Chris Lattner | 71c7ec9 | 2002-08-30 20:28:10 +0000 | [diff] [blame^] | 1 | //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// |
| 2 | // |
| 3 | // This file implements a value numbering pass that value #'s load instructions. |
| 4 | // To do this, it finds lexically identical load instructions, and uses alias |
| 5 | // analysis to determine which loads are guaranteed to produce the same value. |
| 6 | // |
| 7 | // This pass builds off of another value numbering pass to implement value |
| 8 | // numbering for non-load instructions. It uses Alias Analysis so that it can |
| 9 | // disambiguate the load instructions. The more powerful these base analyses |
| 10 | // are, the more powerful the resultant analysis will be. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Analysis/LoadValueNumbering.h" |
| 15 | #include "llvm/Analysis/ValueNumbering.h" |
| 16 | #include "llvm/Analysis/AliasAnalysis.h" |
| 17 | #include "llvm/Analysis/Dominators.h" |
| 18 | #include "llvm/Pass.h" |
| 19 | #include "llvm/iMemory.h" |
| 20 | #include "llvm/BasicBlock.h" |
| 21 | #include "llvm/Support/CFG.h" |
| 22 | #include <algorithm> |
| 23 | #include <set> |
| 24 | |
| 25 | namespace { |
| 26 | // FIXME: This should not be a functionpass. |
| 27 | struct LoadVN : public FunctionPass, public ValueNumbering { |
| 28 | |
| 29 | /// Pass Implementation stuff. This doesn't do any analysis. |
| 30 | /// |
| 31 | bool runOnFunction(Function &) { return false; } |
| 32 | |
| 33 | /// getAnalysisUsage - Does not modify anything. It uses Value Numbering |
| 34 | /// and Alias Analysis. |
| 35 | /// |
| 36 | virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| 37 | |
| 38 | /// getEqualNumberNodes - Return nodes with the same value number as the |
| 39 | /// specified Value. This fills in the argument vector with any equal |
| 40 | /// values. |
| 41 | /// |
| 42 | virtual void getEqualNumberNodes(Value *V1, |
| 43 | std::vector<Value*> &RetVals) const; |
| 44 | private: |
| 45 | /// haveEqualValueNumber - Given two load instructions, determine if they |
| 46 | /// both produce the same value on every execution of the program, assuming |
| 47 | /// that their source operands always give the same value. This uses the |
| 48 | /// AliasAnalysis implementation to invalidate loads when stores or function |
| 49 | /// calls occur that could modify the value produced by the load. |
| 50 | /// |
| 51 | bool haveEqualValueNumber(LoadInst *LI, LoadInst *LI2, AliasAnalysis &AA, |
| 52 | DominatorSet &DomSetInfo) const; |
| 53 | }; |
| 54 | |
| 55 | // Register this pass... |
| 56 | RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); |
| 57 | |
| 58 | // Declare that we implement the ValueNumbering interface |
| 59 | RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; |
| 60 | } |
| 61 | |
| 62 | |
| 63 | |
| 64 | Pass *createLoadValueNumberingPass() { return new LoadVN(); } |
| 65 | |
| 66 | |
| 67 | /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and |
| 68 | /// Alias Analysis. |
| 69 | /// |
| 70 | void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { |
| 71 | AU.setPreservesAll(); |
| 72 | AU.addRequired<AliasAnalysis>(); |
| 73 | AU.addRequired<ValueNumbering>(); |
| 74 | AU.addRequired<DominatorSet>(); |
| 75 | } |
| 76 | |
| 77 | // getEqualNumberNodes - Return nodes with the same value number as the |
| 78 | // specified Value. This fills in the argument vector with any equal values. |
| 79 | // |
| 80 | void LoadVN::getEqualNumberNodes(Value *V, |
| 81 | std::vector<Value*> &RetVals) const { |
| 82 | |
| 83 | if (LoadInst *LI = dyn_cast<LoadInst>(V)) { |
| 84 | // If we have a load instruction find all of the load instructions that use |
| 85 | // the same source operand. We implement this recursively, because there |
| 86 | // could be a load of a load of a load that are all identical. We are |
| 87 | // guaranteed that this cannot be an infinite recursion because load |
| 88 | // instructions would have to pass through a PHI node in order for there to |
| 89 | // be a cycle. The PHI node would be handled by the else case here, |
| 90 | // breaking the infinite recursion. |
| 91 | // |
| 92 | std::vector<Value*> PointerSources; |
| 93 | getEqualNumberNodes(LI->getOperand(0), PointerSources); |
| 94 | PointerSources.push_back(LI->getOperand(0)); |
| 95 | |
| 96 | Function *F = LI->getParent()->getParent(); |
| 97 | |
| 98 | // Now that we know the set of equivalent source pointers for the load |
| 99 | // instruction, look to see if there are any load candiates that are |
| 100 | // identical. |
| 101 | // |
| 102 | std::vector<LoadInst*> CandidateLoads; |
| 103 | while (!PointerSources.empty()) { |
| 104 | Value *Source = PointerSources.back(); |
| 105 | PointerSources.pop_back(); // Get a source pointer... |
| 106 | |
| 107 | for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); |
| 108 | UI != UE; ++UI) |
| 109 | if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) // Is a load of source? |
| 110 | if (Cand->getParent()->getParent() == F && // In the same function? |
| 111 | Cand != LI) // Not LI itself? |
| 112 | CandidateLoads.push_back(Cand); // Got one... |
| 113 | } |
| 114 | |
| 115 | // Remove duplicates from the CandidateLoads list because alias analysis |
| 116 | // processing may be somewhat expensive and we don't want to do more work |
| 117 | // than neccesary. |
| 118 | // |
| 119 | std::sort(CandidateLoads.begin(), CandidateLoads.end()); |
| 120 | CandidateLoads.erase(std::unique(CandidateLoads.begin(), |
| 121 | CandidateLoads.end()), |
| 122 | CandidateLoads.end()); |
| 123 | |
| 124 | // Get Alias Analysis... |
| 125 | AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); |
| 126 | DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); |
| 127 | |
| 128 | // Loop over all of the candindate loads. If they are not invalidated by |
| 129 | // stores or calls between execution of them and LI, then add them to |
| 130 | // RetVals. |
| 131 | for (unsigned i = 0, e = CandidateLoads.size(); i != e; ++i) |
| 132 | if (haveEqualValueNumber(LI, CandidateLoads[i], AA, DomSetInfo)) |
| 133 | RetVals.push_back(CandidateLoads[i]); |
| 134 | |
| 135 | } else { |
| 136 | // Make sure passmanager doesn't try to fulfill our request with ourself! |
| 137 | assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && |
| 138 | "getAnalysis() returned this!"); |
| 139 | |
| 140 | // Not a load instruction? Just chain to the base value numbering |
| 141 | // implementation to satisfy the request... |
| 142 | return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB |
| 147 | // (until DestBB) contain an instruction that might invalidate Ptr. |
| 148 | // |
| 149 | static bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, |
| 150 | Value *Ptr, AliasAnalysis &AA, |
| 151 | std::set<BasicBlock*> &VisitedSet) { |
| 152 | // Found the termination point! |
| 153 | if (BB == DestBB || VisitedSet.count(BB)) return false; |
| 154 | |
| 155 | // Avoid infinite recursion! |
| 156 | VisitedSet.insert(BB); |
| 157 | |
| 158 | // Can this basic block modify Ptr? |
| 159 | if (AA.canBasicBlockModify(*BB, Ptr)) |
| 160 | return true; |
| 161 | |
| 162 | // Check all of our predecessor blocks... |
| 163 | for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) |
| 164 | if (CheckForInvalidatingInst(*PI, DestBB, Ptr, AA, VisitedSet)) |
| 165 | return true; |
| 166 | |
| 167 | // None of our predecessor blocks contain an invalidating instruction, and we |
| 168 | // don't either! |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | |
| 173 | /// haveEqualValueNumber - Given two load instructions, determine if they both |
| 174 | /// produce the same value on every execution of the program, assuming that |
| 175 | /// their source operands always give the same value. This uses the |
| 176 | /// AliasAnalysis implementation to invalidate loads when stores or function |
| 177 | /// calls occur that could modify the value produced by the load. |
| 178 | /// |
| 179 | bool LoadVN::haveEqualValueNumber(LoadInst *L1, LoadInst *L2, |
| 180 | AliasAnalysis &AA, |
| 181 | DominatorSet &DomSetInfo) const { |
| 182 | // Figure out which load dominates the other one. If neither dominates the |
| 183 | // other we cannot eliminate them. |
| 184 | // |
| 185 | // FIXME: This could be enhanced to some cases with a shared dominator! |
| 186 | // |
| 187 | if (DomSetInfo.dominates(L2, L1)) |
| 188 | std::swap(L1, L2); // Make L1 dominate L2 |
| 189 | else if (!DomSetInfo.dominates(L1, L2)) |
| 190 | return false; // Neither instruction dominates the other one... |
| 191 | |
| 192 | BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); |
| 193 | Value *LoadAddress = L1->getOperand(0); |
| 194 | |
| 195 | // L1 now dominates L2. Check to see if the intervening instructions between |
| 196 | // the two loads include a store or call... |
| 197 | // |
| 198 | if (BB1 == BB2) { // In same basic block? |
| 199 | // In this degenerate case, no checking of global basic blocks has to occur |
| 200 | // just check the instructions BETWEEN L1 & L2... |
| 201 | // |
| 202 | if (AA.canInstructionRangeModify(*L1, *L2, LoadAddress)) |
| 203 | return false; // Cannot eliminate load |
| 204 | |
| 205 | // No instructions invalidate the loads, they produce the same value! |
| 206 | return true; |
| 207 | } else { |
| 208 | // Make sure that there are no store instructions between L1 and the end of |
| 209 | // it's basic block... |
| 210 | // |
| 211 | if (AA.canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress)) |
| 212 | return false; // Cannot eliminate load |
| 213 | |
| 214 | // Make sure that there are no store instructions between the start of BB2 |
| 215 | // and the second load instruction... |
| 216 | // |
| 217 | if (AA.canInstructionRangeModify(BB2->front(), *L2, LoadAddress)) |
| 218 | return false; // Cannot eliminate load |
| 219 | |
| 220 | // Do a depth first traversal of the inverse CFG starting at L2's block, |
| 221 | // looking for L1's block. The inverse CFG is made up of the predecessor |
| 222 | // nodes of a block... so all of the edges in the graph are "backward". |
| 223 | // |
| 224 | std::set<BasicBlock*> VisitedSet; |
| 225 | for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) |
| 226 | if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, AA, VisitedSet)) |
| 227 | return false; |
| 228 | |
| 229 | // If we passed all of these checks then we are sure that the two loads |
| 230 | // produce the same value. |
| 231 | return true; |
| 232 | } |
| 233 | } |