blob: 4f458fac553fa7422ba6508b8ad98169b42d1b96 [file] [log] [blame]
Chris Lattner9355b472002-09-06 02:50:58 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>LLVM Programmer's Manual</title></head>
3
4<body bgcolor=white>
5
Chris Lattner9355b472002-09-06 02:50:58 +00006<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
7<tr><td>&nbsp; <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
8</tr></table>
9
10<ol>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#general">General Information</a>
13 <ul>
14 <li><a href="#stl">The C++ Standard Template Library</a>
15 <li>The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates
16 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000017 <li><a href="#common">Helpful Hints for Common Operations</a>
18 <ul>
19 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
20 <ul>
21 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
22 in a <tt>Function</tt></a>
23 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
24 in a <tt>BasicBlock</tt></a>
25 <li><a href="#iterate_convert">Turning an iterator into a class
26 pointer</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +000027 <li><a href="#iterate_complex">Finding call sites: a more complex
28 example</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000029 </ul>
30 <li><a href="#simplechanges">Making simple changes</a>
31 <ul>
32 <li>Creating and inserting new <tt>Instruction</tt>s
33 <li>Deleting <tt>Instruction</tt>s
34 <li>Replacing an <tt>Instruction</tt> with another <tt>Value</tt>
35 </ul>
36<!--
37 <li>Working with the Control Flow Graph
38 <ul>
39 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
40 <li>
41 <li>
42 </ul>
43-->
44 <li>Useful LLVM APIs
45 <ul>
46 <li>isa&lt;&gt;, cast&lt;&gt;, and dyn_cast&lt;&gt; templates
47<!--
48 <li>The general graph API
49 <li>The <tt>InstVisitor</tt> template
50 <li>The DEBUG() macro
51 <li>The <tt>Statistic</tt> template
52-->
53 </ul>
54<!--
55 <li>Useful related topics
56 <ul>
57 <li>The <tt>-time-passes</tt> option
58 <li>How to use the LLVM Makefile system
59 <li>How to write a regression test
60 <li>
61 </ul>
62-->
63 </ul>
Joel Stanley9b96c442002-09-06 21:55:13 +000064 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000065 <ul>
66 <li><a href="#Value">The <tt>Value</tt> class</a>
67 <ul>
68 <li><a href="#User">The <tt>User</tt> class</a>
69 <ul>
70 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
71 <ul>
72 <li>
73 <li>
74 </ul>
75 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
76 <ul>
77 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
78 <li><a href="#Function">The <tt>Function</tt> class</a>
79 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
80 </ul>
81 <li><a href="#Module">The <tt>Module</tt> class</a>
82 <li><a href="#Constant">The <tt>Constant</tt> class</a>
83 <ul>
84 <li>
85 <li>
86 </ul>
87 </ul>
88 <li><a href="#Type">The <tt>Type</tt> class</a>
89 <li><a href="#Argument">The <tt>Argument</tt> class</a>
90 </ul>
91 <li>The <tt>SymbolTable</tt> class
92 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
93 <ul>
94 <li>Creating, inserting, moving and deleting from LLVM lists
95 </ul>
96 <li>Important iterator invalidation semantics to be aware of
97 </ul>
98
Chris Lattner9355b472002-09-06 02:50:58 +000099 <p><b>Written by <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +0000100 <a href="mailto:sabre@nondot.org">Chris Lattner</a>, and
101 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
Chris Lattner9355b472002-09-06 02:50:58 +0000102</ol>
103
104
105<!-- *********************************************************************** -->
106<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
107<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
108<a name="introduction">Introduction
109</b></font></td></tr></table><ul>
110<!-- *********************************************************************** -->
111
Joel Stanley9b96c442002-09-06 21:55:13 +0000112This document is meant to highlight some of the important classes and interfaces
113available in the LLVM source-base. This manual is not intended to explain what
Chris Lattner9355b472002-09-06 02:50:58 +0000114LLVM is, how it works, and what LLVM code looks like. It assumes that you know
115the basics of LLVM and are interested in writing transformations or otherwise
116analyzing or manipulating the code.<p>
117
118This document should get you oriented so that you can find your way in the
119continuously growing source code that makes up the LLVM infrastructure. Note
120that this manual is not intended to serve as a replacement for reading the
121source code, so if you think there should be a method in one of these classes to
122do something, but it's not listed, check the source. Links to the <a
123href="/doxygen/">doxygen</a> sources are provided to make this as easy as
124possible.<p>
125
126The first section of this document describes general information that is useful
127to know when working in the LLVM infrastructure, and the second describes the
128Core LLVM classes. In the future this manual will be extended with information
129describing how to use extension libraries, such as dominator information, CFG
130traversal routines, and useful utilities like the <tt><a
131href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
132
133
134<!-- *********************************************************************** -->
135</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
136<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
137<a name="general">General Information
138</b></font></td></tr></table><ul>
139<!-- *********************************************************************** -->
140
141This section contains general information that is useful if you are working in
142the LLVM source-base, but that isn't specific to any particular API.<p>
143
144
145<!-- ======================================================================= -->
146</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
147<tr><td>&nbsp;</td><td width="100%">&nbsp;
148<font color="#EEEEFF" face="Georgia,Palatino"><b>
149<a name="stl">The C++ Standard Template Library</a>
150</b></font></td></tr></table><ul>
151
152LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
153more than you are used to, or have seen before. Because of this, you might want
154to do a little background reading in the techniques used and capabilities of the
155library. There are many good pages that discuss the STL, and several books on
156the subject that you can get, so it will not be discussed in this document.<p>
157
158Here are some useful links:<p>
159<ol>
160<li><a href="http://www.dinkumware.com/htm_cpl/index.html">Dinkumware C++
161Library reference</a> - an excellent reference for the STL and other parts of
162the standard C++ library.<br>
163
164<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
165Questions</a>
166
167<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
168Contains a useful <a
169href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
170STL</a>.
171
172<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
173Page</a>
174
175</ol><p>
176
177You are also encouraged to take a look at the <a
178href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
179to write maintainable code more than where to put your curly braces.<p>
180
181
Chris Lattnerae7f7592002-09-06 18:31:18 +0000182
Chris Lattnerb99344f2002-09-06 16:40:10 +0000183<!-- *********************************************************************** -->
184</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
185<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
186<a name="common">Helpful Hints for Common Operations
187</b></font></td></tr></table><ul>
188<!-- *********************************************************************** -->
189
Chris Lattnerae7f7592002-09-06 18:31:18 +0000190This section describes how to perform some very simple transformations of LLVM
191code. This is meant to give examples of common idioms used, showing the
192practical side of LLVM transformations.<p>
193
Joel Stanley9b96c442002-09-06 21:55:13 +0000194Because this is a "how-to" section, you should also read about the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000195that you will be working with. The <a href="#coreclasses">Core LLVM Class
Joel Stanley9b96c442002-09-06 21:55:13 +0000196Hierarchy Reference</a> contains details and descriptions of the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000197that you should know about.<p>
198
199<!-- NOTE: this section should be heavy on example code -->
200
201
202<!-- ======================================================================= -->
203</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
204<tr><td>&nbsp;</td><td width="100%">&nbsp;
205<font color="#EEEEFF" face="Georgia,Palatino"><b>
206<a name="inspection">Basic Inspection and Traversal Routines</a>
207</b></font></td></tr></table><ul>
208
209
210<!-- LLVM has heirarchical representation: Module, Function, BasicBlock,
211Instruction. Common patterns for all levels. -->
212
213<!-- _______________________________________________________________________ -->
214</ul><h4><a name="iterate_function"><hr size=0>Iterating over the
215<tt>BasicBlock</tt>s in a <tt>Function</tt> </h4><ul>
216
Joel Stanley9b96c442002-09-06 21:55:13 +0000217It's quite common to have a <tt>Function</tt> instance that you'd like
218to transform in some way; in particular, you'd like to manipulate its
219<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
220all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
221The following is an example that prints the name of a
222<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
223contains:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000224
Joel Stanley9b96c442002-09-06 21:55:13 +0000225<pre>
226 // func is a pointer to a Function instance
227 for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
228
229 // print out the name of the basic block if it has one, and then the
230 // number of instructions that it contains
231
Joel Stanley72ef35e2002-09-06 23:05:12 +0000232 cerr &lt;&lt "Basic block (name=" &lt;&lt i-&gt;getName() &lt;&lt; ") has "
233 &lt;&lt i-&gt;size() &lt;&lt " instructions.\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000234 }
235</pre>
236
237Note that i can be used as if it were a pointer for the purposes of
238invoking member functions of the <tt>Instruction</tt> class. This is
239because the indirection operator is overloaded for the iterator
240classes. In the above code, the expression <tt>i->size()</tt> is
241exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000242
243<!-- _______________________________________________________________________ -->
244</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the
245<tt>Instruction</tt>s in a <tt>BasicBlock</tt> </h4><ul>
246
Joel Stanley9b96c442002-09-06 21:55:13 +0000247Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
248easy to iterate over the individual instructions that make up
249<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
250a <tt>BasicBlock</tt>:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000251
Joel Stanley9b96c442002-09-06 21:55:13 +0000252<pre>
253 // blk is a pointer to a BasicBlock instance
Chris Lattner2b763062002-09-06 22:51:10 +0000254 for(BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i) {
255 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
256 // is overloaded for Instruction&amp;
Joel Stanley9b96c442002-09-06 21:55:13 +0000257
Chris Lattner2b763062002-09-06 22:51:10 +0000258 cerr &lt;&lt; *i &lt;&lt; endl;
Joel Stanley9b96c442002-09-06 21:55:13 +0000259 }
260</pre>
261
262However, this isn't really the best way to print out the contents of a
263<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
264virtually anything you'll care about, you could have just invoked the
Chris Lattner2b763062002-09-06 22:51:10 +0000265print routine on the basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt;
266"\n";</tt>.<p>
267
268Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so it
269will print out the contents of the pointer, instead of
270the pointer value you might expect. This is a deprecated interface that will
271be removed in the future, so it's best not to depend on it. To print out the
272pointer value for now, you must cast to <tt>void*</tt>.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000273
274<!-- _______________________________________________________________________ -->
275</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
276pointer </h4><ul>
277
Joel Stanley9b96c442002-09-06 21:55:13 +0000278Sometimes, it'll be useful to grab a reference (or pointer) to a class
279instance when all you've got at hand is an iterator. Well, extracting
280a reference or a pointer from an iterator is very straightforward.
281Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
282<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
283
284<pre>
Chris Lattner83b5ee02002-09-06 22:12:58 +0000285 Instruction&amp; inst = *i; // grab reference to instruction reference
286 Instruction* pinst = &amp;*i; // grab pointer to instruction reference
287 const Instruction&amp; inst = *j;
Joel Stanley9b96c442002-09-06 21:55:13 +0000288</pre>
289However, the iterators you'll be working with in the LLVM framework
290are special: they will automatically convert to a ptr-to-instance type
291whenever they need to. Instead of dereferencing the iterator and then
292taking the address of the result, you can simply assign the iterator
293to the proper pointer type and you get the dereference and address-of
294operation as a result of the assignment (behind the scenes, this is a
295result of overloading casting mechanisms). Thus the last line of the
296last example,
297
Chris Lattner83b5ee02002-09-06 22:12:58 +0000298<pre>Instruction* pinst = &amp;*i;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000299
300is semantically equivalent to
301
302<pre>Instruction* pinst = i;</pre>
303
304<b>Caveat emptor</b>: The above syntax works <i>only</i> when you're
305<i>not</i> working with <tt>dyn_cast</tt>. The template definition of
306<tt>dyn_cast</tt> isn't implemented to handle this yet, so you'll
307still need the following in order for things to work properly:
308
309<pre>
310BasicBlock::iterator bbi = ...;
Joel Stanley72ef35e2002-09-06 23:05:12 +0000311BranchInst* b = dyn_cast&lt;BranchInst&gt;(&amp*bbi);
Joel Stanley9b96c442002-09-06 21:55:13 +0000312</pre>
313
314The following code snippet illustrates use of the conversion
315constructors provided by LLVM iterators. By using these, you can
316explicitly grab the iterator of something without actually obtaining
317it via iteration over some structure:
318
319<pre>
320void printNextInstruction(Instruction* inst) {
321 BasicBlock::iterator it(inst);
322 ++it; // after this line, it refers to the instruction after *inst.
Joel Stanley72ef35e2002-09-06 23:05:12 +0000323 if(it != inst-&gt;getParent()->end()) cerr &lt;&lt *it &lt;&lt endl;
Joel Stanley9b96c442002-09-06 21:55:13 +0000324}
325</pre>
326
327Of course, this example is strictly pedagogical, because it'd be
328better to do something like
329
Joel Stanley72ef35e2002-09-06 23:05:12 +0000330<pre>if(inst-&gt;getNext()) cerr &lt;&lt inst-&gt;getNext() &lt;&lt endl;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000331
332
Chris Lattnerae7f7592002-09-06 18:31:18 +0000333<!-- dereferenced iterator = Class &
334 iterators have converting constructor for 'Class *'
335 iterators automatically convert to 'Class *' except in dyn_cast<> case
336 -->
337
Joel Stanley9b96c442002-09-06 21:55:13 +0000338<!--
339_______________________________________________________________________
340--> </ul><h4><a name="iterate_complex"><hr size=0>Finding call sites:
341a slightly more complex example
342</h4><ul>
343
344Say that you're writing a FunctionPass and would like to count all the
345locations in the entire module (that is, across every <tt>Function</tt>)
346where a certain function named foo (that takes an int and returns an
347int) is called. As you'll learn later, you may want to use an
348<tt>InstVisitor</tt> to accomplish this in a much more straightforward
349manner, but this example will allow us to explore how you'd do it if
350you didn't have <tt>InstVisitor</tt> around. In pseudocode, this is
351what we want to do:
352
353<pre>
354initialize callCounter to zero
355for each Function f in the Module
356 for each BasicBlock b in f
357 for each Instruction i in b
358 if(i is a CallInst and foo is the function it calls)
359 increment callCounter
360</pre>
361
362And the actual code is (remember, since we're writing a
363<tt>FunctionPass</tt> our <tt>FunctionPass</tt>-derived class simply
364has to override the <tt>runOnFunction</tt> method...):
365
366<pre>
367
368// Assume callCounter is a private member of the pass class being written,
369// and has been initialized in the pass class constructor.
370
Joel Stanley72ef35e2002-09-06 23:05:12 +0000371virtual runOnFunction(Function&amp F) {
Joel Stanley9b96c442002-09-06 21:55:13 +0000372
373 // Remember, we assumed that the signature of foo was "int foo(int)";
374 // the first thing we'll do is grab the pointer to that function (as a
375 // Function*) so we can use it later when we're examining the
376 // parameters of a CallInst. All of the code before the call to
377 // Module::getOrInsertFunction() is in preparation to do symbol-table
378 // to find the function pointer.
379
380 vector<const Type*> params;
381 params.push_back(Type::IntTy);
382 const FunctionType* fooType = FunctionType::get(Type::IntTy, params);
Joel Stanley72ef35e2002-09-06 23:05:12 +0000383 Function* foo = F.getParent()-&gt;getOrInsertFunction("foo", fooType);
Joel Stanley9b96c442002-09-06 21:55:13 +0000384
385 // Start iterating and (as per the pseudocode), increment callCounter.
386
387 for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
Joel Stanley72ef35e2002-09-06 23:05:12 +0000388 for(BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
389 if(CallInst* callInst = dyn_cast<CallInst>(&amp;*inst)) {
Joel Stanley9b96c442002-09-06 21:55:13 +0000390 // we know we've encountered a call instruction, so we
391 // need to determine if it's a call to foo or not
392
Joel Stanley72ef35e2002-09-06 23:05:12 +0000393 if(callInst-&gt;getCalledFunction() == foo)
Joel Stanley9b96c442002-09-06 21:55:13 +0000394 ++callCounter;
395 }
396 }
397 }
398}
399</pre>
400
401We could then print out the value of callCounter (if we wanted to)
402inside the doFinalization method of our FunctionPass.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000403
404
405<!-- ======================================================================= -->
406</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
407<tr><td>&nbsp;</td><td width="100%">&nbsp;
408<font color="#EEEEFF" face="Georgia,Palatino"><b>
409<a name="simplechanges">Making simple changes</a>
410</b></font></td></tr></table><ul>
411
412<!-- Value::replaceAllUsesWith
413 User::replaceUsesOfWith
414 Point out: include/llvm/Transforms/Utils/
415 especially BasicBlockUtils.h with:
416 ReplaceInstWithValue, ReplaceInstWithInst
417
418-->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000419
Chris Lattner9355b472002-09-06 02:50:58 +0000420
421<!-- *********************************************************************** -->
422</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
423<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Joel Stanley9b96c442002-09-06 21:55:13 +0000424<a name="coreclasses">The Core LLVM Class Hierarchy Reference
Chris Lattner9355b472002-09-06 02:50:58 +0000425</b></font></td></tr></table><ul>
426<!-- *********************************************************************** -->
427
428The Core LLVM classes are the primary means of representing the program being
429inspected or transformed. The core LLVM classes are defined in header files in
430the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
431directory.<p>
432
433
434<!-- ======================================================================= -->
435</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
436<tr><td>&nbsp;</td><td width="100%">&nbsp;
437<font color="#EEEEFF" face="Georgia,Palatino"><b>
438<a name="Value">The <tt>Value</tt> class</a>
439</b></font></td></tr></table><ul>
440
441<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
442doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
443
444
445The <tt>Value</tt> class is the most important class in LLVM Source base. It
446represents a typed value that may be used (among other things) as an operand to
447an instruction. There are many different types of <tt>Value</tt>s, such as <a
448href="#Constant"><tt>Constant</tt></a>s, <a
449href="#Argument"><tt>Argument</tt></a>s, and even <a
450href="#Instruction"><tt>Instruction</tt></a>s and <a
451href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
452
453A particular <tt>Value</tt> may be used many times in the LLVM representation
454for a program. For example, an incoming argument to a function (represented
455with an instance of the <a href="#Argument">Argument</a> class) is "used" by
456every instruction in the function that references the argument. To keep track
457of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
458href="#User"><tt>User</tt></a>s that is using it (the <a
459href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
460graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
Joel Stanley9b96c442002-09-06 21:55:13 +0000461def-use information in the program, and is accessible through the <tt>use_</tt>*
Chris Lattner9355b472002-09-06 02:50:58 +0000462methods, shown below.<p>
463
464Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
465this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
466method. <a name="#nameWarning">In addition, all LLVM values can be named. The
467"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
468
469<pre>
470 %<b>foo</b> = add int 1, 2
471</pre>
472
473The name of this instruction is "foo". <b>NOTE</b> that the name of any value
474may be missing (an empty string), so names should <b>ONLY</b> be used for
475debugging (making the source code easier to read, debugging printouts), they
476should not be used to keep track of values or map between them. For this
477purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
478instead.<p>
479
480One important aspect of LLVM is that there is no distinction between an SSA
481variable and the operation that produces it. Because of this, any reference to
482the value produced by an instruction (or the value available as an incoming
483argument, for example) is represented as a direct pointer to the class that
484represents this value. Although this may take some getting used to, it
485simplifies the representation and makes it easier to manipulate.<p>
486
487
488<!-- _______________________________________________________________________ -->
489</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
490the <tt>Value</tt> class</h4><ul>
491
492<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
493 <tt>Value::use_const_iterator</tt>
494 - Typedef for const_iterator over the use-list<br>
495 <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
496 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
497 <tt>use_iterator use_begin()</tt>
498 - Get an iterator to the start of the use-list.<br>
499 <tt>use_iterator use_end()</tt>
500 - Get an iterator to the end of the use-list.<br>
501 <tt><a href="#User">User</a> *use_back()</tt>
502 - Returns the last element in the list.<p>
503
504These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
505
506<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
507This method returns the Type of the Value.
508
509<li><tt>bool hasName() const</tt><br>
510 <tt>std::string getName() const</tt><br>
511 <tt>void setName(const std::string &amp;Name)</tt><p>
512
513This family of methods is used to access and assign a name to a <tt>Value</tt>,
514be aware of the <a href="#nameWarning">precaution above</a>.<p>
515
516
517<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
518
519This method traverses the use list of a <tt>Value</tt> changing all <a
520href="#User"><tt>User</tt>'s</a> of the current value to refer to "<tt>V</tt>"
521instead. For example, if you detect that an instruction always produces a
522constant value (for example through constant folding), you can replace all uses
523of the instruction with the constant like this:<p>
524
525<pre>
526 Inst-&gt;replaceAllUsesWith(ConstVal);
527</pre><p>
528
529
530
531<!-- ======================================================================= -->
532</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
533<tr><td>&nbsp;</td><td width="100%">&nbsp;
534<font color="#EEEEFF" face="Georgia,Palatino"><b>
535<a name="User">The <tt>User</tt> class</a>
536</b></font></td></tr></table><ul>
537
538<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
539doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
540Superclass: <a href="#Value"><tt>Value</tt></a><p>
541
542
543The <tt>User</tt> class is the common base class of all LLVM nodes that may
544refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
545that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
546referring to. The <tt>User</tt> class itself is a subclass of
547<tt>Value</tt>.<p>
548
549The operands of a <tt>User</tt> point directly to the LLVM <a
550href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
551Single Assignment (SSA) form, there can only be one definition referred to,
552allowing this direct connection. This connection provides the use-def
553information in LLVM.<p>
554
555<!-- _______________________________________________________________________ -->
556</ul><h4><a name="m_User"><hr size=0>Important Public Members of
557the <tt>User</tt> class</h4><ul>
558
559The <tt>User</tt> class exposes the operand list in two ways: through an index
560access interface and through an iterator based interface.<p>
561
562<li><tt>Value *getOperand(unsigned i)</tt><br>
563 <tt>unsigned getNumOperands()</tt><p>
564
565These two methods expose the operands of the <tt>User</tt> in a convenient form
566for direct access.<p>
567
568<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
569 <tt>User::op_const_iterator</tt>
570 <tt>use_iterator op_begin()</tt>
571 - Get an iterator to the start of the operand list.<br>
572 <tt>use_iterator op_end()</tt>
573 - Get an iterator to the end of the operand list.<p>
574
575Together, these methods make up the iterator based interface to the operands of
576a <tt>User</tt>.<p>
577
578
579
580<!-- ======================================================================= -->
581</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
582<tr><td>&nbsp;</td><td width="100%">&nbsp;
583<font color="#EEEEFF" face="Georgia,Palatino"><b>
584<a name="Instruction">The <tt>Instruction</tt> class</a>
585</b></font></td></tr></table><ul>
586
587<tt>#include "<a
588href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
589doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
590Superclasses: <a href="#User"><tt>User</tt></a>, <a
591href="#Value"><tt>Value</tt></a><p>
592
593The <tt>Instruction</tt> class is the common base class for all LLVM
594instructions. It provides only a few methods, but is a very commonly used
595class. The primary data tracked by the <tt>Instruction</tt> class itself is the
596opcode (instruction type) and the parent <a
597href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
598into. To represent a specific type of instruction, one of many subclasses of
599<tt>Instruction</tt> are used.<p>
600
601Because the <tt>Instruction</tt> class subclasses the <a
602href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
603way as for other <a href="#User"><tt>User</tt></a>s (with the
604<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
605<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
606
607
608<!-- _______________________________________________________________________ -->
609</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
610the <tt>Instruction</tt> class</h4><ul>
611
612<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
613
614Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
615<tt>Instruction</tt> is embedded into.<p>
616
617<li><tt>bool hasSideEffects()</tt><p>
618
619Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>,
620<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
621
622<li><tt>unsigned getOpcode()</tt><p>
623
624Returns the opcode for the <tt>Instruction</tt>.<p>
625
626<!--
627
628\subsection{Subclasses of Instruction :}
629\begin{itemize}
630<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
631 \begin{itemize}
632 <li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
633 \end{itemize}
634<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
635 \begin{itemize}
636 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
637 <li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
638 <li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
639 \end{itemize}
640
641<li>PHINode : This represents the PHI instructions in the SSA form.
642 \begin{itemize}
643 <li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
644 <li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
645 <li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
646 <li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
647 <li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
648 Add an incoming value to the end of the PHI list
649 <li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
650 Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
651 \end{itemize}
652<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
653<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
654 \begin{itemize}
655 <li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
656 \end{itemize}
657<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
658 \begin{itemize}
659 <li><tt>Value * getPointerOperand ()</tt>: Returns the Pointer Operand which is typically the 0th operand.
660 \end{itemize}
661<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
662 \begin{itemize}
663 <li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
664 <li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
665 <li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
666 \end{itemize}
667
668\end{itemize}
669
670-->
671
672
673<!-- ======================================================================= -->
674</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
675<tr><td>&nbsp;</td><td width="100%">&nbsp;
676<font color="#EEEEFF" face="Georgia,Palatino"><b>
677<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
678</b></font></td></tr></table><ul>
679
680<tt>#include "<a
681href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
682doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
683Superclass: <a href="#Value"><tt>Value</tt></a><p>
684
685
686This class represents a single entry multiple exit section of the code, commonly
687known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
688maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
689the body of the block. Matching the language definition, the last element of
690this list of instructions is always a terminator instruction (a subclass of the
691<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
692
693In addition to tracking the list of instructions that make up the block, the
694<tt>BasicBlock</tt> class also keeps track of the <a
695href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
696
697Note that <tt>BasicBlock</tt>s themselves are <a
698href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
699like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
700<tt>label</tt>.<p>
701
702
703<!-- _______________________________________________________________________ -->
704</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
705the <tt>BasicBlock</tt> class</h4><ul>
706
707<li><tt>BasicBlock(const std::string &amp;Name = "", <a
708href="#Function">Function</a> *Parent = 0)</tt><p>
709
710The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
711insertion into a function. The constructor simply takes a name for the new
712block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
713into. If the <tt>Parent</tt> parameter is specified, the new
714<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
715href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
716manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
717
718<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
719 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
720 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
721 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
722
723These methods and typedefs are forwarding functions that have the same semantics
724as the standard library methods of the same names. These methods expose the
725underlying instruction list of a basic block in a way that is easy to
726manipulate. To get the full complement of container operations (including
727operations to update the list), you must use the <tt>getInstList()</tt>
728method.<p>
729
730<li><tt>BasicBlock::InstListType &amp;getInstList()</tt><p>
731
732This method is used to get access to the underlying container that actually
733holds the Instructions. This method must be used when there isn't a forwarding
734function in the <tt>BasicBlock</tt> class for the operation that you would like
735to perform. Because there are no forwarding functions for "updating"
736operations, you need to use this if you want to update the contents of a
737<tt>BasicBlock</tt>.<p>
738
739<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
740
741Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
742embedded into, or a null pointer if it is homeless.<p>
743
744<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
745
746Returns a pointer to the terminator instruction that appears at the end of the
747<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
748instruction in the block is not a terminator, then a null pointer is
749returned.<p>
750
751
752<!-- ======================================================================= -->
753</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
754<tr><td>&nbsp;</td><td width="100%">&nbsp;
755<font color="#EEEEFF" face="Georgia,Palatino"><b>
756<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
757</b></font></td></tr></table><ul>
758
759<tt>#include "<a
760href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
761doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
762Superclasses: <a href="#User"><tt>User</tt></a>, <a
763href="#Value"><tt>Value</tt></a><p>
764
765Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
766href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
767visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
768Because they are visible at global scope, they are also subject to linking with
769other globals defined in different translation units. To control the linking
770process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
771<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
772
773If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
774<tt>static</tt> in C), it is not visible to code outside the current translation
775unit, and does not participate in linking. If it has external linkage, it is
776visible to external code, and does participate in linking. In addition to
777linkage information, <tt>GlobalValue</tt>s keep track of which <a
778href="#Module"><tt>Module</tt></a> they are currently part of.<p>
779
780Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
781their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
782always a pointer to its contents. This is explained in the LLVM Language
783Reference Manual.<p>
784
785
786<!-- _______________________________________________________________________ -->
787</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
788the <tt>GlobalValue</tt> class</h4><ul>
789
790<li><tt>bool hasInternalLinkage() const</tt><br>
791 <tt>bool hasExternalLinkage() const</tt><br>
792 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
793
794These methods manipulate the linkage characteristics of the
795<tt>GlobalValue</tt>.<p>
796
797<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
798
799This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
800currently embedded into.<p>
801
802
803
804<!-- ======================================================================= -->
805</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
806<tr><td>&nbsp;</td><td width="100%">&nbsp;
807<font color="#EEEEFF" face="Georgia,Palatino"><b>
808<a name="Function">The <tt>Function</tt> class</a>
809</b></font></td></tr></table><ul>
810
811<tt>#include "<a
812href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
813doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
814Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
815href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
816
817The <tt>Function</tt> class represents a single procedure in LLVM. It is
818actually one of the more complex classes in the LLVM heirarchy because it must
819keep track of a large amount of data. The <tt>Function</tt> class keeps track
820of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
821href="#Argument"><tt>Argument</tt></a>s, and a <a
822href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
823
824The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
825used part of <tt>Function</tt> objects. The list imposes an implicit ordering
826of the blocks in the function, which indicate how the code will be layed out by
827the backend. Additionally, the first <a
828href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
829<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
830block. There are no implicit exit nodes, and in fact there may be multiple exit
831nodes from a single <tt>Function</tt>. If the <a
832href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
833the <tt>Function</tt> is actually a function declaration: the actual body of the
834function hasn't been linked in yet.<p>
835
836In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
837<tt>Function</tt> class also keeps track of the list of formal <a
838href="#Argument"><tt>Argument</tt></a>s that the function receives. This
839container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
840nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
841the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
842
843The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
844feature that is only used when you have to look up a value by name. Aside from
845that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
846make sure that there are not conflicts between the names of <a
847href="#Instruction"><tt>Instruction</tt></a>s, <a
848href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
849href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
850
851
852<!-- _______________________________________________________________________ -->
853</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
854the <tt>Function</tt> class</h4><ul>
855
856<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &amp;N = "")</tt><p>
857
858Constructor used when you need to create new <tt>Function</tt>s to add the the
859program. The constructor must specify the type of the function to create and
860whether or not it should start out with internal or external linkage.<p>
861
862<li><tt>bool isExternal()</tt><p>
863
864Return whether or not the <tt>Function</tt> has a body defined. If the function
865is "external", it does not have a body, and thus must be resolved by linking
866with a function defined in a different translation unit.<p>
867
868
869<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
870 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
871 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
872 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
873
874These are forwarding methods that make it easy to access the contents of a
875<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
876list.<p>
877
878<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt><p>
879
880Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
881neccesary to use when you need to update the list or perform a complex action
882that doesn't have a forwarding method.<p>
883
884
885<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
886 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
887 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
888 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
889
890These are forwarding methods that make it easy to access the contents of a
891<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
892
893<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt><p>
894
895Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
896neccesary to use when you need to update the list or perform a complex action
897that doesn't have a forwarding method.<p>
898
899
900
901<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
902
903Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
904function. Because the entry block for the function is always the first block,
905this returns the first block of the <tt>Function</tt>.<p>
906
907<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
908 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
909
910This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
911and returns the return type of the function, or the <a
912href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
913
914
915<li><tt>bool hasSymbolTable() const</tt><p>
916
917Return true if the <tt>Function</tt> has a symbol table allocated to it and if
918there is at least one entry in it.<p>
919
920<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
921
922Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
923<tt>Function</tt> or a null pointer if one has not been allocated (because there
924are no named values in the function).<p>
925
926<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
927
928Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
929<tt>Function</tt> or allocate a new <a
930href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
931should only be used when adding elements to the <a
932href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
933not left laying around.<p>
934
935
936
937<!-- ======================================================================= -->
938</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
939<tr><td>&nbsp;</td><td width="100%">&nbsp;
940<font color="#EEEEFF" face="Georgia,Palatino"><b>
941<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
942</b></font></td></tr></table><ul>
943
944<tt>#include "<a
945href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
946doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
947Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
948href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
949
Chris Lattner0377de42002-09-06 14:50:55 +0000950Global variables are represented with the (suprise suprise)
951<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
952also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
953are always referenced by their address (global values must live in memory, so
954their "name" refers to their address). Global variables may have an initial
955value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
956have an initializer, they may be marked as "constant" themselves (indicating
957that their contents never change at runtime).<p>
Chris Lattner9355b472002-09-06 02:50:58 +0000958
959
960<!-- _______________________________________________________________________ -->
Chris Lattner0377de42002-09-06 14:50:55 +0000961</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
962<tt>GlobalVariable</tt> class</h4><ul>
Chris Lattner9355b472002-09-06 02:50:58 +0000963
964<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
965isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
966&amp;Name = "")</tt><p>
967
Chris Lattner0377de42002-09-06 14:50:55 +0000968Create a new global variable of the specified type. If <tt>isConstant</tt> is
969true then the global variable will be marked as unchanging for the program, and
970if <tt>isInternal</tt> is true the resultant global variable will have internal
971linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
972
973
Chris Lattner9355b472002-09-06 02:50:58 +0000974<li><tt>bool isConstant() const</tt><p>
975
976Returns true if this is a global variable is known not to be modified at
977runtime.<p>
978
Chris Lattner0377de42002-09-06 14:50:55 +0000979
Chris Lattner9355b472002-09-06 02:50:58 +0000980<li><tt>bool hasInitializer()</tt><p>
981
982Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
983
Chris Lattner0377de42002-09-06 14:50:55 +0000984
Chris Lattner9355b472002-09-06 02:50:58 +0000985<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
986
Chris Lattner0377de42002-09-06 14:50:55 +0000987Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
988this method if there is no initializer.<p>
989
990
991<!-- ======================================================================= -->
992</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
993<tr><td>&nbsp;</td><td width="100%">&nbsp;
994<font color="#EEEEFF" face="Georgia,Palatino"><b>
995<a name="Module">The <tt>Module</tt> class</a>
996</b></font></td></tr></table><ul>
997
998<tt>#include "<a
999href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
1000doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
1001
1002The <tt>Module</tt> class represents the top level structure present in LLVM
1003programs. An LLVM module is effectively either a translation unit of the
1004original program or a combination of several translation units merged by the
1005linker. The <tt>Module</tt> class keeps track of a list of <a
1006href="#Function"><tt>Function</tt></a>s, a list of <a
1007href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1008href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1009helpful member functions that try to make common operations easy.<p>
1010
1011
1012<!-- _______________________________________________________________________ -->
1013</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
1014<tt>Module</tt> class</h4><ul>
1015
1016<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
1017 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
1018 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1019 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1020
1021These are forwarding methods that make it easy to access the contents of a
1022<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1023list.<p>
1024
1025<li><tt>Module::FunctionListType &amp;getFunctionList()</tt><p>
1026
1027Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1028neccesary to use when you need to update the list or perform a complex action
1029that doesn't have a forwarding method.<p>
1030
1031<!-- Global Variable -->
1032<hr size=0>
1033
1034<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1035 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1036 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1037 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
1038
1039These are forwarding methods that make it easy to access the contents of a
1040<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
1041list.<p>
1042
1043<li><tt>Module::GlobalListType &amp;getGlobalList()</tt><p>
1044
1045Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
1046This is neccesary to use when you need to update the list or perform a complex
1047action that doesn't have a forwarding method.<p>
1048
1049
1050<!-- Symbol table stuff -->
1051<hr size=0>
1052
1053<li><tt>bool hasSymbolTable() const</tt><p>
1054
1055Return true if the <tt>Module</tt> has a symbol table allocated to it and if
1056there is at least one entry in it.<p>
1057
1058<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1059
1060Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1061<tt>Module</tt> or a null pointer if one has not been allocated (because there
1062are no named values in the function).<p>
1063
1064<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
1065
1066Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1067<tt>Module</tt> or allocate a new <a
1068href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
1069should only be used when adding elements to the <a
1070href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
1071not left laying around.<p>
1072
1073
1074<!-- Convenience methods -->
1075<hr size=0>
1076
1077<li><tt><a href="#Function">Function</a> *getFunction(const std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
1078
1079Look up the specified function in the <tt>Module</tt> <a
1080href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1081<tt>null</tt>.<p>
1082
1083
1084<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
1085 &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
1086
1087Look up the specified function in the <tt>Module</tt> <a
1088href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1089external declaration for the function and return it.<p>
1090
1091
1092<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
1093
1094If there is at least one entry in the <a
1095href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1096href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1097string.<p>
1098
1099
1100<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
1101*Ty)</tt><p>
1102
1103Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
1104<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
1105is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
1106modified.<p>
1107
Chris Lattner9355b472002-09-06 02:50:58 +00001108
1109<!-- ======================================================================= -->
1110</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1111<tr><td>&nbsp;</td><td width="100%">&nbsp;
1112<font color="#EEEEFF" face="Georgia,Palatino"><b>
1113<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1114</b></font></td></tr></table><ul>
1115
1116Constant represents a base class for different types of constants. It is
1117subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1118ConstantArray etc for representing the various types of Constants.<p>
1119
1120
1121<!-- _______________________________________________________________________ -->
1122</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1123
1124<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
1125
1126
1127
1128
1129\subsection{Important Subclasses of Constant}
1130\begin{itemize}
1131<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
1132 \begin{itemize}
1133 <li><tt>int64_t getValue () const</tt>: Returns the underlying value of this constant.
1134 \end{itemize}
1135<li>ConstantUInt : This class represents an unsigned integer.
1136 \begin{itemize}
1137 <li><tt>uint64_t getValue () const</tt>: Returns the underlying value of this constant.
1138 \end{itemize}
1139<li>ConstantFP : This class represents a floating point constant.
1140 \begin{itemize}
1141 <li><tt>double getValue () const</tt>: Returns the underlying value of this constant.
1142 \end{itemize}
1143<li>ConstantBool : This represents a boolean constant.
1144 \begin{itemize}
1145 <li><tt>bool getValue () const</tt>: Returns the underlying value of this constant.
1146 \end{itemize}
1147<li>ConstantArray : This represents a constant array.
1148 \begin{itemize}
1149 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
1150 \end{itemize}
1151<li>ConstantStruct : This represents a constant struct.
1152 \begin{itemize}
1153 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
1154 \end{itemize}
1155<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
1156 \begin{itemize}
1157<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
1158 \end{itemize}
1159\end{itemize}
1160
1161
1162<!-- ======================================================================= -->
1163</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1164<tr><td>&nbsp;</td><td width="100%">&nbsp;
1165<font color="#EEEEFF" face="Georgia,Palatino"><b>
1166<a name="Type">The <tt>Type</tt> class and Derived Types</a>
1167</b></font></td></tr></table><ul>
1168
1169Type as noted earlier is also a subclass of a Value class. Any primitive
1170type (like int, short etc) in LLVM is an instance of Type Class. All
1171other types are instances of subclasses of type like FunctionType,
1172ArrayType etc. DerivedType is the interface for all such dervied types
1173including FunctionType, ArrayType, PointerType, StructType. Types can have
1174names. They can be recursive (StructType). There exists exactly one instance
1175of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
1176
1177<!-- _______________________________________________________________________ -->
1178</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1179
1180<li><tt>PrimitiveID getPrimitiveID () const</tt>: Returns the base type of the type.
1181<li><tt> bool isSigned () const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
1182<li><tt>bool isUnsigned () const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
1183<li><tt> bool isInteger () const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
1184<li><tt>bool isIntegral () const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
1185
1186<li><tt>bool isFloatingPoint ()</tt>: Return true if this is one of the two floating point types.
1187<li><tt>bool isRecursive () const</tt>: Returns rue if the type graph contains a cycle.
1188<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
1189<li><tt>bool isPrimitiveType () const</tt>: Returns true if it is a primitive type.
1190<li><tt>bool isDerivedType () const</tt>: Returns true if it is a derived type.
1191<li><tt>const Type * getContainedType (unsigned i) const</tt>:
1192This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
1193<li><tt>unsigned getNumContainedTypes () const</tt>: Return the number of types in the derived type.
1194
1195
1196
1197\subsection{Derived Types}
1198\begin{itemize}
1199<li>SequentialType : This is subclassed by ArrayType and PointerType
1200 \begin{itemize}
1201 <li><tt>const Type * getElementType () const</tt>: Returns the type of each of the elements in the sequential type.
1202 \end{itemize}
1203<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
1204 \begin{itemize}
1205 <li><tt>unsigned getNumElements () const</tt>: Returns the number of elements in the array.
1206 \end{itemize}
1207<li>PointerType : Subclass of SequentialType for pointer types.
1208<li>StructType : subclass of DerivedTypes for struct types
1209<li>FunctionType : subclass of DerivedTypes for function types.
1210 \begin{itemize}
1211
1212 <li><tt>bool isVarArg () const</tt>: Returns true if its a vararg function
1213 <li><tt> const Type * getReturnType () const</tt>: Returns the return type of the function.
1214 <li><tt> const ParamTypes &amp;getParamTypes () const</tt>: Returns a vector of parameter types.
1215 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
1216 <li><tt> const unsigned getNumParams () const</tt>: Returns the number of formal parameters.
1217 \end{itemize}
1218\end{itemize}
1219
1220
1221
1222
1223<!-- ======================================================================= -->
1224</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1225<tr><td>&nbsp;</td><td width="100%">&nbsp;
1226<font color="#EEEEFF" face="Georgia,Palatino"><b>
1227<a name="Argument">The <tt>Argument</tt> class</a>
1228</b></font></td></tr></table><ul>
1229
1230This subclass of Value defines the interface for incoming formal arguments to a
1231function. A Function maitanis a list of its formal arguments. An argument has a
1232pointer to the parent Function.
1233
1234
1235
1236
1237<!-- *********************************************************************** -->
1238</ul>
1239<!-- *********************************************************************** -->
1240
1241<hr><font size-1>
1242<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
1243<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1244<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
1245<!-- hhmts start -->
Joel Stanley72ef35e2002-09-06 23:05:12 +00001246Last modified: Fri Sep 6 18:03:31 EDT 2002
Chris Lattner9355b472002-09-06 02:50:58 +00001247<!-- hhmts end -->
1248</font></body></html>