 void copyConstantToRegister(Constant *C, unsigned Reg);
98
Chris Lattner72614082002-10-25 22:55:53 +000099 /// getReg - This method turns an LLVM value into a register number. This
100 /// is guaranteed to produce the same register number for a particular value
101 /// every time it is queried.
102 ///
103 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
104 unsigned getReg(Value *V) {
105 unsigned &Reg = RegMap[V];
106 if (Reg == 0)
107 Reg = CurReg++;
108
Chris Lattner6f8fd252002-10-27 21:23:43 +0000109 // If this operand is a constant, emit the code to copy the constant into
110 // the register here...
111 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000112 if (Constant *C = dyn_cast<Constant>(V))
113 copyConstantToRegister(C, Reg);
114
Chris Lattner72614082002-10-25 22:55:53 +0000115 return Reg;
116 }
Chris Lattner72614082002-10-25 22:55:53 +0000117 };
118}
119
Chris Lattner43189d12002-11-17 20:07:45 +0000120/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
121/// Representation.
122///
123enum TypeClass {
124 cByte, cShort, cInt, cLong, cFloat, cDouble
125};
126
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000127/// getClass - Turn a primitive type into a "class" number which is based on the
128/// size of the type, and whether or not it is floating point.
129///
Chris Lattner43189d12002-11-17 20:07:45 +0000130static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000131 switch (Ty->getPrimitiveID()) {
132 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000133 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000134 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000135 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000136 case Type::IntTyID:
137 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000138 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000139
140 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000141 case Type::ULongTyID: return cLong; // Longs are class #3
142 case Type::FloatTyID: return cFloat; // Float is class #4
143 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000144 default:
145 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000146 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000147 }
148}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000149
150/// copyConstantToRegister - Output the instructions required to put the
151/// specified constant into the specified register.
152///
153void ISel::copyConstantToRegister(Constant *C, unsigned R) {
154 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
155
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000156 if (C->getType()->isIntegral()) {
157 unsigned Class = getClass(C->getType());
158 assert(Class != 3 && "Type not handled yet!");
159
160 static const unsigned IntegralOpcodeTab[] = {
161 X86::MOVir8, X86::MOVir16, X86::MOVir32
162 };
163
164 if (C->getType()->isSigned()) {
165 ConstantSInt *CSI = cast<ConstantSInt>(C);
166 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
167 } else {
168 ConstantUInt *CUI = cast<ConstantUInt>(C);
169 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
170 }
171 } else {
172 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000173 }
174}
175
Brian Gaeke1749d632002-11-07 17:59:21 +0000176/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
177/// register, then move it to wherever the result should be.
178/// We handle FP setcc instructions by pushing them, doing a
179/// compare-and-pop-twice, and then copying the concodes to the main
180/// processor's concodes (I didn't make this up, it's in the Intel manual)
181///
182void
183ISel::visitSetCondInst (SetCondInst & I)
184{
185 // The arguments are already supposed to be of the same type.
186 Value *var1 = I.getOperand (0);
187 Value *var2 = I.getOperand (1);
188 unsigned reg1 = getReg (var1);
189 unsigned reg2 = getReg (var2);
190 unsigned resultReg = getReg (I);
191 unsigned comparisonWidth = var1->getType ()->getPrimitiveSize ();
192 unsigned unsignedComparison = var1->getType ()->isUnsigned ();
193 unsigned resultWidth = I.getType ()->getPrimitiveSize ();
194 bool fpComparison = var1->getType ()->isFloatingPoint ();
195 if (fpComparison)
196 {
197 // Push the variables on the stack with fldl opcodes.
198 // FIXME: assuming var1, var2 are in memory, if not, spill to
199 // stack first
200 switch (comparisonWidth)
201 {
202 case 4:
203 BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg1);
204 break;
205 case 8:
206 BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg1);
207 break;
208 default:
209 visitInstruction (I);
210 break;
211 }
212 switch (comparisonWidth)
213 {
214 case 4:
215 BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg2);
216 break;
217 case 8:
218 BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg2);
219 break;
220 default:
221 visitInstruction (I);
222 break;
223 }
224 // (Non-trapping) compare and pop twice.
Brian Gaeke1749d632002-11-07 17:59:21 +0000225 BuildMI (BB, X86::FUCOMPP, 0);
226 // Move fp status word (concodes) to ax.
227 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
228 // Load real concodes from ax.
Brian Gaeke6559bb92002-11-14 22:32:30 +0000229 BuildMI (BB, X86::SAHF, 1, X86::EFLAGS).addReg(X86::AH);
Brian Gaeke1749d632002-11-07 17:59:21 +0000230 }
231 else
232 { // integer comparison
233 // Emit: cmp <var1>, <var2> (do the comparison). We can
234 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
235 // 32-bit.
Brian Gaeke1749d632002-11-07 17:59:21 +0000236 switch (comparisonWidth)
237 {
238 case 1:
239 BuildMI (BB, X86::CMPrr8, 2,
Brian Gaeke6559bb92002-11-14 22:32:30 +0000240 X86::EFLAGS).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000241 break;
242 case 2:
243 BuildMI (BB, X86::CMPrr16, 2,
Brian Gaeke6559bb92002-11-14 22:32:30 +0000244 X86::EFLAGS).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000245 break;
246 case 4:
247 BuildMI (BB, X86::CMPrr32, 2,
Brian Gaeke6559bb92002-11-14 22:32:30 +0000248 X86::EFLAGS).addReg (reg1).addReg (reg2);
Brian Gaeke1749d632002-11-07 17:59:21 +0000249 break;
250 case 8:
251 default:
252 visitInstruction (I);
253 break;
254 }
255 }
256 // Emit setOp instruction (extract concode; clobbers ax),
257 // using the following mapping:
258 // LLVM -> X86 signed X86 unsigned
259 // ----- ----- -----
260 // seteq -> sete sete
261 // setne -> setne setne
262 // setlt -> setl setb
263 // setgt -> setg seta
264 // setle -> setle setbe
265 // setge -> setge setae
266 switch (I.getOpcode ())
267 {
268 case Instruction::SetEQ:
269 BuildMI (BB, X86::SETE, 0, X86::AL);
270 break;
271 case Instruction::SetGE:
272 if (unsignedComparison)
273 BuildMI (BB, X86::SETAE, 0, X86::AL);
274 else
275 BuildMI (BB, X86::SETGE, 0, X86::AL);
276 break;
277 case Instruction::SetGT:
278 if (unsignedComparison)
279 BuildMI (BB, X86::SETA, 0, X86::AL);
280 else
281 BuildMI (BB, X86::SETG, 0, X86::AL);
282 break;
283 case Instruction::SetLE:
284 if (unsignedComparison)
285 BuildMI (BB, X86::SETBE, 0, X86::AL);
286 else
287 BuildMI (BB, X86::SETLE, 0, X86::AL);
288 break;
289 case Instruction::SetLT:
290 if (unsignedComparison)
291 BuildMI (BB, X86::SETB, 0, X86::AL);
292 else
293 BuildMI (BB, X86::SETL, 0, X86::AL);
294 break;
295 case Instruction::SetNE:
296 BuildMI (BB, X86::SETNE, 0, X86::AL);
297 break;
298 default:
299 visitInstruction (I);
300 break;
301 }
302 // Put it in the result using a move.
303 switch (resultWidth)
304 {
305 case 1:
306 BuildMI (BB, X86::MOVrr8, 1, resultReg).addReg (X86::AL);
307 break;
Brian Gaeke1749d632002-11-07 17:59:21 +0000308 case 2:
Brian Gaeke6559bb92002-11-14 22:32:30 +0000309 BuildMI (BB, X86::MOVZXr16r8, 1, resultReg).addReg (X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000310 break;
311 case 4:
Brian Gaeke6559bb92002-11-14 22:32:30 +0000312 BuildMI (BB, X86::MOVZXr32r8, 1, resultReg).addReg (X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000313 break;
314 case 8:
315 default:
316 visitInstruction (I);
317 break;
318 }
319}
Chris Lattner51b49a92002-11-02 19:45:49 +0000320
Chris Lattnerc5291f52002-10-27 21:16:59 +0000321
Chris Lattner72614082002-10-25 22:55:53 +0000322/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
323/// we have the following possibilities:
324///
325/// ret void: No return value, simply emit a 'ret' instruction
326/// ret sbyte, ubyte : Extend value into EAX and return
327/// ret short, ushort: Extend value into EAX and return
328/// ret int, uint : Move value into EAX and return
329/// ret pointer : Move value into EAX and return
330/// ret long, ulong : Move value into EAX/EDX (?) and return
331/// ret float/double : ? Top of FP stack? XMM0?
332///
Chris Lattner6fc3c522002-11-17 21:11:55 +0000333void ISel::visitReturnInst (ReturnInst &I) {
Chris Lattner43189d12002-11-17 20:07:45 +0000334 if (I.getNumOperands() == 0) {
335 // Emit a 'ret' instruction
336 BuildMI(BB, X86::RET, 0);
337 return;
338 }
339
340 unsigned val = getReg(I.getOperand(0));
Chris Lattner6fc3c522002-11-17 21:11:55 +0000341 unsigned Class = getClass(I.getOperand(0)->getType());
Chris Lattner43189d12002-11-17 20:07:45 +0000342 bool isUnsigned = I.getOperand(0)->getType()->isUnsigned();
343 switch (Class) {
344 case cByte:
345 // ret sbyte, ubyte: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000346 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000347 BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000348 else
Chris Lattner43189d12002-11-17 20:07:45 +0000349 BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000350 break;
351 case cShort:
352 // ret short, ushort: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000353 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000354 BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000355 else
Chris Lattner43189d12002-11-17 20:07:45 +0000356 BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000357 break;
358 case cInt:
359 // ret int, uint, ptr: Move value into EAX and return
360 // MOV EAX, <val>
361 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val);
362 break;
363
364 // ret float/double: top of FP stack
365 // FLD <val>
366 case cFloat: // Floats
367 BuildMI(BB, X86::FLDr4, 1).addReg(val);
368 break;
369 case cDouble: // Doubles
370 BuildMI(BB, X86::FLDr8, 1).addReg(val);
371 break;
372 case cLong:
373 // ret long: use EAX(least significant 32 bits)/EDX (most
374 // significant 32)...uh, I think so Brain, but how do i call
375 // up the two parts of the value from inside this mouse
376 // cage? *zort*
377 default:
378 visitInstruction(I);
379 }
380
381 // Emit a 'ret' instruction
382 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000383}
384
Chris Lattner51b49a92002-11-02 19:45:49 +0000385/// visitBranchInst - Handle conditional and unconditional branches here. Note
386/// that since code layout is frozen at this point, that if we are trying to
387/// jump to a block that is the immediate successor of the current block, we can
388/// just make a fall-through. (but we don't currently).
389///
Chris Lattner2df035b2002-11-02 19:27:56 +0000390void ISel::visitBranchInst(BranchInst &BI) {
391 if (BI.isConditional()) // Only handles unconditional branches so far...
392 visitInstruction(BI);
393
394 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
395}
396
397
Chris Lattner68aad932002-11-02 20:13:22 +0000398/// visitSimpleBinary - Implement simple binary operators for integral types...
399/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
400/// 4 for Xor.
401///
402void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
403 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000404 visitInstruction(B);
405
406 unsigned Class = getClass(B.getType());
407 if (Class > 2) // FIXME: Handle longs
408 visitInstruction(B);
409
410 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000411 // Arithmetic operators
412 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
413 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
414
415 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000416 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
417 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
418 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
419 };
420
421 unsigned Opcode = OpcodeTab[OperatorClass][Class];
422 unsigned Op0r = getReg(B.getOperand(0));
423 unsigned Op1r = getReg(B.getOperand(1));
424 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
425}
426
Chris Lattnerca9671d2002-11-02 20:28:58 +0000427/// visitMul - Multiplies are not simple binary operators because they must deal
428/// with the EAX register explicitly.
429///
430void ISel::visitMul(BinaryOperator &I) {
431 unsigned Class = getClass(I.getType());
432 if (Class > 2) // FIXME: Handle longs
433 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000434
Chris Lattnerca9671d2002-11-02 20:28:58 +0000435 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
436 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
437 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
438
439 unsigned Reg = Regs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000440 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerca9671d2002-11-02 20:28:58 +0000441 unsigned Op1Reg = getReg(I.getOperand(1));
442
443 // Put the first operand into one of the A registers...
444 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
445
446 // Emit the appropriate multiple instruction...
447 // FIXME: We need to mark that this modified AH, DX, or EDX also!!
448 BuildMI(BB, MulOpcode[Class], 2, Reg).addReg(Reg).addReg(Op1Reg);
449
450 // Put the result into the destination register...
451 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000452}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000453
Chris Lattnerf01729e2002-11-02 20:54:46 +0000454/// visitDivRem - Handle division and remainder instructions... these
455/// instruction both require the same instructions to be generated, they just
456/// select the result from a different register. Note that both of these
457/// instructions work differently for signed and unsigned operands.
458///
459void ISel::visitDivRem(BinaryOperator &I) {
460 unsigned Class = getClass(I.getType());
461 if (Class > 2) // FIXME: Handle longs
462 visitInstruction(I);
463
464 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
465 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000466 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000467 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
468 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
469
470 static const unsigned DivOpcode[][4] = {
471 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
472 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
473 };
474
475 bool isSigned = I.getType()->isSigned();
476 unsigned Reg = Regs[Class];
477 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000478 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000479 unsigned Op1Reg = getReg(I.getOperand(1));
480
481 // Put the first operand into one of the A registers...
482 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
483
484 if (isSigned) {
485 // Emit a sign extension instruction...
486 BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
487 } else {
488 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
489 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
490 }
491
492 // Figure out which register we want to pick the result out of...
493 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
494
Brian Gaeke6559bb92002-11-14 22:32:30 +0000495 // Emit the appropriate divide or remainder instruction...
Chris Lattnerf01729e2002-11-02 20:54:46 +0000496 // FIXME: We need to mark that this modified AH, DX, or EDX also!!
497 BuildMI(BB,DivOpcode[isSigned][Class], 2, DestReg).addReg(Reg).addReg(Op1Reg);
498
499 // Put the result into the destination register...
500 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000501}
Chris Lattnere2954c82002-11-02 20:04:26 +0000502
Brian Gaekea1719c92002-10-31 23:03:59 +0000503/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
504/// for constant immediate shift values, and for constant immediate
505/// shift values equal to 1. Even the general case is sort of special,
506/// because the shift amount has to be in CL, not just any old register.
507///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000508void ISel::visitShiftInst (ShiftInst &I) {
509 unsigned Op0r = getReg (I.getOperand(0));
510 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000511 bool isLeftShift = I.getOpcode() == Instruction::Shl;
512 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000513 unsigned OperandClass = getClass(I.getType());
514
515 if (OperandClass > 2)
516 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000517
Brian Gaekea1719c92002-10-31 23:03:59 +0000518 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
519 {
Chris Lattner796df732002-11-02 00:44:25 +0000520 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
521 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
522 unsigned char shAmt = CUI->getValue();
523
Chris Lattnere9913f22002-11-02 01:41:55 +0000524 static const unsigned ConstantOperand[][4] = {
525 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
526 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
527 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
528 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000529 };
530
Chris Lattnere9913f22002-11-02 01:41:55 +0000531 const unsigned *OpTab = // Figure out the operand table to use
532 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000533
Brian Gaekea1719c92002-10-31 23:03:59 +0000534 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000535 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000536 }
537 else
538 {
539 // The shift amount is non-constant.
540 //
541 // In fact, you can only shift with a variable shift amount if
542 // that amount is already in the CL register, so we have to put it
543 // there first.
544 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000545
Brian Gaekea1719c92002-10-31 23:03:59 +0000546 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000547 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000548
549 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000550 static const unsigned NonConstantOperand[][4] = {
551 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
552 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
553 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
554 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000555 };
556
Chris Lattnere9913f22002-11-02 01:41:55 +0000557 const unsigned *OpTab = // Figure out the operand table to use
558 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000559
Chris Lattnere9913f22002-11-02 01:41:55 +0000560 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
Brian Gaekea1719c92002-10-31 23:03:59 +0000561 }
562}
563
Chris Lattner6fc3c522002-11-17 21:11:55 +0000564/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
565/// instruction.
566///
567void ISel::visitLoadInst(LoadInst &I) {
568 unsigned Class = getClass(I.getType());
569 if (Class > 2) // FIXME: Handle longs and others...
570 visitInstruction(I);
571
572 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
573
574 unsigned AddressReg = getReg(I.getOperand(0));
575 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
576}
577
578/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
579/// instruction.
580///
581void ISel::visitStoreInst(StoreInst &I) {
582 unsigned Class = getClass(I.getOperand(0)->getType());
583 if (Class > 2) // FIXME: Handle longs and others...
584 visitInstruction(I);
585
586 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
587
588 unsigned ValReg = getReg(I.getOperand(0));
589 unsigned AddressReg = getReg(I.getOperand(1));
590 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
591}
592
593
Chris Lattnere2954c82002-11-02 20:04:26 +0000594/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
595///
596void ISel::visitPHINode(PHINode &PN) {
597 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000598
Chris Lattnere2954c82002-11-02 20:04:26 +0000599 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
600 // FIXME: This will put constants after the PHI nodes in the block, which
601 // is invalid. They should be put inline into the PHI node eventually.
602 //
603 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
604 MI->addPCDispOperand(PN.getIncomingBlock(i));
605 }
Chris Lattner72614082002-10-25 22:55:53 +0000606}
607
Brian Gaekea1719c92002-10-31 23:03:59 +0000608
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000609/// createSimpleX86InstructionSelector - This pass converts an LLVM function
610/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000611/// generated code sucks but the implementation is nice and simple.
612///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000613Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
614 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000615}