blob: 2c247c223a2e47849fb41cf78b815428e42419a2 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000030#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000031#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000032#include "llvm/Support/CFG.h"
Chris Lattner986618e2004-02-22 19:47:26 +000033#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000034using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000035
Chris Lattner986618e2004-02-22 19:47:26 +000036namespace {
37 Statistic<>
38 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
39}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000040
Chris Lattner333b2fa2002-12-13 10:09:43 +000041/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000042/// instruction at as well as a basic block. This is the version for when you
43/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000044inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000045 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000046 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000047 unsigned DestReg) {
48 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000049 MBB->insert(I, MI);
Alkis Evlogimenos890f9232004-02-22 19:23:26 +000050 return MachineInstrBuilder(MI).addReg(DestReg, MachineOperand::Def);
Chris Lattner333b2fa2002-12-13 10:09:43 +000051}
52
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053/// BMI - A special BuildMI variant that takes an iterator to insert the
54/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000055inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000056 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000057 int Opcode, unsigned NumOperands) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000058 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000059 MBB->insert(I, MI);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000060 return MachineInstrBuilder(MI);
61}
62
Chris Lattner333b2fa2002-12-13 10:09:43 +000063
Chris Lattner72614082002-10-25 22:55:53 +000064namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000065 struct ISel : public FunctionPass, InstVisitor<ISel> {
66 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000067 MachineFunction *F; // The function we are compiling into
68 MachineBasicBlock *BB; // The current MBB we are compiling
69 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000070 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000071
Chris Lattner72614082002-10-25 22:55:53 +000072 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
73
Chris Lattner333b2fa2002-12-13 10:09:43 +000074 // MBBMap - Mapping between LLVM BB -> Machine BB
75 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
76
Chris Lattnerf70e0c22003-12-28 21:23:38 +000077 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000078
79 /// runOnFunction - Top level implementation of instruction selection for
80 /// the entire function.
81 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000082 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000083 // First pass over the function, lower any unknown intrinsic functions
84 // with the IntrinsicLowering class.
85 LowerUnknownIntrinsicFunctionCalls(Fn);
86
Chris Lattner36b36032002-10-29 23:40:58 +000087 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000088
Chris Lattner065faeb2002-12-28 20:24:02 +000089 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000090 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
91 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
92
Chris Lattner14aa7fe2002-12-16 22:54:46 +000093 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000094
Chris Lattner0e5b79c2004-02-15 01:04:03 +000095 // Set up a frame object for the return address. This is used by the
96 // llvm.returnaddress & llvm.frameaddress intrinisics.
97 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
98
Chris Lattnerdbd73722003-05-06 21:32:22 +000099 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000100 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000101
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000103 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
105 // Select the PHI nodes
106 SelectPHINodes();
107
Chris Lattner986618e2004-02-22 19:47:26 +0000108 // Insert the FP_REG_KILL instructions into blocks that need them.
109 InsertFPRegKills();
110
Chris Lattner72614082002-10-25 22:55:53 +0000111 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000112 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000113 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000114 // We always build a machine code representation for the function
115 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000116 }
117
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000118 virtual const char *getPassName() const {
119 return "X86 Simple Instruction Selection";
120 }
121
Chris Lattner72614082002-10-25 22:55:53 +0000122 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000123 /// block. This simply creates a new MachineBasicBlock to emit code into
124 /// and adds it to the current MachineFunction. Subsequent visit* for
125 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000126 ///
127 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000129 }
130
Chris Lattner44827152003-12-28 09:47:19 +0000131 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
132 /// function, lowering any calls to unknown intrinsic functions into the
133 /// equivalent LLVM code.
134 void LowerUnknownIntrinsicFunctionCalls(Function &F);
135
Chris Lattner065faeb2002-12-28 20:24:02 +0000136 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
137 /// from the stack into virtual registers.
138 ///
139 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000140
141 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
142 /// because we have to generate our sources into the source basic blocks,
143 /// not the current one.
144 ///
145 void SelectPHINodes();
146
Chris Lattner986618e2004-02-22 19:47:26 +0000147 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
148 /// that need them. This only occurs due to the floating point stackifier
149 /// not being aggressive enough to handle arbitrary global stackification.
150 ///
151 void InsertFPRegKills();
152
Chris Lattner72614082002-10-25 22:55:53 +0000153 // Visitation methods for various instructions. These methods simply emit
154 // fixed X86 code for each instruction.
155 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000156
157 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000158 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000159 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000160
161 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000162 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000163 unsigned Reg;
164 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000165 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
166 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000167 };
168 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000169 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000170 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000171 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000172
173 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000174 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000175 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
176 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000177 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000178 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000179 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000180 void doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000181 MachineBasicBlock::iterator MBBI,
Chris Lattnerb2acc512003-10-19 21:09:10 +0000182 unsigned DestReg, const Type *DestTy,
183 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000184 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000185
Chris Lattnerf01729e2002-11-02 20:54:46 +0000186 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
187 void visitRem(BinaryOperator &B) { visitDivRem(B); }
188 void visitDivRem(BinaryOperator &B);
189
Chris Lattnere2954c82002-11-02 20:04:26 +0000190 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000191 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
192 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
193 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000194
Chris Lattner6d40c192003-01-16 16:43:00 +0000195 // Comparison operators...
196 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000197 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
198 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000199 MachineBasicBlock::iterator MBBI);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000200
Chris Lattner6fc3c522002-11-17 21:11:55 +0000201 // Memory Instructions
202 void visitLoadInst(LoadInst &I);
203 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000204 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000205 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000206 void visitMallocInst(MallocInst &I);
207 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000208
Chris Lattnere2954c82002-11-02 20:04:26 +0000209 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000210 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000211 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000212 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000213 void visitVANextInst(VANextInst &I);
214 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000215
216 void visitInstruction(Instruction &I) {
217 std::cerr << "Cannot instruction select: " << I;
218 abort();
219 }
220
Brian Gaeke95780cc2002-12-13 07:56:18 +0000221 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000222 ///
223 void promote32(unsigned targetReg, const ValueRecord &VR);
224
Chris Lattnerb6bac512004-02-25 06:13:04 +0000225 // getGEPIndex - This is used to fold GEP instructions into X86 addressing
226 // expressions.
227 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
228 std::vector<Value*> &GEPOps,
229 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
230 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
231
232 /// isGEPFoldable - Return true if the specified GEP can be completely
233 /// folded into the addressing mode of a load/store or lea instruction.
234 bool isGEPFoldable(MachineBasicBlock *MBB,
235 Value *Src, User::op_iterator IdxBegin,
236 User::op_iterator IdxEnd, unsigned &BaseReg,
237 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
238
Chris Lattner3e130a22003-01-13 00:32:26 +0000239 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
240 /// constant expression GEP support.
241 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000242 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000243 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000244 User::op_iterator IdxEnd, unsigned TargetReg);
245
Chris Lattner548f61d2003-04-23 17:22:12 +0000246 /// emitCastOperation - Common code shared between visitCastInst and
247 /// constant expression cast support.
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000248 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000249 Value *Src, const Type *DestTy, unsigned TargetReg);
250
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000251 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
252 /// and constant expression support.
253 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000254 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000255 Value *Op0, Value *Op1,
256 unsigned OperatorClass, unsigned TargetReg);
257
Chris Lattnercadff442003-10-23 17:21:43 +0000258 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000259 MachineBasicBlock::iterator IP,
Chris Lattnercadff442003-10-23 17:21:43 +0000260 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
261 const Type *Ty, unsigned TargetReg);
262
Chris Lattner58c41fe2003-08-24 19:19:47 +0000263 /// emitSetCCOperation - Common code shared between visitSetCondInst and
264 /// constant expression support.
265 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000266 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000267 Value *Op0, Value *Op1, unsigned Opcode,
268 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000269
270 /// emitShiftOperation - Common code shared between visitShiftInst and
271 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000272 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000273 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000274 Value *Op, Value *ShiftAmount, bool isLeftShift,
275 const Type *ResultTy, unsigned DestReg);
276
Chris Lattner58c41fe2003-08-24 19:19:47 +0000277
Chris Lattnerc5291f52002-10-27 21:16:59 +0000278 /// copyConstantToRegister - Output the instructions required to put the
279 /// specified constant into the specified register.
280 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000281 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000282 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000283 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000284
Chris Lattner3e130a22003-01-13 00:32:26 +0000285 /// makeAnotherReg - This method returns the next register number we haven't
286 /// yet used.
287 ///
288 /// Long values are handled somewhat specially. They are always allocated
289 /// as pairs of 32 bit integer values. The register number returned is the
290 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
291 /// of the long value.
292 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000293 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000294 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
295 "Current target doesn't have X86 reg info??");
296 const X86RegisterInfo *MRI =
297 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000298 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000299 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
300 // Create the lower part
301 F->getSSARegMap()->createVirtualRegister(RC);
302 // Create the upper part.
303 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000304 }
305
Chris Lattnerc0812d82002-12-13 06:56:29 +0000306 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000307 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000308 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000309 }
310
Chris Lattner72614082002-10-25 22:55:53 +0000311 /// getReg - This method turns an LLVM value into a register number. This
312 /// is guaranteed to produce the same register number for a particular value
313 /// every time it is queried.
314 ///
315 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000316 unsigned getReg(Value *V) {
317 // Just append to the end of the current bb.
318 MachineBasicBlock::iterator It = BB->end();
319 return getReg(V, BB, It);
320 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000321 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000322 MachineBasicBlock::iterator IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000323 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000324 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000325 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000326 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000327 }
Chris Lattner72614082002-10-25 22:55:53 +0000328
Chris Lattner6f8fd252002-10-27 21:23:43 +0000329 // If this operand is a constant, emit the code to copy the constant into
330 // the register here...
331 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000332 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000333 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000334 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000335 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
336 // Move the address of the global into the register
Chris Lattner6e173a02004-02-17 06:16:44 +0000337 BMI(MBB, IPt, X86::MOVri32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000338 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000339 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000340
Chris Lattner72614082002-10-25 22:55:53 +0000341 return Reg;
342 }
Chris Lattner72614082002-10-25 22:55:53 +0000343 };
344}
345
Chris Lattner43189d12002-11-17 20:07:45 +0000346/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
347/// Representation.
348///
349enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000350 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000351};
352
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000353/// getClass - Turn a primitive type into a "class" number which is based on the
354/// size of the type, and whether or not it is floating point.
355///
Chris Lattner43189d12002-11-17 20:07:45 +0000356static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000357 switch (Ty->getPrimitiveID()) {
358 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000359 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000360 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000361 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000362 case Type::IntTyID:
363 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000364 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000365
Chris Lattner94af4142002-12-25 05:13:53 +0000366 case Type::FloatTyID:
367 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000368
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000369 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000370 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 default:
372 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000373 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000374 }
375}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000376
Chris Lattner6b993cc2002-12-15 08:02:15 +0000377// getClassB - Just like getClass, but treat boolean values as bytes.
378static inline TypeClass getClassB(const Type *Ty) {
379 if (Ty == Type::BoolTy) return cByte;
380 return getClass(Ty);
381}
382
Chris Lattner06925362002-11-17 21:56:38 +0000383
Chris Lattnerc5291f52002-10-27 21:16:59 +0000384/// copyConstantToRegister - Output the instructions required to put the
385/// specified constant into the specified register.
386///
Chris Lattner8a307e82002-12-16 19:32:50 +0000387void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000388 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000389 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000391 unsigned Class = 0;
392 switch (CE->getOpcode()) {
393 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000394 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000395 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000396 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000397 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000398 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000399 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000400
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000401 case Instruction::Xor: ++Class; // FALL THROUGH
402 case Instruction::Or: ++Class; // FALL THROUGH
403 case Instruction::And: ++Class; // FALL THROUGH
404 case Instruction::Sub: ++Class; // FALL THROUGH
405 case Instruction::Add:
406 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
407 Class, R);
408 return;
409
Chris Lattnercadff442003-10-23 17:21:43 +0000410 case Instruction::Mul: {
411 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
412 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
413 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
414 return;
415 }
416 case Instruction::Div:
417 case Instruction::Rem: {
418 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
419 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
420 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
421 CE->getOpcode() == Instruction::Div,
422 CE->getType(), R);
423 return;
424 }
425
Chris Lattner58c41fe2003-08-24 19:19:47 +0000426 case Instruction::SetNE:
427 case Instruction::SetEQ:
428 case Instruction::SetLT:
429 case Instruction::SetGT:
430 case Instruction::SetLE:
431 case Instruction::SetGE:
432 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
433 CE->getOpcode(), R);
434 return;
435
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000436 case Instruction::Shl:
437 case Instruction::Shr:
438 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000439 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
440 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000441
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000442 default:
443 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000444 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000445 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000446 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000447
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000448 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000449 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000450
451 if (Class == cLong) {
452 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000453 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner6e173a02004-02-17 06:16:44 +0000454 BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(Val & 0xFFFFFFFF);
455 BMI(MBB, IP, X86::MOVri32, 1, R+1).addZImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000456 return;
457 }
458
Chris Lattner94af4142002-12-25 05:13:53 +0000459 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000460
461 static const unsigned IntegralOpcodeTab[] = {
Chris Lattner6e173a02004-02-17 06:16:44 +0000462 X86::MOVri8, X86::MOVri16, X86::MOVri32
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000463 };
464
Chris Lattner6b993cc2002-12-15 08:02:15 +0000465 if (C->getType() == Type::BoolTy) {
Chris Lattner6e173a02004-02-17 06:16:44 +0000466 BMI(MBB, IP, X86::MOVri8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000467 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000468 ConstantInt *CI = cast<ConstantInt>(C);
469 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000470 }
Chris Lattner94af4142002-12-25 05:13:53 +0000471 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000472 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000473 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000474 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000475 BMI(MBB, IP, X86::FLD1, 0, R);
476 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000477 // Otherwise we need to spill the constant to memory...
478 MachineConstantPool *CP = F->getConstantPool();
479 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000480 const Type *Ty = CFP->getType();
481
482 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
483 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
484 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000485 }
486
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000487 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000488 // Copy zero (null pointer) to the register.
Chris Lattner6e173a02004-02-17 06:16:44 +0000489 BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000490 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Chris Lattner7ca04092004-02-22 17:35:42 +0000491 BMI(MBB, IP, X86::MOVri32, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000492 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000493 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000494 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000495 }
496}
497
Chris Lattner065faeb2002-12-28 20:24:02 +0000498/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
499/// the stack into virtual registers.
500///
501void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
502 // Emit instructions to load the arguments... On entry to a function on the
503 // X86, the stack frame looks like this:
504 //
505 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000506 // [ESP + 4] -- first argument (leftmost lexically)
507 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000508 // ...
509 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000510 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000511 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000512
513 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
514 unsigned Reg = getReg(*I);
515
Chris Lattner065faeb2002-12-28 20:24:02 +0000516 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000517 switch (getClassB(I->getType())) {
518 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000519 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000520 addFrameReference(BuildMI(BB, X86::MOVrm8, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000521 break;
522 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000523 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000524 addFrameReference(BuildMI(BB, X86::MOVrm16, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000525 break;
526 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000527 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000528 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000529 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000530 case cLong:
531 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000532 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
533 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg+1), FI, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +0000534 ArgOffset += 4; // longs require 4 additional bytes
535 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000536 case cFP:
537 unsigned Opcode;
538 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000539 Opcode = X86::FLDr32;
540 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000541 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000542 Opcode = X86::FLDr64;
543 FI = MFI->CreateFixedObject(8, ArgOffset);
544 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000545 }
546 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
547 break;
548 default:
549 assert(0 && "Unhandled argument type!");
550 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000551 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000552 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000553
554 // If the function takes variable number of arguments, add a frame offset for
555 // the start of the first vararg value... this is used to expand
556 // llvm.va_start.
557 if (Fn.getFunctionType()->isVarArg())
558 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000559}
560
561
Chris Lattner333b2fa2002-12-13 10:09:43 +0000562/// SelectPHINodes - Insert machine code to generate phis. This is tricky
563/// because we have to generate our sources into the source basic blocks, not
564/// the current one.
565///
566void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000567 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000568 const Function &LF = *F->getFunction(); // The LLVM function...
569 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
570 const BasicBlock *BB = I;
571 MachineBasicBlock *MBB = MBBMap[I];
572
573 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner986618e2004-02-22 19:47:26 +0000574 MachineBasicBlock::iterator instr = MBB->begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000575 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000576 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000577
Chris Lattner333b2fa2002-12-13 10:09:43 +0000578 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000579 unsigned PHIReg = getReg(*PN);
580 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000581 MBB->insert(instr, PhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000582
583 MachineInstr *LongPhiMI = 0;
584 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000585 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000586 MBB->insert(instr, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000587 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000588
Chris Lattnera6e73f12003-05-12 14:22:21 +0000589 // PHIValues - Map of blocks to incoming virtual registers. We use this
590 // so that we only initialize one incoming value for a particular block,
591 // even if the block has multiple entries in the PHI node.
592 //
593 std::map<MachineBasicBlock*, unsigned> PHIValues;
594
Chris Lattner333b2fa2002-12-13 10:09:43 +0000595 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
596 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000597 unsigned ValReg;
598 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
599 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000600
Chris Lattnera6e73f12003-05-12 14:22:21 +0000601 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
602 // We already inserted an initialization of the register for this
603 // predecessor. Recycle it.
604 ValReg = EntryIt->second;
605
606 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000607 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000608 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000609 Value *Val = PN->getIncomingValue(i);
610
611 // If this is a constant or GlobalValue, we may have to insert code
612 // into the basic block to compute it into a virtual register.
613 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
614 // Because we don't want to clobber any values which might be in
615 // physical registers with the computation of this constant (which
616 // might be arbitrarily complex if it is a constant expression),
617 // just insert the computation at the top of the basic block.
618 MachineBasicBlock::iterator PI = PredMBB->begin();
619
620 // Skip over any PHI nodes though!
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000621 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
Chris Lattnera81fc682003-10-19 00:26:11 +0000622 ++PI;
623
624 ValReg = getReg(Val, PredMBB, PI);
625 } else {
626 ValReg = getReg(Val);
627 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000628
629 // Remember that we inserted a value for this PHI for this predecessor
630 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
631 }
632
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000633 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000634 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000635 if (LongPhiMI) {
636 LongPhiMI->addRegOperand(ValReg+1);
637 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
638 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000639 }
640 }
641 }
642}
643
Chris Lattner986618e2004-02-22 19:47:26 +0000644/// RequiresFPRegKill - The floating point stackifier pass cannot insert
645/// compensation code on critical edges. As such, it requires that we kill all
646/// FP registers on the exit from any blocks that either ARE critical edges, or
647/// branch to a block that has incoming critical edges.
648///
649/// Note that this kill instruction will eventually be eliminated when
650/// restrictions in the stackifier are relaxed.
651///
652static bool RequiresFPRegKill(const BasicBlock *BB) {
653#if 0
654 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
655 const BasicBlock *Succ = *SI;
656 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
657 ++PI; // Block have at least one predecessory
658 if (PI != PE) { // If it has exactly one, this isn't crit edge
659 // If this block has more than one predecessor, check all of the
660 // predecessors to see if they have multiple successors. If so, then the
661 // block we are analyzing needs an FPRegKill.
662 for (PI = pred_begin(Succ); PI != PE; ++PI) {
663 const BasicBlock *Pred = *PI;
664 succ_const_iterator SI2 = succ_begin(Pred);
665 ++SI2; // There must be at least one successor of this block.
666 if (SI2 != succ_end(Pred))
667 return true; // Yes, we must insert the kill on this edge.
668 }
669 }
670 }
671 // If we got this far, there is no need to insert the kill instruction.
672 return false;
673#else
674 return true;
675#endif
676}
677
678// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
679// need them. This only occurs due to the floating point stackifier not being
680// aggressive enough to handle arbitrary global stackification.
681//
682// Currently we insert an FP_REG_KILL instruction into each block that uses or
683// defines a floating point virtual register.
684//
685// When the global register allocators (like linear scan) finally update live
686// variable analysis, we can keep floating point values in registers across
687// portions of the CFG that do not involve critical edges. This will be a big
688// win, but we are waiting on the global allocators before we can do this.
689//
690// With a bit of work, the floating point stackifier pass can be enhanced to
691// break critical edges as needed (to make a place to put compensation code),
692// but this will require some infrastructure improvements as well.
693//
694void ISel::InsertFPRegKills() {
695 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000696
697 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000698 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000699 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
700 MachineOperand& MO = I->getOperand(i);
701 if (MO.isRegister() && MO.getReg()) {
702 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000703 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000704 if (RegMap.getRegClass(Reg)->getSize() == 10)
705 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000706 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000707 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000708 // If we haven't found an FP register use or def in this basic block, check
709 // to see if any of our successors has an FP PHI node, which will cause a
710 // copy to be inserted into this block.
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000711 for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()),
712 E = succ_end(BB->getBasicBlock()); SI != E; ++SI) {
713 MachineBasicBlock *SBB = MBBMap[*SI];
714 for (MachineBasicBlock::iterator I = SBB->begin();
715 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
716 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
717 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000718 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000719 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000720 continue;
721 UsesFPReg:
722 // Okay, this block uses an FP register. If the block has successors (ie,
723 // it's not an unwind/return), insert the FP_REG_KILL instruction.
724 if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() &&
725 RequiresFPRegKill(BB->getBasicBlock())) {
Alkis Evlogimenos743d0a12004-02-23 18:14:48 +0000726 BMI(BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000727 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000728 }
729 }
730}
731
732
Chris Lattner6d40c192003-01-16 16:43:00 +0000733// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
734// the conditional branch instruction which is the only user of the cc
735// instruction. This is the case if the conditional branch is the only user of
736// the setcc, and if the setcc is in the same basic block as the conditional
737// branch. We also don't handle long arguments below, so we reject them here as
738// well.
739//
740static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
741 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000742 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000743 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
744 const Type *Ty = SCI->getOperand(0)->getType();
745 if (Ty != Type::LongTy && Ty != Type::ULongTy)
746 return SCI;
747 }
748 return 0;
749}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000750
Chris Lattner6d40c192003-01-16 16:43:00 +0000751// Return a fixed numbering for setcc instructions which does not depend on the
752// order of the opcodes.
753//
754static unsigned getSetCCNumber(unsigned Opcode) {
755 switch(Opcode) {
756 default: assert(0 && "Unknown setcc instruction!");
757 case Instruction::SetEQ: return 0;
758 case Instruction::SetNE: return 1;
759 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000760 case Instruction::SetGE: return 3;
761 case Instruction::SetGT: return 4;
762 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000763 }
764}
Chris Lattner06925362002-11-17 21:56:38 +0000765
Chris Lattner6d40c192003-01-16 16:43:00 +0000766// LLVM -> X86 signed X86 unsigned
767// ----- ---------- ------------
768// seteq -> sete sete
769// setne -> setne setne
770// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000771// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000772// setgt -> setg seta
773// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000774// ----
775// sets // Used by comparison with 0 optimization
776// setns
777static const unsigned SetCCOpcodeTab[2][8] = {
778 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
779 0, 0 },
780 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
781 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000782};
783
Chris Lattnerb2acc512003-10-19 21:09:10 +0000784// EmitComparison - This function emits a comparison of the two operands,
785// returning the extended setcc code to use.
786unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
787 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000788 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000789 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000790 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000791 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000792 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000793
794 // Special case handling of: cmp R, i
795 if (Class == cByte || Class == cShort || Class == cInt)
796 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000797 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
798
Chris Lattner333864d2003-06-05 19:30:30 +0000799 // Mask off any upper bits of the constant, if there are any...
800 Op1v &= (1ULL << (8 << Class)) - 1;
801
Chris Lattnerb2acc512003-10-19 21:09:10 +0000802 // If this is a comparison against zero, emit more efficient code. We
803 // can't handle unsigned comparisons against zero unless they are == or
804 // !=. These should have been strength reduced already anyway.
805 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
806 static const unsigned TESTTab[] = {
807 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
808 };
809 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
810
811 if (OpNum == 2) return 6; // Map jl -> js
812 if (OpNum == 3) return 7; // Map jg -> jns
813 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000814 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000815
816 static const unsigned CMPTab[] = {
817 X86::CMPri8, X86::CMPri16, X86::CMPri32
818 };
819
820 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
821 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000822 }
823
Chris Lattner9f08a922004-02-03 18:54:04 +0000824 // Special case handling of comparison against +/- 0.0
825 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
826 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
827 BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
828 BMI(MBB, IP, X86::FNSTSWr8, 0);
829 BMI(MBB, IP, X86::SAHF, 1);
830 return OpNum;
831 }
832
Chris Lattner58c41fe2003-08-24 19:19:47 +0000833 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000834 switch (Class) {
835 default: assert(0 && "Unknown type class!");
836 // Emit: cmp <var1>, <var2> (do the comparison). We can
837 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
838 // 32-bit.
839 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000840 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000841 break;
842 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000843 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000844 break;
845 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000846 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000847 break;
848 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000849 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
850 BMI(MBB, IP, X86::FNSTSWr8, 0);
851 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000852 break;
853
854 case cLong:
855 if (OpNum < 2) { // seteq, setne
856 unsigned LoTmp = makeAnotherReg(Type::IntTy);
857 unsigned HiTmp = makeAnotherReg(Type::IntTy);
858 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000859 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
860 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
861 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000862 break; // Allow the sete or setne to be generated from flags set by OR
863 } else {
864 // Emit a sequence of code which compares the high and low parts once
865 // each, then uses a conditional move to handle the overflow case. For
866 // example, a setlt for long would generate code like this:
867 //
868 // AL = lo(op1) < lo(op2) // Signedness depends on operands
869 // BL = hi(op1) < hi(op2) // Always unsigned comparison
870 // dest = hi(op1) == hi(op2) ? AL : BL;
871 //
872
Chris Lattner6d40c192003-01-16 16:43:00 +0000873 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 // classes! Until then, hardcode registers so that we can deal with their
875 // aliases (because we don't have conditional byte moves).
876 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000877 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
878 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
879 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000880 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000881 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
882 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
883 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000884 // NOTE: visitSetCondInst knows that the value is dumped into the BL
885 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000886 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000887 }
888 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000889 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000890}
Chris Lattner3e130a22003-01-13 00:32:26 +0000891
Chris Lattner6d40c192003-01-16 16:43:00 +0000892
893/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
894/// register, then move it to wherever the result should be.
895///
896void ISel::visitSetCondInst(SetCondInst &I) {
897 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
898
Chris Lattner6d40c192003-01-16 16:43:00 +0000899 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000900 MachineBasicBlock::iterator MII = BB->end();
901 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
902 DestReg);
903}
Chris Lattner6d40c192003-01-16 16:43:00 +0000904
Chris Lattner58c41fe2003-08-24 19:19:47 +0000905/// emitSetCCOperation - Common code shared between visitSetCondInst and
906/// constant expression support.
907void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000908 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000909 Value *Op0, Value *Op1, unsigned Opcode,
910 unsigned TargetReg) {
911 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000912 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000913
Chris Lattnerb2acc512003-10-19 21:09:10 +0000914 const Type *CompTy = Op0->getType();
915 unsigned CompClass = getClassB(CompTy);
916 bool isSigned = CompTy->isSigned() && CompClass != cFP;
917
918 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000919 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000920 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000921 } else {
922 // Handle long comparisons by copying the value which is already in BL into
923 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000924 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000925 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000926}
Chris Lattner51b49a92002-11-02 19:45:49 +0000927
Chris Lattner58c41fe2003-08-24 19:19:47 +0000928
929
930
Brian Gaekec2505982002-11-30 11:57:28 +0000931/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
932/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000933void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
934 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000935
936 // Make sure we have the register number for this value...
937 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
938
Chris Lattner3e130a22003-01-13 00:32:26 +0000939 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000940 case cByte:
941 // Extend value into target register (8->32)
942 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000943 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000944 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000945 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000946 break;
947 case cShort:
948 // Extend value into target register (16->32)
949 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000950 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000951 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000952 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000953 break;
954 case cInt:
955 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000956 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000957 break;
958 default:
959 assert(0 && "Unpromotable operand class in promote32");
960 }
Brian Gaekec2505982002-11-30 11:57:28 +0000961}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000962
Chris Lattner72614082002-10-25 22:55:53 +0000963/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
964/// we have the following possibilities:
965///
966/// ret void: No return value, simply emit a 'ret' instruction
967/// ret sbyte, ubyte : Extend value into EAX and return
968/// ret short, ushort: Extend value into EAX and return
969/// ret int, uint : Move value into EAX and return
970/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000971/// ret long, ulong : Move value into EAX/EDX and return
972/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000973///
Chris Lattner3e130a22003-01-13 00:32:26 +0000974void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000975 if (I.getNumOperands() == 0) {
976 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
977 return;
978 }
979
980 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000981 unsigned RetReg = getReg(RetVal);
982 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000983 case cByte: // integral return values: extend or move into EAX and return
984 case cShort:
985 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000986 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000987 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000988 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000989 break;
990 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000991 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000992 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000993 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000994 break;
995 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000996 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
997 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000998 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000999 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1000 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001001 break;
Chris Lattner94af4142002-12-25 05:13:53 +00001002 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001003 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001004 }
Chris Lattner43189d12002-11-17 20:07:45 +00001005 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001006 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001007}
1008
Chris Lattner55f6fab2003-01-16 18:07:23 +00001009// getBlockAfter - Return the basic block which occurs lexically after the
1010// specified one.
1011static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1012 Function::iterator I = BB; ++I; // Get iterator to next block
1013 return I != BB->getParent()->end() ? &*I : 0;
1014}
1015
Chris Lattner51b49a92002-11-02 19:45:49 +00001016/// visitBranchInst - Handle conditional and unconditional branches here. Note
1017/// that since code layout is frozen at this point, that if we are trying to
1018/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001019/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001020///
Chris Lattner94af4142002-12-25 05:13:53 +00001021void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +00001022 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1023
1024 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001025 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +00001026 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +00001027 return;
1028 }
1029
1030 // See if we can fold the setcc into the branch itself...
1031 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
1032 if (SCI == 0) {
1033 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1034 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001035 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +00001036 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001037 if (BI.getSuccessor(1) == NextBB) {
1038 if (BI.getSuccessor(0) != NextBB)
1039 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
1040 } else {
1041 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
1042
1043 if (BI.getSuccessor(0) != NextBB)
1044 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1045 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001046 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001047 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001048
1049 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001050 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001051 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001052
1053 const Type *CompTy = SCI->getOperand(0)->getType();
1054 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001055
Chris Lattnerb2acc512003-10-19 21:09:10 +00001056
Chris Lattner6d40c192003-01-16 16:43:00 +00001057 // LLVM -> X86 signed X86 unsigned
1058 // ----- ---------- ------------
1059 // seteq -> je je
1060 // setne -> jne jne
1061 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001062 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001063 // setgt -> jg ja
1064 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001065 // ----
1066 // js // Used by comparison with 0 optimization
1067 // jns
1068
1069 static const unsigned OpcodeTab[2][8] = {
1070 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1071 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1072 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001073 };
1074
Chris Lattner55f6fab2003-01-16 18:07:23 +00001075 if (BI.getSuccessor(0) != NextBB) {
1076 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1077 if (BI.getSuccessor(1) != NextBB)
1078 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1079 } else {
1080 // Change to the inverse condition...
1081 if (BI.getSuccessor(1) != NextBB) {
1082 OpNum ^= 1;
1083 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1084 }
1085 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001086}
1087
Chris Lattner3e130a22003-01-13 00:32:26 +00001088
1089/// doCall - This emits an abstract call instruction, setting up the arguments
1090/// and the return value as appropriate. For the actual function call itself,
1091/// it inserts the specified CallMI instruction into the stream.
1092///
1093void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001094 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001095
Chris Lattner065faeb2002-12-28 20:24:02 +00001096 // Count how many bytes are to be pushed on the stack...
1097 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001098
Chris Lattner3e130a22003-01-13 00:32:26 +00001099 if (!Args.empty()) {
1100 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1101 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001102 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001103 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001104 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001105 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001106 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001107 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1108 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001109 default: assert(0 && "Unknown class!");
1110 }
1111
1112 // Adjust the stack pointer for the new arguments...
1113 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1114
1115 // Arguments go on the stack in reverse order, as specified by the ABI.
1116 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001117 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001118 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001119 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001120 case cByte:
1121 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001122 // Promote arg to 32 bits wide into a temporary register...
1123 unsigned R = makeAnotherReg(Type::UIntTy);
1124 promote32(R, Args[i]);
Chris Lattnere87331d2004-02-17 06:28:19 +00001125 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001126 X86::ESP, ArgOffset).addReg(R);
1127 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001128 }
1129 case cInt:
Chris Lattnere87331d2004-02-17 06:28:19 +00001130 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001131 X86::ESP, ArgOffset).addReg(ArgReg);
1132 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001133 case cLong:
Chris Lattnere87331d2004-02-17 06:28:19 +00001134 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001135 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattnere87331d2004-02-17 06:28:19 +00001136 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001137 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1138 ArgOffset += 4; // 8 byte entry, not 4.
1139 break;
1140
Chris Lattner065faeb2002-12-28 20:24:02 +00001141 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001142 if (Args[i].Ty == Type::FloatTy) {
1143 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1144 X86::ESP, ArgOffset).addReg(ArgReg);
1145 } else {
1146 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1147 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1148 X86::ESP, ArgOffset).addReg(ArgReg);
1149 ArgOffset += 4; // 8 byte entry, not 4.
1150 }
1151 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001152
Chris Lattner3e130a22003-01-13 00:32:26 +00001153 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001154 }
1155 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001156 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001157 } else {
1158 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001159 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001160
Chris Lattner3e130a22003-01-13 00:32:26 +00001161 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001162
Chris Lattner065faeb2002-12-28 20:24:02 +00001163 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001164
1165 // If there is a return value, scavenge the result from the location the call
1166 // leaves it in...
1167 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001168 if (Ret.Ty != Type::VoidTy) {
1169 unsigned DestClass = getClassB(Ret.Ty);
1170 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001171 case cByte:
1172 case cShort:
1173 case cInt: {
1174 // Integral results are in %eax, or the appropriate portion
1175 // thereof.
1176 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001177 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001178 };
1179 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001180 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001181 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001182 }
Chris Lattner94af4142002-12-25 05:13:53 +00001183 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001184 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001185 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001186 case cLong: // Long values are left in EDX:EAX
1187 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1188 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1189 break;
1190 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001191 }
Chris Lattnera3243642002-12-04 23:45:28 +00001192 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001193}
Chris Lattner2df035b2002-11-02 19:27:56 +00001194
Chris Lattner3e130a22003-01-13 00:32:26 +00001195
1196/// visitCallInst - Push args on stack and do a procedure call instruction.
1197void ISel::visitCallInst(CallInst &CI) {
1198 MachineInstr *TheCall;
1199 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001200 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001201 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001202 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1203 return;
1204 }
1205
Chris Lattner3e130a22003-01-13 00:32:26 +00001206 // Emit a CALL instruction with PC-relative displacement.
1207 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1208 } else { // Emit an indirect call...
1209 unsigned Reg = getReg(CI.getCalledValue());
1210 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1211 }
1212
1213 std::vector<ValueRecord> Args;
1214 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001215 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001216
1217 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1218 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001219}
Chris Lattner3e130a22003-01-13 00:32:26 +00001220
Chris Lattneraeb54b82003-08-28 21:23:43 +00001221
Chris Lattner44827152003-12-28 09:47:19 +00001222/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1223/// function, lowering any calls to unknown intrinsic functions into the
1224/// equivalent LLVM code.
1225void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1226 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1228 if (CallInst *CI = dyn_cast<CallInst>(I++))
1229 if (Function *F = CI->getCalledFunction())
1230 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001231 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001232 case Intrinsic::va_start:
1233 case Intrinsic::va_copy:
1234 case Intrinsic::va_end:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001235 case Intrinsic::returnaddress:
1236 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001237 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001238 case Intrinsic::memset:
Chris Lattner44827152003-12-28 09:47:19 +00001239 // We directly implement these intrinsics
1240 break;
1241 default:
1242 // All other intrinsic calls we must lower.
1243 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001244 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001245 if (Before) { // Move iterator to instruction after call
1246 I = Before; ++I;
1247 } else {
1248 I = BB->begin();
1249 }
1250 }
1251
1252}
1253
Brian Gaeked0fde302003-11-11 22:41:34 +00001254void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001255 unsigned TmpReg1, TmpReg2;
1256 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001257 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001258 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001259 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001260 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001261 return;
1262
Brian Gaeked0fde302003-11-11 22:41:34 +00001263 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001264 TmpReg1 = getReg(CI);
1265 TmpReg2 = getReg(CI.getOperand(1));
1266 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001267 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001268 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001269
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001270 case Intrinsic::returnaddress:
1271 case Intrinsic::frameaddress:
1272 TmpReg1 = getReg(CI);
1273 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1274 if (ID == Intrinsic::returnaddress) {
1275 // Just load the return address
Chris Lattnere87331d2004-02-17 06:28:19 +00001276 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001277 ReturnAddressIndex);
1278 } else {
1279 addFrameReference(BuildMI(BB, X86::LEAr32, 4, TmpReg1),
1280 ReturnAddressIndex, -4);
1281 }
1282 } else {
1283 // Values other than zero are not implemented yet.
Chris Lattner6e173a02004-02-17 06:16:44 +00001284 BuildMI(BB, X86::MOVri32, 1, TmpReg1).addZImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001285 }
1286 return;
1287
Chris Lattner915e5e52004-02-12 17:53:22 +00001288 case Intrinsic::memcpy: {
1289 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1290 unsigned Align = 1;
1291 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1292 Align = AlignC->getRawValue();
1293 if (Align == 0) Align = 1;
1294 }
1295
1296 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001297 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001298 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001299 switch (Align & 3) {
1300 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001301 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1302 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1303 } else {
1304 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001305 unsigned ByteReg = getReg(CI.getOperand(3));
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001306 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001307 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001308 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001309 break;
1310 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001311 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1312 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1313 } else {
1314 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001315 unsigned ByteReg = getReg(CI.getOperand(3));
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001316 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001317 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001318 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001319 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001320 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001321 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001322 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001323 break;
1324 }
1325
1326 // No matter what the alignment is, we put the source in ESI, the
1327 // destination in EDI, and the count in ECX.
1328 TmpReg1 = getReg(CI.getOperand(1));
1329 TmpReg2 = getReg(CI.getOperand(2));
1330 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1331 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1332 BuildMI(BB, X86::MOVrr32, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001333 BuildMI(BB, Opcode, 0);
1334 return;
1335 }
1336 case Intrinsic::memset: {
1337 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1338 unsigned Align = 1;
1339 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1340 Align = AlignC->getRawValue();
1341 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001342 }
1343
Chris Lattner2a0f2242004-02-14 04:46:05 +00001344 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001345 unsigned CountReg;
1346 unsigned Opcode;
1347 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1348 unsigned Val = ValC->getRawValue() & 255;
1349
1350 // If the value is a constant, then we can potentially use larger copies.
1351 switch (Align & 3) {
1352 case 2: // WORD aligned
1353 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001354 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001355 } else {
1356 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001357 unsigned ByteReg = getReg(CI.getOperand(3));
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001358 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001359 }
Chris Lattner6e173a02004-02-17 06:16:44 +00001360 BuildMI(BB, X86::MOVri16, 1, X86::AX).addZImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001361 Opcode = X86::REP_STOSW;
1362 break;
1363 case 0: // DWORD aligned
1364 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001365 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001366 } else {
1367 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001368 unsigned ByteReg = getReg(CI.getOperand(3));
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001369 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001370 }
1371 Val = (Val << 8) | Val;
Chris Lattner6e173a02004-02-17 06:16:44 +00001372 BuildMI(BB, X86::MOVri32, 1, X86::EAX).addZImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001373 Opcode = X86::REP_STOSD;
1374 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001375 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001376 CountReg = getReg(CI.getOperand(3));
Chris Lattner6e173a02004-02-17 06:16:44 +00001377 BuildMI(BB, X86::MOVri8, 1, X86::AL).addZImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001378 Opcode = X86::REP_STOSB;
1379 break;
1380 }
1381 } else {
1382 // If it's not a constant value we are storing, just fall back. We could
1383 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1384 unsigned ValReg = getReg(CI.getOperand(2));
1385 BuildMI(BB, X86::MOVrr8, 1, X86::AL).addReg(ValReg);
1386 CountReg = getReg(CI.getOperand(3));
1387 Opcode = X86::REP_STOSB;
1388 }
1389
1390 // No matter what the alignment is, we put the source in ESI, the
1391 // destination in EDI, and the count in ECX.
1392 TmpReg1 = getReg(CI.getOperand(1));
1393 //TmpReg2 = getReg(CI.getOperand(2));
1394 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1395 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1396 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001397 return;
1398 }
1399
Chris Lattner44827152003-12-28 09:47:19 +00001400 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001401 }
1402}
1403
1404
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001405/// visitSimpleBinary - Implement simple binary operators for integral types...
1406/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1407/// Xor.
1408void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1409 unsigned DestReg = getReg(B);
1410 MachineBasicBlock::iterator MI = BB->end();
1411 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1412 OperatorClass, DestReg);
1413}
Chris Lattner3e130a22003-01-13 00:32:26 +00001414
Chris Lattnerb2acc512003-10-19 21:09:10 +00001415/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1416/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1417/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001418///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001419/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1420/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001421///
1422void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001423 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001424 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001425 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001426 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001427
1428 // sub 0, X -> neg X
1429 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001430 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001431 if (CI->isNullValue()) {
1432 unsigned op1Reg = getReg(Op1, MBB, IP);
1433 switch (Class) {
1434 default: assert(0 && "Unknown class for this function!");
1435 case cByte:
1436 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1437 return;
1438 case cShort:
1439 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1440 return;
1441 case cInt:
1442 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1443 return;
1444 }
1445 }
Chris Lattner9f8fd6d2004-02-02 19:31:38 +00001446 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1447 if (CFP->isExactlyValue(-0.0)) {
1448 // -0.0 - X === -X
1449 unsigned op1Reg = getReg(Op1, MBB, IP);
1450 BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1451 return;
1452 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001453
Chris Lattner35333e12003-06-05 18:28:55 +00001454 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1455 static const unsigned OpcodeTab[][4] = {
1456 // Arithmetic operators
1457 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1458 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1459
1460 // Bitwise operators
1461 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1462 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1463 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001464 };
Chris Lattner35333e12003-06-05 18:28:55 +00001465
1466 bool isLong = false;
1467 if (Class == cLong) {
1468 isLong = true;
1469 Class = cInt; // Bottom 32 bits are handled just like ints
1470 }
1471
1472 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1473 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001474 unsigned Op0r = getReg(Op0, MBB, IP);
1475 unsigned Op1r = getReg(Op1, MBB, IP);
1476 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001477
1478 if (isLong) { // Handle the upper 32 bits of long values...
1479 static const unsigned TopTab[] = {
1480 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1481 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001482 BMI(MBB, IP, TopTab[OperatorClass], 2,
1483 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001484 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001485 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001486 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001487
1488 // Special case: op Reg, <const>
1489 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1490 unsigned Op0r = getReg(Op0, MBB, IP);
1491
1492 // xor X, -1 -> not X
1493 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1494 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1495 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1496 return;
1497 }
1498
1499 // add X, -1 -> dec X
1500 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1501 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1502 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1503 return;
1504 }
1505
1506 // add X, 1 -> inc X
1507 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1508 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1509 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1510 return;
1511 }
1512
1513 static const unsigned OpcodeTab[][3] = {
1514 // Arithmetic operators
1515 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1516 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1517
1518 // Bitwise operators
1519 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1520 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1521 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1522 };
1523
1524 assert(Class < 3 && "General code handles 64-bit integer types!");
1525 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1526 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1527
1528 // Mask off any upper bits of the constant, if there are any...
1529 Op1v &= (1ULL << (8 << Class)) - 1;
1530 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001531}
1532
Chris Lattner3e130a22003-01-13 00:32:26 +00001533/// doMultiply - Emit appropriate instructions to multiply together the
1534/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1535/// result should be given as DestTy.
1536///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001537void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001538 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001539 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001540 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001541 switch (Class) {
1542 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001543 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001544 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001545 case cInt:
1546 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001547 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001548 .addReg(op0Reg).addReg(op1Reg);
1549 return;
1550 case cByte:
1551 // Must use the MUL instruction, which forces use of AL...
1552 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1553 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1554 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1555 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001556 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001557 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001558 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001559}
1560
Chris Lattnerb2acc512003-10-19 21:09:10 +00001561// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1562// returns zero when the input is not exactly a power of two.
1563static unsigned ExactLog2(unsigned Val) {
1564 if (Val == 0) return 0;
1565 unsigned Count = 0;
1566 while (Val != 1) {
1567 if (Val & 1) return 0;
1568 Val >>= 1;
1569 ++Count;
1570 }
1571 return Count+1;
1572}
1573
1574void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001575 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001576 unsigned DestReg, const Type *DestTy,
1577 unsigned op0Reg, unsigned ConstRHS) {
1578 unsigned Class = getClass(DestTy);
1579
1580 // If the element size is exactly a power of 2, use a shift to get it.
1581 if (unsigned Shift = ExactLog2(ConstRHS)) {
1582 switch (Class) {
1583 default: assert(0 && "Unknown class for this function!");
1584 case cByte:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001585 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001586 return;
1587 case cShort:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001588 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001589 return;
1590 case cInt:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001591 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001592 return;
1593 }
1594 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001595
1596 if (Class == cShort) {
Chris Lattner55b54812004-02-17 04:26:43 +00001597 BMI(MBB, IP, X86::IMULrri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00001598 return;
1599 } else if (Class == cInt) {
Chris Lattner55b54812004-02-17 04:26:43 +00001600 BMI(MBB, IP, X86::IMULrri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00001601 return;
1602 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001603
1604 // Most general case, emit a normal multiply...
Chris Lattner6e173a02004-02-17 06:16:44 +00001605 static const unsigned MOVriTab[] = {
1606 X86::MOVri8, X86::MOVri16, X86::MOVri32
Chris Lattnerb2acc512003-10-19 21:09:10 +00001607 };
1608
1609 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattner6e173a02004-02-17 06:16:44 +00001610 BMI(MBB, IP, MOVriTab[Class], 1, TmpReg).addZImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001611
1612 // Emit a MUL to multiply the register holding the index by
1613 // elementSize, putting the result in OffsetReg.
1614 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1615}
1616
Chris Lattnerca9671d2002-11-02 20:28:58 +00001617/// visitMul - Multiplies are not simple binary operators because they must deal
1618/// with the EAX register explicitly.
1619///
1620void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001621 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001622 unsigned DestReg = getReg(I);
1623
1624 // Simple scalar multiply?
1625 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001626 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1627 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1628 MachineBasicBlock::iterator MBBI = BB->end();
1629 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1630 } else {
1631 unsigned Op1Reg = getReg(I.getOperand(1));
1632 MachineBasicBlock::iterator MBBI = BB->end();
1633 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1634 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001635 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001636 unsigned Op1Reg = getReg(I.getOperand(1));
1637
Chris Lattner3e130a22003-01-13 00:32:26 +00001638 // Long value. We have to do things the hard way...
1639 // Multiply the two low parts... capturing carry into EDX
1640 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1641 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1642
1643 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1644 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1645 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1646
1647 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001648 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001649 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001650
1651 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1652 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001653 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001654
1655 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001656 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001657 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001658
1659 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001660 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001661 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001662}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001663
Chris Lattner06925362002-11-17 21:56:38 +00001664
Chris Lattnerf01729e2002-11-02 20:54:46 +00001665/// visitDivRem - Handle division and remainder instructions... these
1666/// instruction both require the same instructions to be generated, they just
1667/// select the result from a different register. Note that both of these
1668/// instructions work differently for signed and unsigned operands.
1669///
1670void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001671 unsigned Op0Reg = getReg(I.getOperand(0));
1672 unsigned Op1Reg = getReg(I.getOperand(1));
1673 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001674
Chris Lattnercadff442003-10-23 17:21:43 +00001675 MachineBasicBlock::iterator IP = BB->end();
1676 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1677 I.getType(), ResultReg);
1678}
1679
1680void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001681 MachineBasicBlock::iterator IP,
Chris Lattnercadff442003-10-23 17:21:43 +00001682 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1683 const Type *Ty, unsigned ResultReg) {
1684 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001685 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001686 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001687 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001688 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001689 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001690 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001691 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001692 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001693 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1694 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001695 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1696 }
Chris Lattner94af4142002-12-25 05:13:53 +00001697 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001698 case cLong: {
1699 static const char *FnName[] =
1700 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1701
Chris Lattnercadff442003-10-23 17:21:43 +00001702 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001703 MachineInstr *TheCall =
1704 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1705
1706 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001707 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1708 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001709 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1710 return;
1711 }
1712 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001713 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001714 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001715 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001716
1717 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1718 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001719 static const unsigned SarOpcode[]={ X86::SARri8, X86::SARri16, X86::SARri32 };
Chris Lattner6e173a02004-02-17 06:16:44 +00001720 static const unsigned ClrOpcode[]={ X86::MOVri8, X86::MOVri16, X86::MOVri32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001721 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1722
1723 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001724 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1725 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001726 };
1727
Chris Lattnercadff442003-10-23 17:21:43 +00001728 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001729 unsigned Reg = Regs[Class];
1730 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001731
1732 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001733 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001734
1735 if (isSigned) {
1736 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001737 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001738 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1739 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001740 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001741 // If unsigned, emit a zeroing instruction... (reg = 0)
1742 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001743 }
1744
Chris Lattner06925362002-11-17 21:56:38 +00001745 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001746 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001747
Chris Lattnerf01729e2002-11-02 20:54:46 +00001748 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001749 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001750
Chris Lattnerf01729e2002-11-02 20:54:46 +00001751 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001752 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001753}
Chris Lattnere2954c82002-11-02 20:04:26 +00001754
Chris Lattner06925362002-11-17 21:56:38 +00001755
Brian Gaekea1719c92002-10-31 23:03:59 +00001756/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1757/// for constant immediate shift values, and for constant immediate
1758/// shift values equal to 1. Even the general case is sort of special,
1759/// because the shift amount has to be in CL, not just any old register.
1760///
Chris Lattner3e130a22003-01-13 00:32:26 +00001761void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001762 MachineBasicBlock::iterator IP = BB->end ();
1763 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1764 I.getOpcode () == Instruction::Shl, I.getType (),
1765 getReg (I));
1766}
1767
1768/// emitShiftOperation - Common code shared between visitShiftInst and
1769/// constant expression support.
1770void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001771 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001772 Value *Op, Value *ShiftAmount, bool isLeftShift,
1773 const Type *ResultTy, unsigned DestReg) {
1774 unsigned SrcReg = getReg (Op, MBB, IP);
1775 bool isSigned = ResultTy->isSigned ();
1776 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001777
1778 static const unsigned ConstantOperand[][4] = {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001779 { X86::SHRri8, X86::SHRri16, X86::SHRri32, X86::SHRDri32 }, // SHR
1780 { X86::SARri8, X86::SARri16, X86::SARri32, X86::SHRDri32 }, // SAR
1781 { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 }, // SHL
1782 { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00001783 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001784
Chris Lattner3e130a22003-01-13 00:32:26 +00001785 static const unsigned NonConstantOperand[][4] = {
1786 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1787 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1788 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1789 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1790 };
Chris Lattner796df732002-11-02 00:44:25 +00001791
Chris Lattner3e130a22003-01-13 00:32:26 +00001792 // Longs, as usual, are handled specially...
1793 if (Class == cLong) {
1794 // If we have a constant shift, we can generate much more efficient code
1795 // than otherwise...
1796 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001797 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001798 unsigned Amount = CUI->getValue();
1799 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001800 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1801 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001802 BMI(MBB, IP, Opc[3], 3,
1803 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1804 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001805 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001806 BMI(MBB, IP, Opc[3], 3,
1807 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1808 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001809 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001810 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001811 Amount -= 32;
1812 if (isLeftShift) {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001813 BMI(MBB, IP, X86::SHLri32, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001814 DestReg + 1).addReg(SrcReg).addZImm(Amount);
Chris Lattner6e173a02004-02-17 06:16:44 +00001815 BMI(MBB, IP, X86::MOVri32, 1,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001816 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001817 } else {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001818 unsigned Opcode = isSigned ? X86::SARri32 : X86::SHRri32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001819 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
Chris Lattner6e173a02004-02-17 06:16:44 +00001820 BMI(MBB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001821 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001822 }
1823 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001824 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1825
1826 if (!isLeftShift && isSigned) {
1827 // If this is a SHR of a Long, then we need to do funny sign extension
1828 // stuff. TmpReg gets the value to use as the high-part if we are
1829 // shifting more than 32 bits.
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001830 BMI(MBB, IP, X86::SARri32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001831 } else {
1832 // Other shifts use a fixed zero value if the shift is more than 32
1833 // bits.
Chris Lattner6e173a02004-02-17 06:16:44 +00001834 BMI(MBB, IP, X86::MOVri32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001835 }
1836
1837 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001838 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1839 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001840
1841 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1842 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1843 if (isLeftShift) {
1844 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001845 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001846 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001847 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001848
1849 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001850 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001851
1852 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001853 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001854 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1855 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001856 BMI(MBB, IP, X86::CMOVNErr32, 2,
1857 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001858 } else {
1859 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001860 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001861 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001862 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001863 .addReg(SrcReg+1);
1864
1865 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001866 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001867
1868 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001869 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001870 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1871
1872 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001873 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001874 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1875 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001876 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001877 return;
1878 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001879
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001880 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001881 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1882 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001883
Chris Lattner3e130a22003-01-13 00:32:26 +00001884 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001885 BMI(MBB, IP, Opc[Class], 2,
1886 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001887 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001888 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1889 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001890
Chris Lattner3e130a22003-01-13 00:32:26 +00001891 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001892 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001893 }
1894}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001895
Chris Lattner3e130a22003-01-13 00:32:26 +00001896
Chris Lattner6fc3c522002-11-17 21:11:55 +00001897/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001898/// instruction. The load and store instructions are the only place where we
1899/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001900///
1901void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001902 unsigned DestReg = getReg(I);
Chris Lattnerb6bac512004-02-25 06:13:04 +00001903 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
1904 Value *Addr = I.getOperand(0);
1905 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
1906 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
1907 BaseReg, Scale, IndexReg, Disp))
1908 Addr = 0; // Address is consumed!
1909 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
1910 if (CE->getOpcode() == Instruction::GetElementPtr)
1911 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
1912 BaseReg, Scale, IndexReg, Disp))
1913 Addr = 0;
1914 }
1915
1916 if (Addr) {
1917 // If it's not foldable, reset addr mode.
1918 BaseReg = getReg(Addr);
1919 Scale = 1; IndexReg = 0; Disp = 0;
1920 }
Chris Lattnere8f0d922002-12-24 00:03:11 +00001921
Brian Gaekebfedb912003-07-17 21:30:06 +00001922 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001923 if (Class == cLong) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00001924 addFullAddress(BuildMI(BB, X86::MOVrm32, 4, DestReg),
1925 BaseReg, Scale, IndexReg, Disp);
1926 addFullAddress(BuildMI(BB, X86::MOVrm32, 4, DestReg+1),
1927 BaseReg, Scale, IndexReg, Disp+4);
Chris Lattner94af4142002-12-25 05:13:53 +00001928 return;
1929 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001930
Chris Lattner6ac1d712003-10-20 04:48:06 +00001931 static const unsigned Opcodes[] = {
Chris Lattnere87331d2004-02-17 06:28:19 +00001932 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001933 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001934 unsigned Opcode = Opcodes[Class];
1935 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
Chris Lattnerb6bac512004-02-25 06:13:04 +00001936 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
1937 BaseReg, Scale, IndexReg, Disp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001938}
1939
Chris Lattner6fc3c522002-11-17 21:11:55 +00001940/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1941/// instruction.
1942///
1943void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00001944 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
1945 Value *Addr = I.getOperand(1);
1946 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
1947 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
1948 BaseReg, Scale, IndexReg, Disp))
1949 Addr = 0; // Address is consumed!
1950 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
1951 if (CE->getOpcode() == Instruction::GetElementPtr)
1952 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
1953 BaseReg, Scale, IndexReg, Disp))
1954 Addr = 0;
1955 }
1956
1957 if (Addr) {
1958 // If it's not foldable, reset addr mode.
1959 BaseReg = getReg(Addr);
1960 Scale = 1; IndexReg = 0; Disp = 0;
1961 }
1962
Chris Lattner6c09db22003-10-20 04:11:23 +00001963 const Type *ValTy = I.getOperand(0)->getType();
1964 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001965
Chris Lattner5a830962004-02-25 02:56:58 +00001966 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
1967 uint64_t Val = CI->getRawValue();
1968 if (Class == cLong) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00001969 addFullAddress(BuildMI(BB, X86::MOVmi32, 5),
1970 BaseReg, Scale, IndexReg, Disp).addZImm(Val & ~0U);
1971 addFullAddress(BuildMI(BB, X86::MOVmi32, 5),
1972 BaseReg, Scale, IndexReg, Disp+4).addZImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00001973 } else {
1974 static const unsigned Opcodes[] = {
1975 X86::MOVmi8, X86::MOVmi16, X86::MOVmi32
1976 };
1977 unsigned Opcode = Opcodes[Class];
Chris Lattnerb6bac512004-02-25 06:13:04 +00001978 addFullAddress(BuildMI(BB, Opcode, 5),
1979 BaseReg, Scale, IndexReg, Disp).addZImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00001980 }
1981 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00001982 addFullAddress(BuildMI(BB, X86::MOVmi8, 5),
1983 BaseReg, Scale, IndexReg, Disp).addZImm(CB->getValue());
Chris Lattner5a830962004-02-25 02:56:58 +00001984 } else {
1985 if (Class == cLong) {
1986 unsigned ValReg = getReg(I.getOperand(0));
Chris Lattnerb6bac512004-02-25 06:13:04 +00001987 addFullAddress(BuildMI(BB, X86::MOVmr32, 5),
1988 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
1989 addFullAddress(BuildMI(BB, X86::MOVmr32, 5),
1990 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
Chris Lattner5a830962004-02-25 02:56:58 +00001991 } else {
1992 unsigned ValReg = getReg(I.getOperand(0));
1993 static const unsigned Opcodes[] = {
1994 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FSTr32
1995 };
1996 unsigned Opcode = Opcodes[Class];
1997 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
Chris Lattnerb6bac512004-02-25 06:13:04 +00001998 addFullAddress(BuildMI(BB, Opcode, 1+4),
1999 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner5a830962004-02-25 02:56:58 +00002000 }
Chris Lattner94af4142002-12-25 05:13:53 +00002001 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00002002}
2003
2004
Brian Gaekec11232a2002-11-26 10:43:30 +00002005/// visitCastInst - Here we have various kinds of copying with or without
2006/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00002007void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00002008 Value *Op = CI.getOperand(0);
2009 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2010 // of the case are GEP instructions, then the cast does not need to be
2011 // generated explicitly, it will be folded into the GEP.
2012 if (CI.getType() == Type::LongTy &&
2013 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
2014 bool AllUsesAreGEPs = true;
2015 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2016 if (!isa<GetElementPtrInst>(*I)) {
2017 AllUsesAreGEPs = false;
2018 break;
2019 }
2020
2021 // No need to codegen this cast if all users are getelementptr instrs...
2022 if (AllUsesAreGEPs) return;
2023 }
2024
Chris Lattner548f61d2003-04-23 17:22:12 +00002025 unsigned DestReg = getReg(CI);
2026 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00002027 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00002028}
2029
2030/// emitCastOperation - Common code shared between visitCastInst and
2031/// constant expression cast support.
2032void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002033 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00002034 Value *Src, const Type *DestTy,
2035 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00002036 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002037 const Type *SrcTy = Src->getType();
2038 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002039 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00002040
Chris Lattner3e130a22003-01-13 00:32:26 +00002041 // Implement casts to bool by using compare on the operand followed by set if
2042 // not zero on the result.
2043 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00002044 switch (SrcClass) {
2045 case cByte:
2046 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
2047 break;
2048 case cShort:
2049 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
2050 break;
2051 case cInt:
2052 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
2053 break;
2054 case cLong: {
2055 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2056 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
2057 break;
2058 }
2059 case cFP:
Chris Lattner311ca2e2004-02-23 03:21:41 +00002060 BMI(BB, IP, X86::FTST, 1).addReg(SrcReg);
2061 BMI(BB, IP, X86::FNSTSWr8, 0);
2062 BMI(BB, IP, X86::SAHF, 1);
2063 break;
Chris Lattner20772542003-06-01 03:38:24 +00002064 }
2065
2066 // If the zero flag is not set, then the value is true, set the byte to
2067 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00002068 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00002069 return;
2070 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002071
2072 static const unsigned RegRegMove[] = {
2073 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
2074 };
2075
2076 // Implement casts between values of the same type class (as determined by
2077 // getClass) by using a register-to-register move.
2078 if (SrcClass == DestClass) {
2079 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002080 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002081 } else if (SrcClass == cFP) {
2082 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002083 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2084 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002085 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002086 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2087 "Unknown cFP member!");
2088 // Truncate from double to float by storing to memory as short, then
2089 // reading it back.
2090 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00002091 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002092 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
2093 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002094 }
2095 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002096 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
2097 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002098 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00002099 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002100 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00002101 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002102 return;
2103 }
2104
2105 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2106 // or zero extension, depending on whether the source type was signed.
2107 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2108 SrcClass < DestClass) {
2109 bool isLong = DestClass == cLong;
2110 if (isLong) DestClass = cInt;
2111
2112 static const unsigned Opc[][4] = {
2113 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
2114 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
2115 };
2116
2117 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00002118 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
2119 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002120
2121 if (isLong) { // Handle upper 32 bits as appropriate...
2122 if (isUnsigned) // Zero out top bits...
Chris Lattner6e173a02004-02-17 06:16:44 +00002123 BMI(BB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00002124 else // Sign extend bottom half...
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00002125 BMI(BB, IP, X86::SARri32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00002126 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002127 return;
2128 }
2129
2130 // Special case long -> int ...
2131 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002132 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002133 return;
2134 }
2135
2136 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
2137 // move out of AX or AL.
2138 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2139 && SrcClass > DestClass) {
2140 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00002141 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
2142 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00002143 return;
2144 }
2145
2146 // Handle casts from integer to floating point now...
2147 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002148 // Promote the integer to a type supported by FLD. We do this because there
2149 // are no unsigned FLD instructions, so we must promote an unsigned value to
2150 // a larger signed value, then use FLD on the larger value.
2151 //
2152 const Type *PromoteType = 0;
2153 unsigned PromoteOpcode;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002154 unsigned RealDestReg = DestReg;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002155 switch (SrcTy->getPrimitiveID()) {
2156 case Type::BoolTyID:
2157 case Type::SByteTyID:
2158 // We don't have the facilities for directly loading byte sized data from
2159 // memory (even signed). Promote it to 16 bits.
2160 PromoteType = Type::ShortTy;
2161 PromoteOpcode = X86::MOVSXr16r8;
2162 break;
2163 case Type::UByteTyID:
2164 PromoteType = Type::ShortTy;
2165 PromoteOpcode = X86::MOVZXr16r8;
2166 break;
2167 case Type::UShortTyID:
2168 PromoteType = Type::IntTy;
2169 PromoteOpcode = X86::MOVZXr32r16;
2170 break;
2171 case Type::UIntTyID: {
2172 // Make a 64 bit temporary... and zero out the top of it...
2173 unsigned TmpReg = makeAnotherReg(Type::LongTy);
2174 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
Chris Lattner6e173a02004-02-17 06:16:44 +00002175 BMI(BB, IP, X86::MOVri32, 1, TmpReg+1).addZImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002176 SrcTy = Type::LongTy;
2177 SrcClass = cLong;
2178 SrcReg = TmpReg;
2179 break;
2180 }
2181 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002182 // Don't fild into the read destination.
2183 DestReg = makeAnotherReg(Type::DoubleTy);
2184 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002185 default: // No promotion needed...
2186 break;
2187 }
2188
2189 if (PromoteType) {
2190 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002191 unsigned Opc = SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8;
2192 BMI(BB, IP, Opc, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002193 SrcTy = PromoteType;
2194 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00002195 SrcReg = TmpReg;
2196 }
2197
2198 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00002199 int FrameIdx =
2200 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00002201
2202 if (SrcClass == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00002203 addFrameReference(BMI(BB, IP, X86::MOVmr32, 5), FrameIdx).addReg(SrcReg);
2204 addFrameReference(BMI(BB, IP, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002205 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002206 } else {
Chris Lattnere87331d2004-02-17 06:28:19 +00002207 static const unsigned Op1[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002208 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002209 }
2210
2211 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002212 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002213 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002214
2215 // We need special handling for unsigned 64-bit integer sources. If the
2216 // input number has the "sign bit" set, then we loaded it incorrectly as a
2217 // negative 64-bit number. In this case, add an offset value.
2218 if (SrcTy == Type::ULongTy) {
2219 // Emit a test instruction to see if the dynamic input value was signed.
2220 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg+1).addReg(SrcReg+1);
2221
Chris Lattnerb6bac512004-02-25 06:13:04 +00002222 // If the sign bit is set, get a pointer to an offset, otherwise get a
2223 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002224 MachineConstantPool *CP = F->getConstantPool();
2225 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002226 Constant *Null = Constant::getNullValue(Type::UIntTy);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002227 addConstantPoolReference(BMI(BB, IP, X86::LEAr32, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002228 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002229 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002230 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
2231
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002232 addConstantPoolReference(BMI(BB, IP, X86::LEAr32, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002233 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002234 unsigned Addr = makeAnotherReg(Type::IntTy);
2235 BMI(BB, IP, X86::CMOVSrr32, 2, Addr).addReg(Zero).addReg(Offset);
2236
2237 // Load the constant for an add. FIXME: this could make an 'fadd' that
2238 // reads directly from memory, but we don't support these yet.
2239 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
2240 addDirectMem(BMI(BB, IP, X86::FLDr32, 4, ConstReg), Addr);
2241
2242 BMI(BB, IP, X86::FpADD, 2, RealDestReg).addReg(ConstReg).addReg(DestReg);
2243 }
2244
Chris Lattner3e130a22003-01-13 00:32:26 +00002245 return;
2246 }
2247
2248 // Handle casts from floating point to integer now...
2249 if (SrcClass == cFP) {
2250 // Change the floating point control register to use "round towards zero"
2251 // mode when truncating to an integer value.
2252 //
2253 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00002254 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002255
2256 // Load the old value of the high byte of the control word...
2257 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattnere87331d2004-02-17 06:28:19 +00002258 addFrameReference(BMI(BB, IP, X86::MOVrm8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002259
2260 // Set the high part to be round to zero...
Chris Lattner6e173a02004-02-17 06:16:44 +00002261 addFrameReference(BMI(BB, IP, X86::MOVmi8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00002262
2263 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002264 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002265
2266 // Restore the memory image of control word to original value
Chris Lattnere87331d2004-02-17 06:28:19 +00002267 addFrameReference(BMI(BB, IP, X86::MOVmr8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002268 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00002269
2270 // We don't have the facilities for directly storing byte sized data to
2271 // memory. Promote it to 16 bits. We also must promote unsigned values to
2272 // larger classes because we only have signed FP stores.
2273 unsigned StoreClass = DestClass;
2274 const Type *StoreTy = DestTy;
2275 if (StoreClass == cByte || DestTy->isUnsigned())
2276 switch (StoreClass) {
2277 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
2278 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
2279 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00002280 // The following treatment of cLong may not be perfectly right,
2281 // but it survives chains of casts of the form
2282 // double->ulong->double.
2283 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002284 default: assert(0 && "Unknown store class!");
2285 }
2286
2287 // Spill the integer to memory and reload it from there...
2288 int FrameIdx =
2289 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2290
2291 static const unsigned Op1[] =
2292 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002293 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002294
2295 if (DestClass == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00002296 addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg), FrameIdx);
2297 addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002298 } else {
Chris Lattnere87331d2004-02-17 06:28:19 +00002299 static const unsigned Op2[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002300 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002301 }
2302
2303 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002304 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002305 return;
2306 }
2307
Brian Gaeked474e9c2002-12-06 10:49:33 +00002308 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002309 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002310 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002311}
Brian Gaekea1719c92002-10-31 23:03:59 +00002312
Chris Lattner73815062003-10-18 05:56:40 +00002313/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002314///
Chris Lattner73815062003-10-18 05:56:40 +00002315void ISel::visitVANextInst(VANextInst &I) {
2316 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002317 unsigned DestReg = getReg(I);
2318
Chris Lattnereca195e2003-05-08 19:44:13 +00002319 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002320 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002321 default:
2322 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002323 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002324 return;
2325 case Type::PointerTyID:
2326 case Type::UIntTyID:
2327 case Type::IntTyID:
2328 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002329 break;
2330 case Type::ULongTyID:
2331 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002332 case Type::DoubleTyID:
2333 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002334 break;
2335 }
2336
2337 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002338 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2339}
Chris Lattnereca195e2003-05-08 19:44:13 +00002340
Chris Lattner73815062003-10-18 05:56:40 +00002341void ISel::visitVAArgInst(VAArgInst &I) {
2342 unsigned VAList = getReg(I.getOperand(0));
2343 unsigned DestReg = getReg(I);
2344
2345 switch (I.getType()->getPrimitiveID()) {
2346 default:
2347 std::cerr << I;
2348 assert(0 && "Error: bad type for va_next instruction!");
2349 return;
2350 case Type::PointerTyID:
2351 case Type::UIntTyID:
2352 case Type::IntTyID:
Chris Lattnere87331d2004-02-17 06:28:19 +00002353 addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00002354 break;
2355 case Type::ULongTyID:
2356 case Type::LongTyID:
Chris Lattnere87331d2004-02-17 06:28:19 +00002357 addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
2358 addRegOffset(BuildMI(BB, X86::MOVrm32, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00002359 break;
2360 case Type::DoubleTyID:
2361 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2362 break;
2363 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002364}
2365
2366
Chris Lattner3e130a22003-01-13 00:32:26 +00002367void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00002368 // If this GEP instruction will be folded into all of its users, we don't need
2369 // to explicitly calculate it!
2370 unsigned A, B, C, D;
2371 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
2372 // Check all of the users of the instruction to see if they are loads and
2373 // stores.
2374 bool AllWillFold = true;
2375 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
2376 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
2377 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
2378 cast<Instruction>(*UI)->getOperand(0) == &I) {
2379 AllWillFold = false;
2380 break;
2381 }
2382
2383 // If the instruction is foldable, and will be folded into all users, don't
2384 // emit it!
2385 if (AllWillFold) return;
2386 }
2387
Chris Lattner3e130a22003-01-13 00:32:26 +00002388 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00002389 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002390 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002391}
2392
Chris Lattner985fe3d2004-02-25 03:45:50 +00002393/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
2394/// GEPTypes (the derived types being stepped through at each level). On return
2395/// from this function, if some indexes of the instruction are representable as
2396/// an X86 lea instruction, the machine operands are put into the Ops
2397/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
2398/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
2399/// addressing mode that only partially consumes the input, the BaseReg input of
2400/// the addressing mode must be left free.
2401///
2402/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
2403///
Chris Lattnerb6bac512004-02-25 06:13:04 +00002404void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2405 std::vector<Value*> &GEPOps,
2406 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
2407 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
2408 const TargetData &TD = TM.getTargetData();
2409
Chris Lattner985fe3d2004-02-25 03:45:50 +00002410 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00002411 BaseReg = 0; // No base register
2412 Scale = 1; // Unit scale
2413 IndexReg = 0; // No index register
2414 Disp = 0; // No displacement
2415
Chris Lattner985fe3d2004-02-25 03:45:50 +00002416 // While there are GEP indexes that can be folded into the current address,
2417 // keep processing them.
2418 while (!GEPTypes.empty()) {
2419 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2420 // It's a struct access. CUI is the index into the structure,
2421 // which names the field. This index must have unsigned type.
2422 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
2423
2424 // Use the TargetData structure to pick out what the layout of the
2425 // structure is in memory. Since the structure index must be constant, we
2426 // can get its value and use it to find the right byte offset from the
2427 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00002428 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00002429 GEPOps.pop_back(); // Consume a GEP operand
2430 GEPTypes.pop_back();
2431 } else {
2432 // It's an array or pointer access: [ArraySize x ElementType].
2433 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2434 Value *idx = GEPOps.back();
2435
2436 // idx is the index into the array. Unlike with structure
2437 // indices, we may not know its actual value at code-generation
2438 // time.
2439 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2440
2441 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00002442 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00002443 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00002444 Disp += TypeSize*CSI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00002445 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00002446 // If the index reg is already taken, we can't handle this index.
2447 if (IndexReg) return;
2448
2449 // If this is a size that we can handle, then add the index as
2450 switch (TypeSize) {
2451 case 1: case 2: case 4: case 8:
2452 // These are all acceptable scales on X86.
2453 Scale = TypeSize;
2454 break;
2455 default:
2456 // Otherwise, we can't handle this scale
2457 return;
2458 }
2459
2460 if (CastInst *CI = dyn_cast<CastInst>(idx))
2461 if (CI->getOperand(0)->getType() == Type::IntTy ||
2462 CI->getOperand(0)->getType() == Type::UIntTy)
2463 idx = CI->getOperand(0);
2464
2465 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00002466 }
2467
2468 GEPOps.pop_back(); // Consume a GEP operand
2469 GEPTypes.pop_back();
2470 }
2471 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00002472
2473 // GEPTypes is empty, which means we have a single operand left. See if we
2474 // can set it as the base register.
2475 //
2476 // FIXME: When addressing modes are more powerful/correct, we could load
2477 // global addresses directly as 32-bit immediates.
2478 assert(BaseReg == 0);
Chris Lattner5f2c7b12004-02-25 07:00:55 +00002479 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00002480 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00002481}
2482
2483
Chris Lattnerb6bac512004-02-25 06:13:04 +00002484/// isGEPFoldable - Return true if the specified GEP can be completely
2485/// folded into the addressing mode of a load/store or lea instruction.
2486bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
2487 Value *Src, User::op_iterator IdxBegin,
2488 User::op_iterator IdxEnd, unsigned &BaseReg,
2489 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00002490 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2491 Src = CPR->getValue();
2492
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002493 std::vector<Value*> GEPOps;
2494 GEPOps.resize(IdxEnd-IdxBegin+1);
2495 GEPOps[0] = Src;
2496 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2497
2498 std::vector<const Type*> GEPTypes;
2499 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2500 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2501
Chris Lattnerb6bac512004-02-25 06:13:04 +00002502 MachineBasicBlock::iterator IP;
2503 if (MBB) IP = MBB->end();
2504 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
2505
2506 // We can fold it away iff the getGEPIndex call eliminated all operands.
2507 return GEPOps.empty();
2508}
2509
2510void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2511 MachineBasicBlock::iterator IP,
2512 Value *Src, User::op_iterator IdxBegin,
2513 User::op_iterator IdxEnd, unsigned TargetReg) {
2514 const TargetData &TD = TM.getTargetData();
2515 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2516 Src = CPR->getValue();
2517
2518 std::vector<Value*> GEPOps;
2519 GEPOps.resize(IdxEnd-IdxBegin+1);
2520 GEPOps[0] = Src;
2521 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2522
2523 std::vector<const Type*> GEPTypes;
2524 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2525 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00002526
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002527 // Keep emitting instructions until we consume the entire GEP instruction.
2528 while (!GEPOps.empty()) {
2529 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00002530 unsigned BaseReg, Scale, IndexReg, Disp;
2531 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002532
Chris Lattner985fe3d2004-02-25 03:45:50 +00002533 if (GEPOps.size() != OldSize) {
2534 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00002535 unsigned NextTarget = 0;
2536 if (!GEPOps.empty()) {
2537 assert(BaseReg == 0 &&
2538 "getGEPIndex should have left the base register open for chaining!");
2539 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00002540 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00002541
2542 if (IndexReg == 0 && Disp == 0)
2543 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
2544 else
2545 addFullAddress(BMI(MBB, IP, X86::LEAr32, 5, TargetReg),
2546 BaseReg, Scale, IndexReg, Disp);
2547 --IP;
2548 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00002549 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002550 // The getGEPIndex operation didn't want to build an LEA. Check to see if
2551 // all operands are consumed but the base pointer. If so, just load it
2552 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00002553 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
2554 BMI(MBB, IP, X86::MOVri32, 1, TargetReg).addGlobalAddress(GV);
2555 } else {
2556 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
2557 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
2558 }
2559 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00002560
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002561 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00002562 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002563 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2564 Value *idx = GEPOps.back();
2565 GEPOps.pop_back(); // Consume a GEP operand
2566 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00002567
Brian Gaeke20244b72002-12-12 15:33:40 +00002568 // idx is the index into the array. Unlike with structure
2569 // indices, we may not know its actual value at code-generation
2570 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002571 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2572
Chris Lattnerf5854472003-06-21 16:01:24 +00002573 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2574 // operand on X86. Handle this case directly now...
2575 if (CastInst *CI = dyn_cast<CastInst>(idx))
2576 if (CI->getOperand(0)->getType() == Type::IntTy ||
2577 CI->getOperand(0)->getType() == Type::UIntTy)
2578 idx = CI->getOperand(0);
2579
Chris Lattner3e130a22003-01-13 00:32:26 +00002580 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002581 // must find the size of the pointed-to type (Not coincidentally, the next
2582 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002583 const Type *ElTy = SqTy->getElementType();
2584 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00002585
2586 // If idxReg is a constant, we don't need to perform the multiply!
2587 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002588 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002589 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002590 unsigned Reg = makeAnotherReg(Type::UIntTy);
2591 BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(Offset);
2592 --IP; // Insert the next instruction before this one.
2593 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002594 }
2595 } else if (elementSize == 1) {
2596 // If the element size is 1, we don't have to multiply, just add
2597 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002598 unsigned Reg = makeAnotherReg(Type::UIntTy);
2599 BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(idxReg);
2600 --IP; // Insert the next instruction before this one.
2601 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002602 } else {
2603 unsigned idxReg = getReg(idx, MBB, IP);
2604 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002605
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002606 // Make sure we can back the iterator up to point to the first
2607 // instruction emitted.
2608 MachineBasicBlock::iterator BeforeIt = IP;
2609 if (IP == MBB->begin())
2610 BeforeIt = MBB->end();
2611 else
2612 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002613 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2614
Chris Lattner8a307e82002-12-16 19:32:50 +00002615 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002616 unsigned Reg = makeAnotherReg(Type::UIntTy);
2617 BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
2618
2619 // Step to the first instruction of the multiply.
2620 if (BeforeIt == MBB->end())
2621 IP = MBB->begin();
2622 else
2623 IP = ++BeforeIt;
2624
2625 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002626 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002627 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002628 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002629}
2630
2631
Chris Lattner065faeb2002-12-28 20:24:02 +00002632/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2633/// frame manager, otherwise do it the hard way.
2634///
2635void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002636 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002637 const Type *Ty = I.getAllocatedType();
2638 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2639
2640 // If this is a fixed size alloca in the entry block for the function,
2641 // statically stack allocate the space.
2642 //
2643 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2644 if (I.getParent() == I.getParent()->getParent()->begin()) {
2645 TySize *= CUI->getValue(); // Get total allocated size...
2646 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2647
2648 // Create a new stack object using the frame manager...
2649 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2650 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2651 return;
2652 }
2653 }
2654
2655 // Create a register to hold the temporary result of multiplying the type size
2656 // constant by the variable amount.
2657 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2658 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002659
2660 // TotalSizeReg = mul <numelements>, <TypeSize>
2661 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002662 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002663
2664 // AddedSize = add <TotalSizeReg>, 15
2665 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2666 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2667
2668 // AlignedSize = and <AddedSize>, ~15
2669 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2670 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2671
Brian Gaekee48ec012002-12-13 06:46:31 +00002672 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002673 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002674
Brian Gaekee48ec012002-12-13 06:46:31 +00002675 // Put a pointer to the space into the result register, by copying
2676 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002677 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2678
Misha Brukman48196b32003-05-03 02:18:17 +00002679 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002680 // object.
2681 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002682}
Chris Lattner3e130a22003-01-13 00:32:26 +00002683
2684/// visitMallocInst - Malloc instructions are code generated into direct calls
2685/// to the library malloc.
2686///
2687void ISel::visitMallocInst(MallocInst &I) {
2688 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2689 unsigned Arg;
2690
2691 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2692 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2693 } else {
2694 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002695 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002696 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002697 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002698 }
2699
2700 std::vector<ValueRecord> Args;
2701 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2702 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002703 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002704 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2705}
2706
2707
2708/// visitFreeInst - Free instructions are code gen'd to call the free libc
2709/// function.
2710///
2711void ISel::visitFreeInst(FreeInst &I) {
2712 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002713 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002714 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002715 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002716 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2717}
2718
Chris Lattnerd281de22003-07-26 23:49:58 +00002719/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002720/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002721/// generated code sucks but the implementation is nice and simple.
2722///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002723FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2724 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002725}