blob: 3caeaa4f5fb65f45da51934b1a5f1a513a0dc592 [file] [log] [blame]
Chris Lattner9355b472002-09-06 02:50:58 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>LLVM Programmer's Manual</title></head>
3
4<body bgcolor=white>
5
Chris Lattner9355b472002-09-06 02:50:58 +00006<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
7<tr><td>&nbsp; <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
8</tr></table>
9
10<ol>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#general">General Information</a>
13 <ul>
14 <li><a href="#stl">The C++ Standard Template Library</a>
Chris Lattner1d43fd42002-09-09 05:53:21 +000015 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
16 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Chris Lattner9355b472002-09-06 02:50:58 +000017 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000018 <li><a href="#common">Helpful Hints for Common Operations</a>
19 <ul>
20 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
21 <ul>
22 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
23 in a <tt>Function</tt></a>
24 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
25 in a <tt>BasicBlock</tt></a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000026 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
27 in a <tt>Function</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000028 <li><a href="#iterate_convert">Turning an iterator into a class
29 pointer</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +000030 <li><a href="#iterate_complex">Finding call sites: a more complex
31 example</a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000032 <li><a href="#iterate_chains">Iterating over def-use &amp; use-def
33 chains</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000034 </ul>
35 <li><a href="#simplechanges">Making simple changes</a>
36 <ul>
Joel Stanley753eb712002-09-11 22:32:24 +000037 <li><a href="#schanges_creating">Creating and inserting new
38 <tt>Instruction</tt>s</a>
39 <li><a href="#schanges_deleting">Deleting
40 <tt>Instruction</tt>s</a>
41 <li><a href="#schanges_replacing">Replacing an
42 <tt>Instruction</tt> with another <tt>Value</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000043 </ul>
44<!--
45 <li>Working with the Control Flow Graph
46 <ul>
47 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
48 <li>
49 <li>
50 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000051 <li>Useful LLVM APIs
52 <ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000053 <li>The general graph API
54 <li>The <tt>InstVisitor</tt> template
55 <li>The DEBUG() macro
56 <li>The <tt>Statistic</tt> template
57-->
58 </ul>
59<!--
60 <li>Useful related topics
61 <ul>
62 <li>The <tt>-time-passes</tt> option
63 <li>How to use the LLVM Makefile system
64 <li>How to write a regression test
65 <li>
66 </ul>
67-->
68 </ul>
Joel Stanley9b96c442002-09-06 21:55:13 +000069 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000070 <ul>
71 <li><a href="#Value">The <tt>Value</tt> class</a>
72 <ul>
73 <li><a href="#User">The <tt>User</tt> class</a>
74 <ul>
75 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
76 <ul>
77 <li>
Chris Lattner9355b472002-09-06 02:50:58 +000078 </ul>
79 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
80 <ul>
81 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
82 <li><a href="#Function">The <tt>Function</tt> class</a>
83 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
84 </ul>
85 <li><a href="#Module">The <tt>Module</tt> class</a>
86 <li><a href="#Constant">The <tt>Constant</tt> class</a>
87 <ul>
88 <li>
89 <li>
90 </ul>
91 </ul>
92 <li><a href="#Type">The <tt>Type</tt> class</a>
93 <li><a href="#Argument">The <tt>Argument</tt> class</a>
94 </ul>
95 <li>The <tt>SymbolTable</tt> class
96 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
97 <ul>
98 <li>Creating, inserting, moving and deleting from LLVM lists
99 </ul>
100 <li>Important iterator invalidation semantics to be aware of
101 </ul>
102
Chris Lattner6b121f12002-09-10 15:20:46 +0000103 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
104 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
Chris Lattnerf1ebdc32002-09-06 22:09:21 +0000105 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
Chris Lattner9355b472002-09-06 02:50:58 +0000106</ol>
107
108
109<!-- *********************************************************************** -->
110<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
111<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
112<a name="introduction">Introduction
113</b></font></td></tr></table><ul>
114<!-- *********************************************************************** -->
115
Joel Stanley9b96c442002-09-06 21:55:13 +0000116This document is meant to highlight some of the important classes and interfaces
117available in the LLVM source-base. This manual is not intended to explain what
Chris Lattner9355b472002-09-06 02:50:58 +0000118LLVM is, how it works, and what LLVM code looks like. It assumes that you know
119the basics of LLVM and are interested in writing transformations or otherwise
120analyzing or manipulating the code.<p>
121
122This document should get you oriented so that you can find your way in the
123continuously growing source code that makes up the LLVM infrastructure. Note
124that this manual is not intended to serve as a replacement for reading the
125source code, so if you think there should be a method in one of these classes to
126do something, but it's not listed, check the source. Links to the <a
127href="/doxygen/">doxygen</a> sources are provided to make this as easy as
128possible.<p>
129
130The first section of this document describes general information that is useful
131to know when working in the LLVM infrastructure, and the second describes the
132Core LLVM classes. In the future this manual will be extended with information
133describing how to use extension libraries, such as dominator information, CFG
134traversal routines, and useful utilities like the <tt><a
135href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
136
137
138<!-- *********************************************************************** -->
139</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
140<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
141<a name="general">General Information
142</b></font></td></tr></table><ul>
143<!-- *********************************************************************** -->
144
145This section contains general information that is useful if you are working in
146the LLVM source-base, but that isn't specific to any particular API.<p>
147
148
149<!-- ======================================================================= -->
150</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
151<tr><td>&nbsp;</td><td width="100%">&nbsp;
152<font color="#EEEEFF" face="Georgia,Palatino"><b>
153<a name="stl">The C++ Standard Template Library</a>
154</b></font></td></tr></table><ul>
155
156LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
157more than you are used to, or have seen before. Because of this, you might want
158to do a little background reading in the techniques used and capabilities of the
159library. There are many good pages that discuss the STL, and several books on
160the subject that you can get, so it will not be discussed in this document.<p>
161
162Here are some useful links:<p>
163<ol>
164<li><a href="http://www.dinkumware.com/htm_cpl/index.html">Dinkumware C++
165Library reference</a> - an excellent reference for the STL and other parts of
166the standard C++ library.<br>
167
168<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
169Questions</a>
170
171<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
172Contains a useful <a
173href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
174STL</a>.
175
176<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
177Page</a>
178
179</ol><p>
180
181You are also encouraged to take a look at the <a
182href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
183to write maintainable code more than where to put your curly braces.<p>
184
185
Chris Lattner1d43fd42002-09-09 05:53:21 +0000186<!-- ======================================================================= -->
187</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
188<tr><td>&nbsp;</td><td width="100%">&nbsp;
189<font color="#EEEEFF" face="Georgia,Palatino"><b>
190<a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
191</b></font></td></tr></table><ul>
192
Chris Lattner979d9b72002-09-10 00:39:05 +0000193The LLVM source-base makes extensive use of a custom form of RTTI. These
194templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
195operator, but they don't have some drawbacks (primarily stemming from the fact
196that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that have a v-table).
197Because they are used so often, you must know what they do and how they work.
198All of these templates are defined in the <a
199href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
200that you very rarely have to include this file directly).<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000201
Chris Lattner979d9b72002-09-10 00:39:05 +0000202<dl>
203
204<dt><tt>isa&lt;&gt;</tt>:
205
206<dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
207"<tt>instanceof</tt>" operator. It returns true or false depending on whether a
208reference or pointer points to an instance of the specified class. This can be
209very useful for constraint checking of various sorts (example below).<p>
210
211
212<dt><tt>cast&lt;&gt;</tt>:
213
214<dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
215converts a pointer or reference from a base class to a derived cast, causing an
216assertion failure if it is not really an instance of the right type. This
217should be used in cases where you have some information that makes you believe
218that something is of the right type. An example of the <tt>isa&lt;&gt;</tt> and
219<tt>cast&lt;&gt;</tt> template is:<p>
220
221<pre>
222static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
223 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
224 return true;
225
226 <i>// Otherwise, it must be an instruction...</i>
227 return !L->contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)->getParent());
228</pre><p>
229
230Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed by a
231<tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt> operator.<p>
232
233
234<dt><tt>dyn_cast&lt;&gt;</tt>:
235
236<dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
237checks to see if the operand is of the specified type, and if so, returns a
238pointer to it (this operator does not work with references). If the operand is
239not of the correct type, a null pointer is returned. Thus, this works very much
240like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
Chris Lattner6b121f12002-09-10 15:20:46 +0000241circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used in an
242<tt>if</tt> statement or some other flow control statement like this:<p>
243
244<pre>
245 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
246 ...
247 }
248</pre><p>
249
250This form of the <tt>if</tt> statement effectively combines together a call to
251<tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one statement,
252which is very convenient.<p>
253
254Another common example is:<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000255
256<pre>
257 <i>// Loop over all of the phi nodes in a basic block</i>
258 BasicBlock::iterator BBI = BB->begin();
259 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(&amp;*BBI); ++BBI)
260 cerr &lt;&lt; *PN;
261</pre><p>
262
Chris Lattner6b121f12002-09-10 15:20:46 +0000263Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
264<tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused. In
265particular you should not use big chained <tt>if/then/else</tt> blocks to check
266for lots of different variants of classes. If you find yourself wanting to do
267this, it is much cleaner and more efficient to use the InstVisitor class to
268dispatch over the instruction type directly.<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000269
270
Chris Lattner6b121f12002-09-10 15:20:46 +0000271<dt><tt>cast_or_null&lt;&gt;</tt>:
272
273<dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
274<tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
Joel Stanley753eb712002-09-11 22:32:24 +0000275argument (which it then propagates). This can sometimes be useful, allowing you
Chris Lattner6b121f12002-09-10 15:20:46 +0000276to combine several null checks into one.<p>
277
278
279<dt><tt>dyn_cast_or_null&lt;&gt;</tt>:
280
281<dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
282<tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
Joel Stanley753eb712002-09-11 22:32:24 +0000283an argument (which it then propagates). This can sometimes be useful, allowing
Chris Lattner6b121f12002-09-10 15:20:46 +0000284you to combine several null checks into one.<p>
285
Chris Lattner979d9b72002-09-10 00:39:05 +0000286</dl>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000287
Chris Lattner6b121f12002-09-10 15:20:46 +0000288These five templates can be used with any classes, whether they have a v-table
289or not. To add support for these templates, you simply need to add
290<tt>classof</tt> static methods to the class you are interested casting to.
291Describing this is currently outside the scope of this document, but there are
Joel Stanley753eb712002-09-11 22:32:24 +0000292lots of examples in the LLVM source base.<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000293
294
Chris Lattnerae7f7592002-09-06 18:31:18 +0000295
Chris Lattnerb99344f2002-09-06 16:40:10 +0000296<!-- *********************************************************************** -->
297</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
298<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
299<a name="common">Helpful Hints for Common Operations
300</b></font></td></tr></table><ul>
301<!-- *********************************************************************** -->
302
Chris Lattnerae7f7592002-09-06 18:31:18 +0000303This section describes how to perform some very simple transformations of LLVM
304code. This is meant to give examples of common idioms used, showing the
305practical side of LLVM transformations.<p>
306
Joel Stanley9b96c442002-09-06 21:55:13 +0000307Because this is a "how-to" section, you should also read about the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000308that you will be working with. The <a href="#coreclasses">Core LLVM Class
Joel Stanley9b96c442002-09-06 21:55:13 +0000309Hierarchy Reference</a> contains details and descriptions of the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000310that you should know about.<p>
311
312<!-- NOTE: this section should be heavy on example code -->
313
314
315<!-- ======================================================================= -->
316</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
317<tr><td>&nbsp;</td><td width="100%">&nbsp;
318<font color="#EEEEFF" face="Georgia,Palatino"><b>
319<a name="inspection">Basic Inspection and Traversal Routines</a>
320</b></font></td></tr></table><ul>
321
Chris Lattnercaa5d132002-09-09 19:58:18 +0000322The LLVM compiler infrastructure have many different data structures that may be
323traversed. Following the example of the C++ standard template library, the
324techniques used to traverse these various data structures are all basically the
325same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
326method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
327function returns an iterator pointing to one past the last valid element of the
328sequence, and there is some <tt>XXXiterator</tt> data type that is common
329between the two operations.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000330
Chris Lattnercaa5d132002-09-09 19:58:18 +0000331Because the pattern for iteration is common across many different aspects of the
332program representation, the standard template library algorithms may be used on
333them, and it is easier to remember how to iterate. First we show a few common
334examples of the data structures that need to be traversed. Other data
335structures are traversed in very similar ways.<p>
336
Chris Lattnerae7f7592002-09-06 18:31:18 +0000337
338<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000339</ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
340href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
341href="#Function"><tt>Function</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000342
Joel Stanley9b96c442002-09-06 21:55:13 +0000343It's quite common to have a <tt>Function</tt> instance that you'd like
344to transform in some way; in particular, you'd like to manipulate its
345<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
346all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
347The following is an example that prints the name of a
348<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
349contains:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000350
Joel Stanley9b96c442002-09-06 21:55:13 +0000351<pre>
352 // func is a pointer to a Function instance
353 for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
354
355 // print out the name of the basic block if it has one, and then the
356 // number of instructions that it contains
357
Joel Stanley72ef35e2002-09-06 23:05:12 +0000358 cerr &lt;&lt "Basic block (name=" &lt;&lt i-&gt;getName() &lt;&lt; ") has "
359 &lt;&lt i-&gt;size() &lt;&lt " instructions.\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000360 }
361</pre>
362
363Note that i can be used as if it were a pointer for the purposes of
364invoking member functions of the <tt>Instruction</tt> class. This is
365because the indirection operator is overloaded for the iterator
366classes. In the above code, the expression <tt>i->size()</tt> is
367exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000368
369<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000370</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
371href="#Instruction"><tt>Instruction</tt></a>s in a <a
372href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000373
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000374Just like when dealing with <tt>BasicBlock</tt>s in
375<tt>Function</tt>s, it's easy to iterate over the individual
376instructions that make up <tt>BasicBlock</tt>s. Here's a code snippet
377that prints out each instruction in a <tt>BasicBlock</tt>:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000378
Joel Stanley9b96c442002-09-06 21:55:13 +0000379<pre>
380 // blk is a pointer to a BasicBlock instance
Chris Lattnercaa5d132002-09-09 19:58:18 +0000381 for(BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
Chris Lattner2b763062002-09-06 22:51:10 +0000382 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
383 // is overloaded for Instruction&amp;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000384 cerr &lt;&lt; *i &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000385</pre>
386
387However, this isn't really the best way to print out the contents of a
388<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
389virtually anything you'll care about, you could have just invoked the
Chris Lattner2b763062002-09-06 22:51:10 +0000390print routine on the basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt;
391"\n";</tt>.<p>
392
393Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so it
394will print out the contents of the pointer, instead of
395the pointer value you might expect. This is a deprecated interface that will
396be removed in the future, so it's best not to depend on it. To print out the
397pointer value for now, you must cast to <tt>void*</tt>.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000398
Chris Lattnercaa5d132002-09-09 19:58:18 +0000399
Chris Lattnerae7f7592002-09-06 18:31:18 +0000400<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000401</ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
402href="#Instruction"><tt>Instruction</tt></a>s in a <a
403href="#Function"><tt>Function</tt></a></h4><ul>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000404
Joel Stanleye7be6502002-09-09 15:50:33 +0000405If you're finding that you commonly iterate over a <tt>Function</tt>'s
406<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
407<tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000408You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
Joel Stanleye7be6502002-09-09 15:50:33 +0000409instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
410small example that shows how to dump all instructions in a function to
411stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
412<tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&amp</tt>!):
Chris Lattner1a3105b2002-09-09 05:49:39 +0000413
Joel Stanleye7be6502002-09-09 15:50:33 +0000414<pre>
Chris Lattnercaa5d132002-09-09 19:58:18 +0000415#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
Joel Stanleye7be6502002-09-09 15:50:33 +0000416...
417// Suppose F is a ptr to a function
418for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
419 cerr &lt;&lt **i &lt;&lt "\n";
420</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000421
Joel Stanleye7be6502002-09-09 15:50:33 +0000422Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
423worklist with its initial contents. For example, if you wanted to
424initialize a worklist to contain all instructions in a
425<tt>Function</tt> F, all you would need to do is something like:
Chris Lattner1a3105b2002-09-09 05:49:39 +0000426
Joel Stanleye7be6502002-09-09 15:50:33 +0000427<pre>
428std::set&lt;Instruction*&gt worklist;
429worklist.insert(inst_begin(F), inst_end(F));
430</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000431
Joel Stanleye7be6502002-09-09 15:50:33 +0000432The STL set <tt>worklist</tt> would now contain all instructions in
433the <tt>Function</tt> pointed to by F.
Chris Lattner1a3105b2002-09-09 05:49:39 +0000434
435<!-- _______________________________________________________________________ -->
Chris Lattnerae7f7592002-09-06 18:31:18 +0000436</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
Joel Stanleye7be6502002-09-09 15:50:33 +0000437pointer (and vice-versa) </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000438
Joel Stanley9b96c442002-09-06 21:55:13 +0000439Sometimes, it'll be useful to grab a reference (or pointer) to a class
440instance when all you've got at hand is an iterator. Well, extracting
441a reference or a pointer from an iterator is very straightforward.
442Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
443<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
444
445<pre>
Chris Lattner83b5ee02002-09-06 22:12:58 +0000446 Instruction&amp; inst = *i; // grab reference to instruction reference
447 Instruction* pinst = &amp;*i; // grab pointer to instruction reference
448 const Instruction&amp; inst = *j;
Joel Stanley9b96c442002-09-06 21:55:13 +0000449</pre>
450However, the iterators you'll be working with in the LLVM framework
451are special: they will automatically convert to a ptr-to-instance type
452whenever they need to. Instead of dereferencing the iterator and then
453taking the address of the result, you can simply assign the iterator
454to the proper pointer type and you get the dereference and address-of
455operation as a result of the assignment (behind the scenes, this is a
456result of overloading casting mechanisms). Thus the last line of the
457last example,
458
Chris Lattner83b5ee02002-09-06 22:12:58 +0000459<pre>Instruction* pinst = &amp;*i;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000460
461is semantically equivalent to
462
463<pre>Instruction* pinst = i;</pre>
464
Chris Lattner979d9b72002-09-10 00:39:05 +0000465<b>Caveat emptor</b>: The above syntax works <i>only</i> when you're <i>not</i>
466working with <tt>dyn_cast</tt>. The template definition of <tt><a
467href="#isa">dyn_cast</a></tt> isn't implemented to handle this yet, so you'll
Joel Stanley9b96c442002-09-06 21:55:13 +0000468still need the following in order for things to work properly:
469
470<pre>
471BasicBlock::iterator bbi = ...;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000472<a href="#BranchInst">BranchInst</a>* b = <a href="#isa">dyn_cast</a>&lt;<a href="#BranchInst">BranchInst</a>&gt;(&amp;*bbi);
Joel Stanley9b96c442002-09-06 21:55:13 +0000473</pre>
474
Joel Stanleye7be6502002-09-09 15:50:33 +0000475It's also possible to turn a class pointer into the corresponding
476iterator. Usually, this conversion is quite inexpensive. The
477following code snippet illustrates use of the conversion constructors
478provided by LLVM iterators. By using these, you can explicitly grab
479the iterator of something without actually obtaining it via iteration
480over some structure:
Joel Stanley9b96c442002-09-06 21:55:13 +0000481
482<pre>
483void printNextInstruction(Instruction* inst) {
484 BasicBlock::iterator it(inst);
485 ++it; // after this line, it refers to the instruction after *inst.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000486 if(it != inst-&gt;getParent()->end()) cerr &lt;&lt; *it &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000487}
488</pre>
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000489Of course, this example is strictly pedagogical, because it'd be much
490better to explicitly grab the next instruction directly from inst.
Joel Stanley9b96c442002-09-06 21:55:13 +0000491
Chris Lattnerae7f7592002-09-06 18:31:18 +0000492
Chris Lattner1a3105b2002-09-09 05:49:39 +0000493<!--_______________________________________________________________________-->
494</ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
495more complex example </h4><ul>
Joel Stanley9b96c442002-09-06 21:55:13 +0000496
497Say that you're writing a FunctionPass and would like to count all the
Joel Stanleye7be6502002-09-09 15:50:33 +0000498locations in the entire module (that is, across every
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000499<tt>Function</tt>) where a certain function (i.e. some
500<tt>Function</tt>*) already in scope. As you'll learn later, you may
501want to use an <tt>InstVisitor</tt> to accomplish this in a much more
502straightforward manner, but this example will allow us to explore how
503you'd do it if you didn't have <tt>InstVisitor</tt> around. In
Joel Stanleye7be6502002-09-09 15:50:33 +0000504pseudocode, this is what we want to do:
Joel Stanley9b96c442002-09-06 21:55:13 +0000505
506<pre>
507initialize callCounter to zero
508for each Function f in the Module
509 for each BasicBlock b in f
510 for each Instruction i in b
Joel Stanleye7be6502002-09-09 15:50:33 +0000511 if(i is a CallInst and calls the given function)
Joel Stanley9b96c442002-09-06 21:55:13 +0000512 increment callCounter
513</pre>
514
515And the actual code is (remember, since we're writing a
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000516<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
Joel Stanley9b96c442002-09-06 21:55:13 +0000517has to override the <tt>runOnFunction</tt> method...):
518
519<pre>
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000520Function* targetFunc = ...;
521
Joel Stanleye7be6502002-09-09 15:50:33 +0000522class OurFunctionPass : public FunctionPass {
523 public:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000524 OurFunctionPass(): callCounter(0) { }
Joel Stanley9b96c442002-09-06 21:55:13 +0000525
Chris Lattnercaa5d132002-09-09 19:58:18 +0000526 virtual runOnFunction(Function&amp; F) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000527 for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
528 for(BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
Chris Lattner979d9b72002-09-10 00:39:05 +0000529 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a href="#CallInst">CallInst</a>&gt;(&amp;*inst)) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000530 // we know we've encountered a call instruction, so we
531 // need to determine if it's a call to the
532 // function pointed to by m_func or not.
533
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000534 if(callInst-&gt;getCalledFunction() == targetFunc)
Joel Stanleye7be6502002-09-09 15:50:33 +0000535 ++callCounter;
536 }
537 }
Joel Stanley9b96c442002-09-06 21:55:13 +0000538 }
Joel Stanleye7be6502002-09-09 15:50:33 +0000539
540 private:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000541 unsigned callCounter;
Joel Stanleye7be6502002-09-09 15:50:33 +0000542};
Joel Stanley9b96c442002-09-06 21:55:13 +0000543</pre>
544
Chris Lattner1a3105b2002-09-09 05:49:39 +0000545<!--_______________________________________________________________________-->
546</ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &amp;
547use-def chains</h4><ul>
548
Joel Stanley01040b22002-09-11 20:50:04 +0000549Frequently, we might have an instance of the <a
550href="/doxygen/classValue.html">Value Class</a> and we want to
551determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
552all <tt>User</tt>s of a particular <tt>Value</tt> is called a
553<i>def-use</i> chain. For example, let's say we have a
554<tt>Function*</tt> named <tt>F</tt> to a particular function
555<tt>foo</tt>. Finding all of the instructions that <i>use</i>
556<tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
557<tt>F</tt>:
558
559<pre>
560Function* F = ...;
561
562for(Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {
563 if(Instruction* i = dyn_cast&lt;Instruction&gt;(*i)) {
564 cerr &lt;&lt; "F is used in instruction:\n\t";
565 cerr &lt;&lt; *i &lt;&lt; "\n";
566 }
567}
568</pre>
569
570Alternately, it's common to have an instance of the <a
571href="/doxygen/classUser.html">User Class</a> and need to know what
572<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used
573by a <tt>User</tt> is known as a <i>use-def</i> chain. Instances of
574class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
575to iterate over all of the values that a particular instruction uses
576(that is, the operands of the particular <tt>Instruction</tt>):
577
578<pre>
579Instruction* pi = ...;
580
581for(User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Joel Stanley753eb712002-09-11 22:32:24 +0000582 Value* v = *i;
Joel Stanley01040b22002-09-11 20:50:04 +0000583 ...
584}
585</pre>
586
587
Chris Lattner1a3105b2002-09-09 05:49:39 +0000588<!--
589 def-use chains ("finding all users of"): Value::use_begin/use_end
590 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
591-->
592
Chris Lattnerae7f7592002-09-06 18:31:18 +0000593<!-- ======================================================================= -->
594</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
595<tr><td>&nbsp;</td><td width="100%">&nbsp;
596<font color="#EEEEFF" face="Georgia,Palatino"><b>
597<a name="simplechanges">Making simple changes</a>
598</b></font></td></tr></table><ul>
599
Joel Stanley753eb712002-09-11 22:32:24 +0000600There are some primitive transformation operations present in the LLVM
601infrastructure that are worth knowing about. When performing
602transformations, it's fairly common to manipulate the contents of
603basic blocks. This section describes some of the common methods for
604doing so and gives example code.
605
606<!--_______________________________________________________________________-->
607</ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
608 new <tt>Instruction</tt>s</h4><ul>
609
610<i>Instantiating Instructions</i>
611
612<p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
613constructor for the kind of instruction to instantiate and provide the
614necessary parameters. For example, an <tt>AllocaInst</tt> only
615<i>requires</i> a (const-ptr-to) <tt>Type</tt>. Thus:
616
617<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
618
619will create an <tt>AllocaInst</tt> instance that represents the
620allocation of one integer in the current stack frame, at runtime.
621Each <tt>Instruction</tt> subclass is likely to have varying default
622parameters which change the semantics of the instruction, so refer to
623the <a href="/doxygen/classInstruction.h">doxygen documentation for
624the subclass of Instruction</a> that you're interested in
625instantiating.</p>
626
627<p><i>Naming values</i></p>
628
629<p>
630It is very useful to name the values of instructions when you're able
631to, as this facilitates the debugging of your transformations. If you
632end up looking at generated LLVM machine code, you definitely want to
633have logical names associated with the results of instructions! By
634supplying a value for the <tt>Name</tt> (default) parameter of the
635<tt>Instruction</tt> constructor, you associate a logical name with
636the result of the instruction's execution at runtime. For example,
637say that I'm writing a transformation that dynamically allocates space
638for an integer on the stack, and that integer is going to be used as
639some kind of index by some other code. To accomplish this, I place an
640<tt>AllocaInst</tt> at the first point in the first
641<tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
642use it within the same <tt>Function</tt>. I might do:
643
644<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
645
646where <tt>indexLoc</tt> is now the logical name of the instruction's
647execution value, which is a pointer to an integer on the runtime
648stack.
649</p>
650
651<p><i>Inserting instructions</i></p>
652
653<p>
654There are essentially two ways to insert an <tt>Instruction</tt> into
655an existing sequence of instructions that form a <tt>BasicBlock</tt>:
656<ul>
657<li>Insertion into an explicit instruction list
658
659<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
660that <tt>BasicBlock</tt>, and a newly-created instruction
661we wish to insert before <tt>*pi</tt>, we do the following:
662
663<pre>
664BasicBlock* pb = ...;
665Instruction* pi = ...;
666Instruction* newInst = new Instruction(...);
667pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb
668</pre>
669</p>
670
671<li>Insertion into an implicit instruction list
672<p>
673<tt>Instruction</tt> instances that are already in
674<tt>BasicBlock</tt>s are implicitly associated with an existing
675instruction list: the instruction list of the enclosing basic block.
676Thus, we could have accomplished the same thing as the above code
677without being given a <tt>BasicBlock</tt> by doing:
678<pre>
679Instruction* pi = ...;
680Instruction* newInst = new Instruction(...);
681pi->getParent()->getInstList().insert(pi, newInst);
682</pre>
683In fact, this sequence of steps occurs so frequently that the
684<tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
685provide constructors which take (as a default parameter) a pointer to
686an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
687should precede. That is, <tt>Instruction</tt> constructors are
688capable of inserting the newly-created instance into the
689<tt>BasicBlock</tt> of a provided instruction, immediately before that
690instruction. Using an <tt>Instruction</tt> constructor with a
691<tt>insertBefore</tt> (default) parameter, the above code becomes:
692<pre>
693Instruction* pi = ...;
694Instruction* newInst = new Instruction(..., pi);
695</pre>
696which is much cleaner, especially if you're creating a lot of
697instructions and adding them to <tt>BasicBlock</tt>s.
698</p>
699</p>
700
701
702<!--_______________________________________________________________________-->
703</ul><h4><a name="schanges_deleting"><hr size=0>Deleting
704 <tt>Instruction</tt>s</h4><ul>
705
706<!--_______________________________________________________________________-->
707</ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
708 <tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
709
Chris Lattnerae7f7592002-09-06 18:31:18 +0000710<!-- Value::replaceAllUsesWith
711 User::replaceUsesOfWith
712 Point out: include/llvm/Transforms/Utils/
713 especially BasicBlockUtils.h with:
714 ReplaceInstWithValue, ReplaceInstWithInst
715
716-->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000717
Chris Lattner9355b472002-09-06 02:50:58 +0000718<!-- *********************************************************************** -->
719</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
720<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Joel Stanley9b96c442002-09-06 21:55:13 +0000721<a name="coreclasses">The Core LLVM Class Hierarchy Reference
Chris Lattner9355b472002-09-06 02:50:58 +0000722</b></font></td></tr></table><ul>
723<!-- *********************************************************************** -->
724
725The Core LLVM classes are the primary means of representing the program being
726inspected or transformed. The core LLVM classes are defined in header files in
727the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
728directory.<p>
729
730
731<!-- ======================================================================= -->
732</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
733<tr><td>&nbsp;</td><td width="100%">&nbsp;
734<font color="#EEEEFF" face="Georgia,Palatino"><b>
735<a name="Value">The <tt>Value</tt> class</a>
736</b></font></td></tr></table><ul>
737
738<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
739doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
740
741
742The <tt>Value</tt> class is the most important class in LLVM Source base. It
743represents a typed value that may be used (among other things) as an operand to
744an instruction. There are many different types of <tt>Value</tt>s, such as <a
745href="#Constant"><tt>Constant</tt></a>s, <a
746href="#Argument"><tt>Argument</tt></a>s, and even <a
747href="#Instruction"><tt>Instruction</tt></a>s and <a
748href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
749
750A particular <tt>Value</tt> may be used many times in the LLVM representation
751for a program. For example, an incoming argument to a function (represented
752with an instance of the <a href="#Argument">Argument</a> class) is "used" by
753every instruction in the function that references the argument. To keep track
754of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
755href="#User"><tt>User</tt></a>s that is using it (the <a
756href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
757graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
Joel Stanley9b96c442002-09-06 21:55:13 +0000758def-use information in the program, and is accessible through the <tt>use_</tt>*
Chris Lattner9355b472002-09-06 02:50:58 +0000759methods, shown below.<p>
760
761Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
762this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
763method. <a name="#nameWarning">In addition, all LLVM values can be named. The
764"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
765
766<pre>
767 %<b>foo</b> = add int 1, 2
768</pre>
769
770The name of this instruction is "foo". <b>NOTE</b> that the name of any value
771may be missing (an empty string), so names should <b>ONLY</b> be used for
772debugging (making the source code easier to read, debugging printouts), they
773should not be used to keep track of values or map between them. For this
774purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
775instead.<p>
776
777One important aspect of LLVM is that there is no distinction between an SSA
778variable and the operation that produces it. Because of this, any reference to
779the value produced by an instruction (or the value available as an incoming
780argument, for example) is represented as a direct pointer to the class that
781represents this value. Although this may take some getting used to, it
782simplifies the representation and makes it easier to manipulate.<p>
783
784
785<!-- _______________________________________________________________________ -->
786</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
787the <tt>Value</tt> class</h4><ul>
788
789<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
790 <tt>Value::use_const_iterator</tt>
791 - Typedef for const_iterator over the use-list<br>
792 <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
793 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
794 <tt>use_iterator use_begin()</tt>
795 - Get an iterator to the start of the use-list.<br>
796 <tt>use_iterator use_end()</tt>
797 - Get an iterator to the end of the use-list.<br>
798 <tt><a href="#User">User</a> *use_back()</tt>
799 - Returns the last element in the list.<p>
800
801These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
802
803<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
804This method returns the Type of the Value.
805
806<li><tt>bool hasName() const</tt><br>
807 <tt>std::string getName() const</tt><br>
808 <tt>void setName(const std::string &amp;Name)</tt><p>
809
810This family of methods is used to access and assign a name to a <tt>Value</tt>,
811be aware of the <a href="#nameWarning">precaution above</a>.<p>
812
813
814<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
815
816This method traverses the use list of a <tt>Value</tt> changing all <a
817href="#User"><tt>User</tt>'s</a> of the current value to refer to "<tt>V</tt>"
818instead. For example, if you detect that an instruction always produces a
819constant value (for example through constant folding), you can replace all uses
820of the instruction with the constant like this:<p>
821
822<pre>
823 Inst-&gt;replaceAllUsesWith(ConstVal);
824</pre><p>
825
826
827
828<!-- ======================================================================= -->
829</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
830<tr><td>&nbsp;</td><td width="100%">&nbsp;
831<font color="#EEEEFF" face="Georgia,Palatino"><b>
832<a name="User">The <tt>User</tt> class</a>
833</b></font></td></tr></table><ul>
834
835<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
836doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
837Superclass: <a href="#Value"><tt>Value</tt></a><p>
838
839
840The <tt>User</tt> class is the common base class of all LLVM nodes that may
841refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
842that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
843referring to. The <tt>User</tt> class itself is a subclass of
844<tt>Value</tt>.<p>
845
846The operands of a <tt>User</tt> point directly to the LLVM <a
847href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
848Single Assignment (SSA) form, there can only be one definition referred to,
849allowing this direct connection. This connection provides the use-def
850information in LLVM.<p>
851
852<!-- _______________________________________________________________________ -->
853</ul><h4><a name="m_User"><hr size=0>Important Public Members of
854the <tt>User</tt> class</h4><ul>
855
856The <tt>User</tt> class exposes the operand list in two ways: through an index
857access interface and through an iterator based interface.<p>
858
859<li><tt>Value *getOperand(unsigned i)</tt><br>
860 <tt>unsigned getNumOperands()</tt><p>
861
862These two methods expose the operands of the <tt>User</tt> in a convenient form
863for direct access.<p>
864
865<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
866 <tt>User::op_const_iterator</tt>
867 <tt>use_iterator op_begin()</tt>
868 - Get an iterator to the start of the operand list.<br>
869 <tt>use_iterator op_end()</tt>
870 - Get an iterator to the end of the operand list.<p>
871
872Together, these methods make up the iterator based interface to the operands of
873a <tt>User</tt>.<p>
874
875
876
877<!-- ======================================================================= -->
878</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
879<tr><td>&nbsp;</td><td width="100%">&nbsp;
880<font color="#EEEEFF" face="Georgia,Palatino"><b>
881<a name="Instruction">The <tt>Instruction</tt> class</a>
882</b></font></td></tr></table><ul>
883
884<tt>#include "<a
885href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
886doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
887Superclasses: <a href="#User"><tt>User</tt></a>, <a
888href="#Value"><tt>Value</tt></a><p>
889
890The <tt>Instruction</tt> class is the common base class for all LLVM
891instructions. It provides only a few methods, but is a very commonly used
892class. The primary data tracked by the <tt>Instruction</tt> class itself is the
893opcode (instruction type) and the parent <a
894href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
895into. To represent a specific type of instruction, one of many subclasses of
896<tt>Instruction</tt> are used.<p>
897
898Because the <tt>Instruction</tt> class subclasses the <a
899href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
900way as for other <a href="#User"><tt>User</tt></a>s (with the
901<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
902<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
903
904
905<!-- _______________________________________________________________________ -->
906</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
907the <tt>Instruction</tt> class</h4><ul>
908
909<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
910
911Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
912<tt>Instruction</tt> is embedded into.<p>
913
914<li><tt>bool hasSideEffects()</tt><p>
915
916Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>,
917<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
918
919<li><tt>unsigned getOpcode()</tt><p>
920
921Returns the opcode for the <tt>Instruction</tt>.<p>
922
923<!--
924
925\subsection{Subclasses of Instruction :}
926\begin{itemize}
927<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
928 \begin{itemize}
929 <li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
930 \end{itemize}
931<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
932 \begin{itemize}
933 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
934 <li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
935 <li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
936 \end{itemize}
937
938<li>PHINode : This represents the PHI instructions in the SSA form.
939 \begin{itemize}
940 <li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
941 <li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
942 <li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
943 <li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
944 <li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
945 Add an incoming value to the end of the PHI list
946 <li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
947 Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
948 \end{itemize}
949<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
950<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
951 \begin{itemize}
952 <li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
953 \end{itemize}
954<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
955 \begin{itemize}
956 <li><tt>Value * getPointerOperand ()</tt>: Returns the Pointer Operand which is typically the 0th operand.
957 \end{itemize}
958<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
959 \begin{itemize}
960 <li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
961 <li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
962 <li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
963 \end{itemize}
964
965\end{itemize}
966
967-->
968
969
970<!-- ======================================================================= -->
971</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
972<tr><td>&nbsp;</td><td width="100%">&nbsp;
973<font color="#EEEEFF" face="Georgia,Palatino"><b>
974<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
975</b></font></td></tr></table><ul>
976
977<tt>#include "<a
978href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
979doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
980Superclass: <a href="#Value"><tt>Value</tt></a><p>
981
982
983This class represents a single entry multiple exit section of the code, commonly
984known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
985maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
986the body of the block. Matching the language definition, the last element of
987this list of instructions is always a terminator instruction (a subclass of the
988<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
989
990In addition to tracking the list of instructions that make up the block, the
991<tt>BasicBlock</tt> class also keeps track of the <a
992href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
993
994Note that <tt>BasicBlock</tt>s themselves are <a
995href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
996like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
997<tt>label</tt>.<p>
998
999
1000<!-- _______________________________________________________________________ -->
1001</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
1002the <tt>BasicBlock</tt> class</h4><ul>
1003
1004<li><tt>BasicBlock(const std::string &amp;Name = "", <a
1005href="#Function">Function</a> *Parent = 0)</tt><p>
1006
1007The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1008insertion into a function. The constructor simply takes a name for the new
1009block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
1010into. If the <tt>Parent</tt> parameter is specified, the new
1011<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
1012href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1013manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
1014
1015<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1016 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1017 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1018 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1019
1020These methods and typedefs are forwarding functions that have the same semantics
1021as the standard library methods of the same names. These methods expose the
1022underlying instruction list of a basic block in a way that is easy to
1023manipulate. To get the full complement of container operations (including
1024operations to update the list), you must use the <tt>getInstList()</tt>
1025method.<p>
1026
1027<li><tt>BasicBlock::InstListType &amp;getInstList()</tt><p>
1028
1029This method is used to get access to the underlying container that actually
1030holds the Instructions. This method must be used when there isn't a forwarding
1031function in the <tt>BasicBlock</tt> class for the operation that you would like
1032to perform. Because there are no forwarding functions for "updating"
1033operations, you need to use this if you want to update the contents of a
1034<tt>BasicBlock</tt>.<p>
1035
1036<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
1037
1038Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1039embedded into, or a null pointer if it is homeless.<p>
1040
1041<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
1042
1043Returns a pointer to the terminator instruction that appears at the end of the
1044<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1045instruction in the block is not a terminator, then a null pointer is
1046returned.<p>
1047
1048
1049<!-- ======================================================================= -->
1050</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1051<tr><td>&nbsp;</td><td width="100%">&nbsp;
1052<font color="#EEEEFF" face="Georgia,Palatino"><b>
1053<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1054</b></font></td></tr></table><ul>
1055
1056<tt>#include "<a
1057href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
1058doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
1059Superclasses: <a href="#User"><tt>User</tt></a>, <a
1060href="#Value"><tt>Value</tt></a><p>
1061
1062Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1063href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1064visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1065Because they are visible at global scope, they are also subject to linking with
1066other globals defined in different translation units. To control the linking
1067process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1068<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
1069
1070If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1071<tt>static</tt> in C), it is not visible to code outside the current translation
1072unit, and does not participate in linking. If it has external linkage, it is
1073visible to external code, and does participate in linking. In addition to
1074linkage information, <tt>GlobalValue</tt>s keep track of which <a
1075href="#Module"><tt>Module</tt></a> they are currently part of.<p>
1076
1077Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
1078their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
1079always a pointer to its contents. This is explained in the LLVM Language
1080Reference Manual.<p>
1081
1082
1083<!-- _______________________________________________________________________ -->
1084</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
1085the <tt>GlobalValue</tt> class</h4><ul>
1086
1087<li><tt>bool hasInternalLinkage() const</tt><br>
1088 <tt>bool hasExternalLinkage() const</tt><br>
1089 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
1090
1091These methods manipulate the linkage characteristics of the
1092<tt>GlobalValue</tt>.<p>
1093
1094<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
1095
1096This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
1097currently embedded into.<p>
1098
1099
1100
1101<!-- ======================================================================= -->
1102</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1103<tr><td>&nbsp;</td><td width="100%">&nbsp;
1104<font color="#EEEEFF" face="Georgia,Palatino"><b>
1105<a name="Function">The <tt>Function</tt> class</a>
1106</b></font></td></tr></table><ul>
1107
1108<tt>#include "<a
1109href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
1110doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
1111Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1112href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1113
1114The <tt>Function</tt> class represents a single procedure in LLVM. It is
1115actually one of the more complex classes in the LLVM heirarchy because it must
1116keep track of a large amount of data. The <tt>Function</tt> class keeps track
1117of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1118href="#Argument"><tt>Argument</tt></a>s, and a <a
1119href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
1120
1121The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
1122used part of <tt>Function</tt> objects. The list imposes an implicit ordering
1123of the blocks in the function, which indicate how the code will be layed out by
1124the backend. Additionally, the first <a
1125href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1126<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
1127block. There are no implicit exit nodes, and in fact there may be multiple exit
1128nodes from a single <tt>Function</tt>. If the <a
1129href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1130the <tt>Function</tt> is actually a function declaration: the actual body of the
1131function hasn't been linked in yet.<p>
1132
1133In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1134<tt>Function</tt> class also keeps track of the list of formal <a
1135href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1136container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1137nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1138the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
1139
1140The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
1141feature that is only used when you have to look up a value by name. Aside from
1142that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
1143make sure that there are not conflicts between the names of <a
1144href="#Instruction"><tt>Instruction</tt></a>s, <a
1145href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1146href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
1147
1148
1149<!-- _______________________________________________________________________ -->
1150</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
1151the <tt>Function</tt> class</h4><ul>
1152
1153<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &amp;N = "")</tt><p>
1154
1155Constructor used when you need to create new <tt>Function</tt>s to add the the
1156program. The constructor must specify the type of the function to create and
1157whether or not it should start out with internal or external linkage.<p>
1158
1159<li><tt>bool isExternal()</tt><p>
1160
1161Return whether or not the <tt>Function</tt> has a body defined. If the function
1162is "external", it does not have a body, and thus must be resolved by linking
1163with a function defined in a different translation unit.<p>
1164
1165
1166<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
1167 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
1168 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1169 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1170
1171These are forwarding methods that make it easy to access the contents of a
1172<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1173list.<p>
1174
1175<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt><p>
1176
1177Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
1178neccesary to use when you need to update the list or perform a complex action
1179that doesn't have a forwarding method.<p>
1180
1181
1182<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
1183 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
1184 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1185 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
1186
1187These are forwarding methods that make it easy to access the contents of a
1188<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
1189
1190<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt><p>
1191
1192Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1193neccesary to use when you need to update the list or perform a complex action
1194that doesn't have a forwarding method.<p>
1195
1196
1197
1198<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
1199
1200Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1201function. Because the entry block for the function is always the first block,
1202this returns the first block of the <tt>Function</tt>.<p>
1203
1204<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1205 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
1206
1207This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
1208and returns the return type of the function, or the <a
1209href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
1210
1211
1212<li><tt>bool hasSymbolTable() const</tt><p>
1213
1214Return true if the <tt>Function</tt> has a symbol table allocated to it and if
1215there is at least one entry in it.<p>
1216
1217<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1218
1219Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1220<tt>Function</tt> or a null pointer if one has not been allocated (because there
1221are no named values in the function).<p>
1222
1223<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
1224
1225Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1226<tt>Function</tt> or allocate a new <a
1227href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
1228should only be used when adding elements to the <a
1229href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
1230not left laying around.<p>
1231
1232
1233
1234<!-- ======================================================================= -->
1235</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1236<tr><td>&nbsp;</td><td width="100%">&nbsp;
1237<font color="#EEEEFF" face="Georgia,Palatino"><b>
1238<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1239</b></font></td></tr></table><ul>
1240
1241<tt>#include "<a
1242href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
1243doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
1244Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1245href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1246
Chris Lattner0377de42002-09-06 14:50:55 +00001247Global variables are represented with the (suprise suprise)
1248<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
1249also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
1250are always referenced by their address (global values must live in memory, so
1251their "name" refers to their address). Global variables may have an initial
1252value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
1253have an initializer, they may be marked as "constant" themselves (indicating
1254that their contents never change at runtime).<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001255
1256
1257<!-- _______________________________________________________________________ -->
Chris Lattner0377de42002-09-06 14:50:55 +00001258</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
1259<tt>GlobalVariable</tt> class</h4><ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001260
1261<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
1262isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
1263&amp;Name = "")</tt><p>
1264
Chris Lattner0377de42002-09-06 14:50:55 +00001265Create a new global variable of the specified type. If <tt>isConstant</tt> is
1266true then the global variable will be marked as unchanging for the program, and
1267if <tt>isInternal</tt> is true the resultant global variable will have internal
1268linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
1269
1270
Chris Lattner9355b472002-09-06 02:50:58 +00001271<li><tt>bool isConstant() const</tt><p>
1272
1273Returns true if this is a global variable is known not to be modified at
1274runtime.<p>
1275
Chris Lattner0377de42002-09-06 14:50:55 +00001276
Chris Lattner9355b472002-09-06 02:50:58 +00001277<li><tt>bool hasInitializer()</tt><p>
1278
1279Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
1280
Chris Lattner0377de42002-09-06 14:50:55 +00001281
Chris Lattner9355b472002-09-06 02:50:58 +00001282<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
1283
Chris Lattner0377de42002-09-06 14:50:55 +00001284Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
1285this method if there is no initializer.<p>
1286
1287
1288<!-- ======================================================================= -->
1289</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1290<tr><td>&nbsp;</td><td width="100%">&nbsp;
1291<font color="#EEEEFF" face="Georgia,Palatino"><b>
1292<a name="Module">The <tt>Module</tt> class</a>
1293</b></font></td></tr></table><ul>
1294
1295<tt>#include "<a
1296href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
1297doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
1298
1299The <tt>Module</tt> class represents the top level structure present in LLVM
1300programs. An LLVM module is effectively either a translation unit of the
1301original program or a combination of several translation units merged by the
1302linker. The <tt>Module</tt> class keeps track of a list of <a
1303href="#Function"><tt>Function</tt></a>s, a list of <a
1304href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1305href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1306helpful member functions that try to make common operations easy.<p>
1307
1308
1309<!-- _______________________________________________________________________ -->
1310</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
1311<tt>Module</tt> class</h4><ul>
1312
1313<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
1314 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
1315 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1316 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1317
1318These are forwarding methods that make it easy to access the contents of a
1319<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1320list.<p>
1321
1322<li><tt>Module::FunctionListType &amp;getFunctionList()</tt><p>
1323
1324Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1325neccesary to use when you need to update the list or perform a complex action
1326that doesn't have a forwarding method.<p>
1327
1328<!-- Global Variable -->
1329<hr size=0>
1330
1331<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1332 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1333 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1334 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
1335
1336These are forwarding methods that make it easy to access the contents of a
1337<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
1338list.<p>
1339
1340<li><tt>Module::GlobalListType &amp;getGlobalList()</tt><p>
1341
1342Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
1343This is neccesary to use when you need to update the list or perform a complex
1344action that doesn't have a forwarding method.<p>
1345
1346
1347<!-- Symbol table stuff -->
1348<hr size=0>
1349
1350<li><tt>bool hasSymbolTable() const</tt><p>
1351
1352Return true if the <tt>Module</tt> has a symbol table allocated to it and if
1353there is at least one entry in it.<p>
1354
1355<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1356
1357Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1358<tt>Module</tt> or a null pointer if one has not been allocated (because there
1359are no named values in the function).<p>
1360
1361<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
1362
1363Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1364<tt>Module</tt> or allocate a new <a
1365href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
1366should only be used when adding elements to the <a
1367href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
1368not left laying around.<p>
1369
1370
1371<!-- Convenience methods -->
1372<hr size=0>
1373
1374<li><tt><a href="#Function">Function</a> *getFunction(const std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
1375
1376Look up the specified function in the <tt>Module</tt> <a
1377href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1378<tt>null</tt>.<p>
1379
1380
1381<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
1382 &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
1383
1384Look up the specified function in the <tt>Module</tt> <a
1385href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1386external declaration for the function and return it.<p>
1387
1388
1389<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
1390
1391If there is at least one entry in the <a
1392href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1393href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1394string.<p>
1395
1396
1397<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
1398*Ty)</tt><p>
1399
1400Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
1401<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
1402is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
1403modified.<p>
1404
Chris Lattner9355b472002-09-06 02:50:58 +00001405
1406<!-- ======================================================================= -->
1407</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1408<tr><td>&nbsp;</td><td width="100%">&nbsp;
1409<font color="#EEEEFF" face="Georgia,Palatino"><b>
1410<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1411</b></font></td></tr></table><ul>
1412
1413Constant represents a base class for different types of constants. It is
1414subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1415ConstantArray etc for representing the various types of Constants.<p>
1416
1417
1418<!-- _______________________________________________________________________ -->
1419</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1420
1421<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
1422
1423
1424
1425
1426\subsection{Important Subclasses of Constant}
1427\begin{itemize}
1428<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
1429 \begin{itemize}
1430 <li><tt>int64_t getValue () const</tt>: Returns the underlying value of this constant.
1431 \end{itemize}
1432<li>ConstantUInt : This class represents an unsigned integer.
1433 \begin{itemize}
1434 <li><tt>uint64_t getValue () const</tt>: Returns the underlying value of this constant.
1435 \end{itemize}
1436<li>ConstantFP : This class represents a floating point constant.
1437 \begin{itemize}
1438 <li><tt>double getValue () const</tt>: Returns the underlying value of this constant.
1439 \end{itemize}
1440<li>ConstantBool : This represents a boolean constant.
1441 \begin{itemize}
1442 <li><tt>bool getValue () const</tt>: Returns the underlying value of this constant.
1443 \end{itemize}
1444<li>ConstantArray : This represents a constant array.
1445 \begin{itemize}
1446 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
1447 \end{itemize}
1448<li>ConstantStruct : This represents a constant struct.
1449 \begin{itemize}
1450 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
1451 \end{itemize}
1452<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
1453 \begin{itemize}
1454<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
1455 \end{itemize}
1456\end{itemize}
1457
1458
1459<!-- ======================================================================= -->
1460</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1461<tr><td>&nbsp;</td><td width="100%">&nbsp;
1462<font color="#EEEEFF" face="Georgia,Palatino"><b>
1463<a name="Type">The <tt>Type</tt> class and Derived Types</a>
1464</b></font></td></tr></table><ul>
1465
1466Type as noted earlier is also a subclass of a Value class. Any primitive
1467type (like int, short etc) in LLVM is an instance of Type Class. All
1468other types are instances of subclasses of type like FunctionType,
1469ArrayType etc. DerivedType is the interface for all such dervied types
1470including FunctionType, ArrayType, PointerType, StructType. Types can have
1471names. They can be recursive (StructType). There exists exactly one instance
1472of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
1473
1474<!-- _______________________________________________________________________ -->
1475</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1476
1477<li><tt>PrimitiveID getPrimitiveID () const</tt>: Returns the base type of the type.
1478<li><tt> bool isSigned () const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
1479<li><tt>bool isUnsigned () const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
1480<li><tt> bool isInteger () const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
1481<li><tt>bool isIntegral () const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
1482
1483<li><tt>bool isFloatingPoint ()</tt>: Return true if this is one of the two floating point types.
1484<li><tt>bool isRecursive () const</tt>: Returns rue if the type graph contains a cycle.
1485<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
1486<li><tt>bool isPrimitiveType () const</tt>: Returns true if it is a primitive type.
1487<li><tt>bool isDerivedType () const</tt>: Returns true if it is a derived type.
1488<li><tt>const Type * getContainedType (unsigned i) const</tt>:
1489This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
1490<li><tt>unsigned getNumContainedTypes () const</tt>: Return the number of types in the derived type.
1491
1492
1493
1494\subsection{Derived Types}
1495\begin{itemize}
1496<li>SequentialType : This is subclassed by ArrayType and PointerType
1497 \begin{itemize}
1498 <li><tt>const Type * getElementType () const</tt>: Returns the type of each of the elements in the sequential type.
1499 \end{itemize}
1500<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
1501 \begin{itemize}
1502 <li><tt>unsigned getNumElements () const</tt>: Returns the number of elements in the array.
1503 \end{itemize}
1504<li>PointerType : Subclass of SequentialType for pointer types.
1505<li>StructType : subclass of DerivedTypes for struct types
1506<li>FunctionType : subclass of DerivedTypes for function types.
1507 \begin{itemize}
1508
1509 <li><tt>bool isVarArg () const</tt>: Returns true if its a vararg function
1510 <li><tt> const Type * getReturnType () const</tt>: Returns the return type of the function.
1511 <li><tt> const ParamTypes &amp;getParamTypes () const</tt>: Returns a vector of parameter types.
1512 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
1513 <li><tt> const unsigned getNumParams () const</tt>: Returns the number of formal parameters.
1514 \end{itemize}
1515\end{itemize}
1516
1517
1518
1519
1520<!-- ======================================================================= -->
1521</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1522<tr><td>&nbsp;</td><td width="100%">&nbsp;
1523<font color="#EEEEFF" face="Georgia,Palatino"><b>
1524<a name="Argument">The <tt>Argument</tt> class</a>
1525</b></font></td></tr></table><ul>
1526
1527This subclass of Value defines the interface for incoming formal arguments to a
1528function. A Function maitanis a list of its formal arguments. An argument has a
1529pointer to the parent Function.
1530
1531
1532
1533
1534<!-- *********************************************************************** -->
1535</ul>
1536<!-- *********************************************************************** -->
1537
1538<hr><font size-1>
1539<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
1540<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1541<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
1542<!-- hhmts start -->
Joel Stanley753eb712002-09-11 22:32:24 +00001543Last modified: Wed Sep 11 17:31:03 CDT 2002
Chris Lattner9355b472002-09-06 02:50:58 +00001544<!-- hhmts end -->
1545</font></body></html>