blob: 2fd7d1dbc04012e95146328828cfda577fb335a7 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
510
511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
Dan Gohman5be18e82009-05-19 02:15:55 +0000520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
Duncan Sands1df98592010-02-16 11:11:14 +0000522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000523 return false;
Duncan Sands1df98592010-02-16 11:11:14 +0000524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000525 return true;
526
Dan Gohman72861302009-05-07 14:39:04 +0000527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
Dan Gohman4dfad292009-06-14 22:51:25 +0000560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
Dan Gohman72861302009-05-07 14:39:04 +0000574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
Dan Gohmana6b35e22009-05-07 19:23:21 +0000589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
Dan Gohman72861302009-05-07 14:39:04 +0000603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
Torok Edwinc23197a2009-07-14 16:55:14 +0000609 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
636 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000644 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000654 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000655 }
656 }
657 }
658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000826
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000828 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000829 return getTruncateExpr(ST->getOperand(), Ty);
830
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000833 return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
Dan Gohman6864db62009-06-18 16:24:47 +0000839 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000842 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000843 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000845 }
846
Dan Gohmanc050fd92009-07-13 20:50:19 +0000847 // The cast wasn't folded; create an explicit cast node.
848 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000849 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000850 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000852 UniqueSCEVs.InsertNode(S, IP);
853 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000854}
855
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000857 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000858 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000859 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000860 assert(isSCEVable(Ty) &&
861 "This is not a conversion to a SCEVable type!");
862 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000863
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000864 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000865 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000866 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000867 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000869 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000870 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000871
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000873 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000874 return getZeroExtendExpr(SZ->getOperand(), Ty);
875
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000876 // Before doing any expensive analysis, check to see if we've already
877 // computed a SCEV for this Op and Ty.
878 FoldingSetNodeID ID;
879 ID.AddInteger(scZeroExtend);
880 ID.AddPointer(Op);
881 ID.AddPointer(Ty);
882 void *IP = 0;
883 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000888 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000890 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000891 const SCEV *Start = AR->getStart();
892 const SCEV *Step = AR->getStepRecurrence(*this);
893 unsigned BitWidth = getTypeSizeInBits(AR->getType());
894 const Loop *L = AR->getLoop();
895
Dan Gohmaneb490a72009-07-25 01:22:26 +0000896 // If we have special knowledge that this addrec won't overflow,
897 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000898 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000899 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900 getZeroExtendExpr(Step, Ty),
901 L);
902
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // Check whether the backedge-taken count is SCEVCouldNotCompute.
904 // Note that this serves two purposes: It filters out loops that are
905 // simply not analyzable, and it covers the case where this code is
906 // being called from within backedge-taken count analysis, such that
907 // attempting to ask for the backedge-taken count would likely result
908 // in infinite recursion. In the later case, the analysis code will
909 // cope with a conservative value, and it will take care to purge
910 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000911 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000913 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000914 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000915
916 // Check whether the backedge-taken count can be losslessly casted to
917 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000919 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000920 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000921 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000923 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000924 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000925 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000926 const SCEV *Add = getAddExpr(Start, ZMul);
927 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000928 getAddExpr(getZeroExtendExpr(Start, WideTy),
929 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930 getZeroExtendExpr(Step, WideTy)));
931 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000932 // Return the expression with the addrec on the outside.
933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000936
937 // Similar to above, only this time treat the step value as signed.
938 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000939 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000940 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000941 OperandExtendedAdd =
942 getAddExpr(getZeroExtendExpr(Start, WideTy),
943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944 getSignExtendExpr(Step, WideTy)));
945 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 L);
950 }
951
952 // If the backedge is guarded by a comparison with the pre-inc value
953 // the addrec is safe. Also, if the entry is guarded by a comparison
954 // with the start value and the backedge is guarded by a comparison
955 // with the post-inc value, the addrec is safe.
956 if (isKnownPositive(Step)) {
957 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958 getUnsignedRange(Step).getUnsignedMax());
959 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000960 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000961 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962 AR->getPostIncExpr(*this), N)))
963 // Return the expression with the addrec on the outside.
964 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965 getZeroExtendExpr(Step, Ty),
966 L);
967 } else if (isKnownNegative(Step)) {
968 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000970 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
971 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973 AR->getPostIncExpr(*this), N)))
974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976 getSignExtendExpr(Step, Ty),
977 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000978 }
979 }
980 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000981
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000982 // The cast wasn't folded; create an explicit cast node.
983 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000985 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000987 UniqueSCEVs.InsertNode(S, IP);
988 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000989}
990
Dan Gohman0bba49c2009-07-07 17:06:11 +0000991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000992 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000993 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000994 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000995 assert(isSCEVable(Ty) &&
996 "This is not a conversion to a SCEVable type!");
997 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000998
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000999 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001000 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001001 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001002 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001004 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001005 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001006
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001008 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001009 return getSignExtendExpr(SS->getOperand(), Ty);
1010
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001011 // Before doing any expensive analysis, check to see if we've already
1012 // computed a SCEV for this Op and Ty.
1013 FoldingSetNodeID ID;
1014 ID.AddInteger(scSignExtend);
1015 ID.AddPointer(Op);
1016 ID.AddPointer(Ty);
1017 void *IP = 0;
1018 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001023 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001024 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 const SCEV *Start = AR->getStart();
1027 const SCEV *Step = AR->getStepRecurrence(*this);
1028 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029 const Loop *L = AR->getLoop();
1030
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 // If we have special knowledge that this addrec won't overflow,
1032 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001033 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001034 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
1036 L);
1037
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039 // Note that this serves two purposes: It filters out loops that are
1040 // simply not analyzable, and it covers the case where this code is
1041 // being called from within backedge-taken count analysis, such that
1042 // attempting to ask for the backedge-taken count would likely result
1043 // in infinite recursion. In the later case, the analysis code will
1044 // cope with a conservative value, and it will take care to purge
1045 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001046 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001047 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001048 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001050
1051 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001052 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001054 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001055 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001056 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001058 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001059 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001061 const SCEV *Add = getAddExpr(Start, SMul);
1062 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
1064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getSignExtendExpr(Step, WideTy)));
1066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001070 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001071
1072 // Similar to above, only this time treat the step value as unsigned.
1073 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001074 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001075 Add = getAddExpr(Start, UMul);
1076 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001077 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001078 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001080 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001081 // Return the expression with the addrec on the outside.
1082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getZeroExtendExpr(Step, Ty),
1084 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001085 }
1086
1087 // If the backedge is guarded by a comparison with the pre-inc value
1088 // the addrec is safe. Also, if the entry is guarded by a comparison
1089 // with the start value and the backedge is guarded by a comparison
1090 // with the post-inc value, the addrec is safe.
1091 if (isKnownPositive(Step)) {
1092 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093 getSignedRange(Step).getSignedMax());
1094 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001095 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001096 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097 AR->getPostIncExpr(*this), N)))
1098 // Return the expression with the addrec on the outside.
1099 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100 getSignExtendExpr(Step, Ty),
1101 L);
1102 } else if (isKnownNegative(Step)) {
1103 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104 getSignedRange(Step).getSignedMin());
1105 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001106 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108 AR->getPostIncExpr(*this), N)))
1109 // Return the expression with the addrec on the outside.
1110 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111 getSignExtendExpr(Step, Ty),
1112 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001113 }
1114 }
1115 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001116
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001117 // The cast wasn't folded; create an explicit cast node.
1118 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001120 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001122 UniqueSCEVs.InsertNode(S, IP);
1123 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001124}
1125
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001130 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132 "This is not an extending conversion!");
1133 assert(isSCEVable(Ty) &&
1134 "This is not a conversion to a SCEVable type!");
1135 Ty = getEffectiveSCEVType(Ty);
1136
1137 // Sign-extend negative constants.
1138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139 if (SC->getValue()->getValue().isNegative())
1140 return getSignExtendExpr(Op, Ty);
1141
1142 // Peel off a truncate cast.
1143 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001144 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001145 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146 return getAnyExtendExpr(NewOp, Ty);
1147 return getTruncateOrNoop(NewOp, Ty);
1148 }
1149
1150 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001152 if (!isa<SCEVZeroExtendExpr>(ZExt))
1153 return ZExt;
1154
1155 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001157 if (!isa<SCEVSignExtendExpr>(SExt))
1158 return SExt;
1159
Dan Gohmana10756e2010-01-21 02:09:26 +00001160 // Force the cast to be folded into the operands of an addrec.
1161 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162 SmallVector<const SCEV *, 4> Ops;
1163 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164 I != E; ++I)
1165 Ops.push_back(getAnyExtendExpr(*I, Ty));
1166 return getAddRecExpr(Ops, AR->getLoop());
1167 }
1168
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001169 // If the expression is obviously signed, use the sext cast value.
1170 if (isa<SCEVSMaxExpr>(Op))
1171 return SExt;
1172
1173 // Absent any other information, use the zext cast value.
1174 return ZExt;
1175}
1176
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001206 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001207 const APInt &Scale,
1208 ScalarEvolution &SE) {
1209 bool Interesting = false;
1210
1211 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001212 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001213 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215 APInt NewScale =
1216 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001219 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001220 Interesting |=
1221 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001222 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001223 NewScale, SE);
1224 } else {
1225 // A multiplication of a constant with some other value. Update
1226 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001227 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228 const SCEV *Key = SE.getMulExpr(MulOps);
1229 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001230 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232 NewOps.push_back(Pair.first->first);
1233 } else {
1234 Pair.first->second += NewScale;
1235 // The map already had an entry for this value, which may indicate
1236 // a folding opportunity.
1237 Interesting = true;
1238 }
1239 }
1240 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1241 // Pull a buried constant out to the outside.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001242 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001243 Interesting = true;
1244 AccumulatedConstant += Scale * C->getValue()->getValue();
1245 } else {
1246 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001248 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001250 NewOps.push_back(Pair.first->first);
1251 } else {
1252 Pair.first->second += Scale;
1253 // The map already had an entry for this value, which may indicate
1254 // a folding opportunity.
1255 Interesting = true;
1256 }
1257 }
1258 }
1259
1260 return Interesting;
1261}
1262
1263namespace {
1264 struct APIntCompare {
1265 bool operator()(const APInt &LHS, const APInt &RHS) const {
1266 return LHS.ult(RHS);
1267 }
1268 };
1269}
1270
Dan Gohman6c0866c2009-05-24 23:45:28 +00001271/// getAddExpr - Get a canonical add expression, or something simpler if
1272/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001273const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1274 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001275 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001276 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001277#ifndef NDEBUG
1278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1279 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1280 getEffectiveSCEVType(Ops[0]->getType()) &&
1281 "SCEVAddExpr operand types don't match!");
1282#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001283
Dan Gohmana10756e2010-01-21 02:09:26 +00001284 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1285 if (!HasNUW && HasNSW) {
1286 bool All = true;
1287 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1288 if (!isKnownNonNegative(Ops[i])) {
1289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Chris Lattner53e677a2004-04-02 20:23:17 +00001321 // Okay, check to see if the same value occurs in the operand list twice. If
1322 // so, merge them together into an multiply expression. Since we sorted the
1323 // list, these values are required to be adjacent.
1324 const Type *Ty = Ops[0]->getType();
1325 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1326 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1327 // Found a match, merge the two values into a multiply, and add any
1328 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001329 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 if (Ops.size() == 2)
1332 return Mul;
1333 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1334 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001335 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 }
1337
Dan Gohman728c7f32009-05-08 21:03:19 +00001338 // Check for truncates. If all the operands are truncated from the same
1339 // type, see if factoring out the truncate would permit the result to be
1340 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1341 // if the contents of the resulting outer trunc fold to something simple.
1342 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1343 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1344 const Type *DstType = Trunc->getType();
1345 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001346 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001347 bool Ok = true;
1348 // Check all the operands to see if they can be represented in the
1349 // source type of the truncate.
1350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1351 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1352 if (T->getOperand()->getType() != SrcType) {
1353 Ok = false;
1354 break;
1355 }
1356 LargeOps.push_back(T->getOperand());
1357 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001358 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001371 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001372 } else {
1373 Ok = false;
1374 break;
1375 }
1376 }
1377 if (Ok)
1378 LargeOps.push_back(getMulExpr(LargeMulOps));
1379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok) {
1385 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001386 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001387 // If it folds to something simple, use it. Otherwise, don't.
1388 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1389 return getTruncateExpr(Fold, DstType);
1390 }
1391 }
1392
1393 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001394 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1395 ++Idx;
1396
1397 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 if (Idx < Ops.size()) {
1399 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001400 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 // If we have an add, expand the add operands onto the end of the operands
1402 // list.
1403 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1404 Ops.erase(Ops.begin()+Idx);
1405 DeletedAdd = true;
1406 }
1407
1408 // If we deleted at least one add, we added operands to the end of the list,
1409 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001410 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001412 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 }
1414
1415 // Skip over the add expression until we get to a multiply.
1416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1417 ++Idx;
1418
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 // Check to see if there are any folding opportunities present with
1420 // operands multiplied by constant values.
1421 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1422 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 DenseMap<const SCEV *, APInt> M;
1424 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 APInt AccumulatedConstant(BitWidth, 0);
1426 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001427 Ops.data(), Ops.size(),
1428 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 // Some interesting folding opportunity is present, so its worthwhile to
1430 // re-generate the operands list. Group the operands by constant scale,
1431 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1433 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 E = NewOps.end(); I != E; ++I)
1435 MulOpLists[M.find(*I)->second].push_back(*I);
1436 // Re-generate the operands list.
1437 Ops.clear();
1438 if (AccumulatedConstant != 0)
1439 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001440 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1441 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 Ops.push_back(getMulExpr(getConstant(I->first),
1444 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001446 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 if (Ops.size() == 1)
1448 return Ops[0];
1449 return getAddExpr(Ops);
1450 }
1451 }
1452
Chris Lattner53e677a2004-04-02 20:23:17 +00001453 // If we are adding something to a multiply expression, make sure the
1454 // something is not already an operand of the multiply. If so, merge it into
1455 // the multiply.
1456 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001457 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001461 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001463 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 if (Mul->getNumOperands() != 2) {
1465 // If the multiply has more than two operands, we must get the
1466 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001467 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001469 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001471 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001472 const SCEV *AddOne = getAddExpr(InnerMul, One);
1473 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 if (Ops.size() == 2) return OuterMul;
1475 if (AddOp < Idx) {
1476 Ops.erase(Ops.begin()+AddOp);
1477 Ops.erase(Ops.begin()+Idx-1);
1478 } else {
1479 Ops.erase(Ops.begin()+Idx);
1480 Ops.erase(Ops.begin()+AddOp-1);
1481 }
1482 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001483 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001485
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 // Check this multiply against other multiplies being added together.
1487 for (unsigned OtherMulIdx = Idx+1;
1488 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1489 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001490 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 // If MulOp occurs in OtherMul, we can fold the two multiplies
1492 // together.
1493 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1494 OMulOp != e; ++OMulOp)
1495 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1496 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001497 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001499 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1500 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001504 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001506 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1507 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001509 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001511 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1512 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 if (Ops.size() == 2) return OuterMul;
1514 Ops.erase(Ops.begin()+Idx);
1515 Ops.erase(Ops.begin()+OtherMulIdx-1);
1516 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001517 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 }
1519 }
1520 }
1521 }
1522
1523 // If there are any add recurrences in the operands list, see if any other
1524 // added values are loop invariant. If so, we can fold them into the
1525 // recurrence.
1526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1527 ++Idx;
1528
1529 // Scan over all recurrences, trying to fold loop invariants into them.
1530 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1531 // Scan all of the other operands to this add and add them to the vector if
1532 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001534 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001535 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001537 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 LIOps.push_back(Ops[i]);
1539 Ops.erase(Ops.begin()+i);
1540 --i; --e;
1541 }
1542
1543 // If we found some loop invariants, fold them into the recurrence.
1544 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001545 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 LIOps.push_back(AddRec->getStart());
1547
Dan Gohman0bba49c2009-07-07 17:06:11 +00001548 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001549 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001550 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001551
Dan Gohman355b4f32009-12-19 01:46:34 +00001552 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001553 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001554 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001555
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 // If all of the other operands were loop invariant, we are done.
1557 if (Ops.size() == 1) return NewRec;
1558
1559 // Otherwise, add the folded AddRec by the non-liv parts.
1560 for (unsigned i = 0;; ++i)
1561 if (Ops[i] == AddRec) {
1562 Ops[i] = NewRec;
1563 break;
1564 }
Dan Gohman246b2562007-10-22 18:31:58 +00001565 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 }
1567
1568 // Okay, if there weren't any loop invariants to be folded, check to see if
1569 // there are multiple AddRec's with the same loop induction variable being
1570 // added together. If so, we can fold them.
1571 for (unsigned OtherIdx = Idx+1;
1572 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001574 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001575 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001577 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1578 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1580 if (i >= NewOps.size()) {
1581 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1582 OtherAddRec->op_end());
1583 break;
1584 }
Dan Gohman246b2562007-10-22 18:31:58 +00001585 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001587 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588
1589 if (Ops.size() == 2) return NewAddRec;
1590
1591 Ops.erase(Ops.begin()+Idx);
1592 Ops.erase(Ops.begin()+OtherIdx-1);
1593 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001594 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 }
1596 }
1597
1598 // Otherwise couldn't fold anything into this recurrence. Move onto the
1599 // next one.
1600 }
1601
1602 // Okay, it looks like we really DO need an add expr. Check to see if we
1603 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001604 FoldingSetNodeID ID;
1605 ID.AddInteger(scAddExpr);
1606 ID.AddInteger(Ops.size());
1607 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1608 ID.AddPointer(Ops[i]);
1609 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001610 SCEVAddExpr *S =
1611 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1612 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001613 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1614 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001615 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1616 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001617 UniqueSCEVs.InsertNode(S, IP);
1618 }
Dan Gohman3645b012009-10-09 00:10:36 +00001619 if (HasNUW) S->setHasNoUnsignedWrap(true);
1620 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001621 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001622}
1623
Dan Gohman6c0866c2009-05-24 23:45:28 +00001624/// getMulExpr - Get a canonical multiply expression, or something simpler if
1625/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001626const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1627 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001628 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001630#ifndef NDEBUG
1631 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1632 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1633 getEffectiveSCEVType(Ops[0]->getType()) &&
1634 "SCEVMulExpr operand types don't match!");
1635#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001636
Dan Gohmana10756e2010-01-21 02:09:26 +00001637 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1638 if (!HasNUW && HasNSW) {
1639 bool All = true;
1640 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641 if (!isKnownNonNegative(Ops[i])) {
1642 All = false;
1643 break;
1644 }
1645 if (All) HasNUW = true;
1646 }
1647
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001649 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001650
1651 // If there are any constants, fold them together.
1652 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001653 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001654
1655 // C1*(C2+V) -> C1*C2 + C1*V
1656 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001657 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 if (Add->getNumOperands() == 2 &&
1659 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1661 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001664 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001666 ConstantInt *Fold = ConstantInt::get(getContext(),
1667 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001668 RHSC->getValue()->getValue());
1669 Ops[0] = getConstant(Fold);
1670 Ops.erase(Ops.begin()+1); // Erase the folded element
1671 if (Ops.size() == 1) return Ops[0];
1672 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
1674
1675 // If we are left with a constant one being multiplied, strip it off.
1676 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1677 Ops.erase(Ops.begin());
1678 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001679 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 // If we have a multiply of zero, it will always be zero.
1681 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001682 } else if (Ops[0]->isAllOnesValue()) {
1683 // If we have a mul by -1 of an add, try distributing the -1 among the
1684 // add operands.
1685 if (Ops.size() == 2)
1686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1687 SmallVector<const SCEV *, 4> NewOps;
1688 bool AnyFolded = false;
1689 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1690 I != E; ++I) {
1691 const SCEV *Mul = getMulExpr(Ops[0], *I);
1692 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1693 NewOps.push_back(Mul);
1694 }
1695 if (AnyFolded)
1696 return getAddExpr(NewOps);
1697 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001699
1700 if (Ops.size() == 1)
1701 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 }
1703
1704 // Skip over the add expression until we get to a multiply.
1705 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1706 ++Idx;
1707
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 // If there are mul operands inline them all into this expression.
1709 if (Idx < Ops.size()) {
1710 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001711 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 // If we have an mul, expand the mul operands onto the end of the operands
1713 // list.
1714 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1715 Ops.erase(Ops.begin()+Idx);
1716 DeletedMul = true;
1717 }
1718
1719 // If we deleted at least one mul, we added operands to the end of the list,
1720 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001721 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001723 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001724 }
1725
1726 // If there are any add recurrences in the operands list, see if any other
1727 // added values are loop invariant. If so, we can fold them into the
1728 // recurrence.
1729 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1730 ++Idx;
1731
1732 // Scan over all recurrences, trying to fold loop invariants into them.
1733 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1734 // Scan all of the other operands to this mul and add them to the vector if
1735 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001736 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001737 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1739 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1740 LIOps.push_back(Ops[i]);
1741 Ops.erase(Ops.begin()+i);
1742 --i; --e;
1743 }
1744
1745 // If we found some loop invariants, fold them into the recurrence.
1746 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001747 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001748 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001749 NewOps.reserve(AddRec->getNumOperands());
1750 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001751 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001753 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 } else {
1755 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001756 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001758 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 }
1760 }
1761
Dan Gohman355b4f32009-12-19 01:46:34 +00001762 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001763 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001764 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1765 HasNUW && AddRec->hasNoUnsignedWrap(),
1766 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
1768 // If all of the other operands were loop invariant, we are done.
1769 if (Ops.size() == 1) return NewRec;
1770
1771 // Otherwise, multiply the folded AddRec by the non-liv parts.
1772 for (unsigned i = 0;; ++i)
1773 if (Ops[i] == AddRec) {
1774 Ops[i] = NewRec;
1775 break;
1776 }
Dan Gohman246b2562007-10-22 18:31:58 +00001777 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001778 }
1779
1780 // Okay, if there weren't any loop invariants to be folded, check to see if
1781 // there are multiple AddRec's with the same loop induction variable being
1782 // multiplied together. If so, we can fold them.
1783 for (unsigned OtherIdx = Idx+1;
1784 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1785 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001786 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001787 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1788 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001789 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001790 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001792 const SCEV *B = F->getStepRecurrence(*this);
1793 const SCEV *D = G->getStepRecurrence(*this);
1794 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001795 getMulExpr(G, B),
1796 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001797 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001798 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 if (Ops.size() == 2) return NewAddRec;
1800
1801 Ops.erase(Ops.begin()+Idx);
1802 Ops.erase(Ops.begin()+OtherIdx-1);
1803 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001804 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001805 }
1806 }
1807
1808 // Otherwise couldn't fold anything into this recurrence. Move onto the
1809 // next one.
1810 }
1811
1812 // Okay, it looks like we really DO need an mul expr. Check to see if we
1813 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001814 FoldingSetNodeID ID;
1815 ID.AddInteger(scMulExpr);
1816 ID.AddInteger(Ops.size());
1817 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818 ID.AddPointer(Ops[i]);
1819 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001820 SCEVMulExpr *S =
1821 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001823 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001825 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1826 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 UniqueSCEVs.InsertNode(S, IP);
1828 }
Dan Gohman3645b012009-10-09 00:10:36 +00001829 if (HasNUW) S->setHasNoUnsignedWrap(true);
1830 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001831 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001832}
1833
Andreas Bolka8a11c982009-08-07 22:55:26 +00001834/// getUDivExpr - Get a canonical unsigned division expression, or something
1835/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001836const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1837 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001838 assert(getEffectiveSCEVType(LHS->getType()) ==
1839 getEffectiveSCEVType(RHS->getType()) &&
1840 "SCEVUDivExpr operand types don't match!");
1841
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001844 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001845 // If the denominator is zero, the result of the udiv is undefined. Don't
1846 // try to analyze it, because the resolution chosen here may differ from
1847 // the resolution chosen in other parts of the compiler.
1848 if (!RHSC->getValue()->isZero()) {
1849 // Determine if the division can be folded into the operands of
1850 // its operands.
1851 // TODO: Generalize this to non-constants by using known-bits information.
1852 const Type *Ty = LHS->getType();
1853 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855 // For non-power-of-two values, effectively round the value up to the
1856 // nearest power of two.
1857 if (!RHSC->getValue()->getValue().isPowerOf2())
1858 ++MaxShiftAmt;
1859 const IntegerType *ExtTy =
1860 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1861 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863 if (const SCEVConstant *Step =
1864 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865 if (!Step->getValue()->getValue()
1866 .urem(RHSC->getValue()->getValue()) &&
1867 getZeroExtendExpr(AR, ExtTy) ==
1868 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869 getZeroExtendExpr(Step, ExtTy),
1870 AR->getLoop())) {
1871 SmallVector<const SCEV *, 4> Operands;
1872 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001875 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001876 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1877 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1878 SmallVector<const SCEV *, 4> Operands;
1879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1882 // Find an operand that's safely divisible.
1883 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1884 const SCEV *Op = M->getOperand(i);
1885 const SCEV *Div = getUDivExpr(Op, RHSC);
1886 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1887 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1888 M->op_end());
1889 Operands[i] = Div;
1890 return getMulExpr(Operands);
1891 }
1892 }
Dan Gohman185cf032009-05-08 20:18:49 +00001893 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001894 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1895 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1896 SmallVector<const SCEV *, 4> Operands;
1897 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1898 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1899 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1900 Operands.clear();
1901 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1902 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1903 if (isa<SCEVUDivExpr>(Op) ||
1904 getMulExpr(Op, RHS) != A->getOperand(i))
1905 break;
1906 Operands.push_back(Op);
1907 }
1908 if (Operands.size() == A->getNumOperands())
1909 return getAddExpr(Operands);
1910 }
1911 }
Dan Gohman185cf032009-05-08 20:18:49 +00001912
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001913 // Fold if both operands are constant.
1914 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1915 Constant *LHSCV = LHSC->getValue();
1916 Constant *RHSCV = RHSC->getValue();
1917 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1918 RHSCV)));
1919 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 }
1921 }
1922
Dan Gohman1c343752009-06-27 21:21:31 +00001923 FoldingSetNodeID ID;
1924 ID.AddInteger(scUDivExpr);
1925 ID.AddPointer(LHS);
1926 ID.AddPointer(RHS);
1927 void *IP = 0;
1928 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001929 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1930 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001931 UniqueSCEVs.InsertNode(S, IP);
1932 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001933}
1934
1935
Dan Gohman6c0866c2009-05-24 23:45:28 +00001936/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1937/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001939 const SCEV *Step, const Loop *L,
1940 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001941 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001942 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001943 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001944 if (StepChrec->getLoop() == L) {
1945 Operands.insert(Operands.end(), StepChrec->op_begin(),
1946 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001947 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001948 }
1949
1950 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001951 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001952}
1953
Dan Gohman6c0866c2009-05-24 23:45:28 +00001954/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1955/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001956const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001957ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001958 const Loop *L,
1959 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001960 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001961#ifndef NDEBUG
1962 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1963 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1964 getEffectiveSCEVType(Operands[0]->getType()) &&
1965 "SCEVAddRecExpr operand types don't match!");
1966#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001967
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001968 if (Operands.back()->isZero()) {
1969 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001970 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001971 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001972
Dan Gohmanbc028532010-02-19 18:49:22 +00001973 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1974 // use that information to infer NUW and NSW flags. However, computing a
1975 // BE count requires calling getAddRecExpr, so we may not yet have a
1976 // meaningful BE count at this point (and if we don't, we'd be stuck
1977 // with a SCEVCouldNotCompute as the cached BE count).
1978
Dan Gohmana10756e2010-01-21 02:09:26 +00001979 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1980 if (!HasNUW && HasNSW) {
1981 bool All = true;
1982 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1983 if (!isKnownNonNegative(Operands[i])) {
1984 All = false;
1985 break;
1986 }
1987 if (All) HasNUW = true;
1988 }
1989
Dan Gohmand9cc7492008-08-08 18:33:12 +00001990 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001991 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001992 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001993 if (L->contains(NestedLoop->getHeader()) ?
1994 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1995 (!NestedLoop->contains(L->getHeader()) &&
1996 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001997 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001998 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001999 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002000 // AddRecs require their operands be loop-invariant with respect to their
2001 // loops. Don't perform this transformation if it would break this
2002 // requirement.
2003 bool AllInvariant = true;
2004 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2005 if (!Operands[i]->isLoopInvariant(L)) {
2006 AllInvariant = false;
2007 break;
2008 }
2009 if (AllInvariant) {
2010 NestedOperands[0] = getAddRecExpr(Operands, L);
2011 AllInvariant = true;
2012 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2013 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2014 AllInvariant = false;
2015 break;
2016 }
2017 if (AllInvariant)
2018 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002019 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002020 }
2021 // Reset Operands to its original state.
2022 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002023 }
2024 }
2025
Dan Gohman67847532010-01-19 22:27:22 +00002026 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2027 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002028 FoldingSetNodeID ID;
2029 ID.AddInteger(scAddRecExpr);
2030 ID.AddInteger(Operands.size());
2031 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2032 ID.AddPointer(Operands[i]);
2033 ID.AddPointer(L);
2034 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002035 SCEVAddRecExpr *S =
2036 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2037 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002038 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2039 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002040 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2041 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002042 UniqueSCEVs.InsertNode(S, IP);
2043 }
Dan Gohman3645b012009-10-09 00:10:36 +00002044 if (HasNUW) S->setHasNoUnsignedWrap(true);
2045 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002046 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002047}
2048
Dan Gohman9311ef62009-06-24 14:49:00 +00002049const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2050 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002051 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002052 Ops.push_back(LHS);
2053 Ops.push_back(RHS);
2054 return getSMaxExpr(Ops);
2055}
2056
Dan Gohman0bba49c2009-07-07 17:06:11 +00002057const SCEV *
2058ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002059 assert(!Ops.empty() && "Cannot get empty smax!");
2060 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002061#ifndef NDEBUG
2062 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2063 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2064 getEffectiveSCEVType(Ops[0]->getType()) &&
2065 "SCEVSMaxExpr operand types don't match!");
2066#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002067
2068 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002069 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002070
2071 // If there are any constants, fold them together.
2072 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002073 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002074 ++Idx;
2075 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002076 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002077 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002078 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 APIntOps::smax(LHSC->getValue()->getValue(),
2080 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002081 Ops[0] = getConstant(Fold);
2082 Ops.erase(Ops.begin()+1); // Erase the folded element
2083 if (Ops.size() == 1) return Ops[0];
2084 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002085 }
2086
Dan Gohmane5aceed2009-06-24 14:46:22 +00002087 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002088 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2089 Ops.erase(Ops.begin());
2090 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002091 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2092 // If we have an smax with a constant maximum-int, it will always be
2093 // maximum-int.
2094 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002095 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002096
Dan Gohman3ab13122010-04-13 16:49:23 +00002097 if (Ops.size() == 1) return Ops[0];
2098 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002099
2100 // Find the first SMax
2101 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2102 ++Idx;
2103
2104 // Check to see if one of the operands is an SMax. If so, expand its operands
2105 // onto our operand list, and recurse to simplify.
2106 if (Idx < Ops.size()) {
2107 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002108 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002109 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2110 Ops.erase(Ops.begin()+Idx);
2111 DeletedSMax = true;
2112 }
2113
2114 if (DeletedSMax)
2115 return getSMaxExpr(Ops);
2116 }
2117
2118 // Okay, check to see if the same value occurs in the operand list twice. If
2119 // so, delete one. Since we sorted the list, these values are required to
2120 // be adjacent.
2121 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002122 // X smax Y smax Y --> X smax Y
2123 // X smax Y --> X, if X is always greater than Y
2124 if (Ops[i] == Ops[i+1] ||
2125 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2126 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2127 --i; --e;
2128 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2130 --i; --e;
2131 }
2132
2133 if (Ops.size() == 1) return Ops[0];
2134
2135 assert(!Ops.empty() && "Reduced smax down to nothing!");
2136
Nick Lewycky3e630762008-02-20 06:48:22 +00002137 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002139 FoldingSetNodeID ID;
2140 ID.AddInteger(scSMaxExpr);
2141 ID.AddInteger(Ops.size());
2142 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2143 ID.AddPointer(Ops[i]);
2144 void *IP = 0;
2145 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002146 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2147 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002148 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2149 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002150 UniqueSCEVs.InsertNode(S, IP);
2151 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002152}
2153
Dan Gohman9311ef62009-06-24 14:49:00 +00002154const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2155 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002156 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002157 Ops.push_back(LHS);
2158 Ops.push_back(RHS);
2159 return getUMaxExpr(Ops);
2160}
2161
Dan Gohman0bba49c2009-07-07 17:06:11 +00002162const SCEV *
2163ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002164 assert(!Ops.empty() && "Cannot get empty umax!");
2165 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002166#ifndef NDEBUG
2167 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2168 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2169 getEffectiveSCEVType(Ops[0]->getType()) &&
2170 "SCEVUMaxExpr operand types don't match!");
2171#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002172
2173 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002174 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002175
2176 // If there are any constants, fold them together.
2177 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002178 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002179 ++Idx;
2180 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002181 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002182 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002183 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 APIntOps::umax(LHSC->getValue()->getValue(),
2185 RHSC->getValue()->getValue()));
2186 Ops[0] = getConstant(Fold);
2187 Ops.erase(Ops.begin()+1); // Erase the folded element
2188 if (Ops.size() == 1) return Ops[0];
2189 LHSC = cast<SCEVConstant>(Ops[0]);
2190 }
2191
Dan Gohmane5aceed2009-06-24 14:46:22 +00002192 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002193 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2194 Ops.erase(Ops.begin());
2195 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002196 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2197 // If we have an umax with a constant maximum-int, it will always be
2198 // maximum-int.
2199 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002200 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002201
Dan Gohman3ab13122010-04-13 16:49:23 +00002202 if (Ops.size() == 1) return Ops[0];
2203 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002204
2205 // Find the first UMax
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2207 ++Idx;
2208
2209 // Check to see if one of the operands is a UMax. If so, expand its operands
2210 // onto our operand list, and recurse to simplify.
2211 if (Idx < Ops.size()) {
2212 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002213 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002214 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2215 Ops.erase(Ops.begin()+Idx);
2216 DeletedUMax = true;
2217 }
2218
2219 if (DeletedUMax)
2220 return getUMaxExpr(Ops);
2221 }
2222
2223 // Okay, check to see if the same value occurs in the operand list twice. If
2224 // so, delete one. Since we sorted the list, these values are required to
2225 // be adjacent.
2226 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002227 // X umax Y umax Y --> X umax Y
2228 // X umax Y --> X, if X is always greater than Y
2229 if (Ops[i] == Ops[i+1] ||
2230 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2231 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232 --i; --e;
2233 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002234 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235 --i; --e;
2236 }
2237
2238 if (Ops.size() == 1) return Ops[0];
2239
2240 assert(!Ops.empty() && "Reduced umax down to nothing!");
2241
2242 // Okay, it looks like we really DO need a umax expr. Check to see if we
2243 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002244 FoldingSetNodeID ID;
2245 ID.AddInteger(scUMaxExpr);
2246 ID.AddInteger(Ops.size());
2247 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2248 ID.AddPointer(Ops[i]);
2249 void *IP = 0;
2250 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002251 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2252 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002253 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2254 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002255 UniqueSCEVs.InsertNode(S, IP);
2256 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002257}
2258
Dan Gohman9311ef62009-06-24 14:49:00 +00002259const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002261 // ~smax(~x, ~y) == smin(x, y).
2262 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2263}
2264
Dan Gohman9311ef62009-06-24 14:49:00 +00002265const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2266 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002267 // ~umax(~x, ~y) == umin(x, y)
2268 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2269}
2270
Dan Gohman4f8eea82010-02-01 18:27:38 +00002271const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002272 // If we have TargetData, we can bypass creating a target-independent
2273 // constant expression and then folding it back into a ConstantInt.
2274 // This is just a compile-time optimization.
2275 if (TD)
2276 return getConstant(TD->getIntPtrType(getContext()),
2277 TD->getTypeAllocSize(AllocTy));
2278
Dan Gohman4f8eea82010-02-01 18:27:38 +00002279 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002281 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2282 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002283 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2284 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2285}
2286
2287const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2288 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002290 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2291 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002292 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2293 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2294}
2295
2296const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2297 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002298 // If we have TargetData, we can bypass creating a target-independent
2299 // constant expression and then folding it back into a ConstantInt.
2300 // This is just a compile-time optimization.
2301 if (TD)
2302 return getConstant(TD->getIntPtrType(getContext()),
2303 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2304
Dan Gohman0f5efe52010-01-28 02:15:55 +00002305 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2306 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002307 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2308 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002309 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002310 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002311}
2312
Dan Gohman4f8eea82010-02-01 18:27:38 +00002313const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2314 Constant *FieldNo) {
2315 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002317 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2318 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002319 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002320 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002321}
2322
Dan Gohman0bba49c2009-07-07 17:06:11 +00002323const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002324 // Don't attempt to do anything other than create a SCEVUnknown object
2325 // here. createSCEV only calls getUnknown after checking for all other
2326 // interesting possibilities, and any other code that calls getUnknown
2327 // is doing so in order to hide a value from SCEV canonicalization.
2328
Dan Gohman1c343752009-06-27 21:21:31 +00002329 FoldingSetNodeID ID;
2330 ID.AddInteger(scUnknown);
2331 ID.AddPointer(V);
2332 void *IP = 0;
2333 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002334 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002335 UniqueSCEVs.InsertNode(S, IP);
2336 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002337}
2338
Chris Lattner53e677a2004-04-02 20:23:17 +00002339//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002340// Basic SCEV Analysis and PHI Idiom Recognition Code
2341//
2342
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002343/// isSCEVable - Test if values of the given type are analyzable within
2344/// the SCEV framework. This primarily includes integer types, and it
2345/// can optionally include pointer types if the ScalarEvolution class
2346/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002347bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002348 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002349 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002350}
2351
2352/// getTypeSizeInBits - Return the size in bits of the specified type,
2353/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002354uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002355 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2356
2357 // If we have a TargetData, use it!
2358 if (TD)
2359 return TD->getTypeSizeInBits(Ty);
2360
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002361 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002362 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002363 return Ty->getPrimitiveSizeInBits();
2364
2365 // The only other support type is pointer. Without TargetData, conservatively
2366 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002367 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002368 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002369}
2370
2371/// getEffectiveSCEVType - Return a type with the same bitwidth as
2372/// the given type and which represents how SCEV will treat the given
2373/// type, for which isSCEVable must return true. For pointer types,
2374/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002375const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002376 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2377
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002378 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002379 return Ty;
2380
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002381 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002382 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002383 if (TD) return TD->getIntPtrType(getContext());
2384
2385 // Without TargetData, conservatively assume pointers are 64-bit.
2386 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002387}
Chris Lattner53e677a2004-04-02 20:23:17 +00002388
Dan Gohman0bba49c2009-07-07 17:06:11 +00002389const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002390 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002391}
2392
Chris Lattner53e677a2004-04-02 20:23:17 +00002393/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2394/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002395const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002396 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002397
Dan Gohman0bba49c2009-07-07 17:06:11 +00002398 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002399 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002400 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002401 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002402 return S;
2403}
2404
Dan Gohman6bbcba12009-06-24 00:54:57 +00002405/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002406/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002407const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002408 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002409 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002410}
2411
2412/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2413///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002414const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002415 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002416 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002417 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002418
2419 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002420 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002421 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002422 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002423}
2424
2425/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002426const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002427 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002428 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002429 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002430
2431 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002432 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002433 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002434 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002435 return getMinusSCEV(AllOnes, V);
2436}
2437
2438/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2439///
Dan Gohman9311ef62009-06-24 14:49:00 +00002440const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2441 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002442 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002443 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002444}
2445
2446/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2447/// input value to the specified type. If the type must be extended, it is zero
2448/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002449const SCEV *
2450ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002451 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002452 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002453 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2454 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002455 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002456 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002457 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002458 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002459 return getTruncateExpr(V, Ty);
2460 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002461}
2462
2463/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2464/// input value to the specified type. If the type must be extended, it is sign
2465/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002466const SCEV *
2467ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002468 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002469 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002470 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2471 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002472 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002473 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002474 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002475 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002476 return getTruncateExpr(V, Ty);
2477 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002478}
2479
Dan Gohman467c4302009-05-13 03:46:30 +00002480/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2481/// input value to the specified type. If the type must be extended, it is zero
2482/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483const SCEV *
2484ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002485 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002486 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2487 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002488 "Cannot noop or zero extend with non-integer arguments!");
2489 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2490 "getNoopOrZeroExtend cannot truncate!");
2491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2492 return V; // No conversion
2493 return getZeroExtendExpr(V, Ty);
2494}
2495
2496/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2497/// input value to the specified type. If the type must be extended, it is sign
2498/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002499const SCEV *
2500ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002501 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002502 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2503 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002504 "Cannot noop or sign extend with non-integer arguments!");
2505 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2506 "getNoopOrSignExtend cannot truncate!");
2507 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2508 return V; // No conversion
2509 return getSignExtendExpr(V, Ty);
2510}
2511
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002512/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2513/// the input value to the specified type. If the type must be extended,
2514/// it is extended with unspecified bits. The conversion must not be
2515/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002516const SCEV *
2517ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002518 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002519 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2520 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002521 "Cannot noop or any extend with non-integer arguments!");
2522 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2523 "getNoopOrAnyExtend cannot truncate!");
2524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2525 return V; // No conversion
2526 return getAnyExtendExpr(V, Ty);
2527}
2528
Dan Gohman467c4302009-05-13 03:46:30 +00002529/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2530/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002531const SCEV *
2532ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002533 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002534 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2535 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002536 "Cannot truncate or noop with non-integer arguments!");
2537 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2538 "getTruncateOrNoop cannot extend!");
2539 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2540 return V; // No conversion
2541 return getTruncateExpr(V, Ty);
2542}
2543
Dan Gohmana334aa72009-06-22 00:31:57 +00002544/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2545/// the types using zero-extension, and then perform a umax operation
2546/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002547const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2548 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002549 const SCEV *PromotedLHS = LHS;
2550 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002551
2552 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2553 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2554 else
2555 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2556
2557 return getUMaxExpr(PromotedLHS, PromotedRHS);
2558}
2559
Dan Gohmanc9759e82009-06-22 15:03:27 +00002560/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2561/// the types using zero-extension, and then perform a umin operation
2562/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002563const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2564 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002565 const SCEV *PromotedLHS = LHS;
2566 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002567
2568 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2569 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2570 else
2571 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2572
2573 return getUMinExpr(PromotedLHS, PromotedRHS);
2574}
2575
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002576/// PushDefUseChildren - Push users of the given Instruction
2577/// onto the given Worklist.
2578static void
2579PushDefUseChildren(Instruction *I,
2580 SmallVectorImpl<Instruction *> &Worklist) {
2581 // Push the def-use children onto the Worklist stack.
2582 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2583 UI != UE; ++UI)
2584 Worklist.push_back(cast<Instruction>(UI));
2585}
2586
2587/// ForgetSymbolicValue - This looks up computed SCEV values for all
2588/// instructions that depend on the given instruction and removes them from
2589/// the Scalars map if they reference SymName. This is used during PHI
2590/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002591void
Dan Gohman85669632010-02-25 06:57:05 +00002592ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002593 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002594 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002595
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002596 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002597 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002598 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002599 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002600 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002601
Dan Gohman5d984912009-12-18 01:14:11 +00002602 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002603 Scalars.find(static_cast<Value *>(I));
2604 if (It != Scalars.end()) {
2605 // Short-circuit the def-use traversal if the symbolic name
2606 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002607 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002608 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002609
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002610 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002611 // structure, it's a PHI that's in the progress of being computed
2612 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2613 // additional loop trip count information isn't going to change anything.
2614 // In the second case, createNodeForPHI will perform the necessary
2615 // updates on its own when it gets to that point. In the third, we do
2616 // want to forget the SCEVUnknown.
2617 if (!isa<PHINode>(I) ||
2618 !isa<SCEVUnknown>(It->second) ||
2619 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002620 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002621 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002622 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002623 }
2624
2625 PushDefUseChildren(I, Worklist);
2626 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002627}
Chris Lattner53e677a2004-04-02 20:23:17 +00002628
2629/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2630/// a loop header, making it a potential recurrence, or it doesn't.
2631///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002632const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002633 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2634 if (L->getHeader() == PN->getParent()) {
2635 // The loop may have multiple entrances or multiple exits; we can analyze
2636 // this phi as an addrec if it has a unique entry value and a unique
2637 // backedge value.
2638 Value *BEValueV = 0, *StartValueV = 0;
2639 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2640 Value *V = PN->getIncomingValue(i);
2641 if (L->contains(PN->getIncomingBlock(i))) {
2642 if (!BEValueV) {
2643 BEValueV = V;
2644 } else if (BEValueV != V) {
2645 BEValueV = 0;
2646 break;
2647 }
2648 } else if (!StartValueV) {
2649 StartValueV = V;
2650 } else if (StartValueV != V) {
2651 StartValueV = 0;
2652 break;
2653 }
2654 }
2655 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002656 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002657 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002658 assert(Scalars.find(PN) == Scalars.end() &&
2659 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002660 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002661
2662 // Using this symbolic name for the PHI, analyze the value coming around
2663 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002664 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002665
2666 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2667 // has a special value for the first iteration of the loop.
2668
2669 // If the value coming around the backedge is an add with the symbolic
2670 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002671 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002672 // If there is a single occurrence of the symbolic value, replace it
2673 // with a recurrence.
2674 unsigned FoundIndex = Add->getNumOperands();
2675 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2676 if (Add->getOperand(i) == SymbolicName)
2677 if (FoundIndex == e) {
2678 FoundIndex = i;
2679 break;
2680 }
2681
2682 if (FoundIndex != Add->getNumOperands()) {
2683 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002684 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002685 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2686 if (i != FoundIndex)
2687 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002688 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002689
2690 // This is not a valid addrec if the step amount is varying each
2691 // loop iteration, but is not itself an addrec in this loop.
2692 if (Accum->isLoopInvariant(L) ||
2693 (isa<SCEVAddRecExpr>(Accum) &&
2694 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002695 bool HasNUW = false;
2696 bool HasNSW = false;
2697
2698 // If the increment doesn't overflow, then neither the addrec nor
2699 // the post-increment will overflow.
2700 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2701 if (OBO->hasNoUnsignedWrap())
2702 HasNUW = true;
2703 if (OBO->hasNoSignedWrap())
2704 HasNSW = true;
2705 }
2706
Dan Gohman27dead42010-04-12 07:49:36 +00002707 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002708 const SCEV *PHISCEV =
2709 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002710
Dan Gohmana10756e2010-01-21 02:09:26 +00002711 // Since the no-wrap flags are on the increment, they apply to the
2712 // post-incremented value as well.
2713 if (Accum->isLoopInvariant(L))
2714 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2715 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
2717 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002718 // to be symbolic. We now need to go back and purge all of the
2719 // entries for the scalars that use the symbolic expression.
2720 ForgetSymbolicName(PN, SymbolicName);
2721 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002722 return PHISCEV;
2723 }
2724 }
Dan Gohman622ed672009-05-04 22:02:23 +00002725 } else if (const SCEVAddRecExpr *AddRec =
2726 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002727 // Otherwise, this could be a loop like this:
2728 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2729 // In this case, j = {1,+,1} and BEValue is j.
2730 // Because the other in-value of i (0) fits the evolution of BEValue
2731 // i really is an addrec evolution.
2732 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002733 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002734
2735 // If StartVal = j.start - j.stride, we can use StartVal as the
2736 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002737 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002738 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002739 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002740 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002741
2742 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002743 // to be symbolic. We now need to go back and purge all of the
2744 // entries for the scalars that use the symbolic expression.
2745 ForgetSymbolicName(PN, SymbolicName);
2746 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002747 return PHISCEV;
2748 }
2749 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002750 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002751 }
Dan Gohman27dead42010-04-12 07:49:36 +00002752 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002753
Dan Gohman85669632010-02-25 06:57:05 +00002754 // If the PHI has a single incoming value, follow that value, unless the
2755 // PHI's incoming blocks are in a different loop, in which case doing so
2756 // risks breaking LCSSA form. Instcombine would normally zap these, but
2757 // it doesn't have DominatorTree information, so it may miss cases.
2758 if (Value *V = PN->hasConstantValue(DT)) {
2759 bool AllSameLoop = true;
2760 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2761 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2762 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2763 AllSameLoop = false;
2764 break;
2765 }
2766 if (AllSameLoop)
2767 return getSCEV(V);
2768 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002769
Chris Lattner53e677a2004-04-02 20:23:17 +00002770 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002771 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002772}
2773
Dan Gohman26466c02009-05-08 20:26:55 +00002774/// createNodeForGEP - Expand GEP instructions into add and multiply
2775/// operations. This allows them to be analyzed by regular SCEV code.
2776///
Dan Gohmand281ed22009-12-18 02:09:29 +00002777const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002778
Dan Gohmand281ed22009-12-18 02:09:29 +00002779 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002780 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002781 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002782 // Don't attempt to analyze GEPs over unsized objects.
2783 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2784 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002785 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002786 gep_type_iterator GTI = gep_type_begin(GEP);
2787 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2788 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002789 I != E; ++I) {
2790 Value *Index = *I;
2791 // Compute the (potentially symbolic) offset in bytes for this index.
2792 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2793 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002794 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002795 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002796 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002797 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002798 } else {
2799 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002800 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002801 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002802 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002803 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002804 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002805 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2806 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2807 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002808 }
2809 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002810 return getAddExpr(getSCEV(Base), TotalOffset,
2811 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002812}
2813
Nick Lewycky83bb0052007-11-22 07:59:40 +00002814/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2815/// guaranteed to end in (at every loop iteration). It is, at the same time,
2816/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2817/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002818uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002819ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002821 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002822
Dan Gohman622ed672009-05-04 22:02:23 +00002823 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002824 return std::min(GetMinTrailingZeros(T->getOperand()),
2825 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002826
Dan Gohman622ed672009-05-04 22:02:23 +00002827 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002828 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2829 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2830 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002831 }
2832
Dan Gohman622ed672009-05-04 22:02:23 +00002833 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002834 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2835 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2836 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002837 }
2838
Dan Gohman622ed672009-05-04 22:02:23 +00002839 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002841 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002843 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002844 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002845 }
2846
Dan Gohman622ed672009-05-04 22:02:23 +00002847 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002848 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002849 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2850 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002851 for (unsigned i = 1, e = M->getNumOperands();
2852 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002853 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002854 BitWidth);
2855 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002856 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002857
Dan Gohman622ed672009-05-04 22:02:23 +00002858 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002859 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002860 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002861 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002862 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002863 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002864 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002865
Dan Gohman622ed672009-05-04 22:02:23 +00002866 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002867 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002868 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002869 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002870 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002871 return MinOpRes;
2872 }
2873
Dan Gohman622ed672009-05-04 22:02:23 +00002874 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002875 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002876 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002877 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002878 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002879 return MinOpRes;
2880 }
2881
Dan Gohman2c364ad2009-06-19 23:29:04 +00002882 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2883 // For a SCEVUnknown, ask ValueTracking.
2884 unsigned BitWidth = getTypeSizeInBits(U->getType());
2885 APInt Mask = APInt::getAllOnesValue(BitWidth);
2886 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2887 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2888 return Zeros.countTrailingOnes();
2889 }
2890
2891 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002892 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002893}
Chris Lattner53e677a2004-04-02 20:23:17 +00002894
Dan Gohman85b05a22009-07-13 21:35:55 +00002895/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2896///
2897ConstantRange
2898ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002899
2900 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002901 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002902
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002903 unsigned BitWidth = getTypeSizeInBits(S->getType());
2904 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2905
2906 // If the value has known zeros, the maximum unsigned value will have those
2907 // known zeros as well.
2908 uint32_t TZ = GetMinTrailingZeros(S);
2909 if (TZ != 0)
2910 ConservativeResult =
2911 ConstantRange(APInt::getMinValue(BitWidth),
2912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2913
Dan Gohman85b05a22009-07-13 21:35:55 +00002914 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2915 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2916 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2917 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002918 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002919 }
2920
2921 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2922 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2923 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2924 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002925 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002926 }
2927
2928 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2929 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2930 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2931 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002932 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002933 }
2934
2935 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2936 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2937 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2938 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002939 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002940 }
2941
2942 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2943 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2944 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002945 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002946 }
2947
2948 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2949 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002950 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002951 }
2952
2953 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2954 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002955 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002956 }
2957
2958 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2959 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002960 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002961 }
2962
Dan Gohman85b05a22009-07-13 21:35:55 +00002963 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002964 // If there's no unsigned wrap, the value will never be less than its
2965 // initial value.
2966 if (AddRec->hasNoUnsignedWrap())
2967 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002968 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002969 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002970 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002971
2972 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002973 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002974 const Type *Ty = AddRec->getType();
2975 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002976 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2977 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002978 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2979
2980 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002981 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002982
2983 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002984 ConstantRange StepRange = getSignedRange(Step);
2985 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2986 ConstantRange EndRange =
2987 StartRange.add(MaxBECountRange.multiply(StepRange));
2988
2989 // Check for overflow. This must be done with ConstantRange arithmetic
2990 // because we could be called from within the ScalarEvolution overflow
2991 // checking code.
2992 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2993 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2994 ConstantRange ExtMaxBECountRange =
2995 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2996 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2997 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2998 ExtEndRange)
2999 return ConservativeResult;
3000
Dan Gohman85b05a22009-07-13 21:35:55 +00003001 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3002 EndRange.getUnsignedMin());
3003 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3004 EndRange.getUnsignedMax());
3005 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003006 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003007 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003008 }
3009 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003010
3011 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012 }
3013
3014 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3015 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003016 APInt Mask = APInt::getAllOnesValue(BitWidth);
3017 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3018 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003019 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003020 return ConservativeResult;
3021 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003022 }
3023
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003024 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003025}
3026
Dan Gohman85b05a22009-07-13 21:35:55 +00003027/// getSignedRange - Determine the signed range for a particular SCEV.
3028///
3029ConstantRange
3030ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003031
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3033 return ConstantRange(C->getValue()->getValue());
3034
Dan Gohman52fddd32010-01-26 04:40:18 +00003035 unsigned BitWidth = getTypeSizeInBits(S->getType());
3036 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3037
3038 // If the value has known zeros, the maximum signed value will have those
3039 // known zeros as well.
3040 uint32_t TZ = GetMinTrailingZeros(S);
3041 if (TZ != 0)
3042 ConservativeResult =
3043 ConstantRange(APInt::getSignedMinValue(BitWidth),
3044 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3045
Dan Gohman85b05a22009-07-13 21:35:55 +00003046 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3047 ConstantRange X = getSignedRange(Add->getOperand(0));
3048 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3049 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003050 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003051 }
3052
Dan Gohman85b05a22009-07-13 21:35:55 +00003053 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3054 ConstantRange X = getSignedRange(Mul->getOperand(0));
3055 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3056 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003057 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003058 }
3059
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3061 ConstantRange X = getSignedRange(SMax->getOperand(0));
3062 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3063 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003064 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003065 }
Dan Gohman62849c02009-06-24 01:05:09 +00003066
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3068 ConstantRange X = getSignedRange(UMax->getOperand(0));
3069 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3070 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003071 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003072 }
Dan Gohman62849c02009-06-24 01:05:09 +00003073
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3075 ConstantRange X = getSignedRange(UDiv->getLHS());
3076 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003077 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003078 }
Dan Gohman62849c02009-06-24 01:05:09 +00003079
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3081 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003082 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003083 }
3084
3085 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3086 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003087 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003088 }
3089
3090 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3091 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003092 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003093 }
3094
Dan Gohman85b05a22009-07-13 21:35:55 +00003095 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003096 // If there's no signed wrap, and all the operands have the same sign or
3097 // zero, the value won't ever change sign.
3098 if (AddRec->hasNoSignedWrap()) {
3099 bool AllNonNeg = true;
3100 bool AllNonPos = true;
3101 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3102 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3103 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3104 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003105 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003106 ConservativeResult = ConservativeResult.intersectWith(
3107 ConstantRange(APInt(BitWidth, 0),
3108 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003109 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003110 ConservativeResult = ConservativeResult.intersectWith(
3111 ConstantRange(APInt::getSignedMinValue(BitWidth),
3112 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003113 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003114
3115 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003116 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 const Type *Ty = AddRec->getType();
3118 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003119 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3120 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3122
3123 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003124 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003125
3126 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003127 ConstantRange StepRange = getSignedRange(Step);
3128 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3129 ConstantRange EndRange =
3130 StartRange.add(MaxBECountRange.multiply(StepRange));
3131
3132 // Check for overflow. This must be done with ConstantRange arithmetic
3133 // because we could be called from within the ScalarEvolution overflow
3134 // checking code.
3135 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3136 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3137 ConstantRange ExtMaxBECountRange =
3138 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3139 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3140 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3141 ExtEndRange)
3142 return ConservativeResult;
3143
Dan Gohman85b05a22009-07-13 21:35:55 +00003144 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3145 EndRange.getSignedMin());
3146 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3147 EndRange.getSignedMax());
3148 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003149 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003151 }
Dan Gohman62849c02009-06-24 01:05:09 +00003152 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003153
3154 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003155 }
3156
Dan Gohman2c364ad2009-06-19 23:29:04 +00003157 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3158 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003159 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003160 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3162 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003163 return ConservativeResult;
3164 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003165 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003166 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003167 }
3168
Dan Gohman52fddd32010-01-26 04:40:18 +00003169 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003170}
3171
Chris Lattner53e677a2004-04-02 20:23:17 +00003172/// createSCEV - We know that there is no SCEV for the specified value.
3173/// Analyze the expression.
3174///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003175const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003176 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003177 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003178
Dan Gohman6c459a22008-06-22 19:56:46 +00003179 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003180 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003181 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003182
3183 // Don't attempt to analyze instructions in blocks that aren't
3184 // reachable. Such instructions don't matter, and they aren't required
3185 // to obey basic rules for definitions dominating uses which this
3186 // analysis depends on.
3187 if (!DT->isReachableFromEntry(I->getParent()))
3188 return getUnknown(V);
3189 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003190 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003191 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3192 return getConstant(CI);
3193 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003194 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003195 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3196 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003197 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003198 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003199
Dan Gohmanca178902009-07-17 20:47:02 +00003200 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003201 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003202 case Instruction::Add:
3203 // Don't transfer the NSW and NUW bits from the Add instruction to the
3204 // Add expression, because the Instruction may be guarded by control
3205 // flow and the no-overflow bits may not be valid for the expression in
3206 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003207 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003208 getSCEV(U->getOperand(1)));
3209 case Instruction::Mul:
3210 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3211 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003212 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003213 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003214 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003215 return getUDivExpr(getSCEV(U->getOperand(0)),
3216 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003217 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003218 return getMinusSCEV(getSCEV(U->getOperand(0)),
3219 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003220 case Instruction::And:
3221 // For an expression like x&255 that merely masks off the high bits,
3222 // use zext(trunc(x)) as the SCEV expression.
3223 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003224 if (CI->isNullValue())
3225 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003226 if (CI->isAllOnesValue())
3227 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003228 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003229
3230 // Instcombine's ShrinkDemandedConstant may strip bits out of
3231 // constants, obscuring what would otherwise be a low-bits mask.
3232 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3233 // knew about to reconstruct a low-bits mask value.
3234 unsigned LZ = A.countLeadingZeros();
3235 unsigned BitWidth = A.getBitWidth();
3236 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3237 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3238 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3239
3240 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3241
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003242 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003243 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003244 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003245 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003246 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003247 }
3248 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003249
Dan Gohman6c459a22008-06-22 19:56:46 +00003250 case Instruction::Or:
3251 // If the RHS of the Or is a constant, we may have something like:
3252 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3253 // optimizations will transparently handle this case.
3254 //
3255 // In order for this transformation to be safe, the LHS must be of the
3256 // form X*(2^n) and the Or constant must be less than 2^n.
3257 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003258 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003259 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003261 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3262 // Build a plain add SCEV.
3263 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3264 // If the LHS of the add was an addrec and it has no-wrap flags,
3265 // transfer the no-wrap flags, since an or won't introduce a wrap.
3266 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3267 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3268 if (OldAR->hasNoUnsignedWrap())
3269 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3270 if (OldAR->hasNoSignedWrap())
3271 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3272 }
3273 return S;
3274 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003275 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003276 break;
3277 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003278 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003279 // If the RHS of the xor is a signbit, then this is just an add.
3280 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003281 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003282 return getAddExpr(getSCEV(U->getOperand(0)),
3283 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003284
3285 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003286 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003287 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003288
3289 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3290 // This is a variant of the check for xor with -1, and it handles
3291 // the case where instcombine has trimmed non-demanded bits out
3292 // of an xor with -1.
3293 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3294 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3295 if (BO->getOpcode() == Instruction::And &&
3296 LCI->getValue() == CI->getValue())
3297 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003298 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003299 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003300 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003301 const Type *Z0Ty = Z0->getType();
3302 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3303
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003304 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003305 // mask off the high bits. Complement the operand and
3306 // re-apply the zext.
3307 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3308 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3309
3310 // If C is a single bit, it may be in the sign-bit position
3311 // before the zero-extend. In this case, represent the xor
3312 // using an add, which is equivalent, and re-apply the zext.
3313 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3314 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3315 Trunc.isSignBit())
3316 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3317 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003318 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003319 }
3320 break;
3321
3322 case Instruction::Shl:
3323 // Turn shift left of a constant amount into a multiply.
3324 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003325 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003326
3327 // If the shift count is not less than the bitwidth, the result of
3328 // the shift is undefined. Don't try to analyze it, because the
3329 // resolution chosen here may differ from the resolution chosen in
3330 // other parts of the compiler.
3331 if (SA->getValue().uge(BitWidth))
3332 break;
3333
Owen Andersoneed707b2009-07-24 23:12:02 +00003334 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003335 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003336 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003337 }
3338 break;
3339
Nick Lewycky01eaf802008-07-07 06:15:49 +00003340 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003341 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003342 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003343 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003344
3345 // If the shift count is not less than the bitwidth, the result of
3346 // the shift is undefined. Don't try to analyze it, because the
3347 // resolution chosen here may differ from the resolution chosen in
3348 // other parts of the compiler.
3349 if (SA->getValue().uge(BitWidth))
3350 break;
3351
Owen Andersoneed707b2009-07-24 23:12:02 +00003352 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003353 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003354 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003355 }
3356 break;
3357
Dan Gohman4ee29af2009-04-21 02:26:00 +00003358 case Instruction::AShr:
3359 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3360 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003361 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003362 if (L->getOpcode() == Instruction::Shl &&
3363 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003364 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3365
3366 // If the shift count is not less than the bitwidth, the result of
3367 // the shift is undefined. Don't try to analyze it, because the
3368 // resolution chosen here may differ from the resolution chosen in
3369 // other parts of the compiler.
3370 if (CI->getValue().uge(BitWidth))
3371 break;
3372
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003373 uint64_t Amt = BitWidth - CI->getZExtValue();
3374 if (Amt == BitWidth)
3375 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003376 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003377 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003378 IntegerType::get(getContext(),
3379 Amt)),
3380 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003381 }
3382 break;
3383
Dan Gohman6c459a22008-06-22 19:56:46 +00003384 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003385 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003386
3387 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003388 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003389
3390 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003391 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003392
3393 case Instruction::BitCast:
3394 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003395 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003396 return getSCEV(U->getOperand(0));
3397 break;
3398
Dan Gohman4f8eea82010-02-01 18:27:38 +00003399 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3400 // lead to pointer expressions which cannot safely be expanded to GEPs,
3401 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3402 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003403
Dan Gohman26466c02009-05-08 20:26:55 +00003404 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003405 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003406
Dan Gohman6c459a22008-06-22 19:56:46 +00003407 case Instruction::PHI:
3408 return createNodeForPHI(cast<PHINode>(U));
3409
3410 case Instruction::Select:
3411 // This could be a smax or umax that was lowered earlier.
3412 // Try to recover it.
3413 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3414 Value *LHS = ICI->getOperand(0);
3415 Value *RHS = ICI->getOperand(1);
3416 switch (ICI->getPredicate()) {
3417 case ICmpInst::ICMP_SLT:
3418 case ICmpInst::ICMP_SLE:
3419 std::swap(LHS, RHS);
3420 // fall through
3421 case ICmpInst::ICMP_SGT:
3422 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003423 // a >s b ? a+x : b+x -> smax(a, b)+x
3424 // a >s b ? b+x : a+x -> smin(a, b)+x
3425 if (LHS->getType() == U->getType()) {
3426 const SCEV *LS = getSCEV(LHS);
3427 const SCEV *RS = getSCEV(RHS);
3428 const SCEV *LA = getSCEV(U->getOperand(1));
3429 const SCEV *RA = getSCEV(U->getOperand(2));
3430 const SCEV *LDiff = getMinusSCEV(LA, LS);
3431 const SCEV *RDiff = getMinusSCEV(RA, RS);
3432 if (LDiff == RDiff)
3433 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3434 LDiff = getMinusSCEV(LA, RS);
3435 RDiff = getMinusSCEV(RA, LS);
3436 if (LDiff == RDiff)
3437 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3438 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003439 break;
3440 case ICmpInst::ICMP_ULT:
3441 case ICmpInst::ICMP_ULE:
3442 std::swap(LHS, RHS);
3443 // fall through
3444 case ICmpInst::ICMP_UGT:
3445 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003446 // a >u b ? a+x : b+x -> umax(a, b)+x
3447 // a >u b ? b+x : a+x -> umin(a, b)+x
3448 if (LHS->getType() == U->getType()) {
3449 const SCEV *LS = getSCEV(LHS);
3450 const SCEV *RS = getSCEV(RHS);
3451 const SCEV *LA = getSCEV(U->getOperand(1));
3452 const SCEV *RA = getSCEV(U->getOperand(2));
3453 const SCEV *LDiff = getMinusSCEV(LA, LS);
3454 const SCEV *RDiff = getMinusSCEV(RA, RS);
3455 if (LDiff == RDiff)
3456 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3457 LDiff = getMinusSCEV(LA, RS);
3458 RDiff = getMinusSCEV(RA, LS);
3459 if (LDiff == RDiff)
3460 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3461 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003463 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003464 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3465 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003466 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003467 cast<ConstantInt>(RHS)->isZero()) {
3468 const SCEV *One = getConstant(LHS->getType(), 1);
3469 const SCEV *LS = getSCEV(LHS);
3470 const SCEV *LA = getSCEV(U->getOperand(1));
3471 const SCEV *RA = getSCEV(U->getOperand(2));
3472 const SCEV *LDiff = getMinusSCEV(LA, LS);
3473 const SCEV *RDiff = getMinusSCEV(RA, One);
3474 if (LDiff == RDiff)
3475 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3476 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003477 break;
3478 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003479 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3480 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003481 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003482 cast<ConstantInt>(RHS)->isZero()) {
3483 const SCEV *One = getConstant(LHS->getType(), 1);
3484 const SCEV *LS = getSCEV(LHS);
3485 const SCEV *LA = getSCEV(U->getOperand(1));
3486 const SCEV *RA = getSCEV(U->getOperand(2));
3487 const SCEV *LDiff = getMinusSCEV(LA, One);
3488 const SCEV *RDiff = getMinusSCEV(RA, LS);
3489 if (LDiff == RDiff)
3490 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3491 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003492 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003493 default:
3494 break;
3495 }
3496 }
3497
3498 default: // We cannot analyze this expression.
3499 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003500 }
3501
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003502 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003503}
3504
3505
3506
3507//===----------------------------------------------------------------------===//
3508// Iteration Count Computation Code
3509//
3510
Dan Gohman46bdfb02009-02-24 18:55:53 +00003511/// getBackedgeTakenCount - If the specified loop has a predictable
3512/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3513/// object. The backedge-taken count is the number of times the loop header
3514/// will be branched to from within the loop. This is one less than the
3515/// trip count of the loop, since it doesn't count the first iteration,
3516/// when the header is branched to from outside the loop.
3517///
3518/// Note that it is not valid to call this method on a loop without a
3519/// loop-invariant backedge-taken count (see
3520/// hasLoopInvariantBackedgeTakenCount).
3521///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003522const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003523 return getBackedgeTakenInfo(L).Exact;
3524}
3525
3526/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3527/// return the least SCEV value that is known never to be less than the
3528/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003529const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003530 return getBackedgeTakenInfo(L).Max;
3531}
3532
Dan Gohman59ae6b92009-07-08 19:23:34 +00003533/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3534/// onto the given Worklist.
3535static void
3536PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3537 BasicBlock *Header = L->getHeader();
3538
3539 // Push all Loop-header PHIs onto the Worklist stack.
3540 for (BasicBlock::iterator I = Header->begin();
3541 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3542 Worklist.push_back(PN);
3543}
3544
Dan Gohmana1af7572009-04-30 20:47:05 +00003545const ScalarEvolution::BackedgeTakenInfo &
3546ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003547 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003548 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003549 // update the value. The temporary CouldNotCompute value tells SCEV
3550 // code elsewhere that it shouldn't attempt to request a new
3551 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003552 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003553 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3554 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003555 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3556 if (BECount.Exact != getCouldNotCompute()) {
3557 assert(BECount.Exact->isLoopInvariant(L) &&
3558 BECount.Max->isLoopInvariant(L) &&
3559 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003560 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003561
Dan Gohman01ecca22009-04-27 20:16:15 +00003562 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003563 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003564 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003565 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003566 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003567 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003568 if (isa<PHINode>(L->getHeader()->begin()))
3569 // Only count loops that have phi nodes as not being computable.
3570 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003571 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003572
3573 // Now that we know more about the trip count for this loop, forget any
3574 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003575 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003576 // information. This is similar to the code in forgetLoop, except that
3577 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003578 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003579 SmallVector<Instruction *, 16> Worklist;
3580 PushLoopPHIs(L, Worklist);
3581
3582 SmallPtrSet<Instruction *, 8> Visited;
3583 while (!Worklist.empty()) {
3584 Instruction *I = Worklist.pop_back_val();
3585 if (!Visited.insert(I)) continue;
3586
Dan Gohman5d984912009-12-18 01:14:11 +00003587 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003588 Scalars.find(static_cast<Value *>(I));
3589 if (It != Scalars.end()) {
3590 // SCEVUnknown for a PHI either means that it has an unrecognized
3591 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003592 // by createNodeForPHI. In the former case, additional loop trip
3593 // count information isn't going to change anything. In the later
3594 // case, createNodeForPHI will perform the necessary updates on its
3595 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003596 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3597 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003598 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003599 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003600 if (PHINode *PN = dyn_cast<PHINode>(I))
3601 ConstantEvolutionLoopExitValue.erase(PN);
3602 }
3603
3604 PushDefUseChildren(I, Worklist);
3605 }
3606 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003607 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003608 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003609}
3610
Dan Gohman4c7279a2009-10-31 15:04:55 +00003611/// forgetLoop - This method should be called by the client when it has
3612/// changed a loop in a way that may effect ScalarEvolution's ability to
3613/// compute a trip count, or if the loop is deleted.
3614void ScalarEvolution::forgetLoop(const Loop *L) {
3615 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003616 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003617
Dan Gohman4c7279a2009-10-31 15:04:55 +00003618 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003619 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003620 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003621
Dan Gohman59ae6b92009-07-08 19:23:34 +00003622 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003623 while (!Worklist.empty()) {
3624 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003625 if (!Visited.insert(I)) continue;
3626
Dan Gohman5d984912009-12-18 01:14:11 +00003627 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003628 Scalars.find(static_cast<Value *>(I));
3629 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003630 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003631 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003632 if (PHINode *PN = dyn_cast<PHINode>(I))
3633 ConstantEvolutionLoopExitValue.erase(PN);
3634 }
3635
3636 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003637 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003638}
3639
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003640/// forgetValue - This method should be called by the client when it has
3641/// changed a value in a way that may effect its value, or which may
3642/// disconnect it from a def-use chain linking it to a loop.
3643void ScalarEvolution::forgetValue(Value *V) {
3644 Instruction *I = dyn_cast<Instruction>(V);
3645 if (!I) return;
3646
3647 // Drop information about expressions based on loop-header PHIs.
3648 SmallVector<Instruction *, 16> Worklist;
3649 Worklist.push_back(I);
3650
3651 SmallPtrSet<Instruction *, 8> Visited;
3652 while (!Worklist.empty()) {
3653 I = Worklist.pop_back_val();
3654 if (!Visited.insert(I)) continue;
3655
3656 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3657 Scalars.find(static_cast<Value *>(I));
3658 if (It != Scalars.end()) {
3659 ValuesAtScopes.erase(It->second);
3660 Scalars.erase(It);
3661 if (PHINode *PN = dyn_cast<PHINode>(I))
3662 ConstantEvolutionLoopExitValue.erase(PN);
3663 }
3664
3665 PushDefUseChildren(I, Worklist);
3666 }
3667}
3668
Dan Gohman46bdfb02009-02-24 18:55:53 +00003669/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3670/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003671ScalarEvolution::BackedgeTakenInfo
3672ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003673 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003674 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003675
Dan Gohmana334aa72009-06-22 00:31:57 +00003676 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003677 const SCEV *BECount = getCouldNotCompute();
3678 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003679 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003680 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3681 BackedgeTakenInfo NewBTI =
3682 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003683
Dan Gohman1c343752009-06-27 21:21:31 +00003684 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003685 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003686 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003687 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003688 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003689 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003690 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003691 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003692 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003693 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003694 }
Dan Gohman1c343752009-06-27 21:21:31 +00003695 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003696 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003697 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003698 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003699 }
3700
3701 return BackedgeTakenInfo(BECount, MaxBECount);
3702}
3703
3704/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3705/// of the specified loop will execute if it exits via the specified block.
3706ScalarEvolution::BackedgeTakenInfo
3707ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3708 BasicBlock *ExitingBlock) {
3709
3710 // Okay, we've chosen an exiting block. See what condition causes us to
3711 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003712 //
3713 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003714 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003715 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003716 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003717
Chris Lattner8b0e3602007-01-07 02:24:26 +00003718 // At this point, we know we have a conditional branch that determines whether
3719 // the loop is exited. However, we don't know if the branch is executed each
3720 // time through the loop. If not, then the execution count of the branch will
3721 // not be equal to the trip count of the loop.
3722 //
3723 // Currently we check for this by checking to see if the Exit branch goes to
3724 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003725 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003726 // loop header. This is common for un-rotated loops.
3727 //
3728 // If both of those tests fail, walk up the unique predecessor chain to the
3729 // header, stopping if there is an edge that doesn't exit the loop. If the
3730 // header is reached, the execution count of the branch will be equal to the
3731 // trip count of the loop.
3732 //
3733 // More extensive analysis could be done to handle more cases here.
3734 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003735 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003736 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003737 ExitBr->getParent() != L->getHeader()) {
3738 // The simple checks failed, try climbing the unique predecessor chain
3739 // up to the header.
3740 bool Ok = false;
3741 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3742 BasicBlock *Pred = BB->getUniquePredecessor();
3743 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003744 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 TerminatorInst *PredTerm = Pred->getTerminator();
3746 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3747 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3748 if (PredSucc == BB)
3749 continue;
3750 // If the predecessor has a successor that isn't BB and isn't
3751 // outside the loop, assume the worst.
3752 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003753 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 }
3755 if (Pred == L->getHeader()) {
3756 Ok = true;
3757 break;
3758 }
3759 BB = Pred;
3760 }
3761 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003762 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003763 }
3764
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003765 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003766 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3767 ExitBr->getSuccessor(0),
3768 ExitBr->getSuccessor(1));
3769}
3770
3771/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3772/// backedge of the specified loop will execute if its exit condition
3773/// were a conditional branch of ExitCond, TBB, and FBB.
3774ScalarEvolution::BackedgeTakenInfo
3775ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3776 Value *ExitCond,
3777 BasicBlock *TBB,
3778 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003779 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003780 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3781 if (BO->getOpcode() == Instruction::And) {
3782 // Recurse on the operands of the and.
3783 BackedgeTakenInfo BTI0 =
3784 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3785 BackedgeTakenInfo BTI1 =
3786 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003787 const SCEV *BECount = getCouldNotCompute();
3788 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003789 if (L->contains(TBB)) {
3790 // Both conditions must be true for the loop to continue executing.
3791 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003792 if (BTI0.Exact == getCouldNotCompute() ||
3793 BTI1.Exact == getCouldNotCompute())
3794 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003795 else
3796 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003797 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003798 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003799 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003800 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003801 else
3802 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003803 } else {
3804 // Both conditions must be true for the loop to exit.
3805 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003806 if (BTI0.Exact != getCouldNotCompute() &&
3807 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003808 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003809 if (BTI0.Max != getCouldNotCompute() &&
3810 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003811 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3812 }
3813
3814 return BackedgeTakenInfo(BECount, MaxBECount);
3815 }
3816 if (BO->getOpcode() == Instruction::Or) {
3817 // Recurse on the operands of the or.
3818 BackedgeTakenInfo BTI0 =
3819 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3820 BackedgeTakenInfo BTI1 =
3821 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003822 const SCEV *BECount = getCouldNotCompute();
3823 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003824 if (L->contains(FBB)) {
3825 // Both conditions must be false for the loop to continue executing.
3826 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003827 if (BTI0.Exact == getCouldNotCompute() ||
3828 BTI1.Exact == getCouldNotCompute())
3829 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003830 else
3831 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003832 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003833 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003834 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003836 else
3837 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003838 } else {
3839 // Both conditions must be false for the loop to exit.
3840 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003841 if (BTI0.Exact != getCouldNotCompute() &&
3842 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003843 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003844 if (BTI0.Max != getCouldNotCompute() &&
3845 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3847 }
3848
3849 return BackedgeTakenInfo(BECount, MaxBECount);
3850 }
3851 }
3852
3853 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003854 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003855 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3856 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003857
Dan Gohman00cb5b72010-02-19 18:12:07 +00003858 // Check for a constant condition. These are normally stripped out by
3859 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3860 // preserve the CFG and is temporarily leaving constant conditions
3861 // in place.
3862 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3863 if (L->contains(FBB) == !CI->getZExtValue())
3864 // The backedge is always taken.
3865 return getCouldNotCompute();
3866 else
3867 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003868 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003869 }
3870
Eli Friedman361e54d2009-05-09 12:32:42 +00003871 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003872 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3873}
3874
3875/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3876/// backedge of the specified loop will execute if its exit condition
3877/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3878ScalarEvolution::BackedgeTakenInfo
3879ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3880 ICmpInst *ExitCond,
3881 BasicBlock *TBB,
3882 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003883
Reid Spencere4d87aa2006-12-23 06:05:41 +00003884 // If the condition was exit on true, convert the condition to exit on false
3885 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003886 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003887 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003888 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003889 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003890
3891 // Handle common loops like: for (X = "string"; *X; ++X)
3892 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3893 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003894 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003895 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003896 if (ItCnt.hasAnyInfo())
3897 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003898 }
3899
Dan Gohman0bba49c2009-07-07 17:06:11 +00003900 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3901 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003902
3903 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003904 LHS = getSCEVAtScope(LHS, L);
3905 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003906
Dan Gohman64a845e2009-06-24 04:48:43 +00003907 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003908 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003909 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3910 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003911 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003912 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003913 }
3914
Dan Gohman03557dc2010-05-03 16:35:17 +00003915 // Simplify the operands before analyzing them.
3916 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3917
Chris Lattner53e677a2004-04-02 20:23:17 +00003918 // If we have a comparison of a chrec against a constant, try to use value
3919 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003920 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3921 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003922 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003923 // Form the constant range.
3924 ConstantRange CompRange(
3925 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003926
Dan Gohman0bba49c2009-07-07 17:06:11 +00003927 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003928 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003929 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003930
Chris Lattner53e677a2004-04-02 20:23:17 +00003931 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003932 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003933 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003934 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3935 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003936 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003937 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003938 case ICmpInst::ICMP_EQ: { // while (X == Y)
3939 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003940 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3941 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003942 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003943 }
3944 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003945 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3946 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003947 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003948 }
3949 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003950 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3951 getNotSCEV(RHS), L, true);
3952 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003953 break;
3954 }
3955 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003956 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3957 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003958 break;
3959 }
3960 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003961 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3962 getNotSCEV(RHS), L, false);
3963 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003964 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003965 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003966 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003967#if 0
David Greene25e0e872009-12-23 22:18:14 +00003968 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003969 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003970 dbgs() << "[unsigned] ";
3971 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003972 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003973 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003974#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003975 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003976 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003977 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003978 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003979}
3980
Chris Lattner673e02b2004-10-12 01:49:27 +00003981static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003982EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3983 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003984 const SCEV *InVal = SE.getConstant(C);
3985 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003986 assert(isa<SCEVConstant>(Val) &&
3987 "Evaluation of SCEV at constant didn't fold correctly?");
3988 return cast<SCEVConstant>(Val)->getValue();
3989}
3990
3991/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3992/// and a GEP expression (missing the pointer index) indexing into it, return
3993/// the addressed element of the initializer or null if the index expression is
3994/// invalid.
3995static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003996GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003997 const std::vector<ConstantInt*> &Indices) {
3998 Constant *Init = GV->getInitializer();
3999 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004000 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004001 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4002 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4003 Init = cast<Constant>(CS->getOperand(Idx));
4004 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4005 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4006 Init = cast<Constant>(CA->getOperand(Idx));
4007 } else if (isa<ConstantAggregateZero>(Init)) {
4008 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4009 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004010 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004011 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4012 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004013 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004014 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004015 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004016 }
4017 return 0;
4018 } else {
4019 return 0; // Unknown initializer type
4020 }
4021 }
4022 return Init;
4023}
4024
Dan Gohman46bdfb02009-02-24 18:55:53 +00004025/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4026/// 'icmp op load X, cst', try to see if we can compute the backedge
4027/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004028ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004029ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4030 LoadInst *LI,
4031 Constant *RHS,
4032 const Loop *L,
4033 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004034 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004035
4036 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004037 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004038 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004039 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004040
4041 // Make sure that it is really a constant global we are gepping, with an
4042 // initializer, and make sure the first IDX is really 0.
4043 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004044 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004045 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4046 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004047 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004048
4049 // Okay, we allow one non-constant index into the GEP instruction.
4050 Value *VarIdx = 0;
4051 std::vector<ConstantInt*> Indexes;
4052 unsigned VarIdxNum = 0;
4053 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4054 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4055 Indexes.push_back(CI);
4056 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004057 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004058 VarIdx = GEP->getOperand(i);
4059 VarIdxNum = i-2;
4060 Indexes.push_back(0);
4061 }
4062
4063 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4064 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004065 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004066 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004067
4068 // We can only recognize very limited forms of loop index expressions, in
4069 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004070 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004071 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4072 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4073 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004074 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004075
4076 unsigned MaxSteps = MaxBruteForceIterations;
4077 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004078 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004079 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004080 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004081
4082 // Form the GEP offset.
4083 Indexes[VarIdxNum] = Val;
4084
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004085 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004086 if (Result == 0) break; // Cannot compute!
4087
4088 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004089 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004090 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004091 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004092#if 0
David Greene25e0e872009-12-23 22:18:14 +00004093 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004094 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4095 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004096#endif
4097 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004098 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004099 }
4100 }
Dan Gohman1c343752009-06-27 21:21:31 +00004101 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004102}
4103
4104
Chris Lattner3221ad02004-04-17 22:58:41 +00004105/// CanConstantFold - Return true if we can constant fold an instruction of the
4106/// specified type, assuming that all operands were constants.
4107static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004108 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004109 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4110 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004111
Chris Lattner3221ad02004-04-17 22:58:41 +00004112 if (const CallInst *CI = dyn_cast<CallInst>(I))
4113 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004114 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004115 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004116}
4117
Chris Lattner3221ad02004-04-17 22:58:41 +00004118/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4119/// in the loop that V is derived from. We allow arbitrary operations along the
4120/// way, but the operands of an operation must either be constants or a value
4121/// derived from a constant PHI. If this expression does not fit with these
4122/// constraints, return null.
4123static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4124 // If this is not an instruction, or if this is an instruction outside of the
4125 // loop, it can't be derived from a loop PHI.
4126 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004127 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004128
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004129 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004130 if (L->getHeader() == I->getParent())
4131 return PN;
4132 else
4133 // We don't currently keep track of the control flow needed to evaluate
4134 // PHIs, so we cannot handle PHIs inside of loops.
4135 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004136 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004137
4138 // If we won't be able to constant fold this expression even if the operands
4139 // are constants, return early.
4140 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004141
Chris Lattner3221ad02004-04-17 22:58:41 +00004142 // Otherwise, we can evaluate this instruction if all of its operands are
4143 // constant or derived from a PHI node themselves.
4144 PHINode *PHI = 0;
4145 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4146 if (!(isa<Constant>(I->getOperand(Op)) ||
4147 isa<GlobalValue>(I->getOperand(Op)))) {
4148 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4149 if (P == 0) return 0; // Not evolving from PHI
4150 if (PHI == 0)
4151 PHI = P;
4152 else if (PHI != P)
4153 return 0; // Evolving from multiple different PHIs.
4154 }
4155
4156 // This is a expression evolving from a constant PHI!
4157 return PHI;
4158}
4159
4160/// EvaluateExpression - Given an expression that passes the
4161/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4162/// in the loop has the value PHIVal. If we can't fold this expression for some
4163/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004164static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4165 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004166 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004167 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004168 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004169 Instruction *I = cast<Instruction>(V);
4170
4171 std::vector<Constant*> Operands;
4172 Operands.resize(I->getNumOperands());
4173
4174 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004175 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004176 if (Operands[i] == 0) return 0;
4177 }
4178
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004179 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004180 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004181 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004182 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004183 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004184}
4185
4186/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4187/// in the header of its containing loop, we know the loop executes a
4188/// constant number of times, and the PHI node is just a recurrence
4189/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004190Constant *
4191ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004192 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004193 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004194 std::map<PHINode*, Constant*>::iterator I =
4195 ConstantEvolutionLoopExitValue.find(PN);
4196 if (I != ConstantEvolutionLoopExitValue.end())
4197 return I->second;
4198
Dan Gohmane0567812010-04-08 23:03:40 +00004199 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004200 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4201
4202 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4203
4204 // Since the loop is canonicalized, the PHI node must have two entries. One
4205 // entry must be a constant (coming in from outside of the loop), and the
4206 // second must be derived from the same PHI.
4207 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4208 Constant *StartCST =
4209 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4210 if (StartCST == 0)
4211 return RetVal = 0; // Must be a constant.
4212
4213 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4214 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4215 if (PN2 != PN)
4216 return RetVal = 0; // Not derived from same PHI.
4217
4218 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004219 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004220 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004221
Dan Gohman46bdfb02009-02-24 18:55:53 +00004222 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004223 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004224 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4225 if (IterationNum == NumIterations)
4226 return RetVal = PHIVal; // Got exit value!
4227
4228 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004229 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004230 if (NextPHI == PHIVal)
4231 return RetVal = NextPHI; // Stopped evolving!
4232 if (NextPHI == 0)
4233 return 0; // Couldn't evaluate!
4234 PHIVal = NextPHI;
4235 }
4236}
4237
Dan Gohman07ad19b2009-07-27 16:09:48 +00004238/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004239/// constant number of times (the condition evolves only from constants),
4240/// try to evaluate a few iterations of the loop until we get the exit
4241/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004242/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004243const SCEV *
4244ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4245 Value *Cond,
4246 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004247 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004248 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004249
4250 // Since the loop is canonicalized, the PHI node must have two entries. One
4251 // entry must be a constant (coming in from outside of the loop), and the
4252 // second must be derived from the same PHI.
4253 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4254 Constant *StartCST =
4255 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004256 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004257
4258 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4259 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004260 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004261
4262 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4263 // the loop symbolically to determine when the condition gets a value of
4264 // "ExitWhen".
4265 unsigned IterationNum = 0;
4266 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4267 for (Constant *PHIVal = StartCST;
4268 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004269 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004270 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004271
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004272 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004273 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004274
Reid Spencere8019bb2007-03-01 07:25:48 +00004275 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004276 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004277 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004278 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004279
Chris Lattner3221ad02004-04-17 22:58:41 +00004280 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004281 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004282 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004283 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004284 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004285 }
4286
4287 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004288 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004289}
4290
Dan Gohmane7125f42009-09-03 15:00:26 +00004291/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004292/// at the specified scope in the program. The L value specifies a loop
4293/// nest to evaluate the expression at, where null is the top-level or a
4294/// specified loop is immediately inside of the loop.
4295///
4296/// This method can be used to compute the exit value for a variable defined
4297/// in a loop by querying what the value will hold in the parent loop.
4298///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004299/// In the case that a relevant loop exit value cannot be computed, the
4300/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004301const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004302 // Check to see if we've folded this expression at this loop before.
4303 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4304 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4305 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4306 if (!Pair.second)
4307 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004308
Dan Gohman42214892009-08-31 21:15:23 +00004309 // Otherwise compute it.
4310 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004311 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004312 return C;
4313}
4314
4315const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004316 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004317
Nick Lewycky3e630762008-02-20 06:48:22 +00004318 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004319 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004320 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004321 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004322 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004323 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4324 if (PHINode *PN = dyn_cast<PHINode>(I))
4325 if (PN->getParent() == LI->getHeader()) {
4326 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004327 // to see if the loop that contains it has a known backedge-taken
4328 // count. If so, we may be able to force computation of the exit
4329 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004330 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004331 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004332 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004333 // Okay, we know how many times the containing loop executes. If
4334 // this is a constant evolving PHI node, get the final value at
4335 // the specified iteration number.
4336 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004337 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004338 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004339 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004340 }
4341 }
4342
Reid Spencer09906f32006-12-04 21:33:23 +00004343 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004344 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004345 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004346 // result. This is particularly useful for computing loop exit values.
4347 if (CanConstantFold(I)) {
4348 std::vector<Constant*> Operands;
4349 Operands.reserve(I->getNumOperands());
4350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4351 Value *Op = I->getOperand(i);
4352 if (Constant *C = dyn_cast<Constant>(Op)) {
4353 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004354 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004355 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004356 // non-integer and non-pointer, don't even try to analyze them
4357 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004358 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004359 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004360
Dan Gohman5d984912009-12-18 01:14:11 +00004361 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004362 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004363 Constant *C = SC->getValue();
4364 if (C->getType() != Op->getType())
4365 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4366 Op->getType(),
4367 false),
4368 C, Op->getType());
4369 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004370 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004371 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4372 if (C->getType() != Op->getType())
4373 C =
4374 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4375 Op->getType(),
4376 false),
4377 C, Op->getType());
4378 Operands.push_back(C);
4379 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 return V;
4381 } else {
4382 return V;
4383 }
4384 }
4385 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004386
Dan Gohmane177c9a2010-02-24 19:31:47 +00004387 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004388 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4389 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004390 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004391 else
4392 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004393 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004394 if (C)
4395 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004396 }
4397 }
4398
4399 // This is some other type of SCEVUnknown, just return it.
4400 return V;
4401 }
4402
Dan Gohman622ed672009-05-04 22:02:23 +00004403 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004404 // Avoid performing the look-up in the common case where the specified
4405 // expression has no loop-variant portions.
4406 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004407 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004408 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004409 // Okay, at least one of these operands is loop variant but might be
4410 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004411 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4412 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004413 NewOps.push_back(OpAtScope);
4414
4415 for (++i; i != e; ++i) {
4416 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004417 NewOps.push_back(OpAtScope);
4418 }
4419 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004420 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004421 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004422 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004423 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004424 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004425 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004426 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004427 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004428 }
4429 }
4430 // If we got here, all operands are loop invariant.
4431 return Comm;
4432 }
4433
Dan Gohman622ed672009-05-04 22:02:23 +00004434 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004435 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4436 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004437 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4438 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004439 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004440 }
4441
4442 // If this is a loop recurrence for a loop that does not contain L, then we
4443 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004444 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004445 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004446 // To evaluate this recurrence, we need to know how many times the AddRec
4447 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004448 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004449 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004450
Eli Friedmanb42a6262008-08-04 23:49:06 +00004451 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004452 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004453 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004454 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004455 }
4456
Dan Gohman622ed672009-05-04 22:02:23 +00004457 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004458 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004459 if (Op == Cast->getOperand())
4460 return Cast; // must be loop invariant
4461 return getZeroExtendExpr(Op, Cast->getType());
4462 }
4463
Dan Gohman622ed672009-05-04 22:02:23 +00004464 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004465 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004466 if (Op == Cast->getOperand())
4467 return Cast; // must be loop invariant
4468 return getSignExtendExpr(Op, Cast->getType());
4469 }
4470
Dan Gohman622ed672009-05-04 22:02:23 +00004471 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004472 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004473 if (Op == Cast->getOperand())
4474 return Cast; // must be loop invariant
4475 return getTruncateExpr(Op, Cast->getType());
4476 }
4477
Torok Edwinc23197a2009-07-14 16:55:14 +00004478 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004479 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004480}
4481
Dan Gohman66a7e852009-05-08 20:38:54 +00004482/// getSCEVAtScope - This is a convenience function which does
4483/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004484const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004485 return getSCEVAtScope(getSCEV(V), L);
4486}
4487
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004488/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4489/// following equation:
4490///
4491/// A * X = B (mod N)
4492///
4493/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4494/// A and B isn't important.
4495///
4496/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004497static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004498 ScalarEvolution &SE) {
4499 uint32_t BW = A.getBitWidth();
4500 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4501 assert(A != 0 && "A must be non-zero.");
4502
4503 // 1. D = gcd(A, N)
4504 //
4505 // The gcd of A and N may have only one prime factor: 2. The number of
4506 // trailing zeros in A is its multiplicity
4507 uint32_t Mult2 = A.countTrailingZeros();
4508 // D = 2^Mult2
4509
4510 // 2. Check if B is divisible by D.
4511 //
4512 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4513 // is not less than multiplicity of this prime factor for D.
4514 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004515 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004516
4517 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4518 // modulo (N / D).
4519 //
4520 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4521 // bit width during computations.
4522 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4523 APInt Mod(BW + 1, 0);
4524 Mod.set(BW - Mult2); // Mod = N / D
4525 APInt I = AD.multiplicativeInverse(Mod);
4526
4527 // 4. Compute the minimum unsigned root of the equation:
4528 // I * (B / D) mod (N / D)
4529 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4530
4531 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4532 // bits.
4533 return SE.getConstant(Result.trunc(BW));
4534}
Chris Lattner53e677a2004-04-02 20:23:17 +00004535
4536/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4537/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4538/// might be the same) or two SCEVCouldNotCompute objects.
4539///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004540static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004541SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004542 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004543 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4544 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4545 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004546
Chris Lattner53e677a2004-04-02 20:23:17 +00004547 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004548 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004549 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004550 return std::make_pair(CNC, CNC);
4551 }
4552
Reid Spencere8019bb2007-03-01 07:25:48 +00004553 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004554 const APInt &L = LC->getValue()->getValue();
4555 const APInt &M = MC->getValue()->getValue();
4556 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004557 APInt Two(BitWidth, 2);
4558 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004559
Dan Gohman64a845e2009-06-24 04:48:43 +00004560 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004561 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004562 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004563 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4564 // The B coefficient is M-N/2
4565 APInt B(M);
4566 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004567
Reid Spencere8019bb2007-03-01 07:25:48 +00004568 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004569 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004570
Reid Spencere8019bb2007-03-01 07:25:48 +00004571 // Compute the B^2-4ac term.
4572 APInt SqrtTerm(B);
4573 SqrtTerm *= B;
4574 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004575
Reid Spencere8019bb2007-03-01 07:25:48 +00004576 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4577 // integer value or else APInt::sqrt() will assert.
4578 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004579
Dan Gohman64a845e2009-06-24 04:48:43 +00004580 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004581 // The divisions must be performed as signed divisions.
4582 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004583 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004584 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004585 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004586 return std::make_pair(CNC, CNC);
4587 }
4588
Owen Andersone922c022009-07-22 00:24:57 +00004589 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004590
4591 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004592 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004593 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004594 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004595
Dan Gohman64a845e2009-06-24 04:48:43 +00004596 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004597 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004598 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004599}
4600
4601/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004602/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004603ScalarEvolution::BackedgeTakenInfo
4604ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004606 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004607 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004608 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004609 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004610 }
4611
Dan Gohman35738ac2009-05-04 22:30:44 +00004612 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004613 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004614 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004615
4616 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004617 // If this is an affine expression, the execution count of this branch is
4618 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004619 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004620 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004621 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004622 // equivalent to:
4623 //
4624 // Step*N = -Start (mod 2^BW)
4625 //
4626 // where BW is the common bit width of Start and Step.
4627
Chris Lattner53e677a2004-04-02 20:23:17 +00004628 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004629 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4630 L->getParentLoop());
4631 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4632 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004633
Dan Gohman622ed672009-05-04 22:02:23 +00004634 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004635 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004636
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004637 // First, handle unitary steps.
4638 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004639 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004640 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4641 return Start; // N = Start (as unsigned)
4642
4643 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004644 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004645 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004646 -StartC->getValue()->getValue(),
4647 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004648 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004649 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004650 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4651 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004652 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004653 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004654 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4655 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004656 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004657#if 0
David Greene25e0e872009-12-23 22:18:14 +00004658 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004659 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004660#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004661 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004662 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004663 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004664 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004665 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004666 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004667
Chris Lattner53e677a2004-04-02 20:23:17 +00004668 // We can only use this value if the chrec ends up with an exact zero
4669 // value at this index. When solving for "X*X != 5", for example, we
4670 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004671 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004672 if (Val->isZero())
4673 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004674 }
4675 }
4676 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004677
Dan Gohman1c343752009-06-27 21:21:31 +00004678 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004679}
4680
4681/// HowFarToNonZero - Return the number of times a backedge checking the
4682/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004683/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004684ScalarEvolution::BackedgeTakenInfo
4685ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004686 // Loops that look like: while (X == 0) are very strange indeed. We don't
4687 // handle them yet except for the trivial case. This could be expanded in the
4688 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004689
Chris Lattner53e677a2004-04-02 20:23:17 +00004690 // If the value is a constant, check to see if it is known to be non-zero
4691 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004692 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004693 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004694 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004695 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004696 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004697
Chris Lattner53e677a2004-04-02 20:23:17 +00004698 // We could implement others, but I really doubt anyone writes loops like
4699 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004700 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004701}
4702
Dan Gohman859b4822009-05-18 15:36:09 +00004703/// getLoopPredecessor - If the given loop's header has exactly one unique
4704/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004705/// This is less strict that the loop "preheader" concept, which requires
4706/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004707///
4708BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4709 BasicBlock *Header = L->getHeader();
4710 BasicBlock *Pred = 0;
4711 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4712 PI != E; ++PI)
4713 if (!L->contains(*PI)) {
4714 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4715 Pred = *PI;
4716 }
4717 return Pred;
4718}
4719
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004720/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4721/// (which may not be an immediate predecessor) which has exactly one
4722/// successor from which BB is reachable, or null if no such block is
4723/// found.
4724///
Dan Gohman005752b2010-04-15 16:19:08 +00004725std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004726ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004727 // If the block has a unique predecessor, then there is no path from the
4728 // predecessor to the block that does not go through the direct edge
4729 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004730 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004731 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004732
4733 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004734 // If the header has a unique predecessor outside the loop, it must be
4735 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004736 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004737 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004738
Dan Gohman005752b2010-04-15 16:19:08 +00004739 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004740}
4741
Dan Gohman763bad12009-06-20 00:35:32 +00004742/// HasSameValue - SCEV structural equivalence is usually sufficient for
4743/// testing whether two expressions are equal, however for the purposes of
4744/// looking for a condition guarding a loop, it can be useful to be a little
4745/// more general, since a front-end may have replicated the controlling
4746/// expression.
4747///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004748static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004749 // Quick check to see if they are the same SCEV.
4750 if (A == B) return true;
4751
4752 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4753 // two different instructions with the same value. Check for this case.
4754 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4755 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4756 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4757 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004758 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004759 return true;
4760
4761 // Otherwise assume they may have a different value.
4762 return false;
4763}
4764
Dan Gohmane9796502010-04-24 01:28:42 +00004765/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4766/// predicate Pred. Return true iff any changes were made.
4767///
4768bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4769 const SCEV *&LHS, const SCEV *&RHS) {
4770 bool Changed = false;
4771
4772 // Canonicalize a constant to the right side.
4773 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4774 // Check for both operands constant.
4775 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4776 if (ConstantExpr::getICmp(Pred,
4777 LHSC->getValue(),
4778 RHSC->getValue())->isNullValue())
4779 goto trivially_false;
4780 else
4781 goto trivially_true;
4782 }
4783 // Otherwise swap the operands to put the constant on the right.
4784 std::swap(LHS, RHS);
4785 Pred = ICmpInst::getSwappedPredicate(Pred);
4786 Changed = true;
4787 }
4788
4789 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004790 // addrec's loop, put the addrec on the left. Also make a dominance check,
4791 // as both operands could be addrecs loop-invariant in each other's loop.
4792 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4793 const Loop *L = AR->getLoop();
4794 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004795 std::swap(LHS, RHS);
4796 Pred = ICmpInst::getSwappedPredicate(Pred);
4797 Changed = true;
4798 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004799 }
Dan Gohmane9796502010-04-24 01:28:42 +00004800
4801 // If there's a constant operand, canonicalize comparisons with boundary
4802 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4803 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4804 const APInt &RA = RC->getValue()->getValue();
4805 switch (Pred) {
4806 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4807 case ICmpInst::ICMP_EQ:
4808 case ICmpInst::ICMP_NE:
4809 break;
4810 case ICmpInst::ICMP_UGE:
4811 if ((RA - 1).isMinValue()) {
4812 Pred = ICmpInst::ICMP_NE;
4813 RHS = getConstant(RA - 1);
4814 Changed = true;
4815 break;
4816 }
4817 if (RA.isMaxValue()) {
4818 Pred = ICmpInst::ICMP_EQ;
4819 Changed = true;
4820 break;
4821 }
4822 if (RA.isMinValue()) goto trivially_true;
4823
4824 Pred = ICmpInst::ICMP_UGT;
4825 RHS = getConstant(RA - 1);
4826 Changed = true;
4827 break;
4828 case ICmpInst::ICMP_ULE:
4829 if ((RA + 1).isMaxValue()) {
4830 Pred = ICmpInst::ICMP_NE;
4831 RHS = getConstant(RA + 1);
4832 Changed = true;
4833 break;
4834 }
4835 if (RA.isMinValue()) {
4836 Pred = ICmpInst::ICMP_EQ;
4837 Changed = true;
4838 break;
4839 }
4840 if (RA.isMaxValue()) goto trivially_true;
4841
4842 Pred = ICmpInst::ICMP_ULT;
4843 RHS = getConstant(RA + 1);
4844 Changed = true;
4845 break;
4846 case ICmpInst::ICMP_SGE:
4847 if ((RA - 1).isMinSignedValue()) {
4848 Pred = ICmpInst::ICMP_NE;
4849 RHS = getConstant(RA - 1);
4850 Changed = true;
4851 break;
4852 }
4853 if (RA.isMaxSignedValue()) {
4854 Pred = ICmpInst::ICMP_EQ;
4855 Changed = true;
4856 break;
4857 }
4858 if (RA.isMinSignedValue()) goto trivially_true;
4859
4860 Pred = ICmpInst::ICMP_SGT;
4861 RHS = getConstant(RA - 1);
4862 Changed = true;
4863 break;
4864 case ICmpInst::ICMP_SLE:
4865 if ((RA + 1).isMaxSignedValue()) {
4866 Pred = ICmpInst::ICMP_NE;
4867 RHS = getConstant(RA + 1);
4868 Changed = true;
4869 break;
4870 }
4871 if (RA.isMinSignedValue()) {
4872 Pred = ICmpInst::ICMP_EQ;
4873 Changed = true;
4874 break;
4875 }
4876 if (RA.isMaxSignedValue()) goto trivially_true;
4877
4878 Pred = ICmpInst::ICMP_SLT;
4879 RHS = getConstant(RA + 1);
4880 Changed = true;
4881 break;
4882 case ICmpInst::ICMP_UGT:
4883 if (RA.isMinValue()) {
4884 Pred = ICmpInst::ICMP_NE;
4885 Changed = true;
4886 break;
4887 }
4888 if ((RA + 1).isMaxValue()) {
4889 Pred = ICmpInst::ICMP_EQ;
4890 RHS = getConstant(RA + 1);
4891 Changed = true;
4892 break;
4893 }
4894 if (RA.isMaxValue()) goto trivially_false;
4895 break;
4896 case ICmpInst::ICMP_ULT:
4897 if (RA.isMaxValue()) {
4898 Pred = ICmpInst::ICMP_NE;
4899 Changed = true;
4900 break;
4901 }
4902 if ((RA - 1).isMinValue()) {
4903 Pred = ICmpInst::ICMP_EQ;
4904 RHS = getConstant(RA - 1);
4905 Changed = true;
4906 break;
4907 }
4908 if (RA.isMinValue()) goto trivially_false;
4909 break;
4910 case ICmpInst::ICMP_SGT:
4911 if (RA.isMinSignedValue()) {
4912 Pred = ICmpInst::ICMP_NE;
4913 Changed = true;
4914 break;
4915 }
4916 if ((RA + 1).isMaxSignedValue()) {
4917 Pred = ICmpInst::ICMP_EQ;
4918 RHS = getConstant(RA + 1);
4919 Changed = true;
4920 break;
4921 }
4922 if (RA.isMaxSignedValue()) goto trivially_false;
4923 break;
4924 case ICmpInst::ICMP_SLT:
4925 if (RA.isMaxSignedValue()) {
4926 Pred = ICmpInst::ICMP_NE;
4927 Changed = true;
4928 break;
4929 }
4930 if ((RA - 1).isMinSignedValue()) {
4931 Pred = ICmpInst::ICMP_EQ;
4932 RHS = getConstant(RA - 1);
4933 Changed = true;
4934 break;
4935 }
4936 if (RA.isMinSignedValue()) goto trivially_false;
4937 break;
4938 }
4939 }
4940
4941 // Check for obvious equality.
4942 if (HasSameValue(LHS, RHS)) {
4943 if (ICmpInst::isTrueWhenEqual(Pred))
4944 goto trivially_true;
4945 if (ICmpInst::isFalseWhenEqual(Pred))
4946 goto trivially_false;
4947 }
4948
Dan Gohman03557dc2010-05-03 16:35:17 +00004949 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4950 // adding or subtracting 1 from one of the operands.
4951 switch (Pred) {
4952 case ICmpInst::ICMP_SLE:
4953 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4954 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4955 /*HasNUW=*/false, /*HasNSW=*/true);
4956 Pred = ICmpInst::ICMP_SLT;
4957 Changed = true;
4958 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004959 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004960 /*HasNUW=*/false, /*HasNSW=*/true);
4961 Pred = ICmpInst::ICMP_SLT;
4962 Changed = true;
4963 }
4964 break;
4965 case ICmpInst::ICMP_SGE:
4966 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004967 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004968 /*HasNUW=*/false, /*HasNSW=*/true);
4969 Pred = ICmpInst::ICMP_SGT;
4970 Changed = true;
4971 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4972 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4973 /*HasNUW=*/false, /*HasNSW=*/true);
4974 Pred = ICmpInst::ICMP_SGT;
4975 Changed = true;
4976 }
4977 break;
4978 case ICmpInst::ICMP_ULE:
4979 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004980 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004981 /*HasNUW=*/true, /*HasNSW=*/false);
4982 Pred = ICmpInst::ICMP_ULT;
4983 Changed = true;
4984 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004985 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004986 /*HasNUW=*/true, /*HasNSW=*/false);
4987 Pred = ICmpInst::ICMP_ULT;
4988 Changed = true;
4989 }
4990 break;
4991 case ICmpInst::ICMP_UGE:
4992 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004993 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004994 /*HasNUW=*/true, /*HasNSW=*/false);
4995 Pred = ICmpInst::ICMP_UGT;
4996 Changed = true;
4997 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004998 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004999 /*HasNUW=*/true, /*HasNSW=*/false);
5000 Pred = ICmpInst::ICMP_UGT;
5001 Changed = true;
5002 }
5003 break;
5004 default:
5005 break;
5006 }
5007
Dan Gohmane9796502010-04-24 01:28:42 +00005008 // TODO: More simplifications are possible here.
5009
5010 return Changed;
5011
5012trivially_true:
5013 // Return 0 == 0.
5014 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5015 Pred = ICmpInst::ICMP_EQ;
5016 return true;
5017
5018trivially_false:
5019 // Return 0 != 0.
5020 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5021 Pred = ICmpInst::ICMP_NE;
5022 return true;
5023}
5024
Dan Gohman85b05a22009-07-13 21:35:55 +00005025bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5026 return getSignedRange(S).getSignedMax().isNegative();
5027}
5028
5029bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5030 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5031}
5032
5033bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5034 return !getSignedRange(S).getSignedMin().isNegative();
5035}
5036
5037bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5038 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5039}
5040
5041bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5042 return isKnownNegative(S) || isKnownPositive(S);
5043}
5044
5045bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5046 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005047 // Canonicalize the inputs first.
5048 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5049
Dan Gohman53c66ea2010-04-11 22:16:48 +00005050 // If LHS or RHS is an addrec, check to see if the condition is true in
5051 // every iteration of the loop.
5052 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5053 if (isLoopEntryGuardedByCond(
5054 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5055 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005056 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005057 return true;
5058 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5059 if (isLoopEntryGuardedByCond(
5060 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5061 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005062 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005063 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005064
Dan Gohman53c66ea2010-04-11 22:16:48 +00005065 // Otherwise see what can be done with known constant ranges.
5066 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5067}
5068
5069bool
5070ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5071 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005072 if (HasSameValue(LHS, RHS))
5073 return ICmpInst::isTrueWhenEqual(Pred);
5074
Dan Gohman53c66ea2010-04-11 22:16:48 +00005075 // This code is split out from isKnownPredicate because it is called from
5076 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005077 switch (Pred) {
5078 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005079 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005080 break;
5081 case ICmpInst::ICMP_SGT:
5082 Pred = ICmpInst::ICMP_SLT;
5083 std::swap(LHS, RHS);
5084 case ICmpInst::ICMP_SLT: {
5085 ConstantRange LHSRange = getSignedRange(LHS);
5086 ConstantRange RHSRange = getSignedRange(RHS);
5087 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5088 return true;
5089 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5090 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005091 break;
5092 }
5093 case ICmpInst::ICMP_SGE:
5094 Pred = ICmpInst::ICMP_SLE;
5095 std::swap(LHS, RHS);
5096 case ICmpInst::ICMP_SLE: {
5097 ConstantRange LHSRange = getSignedRange(LHS);
5098 ConstantRange RHSRange = getSignedRange(RHS);
5099 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5100 return true;
5101 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5102 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005103 break;
5104 }
5105 case ICmpInst::ICMP_UGT:
5106 Pred = ICmpInst::ICMP_ULT;
5107 std::swap(LHS, RHS);
5108 case ICmpInst::ICMP_ULT: {
5109 ConstantRange LHSRange = getUnsignedRange(LHS);
5110 ConstantRange RHSRange = getUnsignedRange(RHS);
5111 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5112 return true;
5113 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5114 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005115 break;
5116 }
5117 case ICmpInst::ICMP_UGE:
5118 Pred = ICmpInst::ICMP_ULE;
5119 std::swap(LHS, RHS);
5120 case ICmpInst::ICMP_ULE: {
5121 ConstantRange LHSRange = getUnsignedRange(LHS);
5122 ConstantRange RHSRange = getUnsignedRange(RHS);
5123 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5124 return true;
5125 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5126 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005127 break;
5128 }
5129 case ICmpInst::ICMP_NE: {
5130 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5131 return true;
5132 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5133 return true;
5134
5135 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5136 if (isKnownNonZero(Diff))
5137 return true;
5138 break;
5139 }
5140 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005141 // The check at the top of the function catches the case where
5142 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005143 break;
5144 }
5145 return false;
5146}
5147
5148/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5149/// protected by a conditional between LHS and RHS. This is used to
5150/// to eliminate casts.
5151bool
5152ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5153 ICmpInst::Predicate Pred,
5154 const SCEV *LHS, const SCEV *RHS) {
5155 // Interpret a null as meaning no loop, where there is obviously no guard
5156 // (interprocedural conditions notwithstanding).
5157 if (!L) return true;
5158
5159 BasicBlock *Latch = L->getLoopLatch();
5160 if (!Latch)
5161 return false;
5162
5163 BranchInst *LoopContinuePredicate =
5164 dyn_cast<BranchInst>(Latch->getTerminator());
5165 if (!LoopContinuePredicate ||
5166 LoopContinuePredicate->isUnconditional())
5167 return false;
5168
Dan Gohman0f4b2852009-07-21 23:03:19 +00005169 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5170 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005171}
5172
Dan Gohman3948d0b2010-04-11 19:27:13 +00005173/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005174/// by a conditional between LHS and RHS. This is used to help avoid max
5175/// expressions in loop trip counts, and to eliminate casts.
5176bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005177ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5178 ICmpInst::Predicate Pred,
5179 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005180 // Interpret a null as meaning no loop, where there is obviously no guard
5181 // (interprocedural conditions notwithstanding).
5182 if (!L) return false;
5183
Dan Gohman859b4822009-05-18 15:36:09 +00005184 // Starting at the loop predecessor, climb up the predecessor chain, as long
5185 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005186 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005187 for (std::pair<BasicBlock *, BasicBlock *>
5188 Pair(getLoopPredecessor(L), L->getHeader());
5189 Pair.first;
5190 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005191
5192 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005193 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005194 if (!LoopEntryPredicate ||
5195 LoopEntryPredicate->isUnconditional())
5196 continue;
5197
Dan Gohman0f4b2852009-07-21 23:03:19 +00005198 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005199 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005200 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005201 }
5202
Dan Gohman38372182008-08-12 20:17:31 +00005203 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005204}
5205
Dan Gohman0f4b2852009-07-21 23:03:19 +00005206/// isImpliedCond - Test whether the condition described by Pred, LHS,
5207/// and RHS is true whenever the given Cond value evaluates to true.
5208bool ScalarEvolution::isImpliedCond(Value *CondValue,
5209 ICmpInst::Predicate Pred,
5210 const SCEV *LHS, const SCEV *RHS,
5211 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005212 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005213 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5214 if (BO->getOpcode() == Instruction::And) {
5215 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005216 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5217 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005218 } else if (BO->getOpcode() == Instruction::Or) {
5219 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005220 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5221 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005222 }
5223 }
5224
5225 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5226 if (!ICI) return false;
5227
Dan Gohman85b05a22009-07-13 21:35:55 +00005228 // Bail if the ICmp's operands' types are wider than the needed type
5229 // before attempting to call getSCEV on them. This avoids infinite
5230 // recursion, since the analysis of widening casts can require loop
5231 // exit condition information for overflow checking, which would
5232 // lead back here.
5233 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005234 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005235 return false;
5236
Dan Gohman0f4b2852009-07-21 23:03:19 +00005237 // Now that we found a conditional branch that dominates the loop, check to
5238 // see if it is the comparison we are looking for.
5239 ICmpInst::Predicate FoundPred;
5240 if (Inverse)
5241 FoundPred = ICI->getInversePredicate();
5242 else
5243 FoundPred = ICI->getPredicate();
5244
5245 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5246 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005247
5248 // Balance the types. The case where FoundLHS' type is wider than
5249 // LHS' type is checked for above.
5250 if (getTypeSizeInBits(LHS->getType()) >
5251 getTypeSizeInBits(FoundLHS->getType())) {
5252 if (CmpInst::isSigned(Pred)) {
5253 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5254 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5255 } else {
5256 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5257 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5258 }
5259 }
5260
Dan Gohman0f4b2852009-07-21 23:03:19 +00005261 // Canonicalize the query to match the way instcombine will have
5262 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005263 if (SimplifyICmpOperands(Pred, LHS, RHS))
5264 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005265 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005266 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5267 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005268 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005269
5270 // Check to see if we can make the LHS or RHS match.
5271 if (LHS == FoundRHS || RHS == FoundLHS) {
5272 if (isa<SCEVConstant>(RHS)) {
5273 std::swap(FoundLHS, FoundRHS);
5274 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5275 } else {
5276 std::swap(LHS, RHS);
5277 Pred = ICmpInst::getSwappedPredicate(Pred);
5278 }
5279 }
5280
5281 // Check whether the found predicate is the same as the desired predicate.
5282 if (FoundPred == Pred)
5283 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5284
5285 // Check whether swapping the found predicate makes it the same as the
5286 // desired predicate.
5287 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5288 if (isa<SCEVConstant>(RHS))
5289 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5290 else
5291 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5292 RHS, LHS, FoundLHS, FoundRHS);
5293 }
5294
5295 // Check whether the actual condition is beyond sufficient.
5296 if (FoundPred == ICmpInst::ICMP_EQ)
5297 if (ICmpInst::isTrueWhenEqual(Pred))
5298 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5299 return true;
5300 if (Pred == ICmpInst::ICMP_NE)
5301 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5302 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5303 return true;
5304
5305 // Otherwise assume the worst.
5306 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005307}
5308
Dan Gohman0f4b2852009-07-21 23:03:19 +00005309/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005310/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005311/// and FoundRHS is true.
5312bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5313 const SCEV *LHS, const SCEV *RHS,
5314 const SCEV *FoundLHS,
5315 const SCEV *FoundRHS) {
5316 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5317 FoundLHS, FoundRHS) ||
5318 // ~x < ~y --> x > y
5319 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5320 getNotSCEV(FoundRHS),
5321 getNotSCEV(FoundLHS));
5322}
5323
5324/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005325/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005326/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005327bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005328ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5329 const SCEV *LHS, const SCEV *RHS,
5330 const SCEV *FoundLHS,
5331 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005332 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005333 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5334 case ICmpInst::ICMP_EQ:
5335 case ICmpInst::ICMP_NE:
5336 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5337 return true;
5338 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005339 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005340 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005341 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5342 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005343 return true;
5344 break;
5345 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005346 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005347 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5348 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005349 return true;
5350 break;
5351 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005352 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005353 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5354 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005355 return true;
5356 break;
5357 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005358 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005359 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5360 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005361 return true;
5362 break;
5363 }
5364
5365 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005366}
5367
Dan Gohman51f53b72009-06-21 23:46:38 +00005368/// getBECount - Subtract the end and start values and divide by the step,
5369/// rounding up, to get the number of times the backedge is executed. Return
5370/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005371const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005372 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005373 const SCEV *Step,
5374 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005375 assert(!isKnownNegative(Step) &&
5376 "This code doesn't handle negative strides yet!");
5377
Dan Gohman51f53b72009-06-21 23:46:38 +00005378 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005379 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005380 const SCEV *Diff = getMinusSCEV(End, Start);
5381 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005382
5383 // Add an adjustment to the difference between End and Start so that
5384 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005385 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005386
Dan Gohman1f96e672009-09-17 18:05:20 +00005387 if (!NoWrap) {
5388 // Check Add for unsigned overflow.
5389 // TODO: More sophisticated things could be done here.
5390 const Type *WideTy = IntegerType::get(getContext(),
5391 getTypeSizeInBits(Ty) + 1);
5392 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5393 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5394 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5395 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5396 return getCouldNotCompute();
5397 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005398
5399 return getUDivExpr(Add, Step);
5400}
5401
Chris Lattnerdb25de42005-08-15 23:33:51 +00005402/// HowManyLessThans - Return the number of times a backedge containing the
5403/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005404/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005405ScalarEvolution::BackedgeTakenInfo
5406ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5407 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005408 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005409 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005410
Dan Gohman35738ac2009-05-04 22:30:44 +00005411 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005412 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005413 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005414
Dan Gohman1f96e672009-09-17 18:05:20 +00005415 // Check to see if we have a flag which makes analysis easy.
5416 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5417 AddRec->hasNoUnsignedWrap();
5418
Chris Lattnerdb25de42005-08-15 23:33:51 +00005419 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005420 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005421 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005422
Dan Gohman52fddd32010-01-26 04:40:18 +00005423 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005424 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005425 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005426 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005427 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005428 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005429 // value and past the maximum value for its type in a single step.
5430 // Note that it's not sufficient to check NoWrap here, because even
5431 // though the value after a wrap is undefined, it's not undefined
5432 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005433 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005434 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005435 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005436 if (isSigned) {
5437 APInt Max = APInt::getSignedMaxValue(BitWidth);
5438 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5439 .slt(getSignedRange(RHS).getSignedMax()))
5440 return getCouldNotCompute();
5441 } else {
5442 APInt Max = APInt::getMaxValue(BitWidth);
5443 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5444 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5445 return getCouldNotCompute();
5446 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005447 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005448 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005449 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005450
Dan Gohmana1af7572009-04-30 20:47:05 +00005451 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5452 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5453 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005454 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005455
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005456 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005457 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005458
Dan Gohmana1af7572009-04-30 20:47:05 +00005459 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005460 const SCEV *MinStart = getConstant(isSigned ?
5461 getSignedRange(Start).getSignedMin() :
5462 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005463
Dan Gohmana1af7572009-04-30 20:47:05 +00005464 // If we know that the condition is true in order to enter the loop,
5465 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005466 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5467 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005468 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005469 if (!isLoopEntryGuardedByCond(L,
5470 isSigned ? ICmpInst::ICMP_SLT :
5471 ICmpInst::ICMP_ULT,
5472 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005473 End = isSigned ? getSMaxExpr(RHS, Start)
5474 : getUMaxExpr(RHS, Start);
5475
5476 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005477 const SCEV *MaxEnd = getConstant(isSigned ?
5478 getSignedRange(End).getSignedMax() :
5479 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005480
Dan Gohman52fddd32010-01-26 04:40:18 +00005481 // If MaxEnd is within a step of the maximum integer value in its type,
5482 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005483 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005484 // compute the correct value.
5485 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005486 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005487 MaxEnd = isSigned ?
5488 getSMinExpr(MaxEnd,
5489 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5490 StepMinusOne)) :
5491 getUMinExpr(MaxEnd,
5492 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5493 StepMinusOne));
5494
Dan Gohmana1af7572009-04-30 20:47:05 +00005495 // Finally, we subtract these two values and divide, rounding up, to get
5496 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005497 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005498
5499 // The maximum backedge count is similar, except using the minimum start
5500 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005501 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005502
5503 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005504 }
5505
Dan Gohman1c343752009-06-27 21:21:31 +00005506 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005507}
5508
Chris Lattner53e677a2004-04-02 20:23:17 +00005509/// getNumIterationsInRange - Return the number of iterations of this loop that
5510/// produce values in the specified constant range. Another way of looking at
5511/// this is that it returns the first iteration number where the value is not in
5512/// the condition, thus computing the exit count. If the iteration count can't
5513/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005514const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005515 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005516 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005517 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005518
5519 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005520 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005521 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005522 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005523 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005524 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005525 if (const SCEVAddRecExpr *ShiftedAddRec =
5526 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005527 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005528 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005529 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005530 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005531 }
5532
5533 // The only time we can solve this is when we have all constant indices.
5534 // Otherwise, we cannot determine the overflow conditions.
5535 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5536 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005537 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005538
5539
5540 // Okay at this point we know that all elements of the chrec are constants and
5541 // that the start element is zero.
5542
5543 // First check to see if the range contains zero. If not, the first
5544 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005545 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005546 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005547 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005548
Chris Lattner53e677a2004-04-02 20:23:17 +00005549 if (isAffine()) {
5550 // If this is an affine expression then we have this situation:
5551 // Solve {0,+,A} in Range === Ax in Range
5552
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005553 // We know that zero is in the range. If A is positive then we know that
5554 // the upper value of the range must be the first possible exit value.
5555 // If A is negative then the lower of the range is the last possible loop
5556 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005557 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005558 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5559 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005560
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005561 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005562 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005563 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005564
5565 // Evaluate at the exit value. If we really did fall out of the valid
5566 // range, then we computed our trip count, otherwise wrap around or other
5567 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005568 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005569 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005570 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005571
5572 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005573 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005574 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005575 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005576 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005577 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005578 } else if (isQuadratic()) {
5579 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5580 // quadratic equation to solve it. To do this, we must frame our problem in
5581 // terms of figuring out when zero is crossed, instead of when
5582 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005583 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005584 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005585 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005586
5587 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005588 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005589 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005590 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5591 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005592 if (R1) {
5593 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005594 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005595 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005596 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005597 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005598 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005599
Chris Lattner53e677a2004-04-02 20:23:17 +00005600 // Make sure the root is not off by one. The returned iteration should
5601 // not be in the range, but the previous one should be. When solving
5602 // for "X*X < 5", for example, we should not return a root of 2.
5603 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005604 R1->getValue(),
5605 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005606 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005607 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005608 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005609 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005610
Dan Gohman246b2562007-10-22 18:31:58 +00005611 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005612 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005613 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005614 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005615 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005616
Chris Lattner53e677a2004-04-02 20:23:17 +00005617 // If R1 was not in the range, then it is a good return value. Make
5618 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005619 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005620 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005621 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005622 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005623 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005624 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005625 }
5626 }
5627 }
5628
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005629 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005630}
5631
5632
5633
5634//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005635// SCEVCallbackVH Class Implementation
5636//===----------------------------------------------------------------------===//
5637
Dan Gohman1959b752009-05-19 19:22:47 +00005638void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005639 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005640 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5641 SE->ConstantEvolutionLoopExitValue.erase(PN);
5642 SE->Scalars.erase(getValPtr());
5643 // this now dangles!
5644}
5645
Dan Gohman1959b752009-05-19 19:22:47 +00005646void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005647 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005648
5649 // Forget all the expressions associated with users of the old value,
5650 // so that future queries will recompute the expressions using the new
5651 // value.
5652 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005653 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005654 Value *Old = getValPtr();
5655 bool DeleteOld = false;
5656 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5657 UI != UE; ++UI)
5658 Worklist.push_back(*UI);
5659 while (!Worklist.empty()) {
5660 User *U = Worklist.pop_back_val();
5661 // Deleting the Old value will cause this to dangle. Postpone
5662 // that until everything else is done.
5663 if (U == Old) {
5664 DeleteOld = true;
5665 continue;
5666 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005667 if (!Visited.insert(U))
5668 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005669 if (PHINode *PN = dyn_cast<PHINode>(U))
5670 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005671 SE->Scalars.erase(U);
5672 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5673 UI != UE; ++UI)
5674 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005675 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005676 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005677 if (DeleteOld) {
5678 if (PHINode *PN = dyn_cast<PHINode>(Old))
5679 SE->ConstantEvolutionLoopExitValue.erase(PN);
5680 SE->Scalars.erase(Old);
5681 // this now dangles!
5682 }
5683 // this may dangle!
5684}
5685
Dan Gohman1959b752009-05-19 19:22:47 +00005686ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005687 : CallbackVH(V), SE(se) {}
5688
5689//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005690// ScalarEvolution Class Implementation
5691//===----------------------------------------------------------------------===//
5692
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005693ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005694 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005695}
5696
Chris Lattner53e677a2004-04-02 20:23:17 +00005697bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005698 this->F = &F;
5699 LI = &getAnalysis<LoopInfo>();
5700 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005701 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005702 return false;
5703}
5704
5705void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005706 Scalars.clear();
5707 BackedgeTakenCounts.clear();
5708 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005709 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005710 UniqueSCEVs.clear();
5711 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005712}
5713
5714void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5715 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005716 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005717 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005718}
5719
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005720bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005721 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005722}
5723
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005724static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005725 const Loop *L) {
5726 // Print all inner loops first
5727 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5728 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005729
Dan Gohman30733292010-01-09 18:17:45 +00005730 OS << "Loop ";
5731 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5732 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005733
Dan Gohman5d984912009-12-18 01:14:11 +00005734 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005735 L->getExitBlocks(ExitBlocks);
5736 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005737 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005738
Dan Gohman46bdfb02009-02-24 18:55:53 +00005739 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5740 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005741 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005742 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005743 }
5744
Dan Gohman30733292010-01-09 18:17:45 +00005745 OS << "\n"
5746 "Loop ";
5747 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5748 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005749
5750 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5751 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5752 } else {
5753 OS << "Unpredictable max backedge-taken count. ";
5754 }
5755
5756 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005757}
5758
Dan Gohman5d984912009-12-18 01:14:11 +00005759void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005760 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005761 // out SCEV values of all instructions that are interesting. Doing
5762 // this potentially causes it to create new SCEV objects though,
5763 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005764 // observable from outside the class though, so casting away the
5765 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005766 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005767
Dan Gohman30733292010-01-09 18:17:45 +00005768 OS << "Classifying expressions for: ";
5769 WriteAsOperand(OS, F, /*PrintType=*/false);
5770 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005771 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005772 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005773 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005774 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005775 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005776 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005777
Dan Gohman0c689c52009-06-19 17:49:54 +00005778 const Loop *L = LI->getLoopFor((*I).getParent());
5779
Dan Gohman0bba49c2009-07-07 17:06:11 +00005780 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005781 if (AtUse != SV) {
5782 OS << " --> ";
5783 AtUse->print(OS);
5784 }
5785
5786 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005787 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005788 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005789 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005790 OS << "<<Unknown>>";
5791 } else {
5792 OS << *ExitValue;
5793 }
5794 }
5795
Chris Lattner53e677a2004-04-02 20:23:17 +00005796 OS << "\n";
5797 }
5798
Dan Gohman30733292010-01-09 18:17:45 +00005799 OS << "Determining loop execution counts for: ";
5800 WriteAsOperand(OS, F, /*PrintType=*/false);
5801 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005802 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5803 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005804}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005805