blob: c7b8ecb351218842ae113283aeae906e057e94e2 [file] [log] [blame]
Vikram S. Adve243dd452001-09-18 13:03:13 +00001// $Id$
Chris Lattner20b1ea02001-09-14 03:47:57 +00002//***************************************************************************
3// File:
4// SparcInstrSelection.cpp
5//
6// Purpose:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00007// BURS instruction selection for SPARC V9 architecture.
Chris Lattner20b1ea02001-09-14 03:47:57 +00008//
9// History:
10// 7/02/01 - Vikram Adve - Created
11//**************************************************************************/
12
13#include "SparcInternals.h"
Vikram S. Adve7fe27872001-10-18 00:26:20 +000014#include "SparcInstrSelectionSupport.h"
Vikram S. Adve8557b222001-10-10 20:56:33 +000015#include "llvm/CodeGen/InstrSelectionSupport.h"
Chris Lattner20b1ea02001-09-14 03:47:57 +000016#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/InstrForest.h"
18#include "llvm/CodeGen/InstrSelection.h"
Chris Lattner20b1ea02001-09-14 03:47:57 +000019#include "llvm/DerivedTypes.h"
20#include "llvm/iTerminators.h"
21#include "llvm/iMemory.h"
22#include "llvm/iOther.h"
23#include "llvm/BasicBlock.h"
24#include "llvm/Method.h"
Chris Lattnere9bb2df2001-12-03 22:26:30 +000025#include "llvm/ConstantVals.h"
Chris Lattnercee8f9a2001-11-27 00:03:19 +000026#include "Support/MathExtras.h"
Chris Lattner749655f2001-10-13 06:54:30 +000027#include <math.h>
Chris Lattner20b1ea02001-09-14 03:47:57 +000028
Chris Lattner20b1ea02001-09-14 03:47:57 +000029
30//************************* Forward Declarations ***************************/
31
32
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000033static void SetMemOperands_Internal (MachineInstr* minstr,
34 const InstructionNode* vmInstrNode,
35 Value* ptrVal,
36 Value* arrayOffsetVal,
Chris Lattnere9bb2df2001-12-03 22:26:30 +000037 const vector<Constant*>& idxVec,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000038 const TargetMachine& target);
Chris Lattner20b1ea02001-09-14 03:47:57 +000039
40
41//************************ Internal Functions ******************************/
42
Chris Lattner20b1ea02001-09-14 03:47:57 +000043
Chris Lattner20b1ea02001-09-14 03:47:57 +000044static inline MachineOpCode
45ChooseBprInstruction(const InstructionNode* instrNode)
46{
47 MachineOpCode opCode;
48
49 Instruction* setCCInstr =
50 ((InstructionNode*) instrNode->leftChild())->getInstruction();
51
52 switch(setCCInstr->getOpcode())
53 {
54 case Instruction::SetEQ: opCode = BRZ; break;
55 case Instruction::SetNE: opCode = BRNZ; break;
56 case Instruction::SetLE: opCode = BRLEZ; break;
57 case Instruction::SetGE: opCode = BRGEZ; break;
58 case Instruction::SetLT: opCode = BRLZ; break;
59 case Instruction::SetGT: opCode = BRGZ; break;
60 default:
61 assert(0 && "Unrecognized VM instruction!");
62 opCode = INVALID_OPCODE;
63 break;
64 }
65
66 return opCode;
67}
68
69
70static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +000071ChooseBpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000072 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +000073{
74 MachineOpCode opCode = INVALID_OPCODE;
75
76 bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
77
78 if (isSigned)
79 {
80 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000081 {
82 case Instruction::SetEQ: opCode = BE; break;
83 case Instruction::SetNE: opCode = BNE; break;
84 case Instruction::SetLE: opCode = BLE; break;
85 case Instruction::SetGE: opCode = BGE; break;
86 case Instruction::SetLT: opCode = BL; break;
87 case Instruction::SetGT: opCode = BG; break;
88 default:
89 assert(0 && "Unrecognized VM instruction!");
90 break;
91 }
Chris Lattner20b1ea02001-09-14 03:47:57 +000092 }
93 else
94 {
95 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000096 {
97 case Instruction::SetEQ: opCode = BE; break;
98 case Instruction::SetNE: opCode = BNE; break;
99 case Instruction::SetLE: opCode = BLEU; break;
100 case Instruction::SetGE: opCode = BCC; break;
101 case Instruction::SetLT: opCode = BCS; break;
102 case Instruction::SetGT: opCode = BGU; break;
103 default:
104 assert(0 && "Unrecognized VM instruction!");
105 break;
106 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000107 }
108
109 return opCode;
110}
111
112static inline MachineOpCode
113ChooseBFpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000114 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000115{
116 MachineOpCode opCode = INVALID_OPCODE;
117
118 switch(setCCInstr->getOpcode())
119 {
120 case Instruction::SetEQ: opCode = FBE; break;
121 case Instruction::SetNE: opCode = FBNE; break;
122 case Instruction::SetLE: opCode = FBLE; break;
123 case Instruction::SetGE: opCode = FBGE; break;
124 case Instruction::SetLT: opCode = FBL; break;
125 case Instruction::SetGT: opCode = FBG; break;
126 default:
127 assert(0 && "Unrecognized VM instruction!");
128 break;
129 }
130
131 return opCode;
132}
133
134
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000135// Create a unique TmpInstruction for a boolean value,
136// representing the CC register used by a branch on that value.
137// For now, hack this using a little static cache of TmpInstructions.
138// Eventually the entire BURG instruction selection should be put
139// into a separate class that can hold such information.
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000140// The static cache is not too bad because the memory for these
141// TmpInstructions will be freed along with the rest of the Method anyway.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000142//
143static TmpInstruction*
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000144GetTmpForCC(Value* boolVal, const Method* method, const Type* ccType)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000145{
146 typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
147 static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
148 static const Method* lastMethod = NULL; // Use to flush cache between methods
149
150 assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
151
152 if (lastMethod != method)
153 {
154 lastMethod = method;
155 boolToTmpCache.clear();
156 }
157
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000158 // Look for tmpI and create a new one otherwise. The new value is
159 // directly written to map using the ref returned by operator[].
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000160 TmpInstruction*& tmpI = boolToTmpCache[boolVal];
161 if (tmpI == NULL)
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000162 tmpI = new TmpInstruction(TMP_INSTRUCTION_OPCODE, ccType, boolVal, NULL);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000163
164 return tmpI;
165}
166
167
Chris Lattner20b1ea02001-09-14 03:47:57 +0000168static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000169ChooseBccInstruction(const InstructionNode* instrNode,
170 bool& isFPBranch)
171{
172 InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
173 BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
174 const Type* setCCType = setCCInstr->getOperand(0)->getType();
175
176 isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
177
178 if (isFPBranch)
179 return ChooseBFpccInstruction(instrNode, setCCInstr);
180 else
181 return ChooseBpccInstruction(instrNode, setCCInstr);
182}
183
184
185static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000186ChooseMovFpccInstruction(const InstructionNode* instrNode)
187{
188 MachineOpCode opCode = INVALID_OPCODE;
189
190 switch(instrNode->getInstruction()->getOpcode())
191 {
192 case Instruction::SetEQ: opCode = MOVFE; break;
193 case Instruction::SetNE: opCode = MOVFNE; break;
194 case Instruction::SetLE: opCode = MOVFLE; break;
195 case Instruction::SetGE: opCode = MOVFGE; break;
196 case Instruction::SetLT: opCode = MOVFL; break;
197 case Instruction::SetGT: opCode = MOVFG; break;
198 default:
199 assert(0 && "Unrecognized VM instruction!");
200 break;
201 }
202
203 return opCode;
204}
205
206
207// Assumes that SUBcc v1, v2 -> v3 has been executed.
208// In most cases, we want to clear v3 and then follow it by instruction
209// MOVcc 1 -> v3.
210// Set mustClearReg=false if v3 need not be cleared before conditional move.
211// Set valueToMove=0 if we want to conditionally move 0 instead of 1
212// (i.e., we want to test inverse of a condition)
Vikram S. Adve243dd452001-09-18 13:03:13 +0000213// (The latter two cases do not seem to arise because SetNE needs nothing.)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000214//
215static MachineOpCode
216ChooseMovpccAfterSub(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000217 bool& mustClearReg,
218 int& valueToMove)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000219{
220 MachineOpCode opCode = INVALID_OPCODE;
221 mustClearReg = true;
222 valueToMove = 1;
223
224 switch(instrNode->getInstruction()->getOpcode())
225 {
Vikram S. Adve243dd452001-09-18 13:03:13 +0000226 case Instruction::SetEQ: opCode = MOVE; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000227 case Instruction::SetLE: opCode = MOVLE; break;
228 case Instruction::SetGE: opCode = MOVGE; break;
229 case Instruction::SetLT: opCode = MOVL; break;
230 case Instruction::SetGT: opCode = MOVG; break;
Vikram S. Adve243dd452001-09-18 13:03:13 +0000231 case Instruction::SetNE: assert(0 && "No move required!"); break;
232 default: assert(0 && "Unrecognized VM instr!"); break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000233 }
234
235 return opCode;
236}
237
Chris Lattner20b1ea02001-09-14 03:47:57 +0000238static inline MachineOpCode
239ChooseConvertToFloatInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000240 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000241{
242 MachineOpCode opCode = INVALID_OPCODE;
243
244 switch(instrNode->getOpLabel())
245 {
246 case ToFloatTy:
247 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000248 opCode = FITOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000249 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000250 opCode = FXTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000251 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000252 opCode = FDTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000253 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000254 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000255 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000256 assert(0 && "Cannot convert this type to FLOAT on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000257 break;
258
259 case ToDoubleTy:
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000260 // Use FXTOD for all integer-to-double conversions. This has to be
261 // consistent with the code in CreateCodeToCopyIntToFloat() since
262 // that will be used to load the integer into an FP register.
263 //
264 if (opType == Type::SByteTy || opType == Type::ShortTy ||
265 opType == Type::IntTy || opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000266 opCode = FXTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000267 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000268 opCode = FSTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000269 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000270 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000271 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000272 assert(0 && "Cannot convert this type to DOUBLE on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000273 break;
274
275 default:
276 break;
277 }
278
279 return opCode;
280}
281
282static inline MachineOpCode
283ChooseConvertToIntInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000284 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000285{
286 MachineOpCode opCode = INVALID_OPCODE;;
287
288 int instrType = (int) instrNode->getOpLabel();
289
290 if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
291 {
292 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000293 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000294 case Type::FloatTyID: opCode = FSTOI; break;
295 case Type::DoubleTyID: opCode = FDTOI; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000296 default:
297 assert(0 && "Non-numeric non-bool type cannot be converted to Int");
298 break;
299 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000300 }
301 else if (instrType == ToLongTy)
302 {
303 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000304 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000305 case Type::FloatTyID: opCode = FSTOX; break;
306 case Type::DoubleTyID: opCode = FDTOX; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000307 default:
308 assert(0 && "Non-numeric non-bool type cannot be converted to Long");
309 break;
310 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000311 }
312 else
313 assert(0 && "Should not get here, Mo!");
314
315 return opCode;
316}
317
318
319static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000320ChooseAddInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000321{
322 MachineOpCode opCode = INVALID_OPCODE;
323
Chris Lattner20b1ea02001-09-14 03:47:57 +0000324 if (resultType->isIntegral() ||
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000325 resultType->isPointerType() ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000326 resultType->isLabelType() ||
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000327 isa<MethodType>(resultType) ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000328 resultType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000329 {
330 opCode = ADD;
331 }
332 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000333 switch(resultType->getPrimitiveID())
334 {
335 case Type::FloatTyID: opCode = FADDS; break;
336 case Type::DoubleTyID: opCode = FADDD; break;
337 default: assert(0 && "Invalid type for ADD instruction"); break;
338 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000339
340 return opCode;
341}
342
343
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000344static inline MachineOpCode
345ChooseAddInstruction(const InstructionNode* instrNode)
346{
347 return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
348}
349
350
Chris Lattner20b1ea02001-09-14 03:47:57 +0000351static inline MachineInstr*
352CreateMovFloatInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000353 const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000354{
355 MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000356 ? FMOVS : FMOVD);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000357 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000358 instrNode->leftChild()->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000359 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000360 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000361 return minstr;
362}
363
364static inline MachineInstr*
365CreateAddConstInstruction(const InstructionNode* instrNode)
366{
367 MachineInstr* minstr = NULL;
368
369 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000370 assert(isa<Constant>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000371
372 // Cases worth optimizing are:
373 // (1) Add with 0 for float or double: use an FMOV of appropriate type,
374 // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
375 //
376 const Type* resultType = instrNode->getInstruction()->getType();
377
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000378 if (resultType == Type::FloatTy ||
379 resultType == Type::DoubleTy)
380 {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000381 double dval = cast<ConstantFP>(constOp)->getValue();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000382 if (dval == 0.0)
383 minstr = CreateMovFloatInstruction(instrNode, resultType);
384 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000385
386 return minstr;
387}
388
389
390static inline MachineOpCode
Vikram S. Adve510eec72001-11-04 21:59:14 +0000391ChooseSubInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000392{
393 MachineOpCode opCode = INVALID_OPCODE;
394
Chris Lattner20b1ea02001-09-14 03:47:57 +0000395 if (resultType->isIntegral() ||
396 resultType->isPointerType())
397 {
398 opCode = SUB;
399 }
400 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000401 switch(resultType->getPrimitiveID())
402 {
403 case Type::FloatTyID: opCode = FSUBS; break;
404 case Type::DoubleTyID: opCode = FSUBD; break;
405 default: assert(0 && "Invalid type for SUB instruction"); break;
406 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000407
408 return opCode;
409}
410
411
412static inline MachineInstr*
413CreateSubConstInstruction(const InstructionNode* instrNode)
414{
415 MachineInstr* minstr = NULL;
416
417 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000418 assert(isa<Constant>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000419
420 // Cases worth optimizing are:
421 // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
422 // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
423 //
424 const Type* resultType = instrNode->getInstruction()->getType();
425
426 if (resultType == Type::FloatTy ||
427 resultType == Type::DoubleTy)
428 {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000429 double dval = cast<ConstantFP>(constOp)->getValue();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000430 if (dval == 0.0)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000431 minstr = CreateMovFloatInstruction(instrNode, resultType);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000432 }
433
434 return minstr;
435}
436
437
438static inline MachineOpCode
439ChooseFcmpInstruction(const InstructionNode* instrNode)
440{
441 MachineOpCode opCode = INVALID_OPCODE;
442
443 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
444 switch(operand->getType()->getPrimitiveID()) {
445 case Type::FloatTyID: opCode = FCMPS; break;
446 case Type::DoubleTyID: opCode = FCMPD; break;
447 default: assert(0 && "Invalid type for FCMP instruction"); break;
448 }
449
450 return opCode;
451}
452
453
454// Assumes that leftArg and rightArg are both cast instructions.
455//
456static inline bool
457BothFloatToDouble(const InstructionNode* instrNode)
458{
459 InstrTreeNode* leftArg = instrNode->leftChild();
460 InstrTreeNode* rightArg = instrNode->rightChild();
461 InstrTreeNode* leftArgArg = leftArg->leftChild();
462 InstrTreeNode* rightArgArg = rightArg->leftChild();
463 assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
464
465 // Check if both arguments are floats cast to double
466 return (leftArg->getValue()->getType() == Type::DoubleTy &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000467 leftArgArg->getValue()->getType() == Type::FloatTy &&
468 rightArgArg->getValue()->getType() == Type::FloatTy);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000469}
470
471
472static inline MachineOpCode
Vikram S. Adve510eec72001-11-04 21:59:14 +0000473ChooseMulInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000474{
475 MachineOpCode opCode = INVALID_OPCODE;
476
Chris Lattner20b1ea02001-09-14 03:47:57 +0000477 if (resultType->isIntegral())
Vikram S. Adve510eec72001-11-04 21:59:14 +0000478 opCode = MULX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000479 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000480 switch(resultType->getPrimitiveID())
481 {
482 case Type::FloatTyID: opCode = FMULS; break;
483 case Type::DoubleTyID: opCode = FMULD; break;
484 default: assert(0 && "Invalid type for MUL instruction"); break;
485 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000486
487 return opCode;
488}
489
490
Vikram S. Adve510eec72001-11-04 21:59:14 +0000491static inline MachineOpCode
492ChooseMulInstruction(const InstructionNode* instrNode,
493 bool checkCasts)
494{
495 if (checkCasts && BothFloatToDouble(instrNode))
496 return FSMULD;
497
498 // else use the regular multiply instructions
499 return ChooseMulInstructionByType(instrNode->getInstruction()->getType());
500}
501
502
Chris Lattner20b1ea02001-09-14 03:47:57 +0000503static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000504CreateIntNegInstruction(TargetMachine& target,
505 Value* vreg)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000506{
507 MachineInstr* minstr = new MachineInstr(SUB);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000508 minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000509 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
510 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
511 return minstr;
512}
513
514
515static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000516CreateMulConstInstruction(TargetMachine &target,
517 const InstructionNode* instrNode,
518 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000519{
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000520 MachineInstr* minstr = NULL; // return NULL if we cannot exploit constant
521 getMinstr2 = NULL; // to create a cheaper instruction
Chris Lattner20b1ea02001-09-14 03:47:57 +0000522 bool needNeg = false;
523
524 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000525 assert(isa<Constant>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000526
527 // Cases worth optimizing are:
528 // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
529 // (2) Multiply by 2^x for integer types: replace with Shift
530 //
531 const Type* resultType = instrNode->getInstruction()->getType();
532
Vikram S. Adve243dd452001-09-18 13:03:13 +0000533 if (resultType->isIntegral() || resultType->isPointerType())
Chris Lattner20b1ea02001-09-14 03:47:57 +0000534 {
535 unsigned pow;
536 bool isValidConst;
537 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
538 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000539 {
540 bool needNeg = false;
541 if (C < 0)
542 {
543 needNeg = true;
544 C = -C;
545 }
546
547 if (C == 0 || C == 1)
548 {
549 minstr = new MachineInstr(ADD);
550
551 if (C == 0)
552 minstr->SetMachineOperand(0,
553 target.getRegInfo().getZeroRegNum());
554 else
555 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
556 instrNode->leftChild()->getValue());
557 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
558 }
559 else if (IsPowerOf2(C, pow))
560 {
561 minstr = new MachineInstr((resultType == Type::LongTy)
562 ? SLLX : SLL);
563 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
564 instrNode->leftChild()->getValue());
565 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
566 pow);
567 }
568
569 if (minstr && needNeg)
570 { // insert <reg = SUB 0, reg> after the instr to flip the sign
571 getMinstr2 = CreateIntNegInstruction(target,
572 instrNode->getValue());
573 }
574 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000575 }
576 else
577 {
578 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000579 resultType == Type::DoubleTy)
580 {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000581 double dval = cast<ConstantFP>(constOp)->getValue();
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000582 if (fabs(dval) == 1)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000583 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000584 bool needNeg = (dval < 0);
585
586 MachineOpCode opCode = needNeg
587 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
588 : (resultType == Type::FloatTy? FMOVS : FMOVD);
589
590 minstr = new MachineInstr(opCode);
591 minstr->SetMachineOperand(0,
592 MachineOperand::MO_VirtualRegister,
593 instrNode->leftChild()->getValue());
594 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000595 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000596 }
597
598 if (minstr != NULL)
599 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000600 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000601
602 return minstr;
603}
604
605
Vikram S. Adve510eec72001-11-04 21:59:14 +0000606// Generate a divide instruction for Div or Rem.
607// For Rem, this assumes that the operand type will be signed if the result
608// type is signed. This is correct because they must have the same sign.
609//
Chris Lattner20b1ea02001-09-14 03:47:57 +0000610static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000611ChooseDivInstruction(TargetMachine &target,
612 const InstructionNode* instrNode)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000613{
614 MachineOpCode opCode = INVALID_OPCODE;
615
616 const Type* resultType = instrNode->getInstruction()->getType();
617
618 if (resultType->isIntegral())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000619 opCode = resultType->isSigned()? SDIVX : UDIVX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000620 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000621 switch(resultType->getPrimitiveID())
622 {
623 case Type::FloatTyID: opCode = FDIVS; break;
624 case Type::DoubleTyID: opCode = FDIVD; break;
625 default: assert(0 && "Invalid type for DIV instruction"); break;
626 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000627
628 return opCode;
629}
630
631
632static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000633CreateDivConstInstruction(TargetMachine &target,
634 const InstructionNode* instrNode,
635 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000636{
637 MachineInstr* minstr = NULL;
638 getMinstr2 = NULL;
639
640 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000641 assert(isa<Constant>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000642
643 // Cases worth optimizing are:
644 // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
645 // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
646 //
647 const Type* resultType = instrNode->getInstruction()->getType();
648
649 if (resultType->isIntegral())
650 {
651 unsigned pow;
652 bool isValidConst;
653 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
654 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000655 {
656 bool needNeg = false;
657 if (C < 0)
658 {
659 needNeg = true;
660 C = -C;
661 }
662
663 if (C == 1)
664 {
665 minstr = new MachineInstr(ADD);
666 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
667 instrNode->leftChild()->getValue());
668 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
669 }
670 else if (IsPowerOf2(C, pow))
671 {
672 MachineOpCode opCode= ((resultType->isSigned())
673 ? (resultType==Type::LongTy)? SRAX : SRA
674 : (resultType==Type::LongTy)? SRLX : SRL);
675 minstr = new MachineInstr(opCode);
676 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
677 instrNode->leftChild()->getValue());
678 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
679 pow);
680 }
681
682 if (minstr && needNeg)
683 { // insert <reg = SUB 0, reg> after the instr to flip the sign
684 getMinstr2 = CreateIntNegInstruction(target,
685 instrNode->getValue());
686 }
687 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000688 }
689 else
690 {
691 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000692 resultType == Type::DoubleTy)
693 {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000694 double dval = cast<ConstantFP>(constOp)->getValue();
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000695 if (fabs(dval) == 1)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000696 {
697 bool needNeg = (dval < 0);
698
699 MachineOpCode opCode = needNeg
700 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
701 : (resultType == Type::FloatTy? FMOVS : FMOVD);
702
703 minstr = new MachineInstr(opCode);
704 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
705 instrNode->leftChild()->getValue());
706 }
707 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000708 }
709
710 if (minstr != NULL)
711 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000712 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000713
714 return minstr;
715}
716
717
Chris Lattner20b1ea02001-09-14 03:47:57 +0000718//------------------------------------------------------------------------
719// Function SetOperandsForMemInstr
720//
721// Choose addressing mode for the given load or store instruction.
722// Use [reg+reg] if it is an indexed reference, and the index offset is
723// not a constant or if it cannot fit in the offset field.
724// Use [reg+offset] in all other cases.
725//
726// This assumes that all array refs are "lowered" to one of these forms:
727// %x = load (subarray*) ptr, constant ; single constant offset
728// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
729// Generally, this should happen via strength reduction + LICM.
730// Also, strength reduction should take care of using the same register for
731// the loop index variable and an array index, when that is profitable.
732//------------------------------------------------------------------------
733
734static void
735SetOperandsForMemInstr(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000736 const InstructionNode* vmInstrNode,
737 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000738{
739 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
740
741 // Variables to hold the index vector, ptr value, and offset value.
742 // The major work here is to extract these for all 3 instruction types
743 // and then call the common function SetMemOperands_Internal().
744 //
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000745 const vector<Constant*> OLDIDXVEC = memInst->getIndicesBROKEN();
746 const vector<Constant*>* idxVec = &OLDIDXVEC; //FIXME
747 vector<Constant*>* newIdxVec = NULL;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000748 Value* ptrVal;
749 Value* arrayOffsetVal = NULL;
750
751 // Test if a GetElemPtr instruction is being folded into this mem instrn.
752 // If so, it will be in the left child for Load and GetElemPtr,
753 // and in the right child for Store instructions.
754 //
755 InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000756 ? vmInstrNode->rightChild()
757 : vmInstrNode->leftChild());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000758
759 if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
760 ptrChild->getOpLabel() == GetElemPtrIdx)
761 {
762 // There is a GetElemPtr instruction and there may be a chain of
763 // more than one. Use the pointer value of the last one in the chain.
764 // Fold the index vectors from the entire chain and from the mem
765 // instruction into one single index vector.
766 // Finally, we never fold for an array instruction so make that NULL.
767
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000768 newIdxVec = new vector<Constant*>;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000769 ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
770
771 newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
772 idxVec = newIdxVec;
773
Chris Lattner7a176752001-12-04 00:03:30 +0000774 assert(!((PointerType*)ptrVal->getType())->getElementType()->isArrayType()
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000775 && "GetElemPtr cannot be folded into array refs in selection");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000776 }
777 else
778 {
779 // There is no GetElemPtr instruction.
780 // Use the pointer value and the index vector from the Mem instruction.
781 // If it is an array reference, get the array offset value.
782 //
Chris Lattner65ea1712001-11-14 11:27:58 +0000783 ptrVal = memInst->getPointerOperand();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000784
Chris Lattner7a176752001-12-04 00:03:30 +0000785 const Type* opType = cast<PointerType>(ptrVal->getType())->getElementType();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000786 if (opType->isArrayType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000787 {
788 assert((memInst->getNumOperands()
Chris Lattner65ea1712001-11-14 11:27:58 +0000789 == (unsigned) 1 + memInst->getFirstIndexOperandNumber())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000790 && "Array refs must be lowered before Instruction Selection");
791
Chris Lattner65ea1712001-11-14 11:27:58 +0000792 arrayOffsetVal = memInst->getOperand(memInst->getFirstIndexOperandNumber());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000793 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000794 }
795
796 SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000797 *idxVec, target);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000798
799 if (newIdxVec != NULL)
800 delete newIdxVec;
801}
802
803
804static void
805SetMemOperands_Internal(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000806 const InstructionNode* vmInstrNode,
807 Value* ptrVal,
808 Value* arrayOffsetVal,
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000809 const vector<Constant*>& idxVec,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000810 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000811{
812 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
813
814 // Initialize so we default to storing the offset in a register.
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000815 int64_t smallConstOffset = 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000816 Value* valueForRegOffset = NULL;
817 MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
818
819 // Check if there is an index vector and if so, if it translates to
820 // a small enough constant to fit in the immediate-offset field.
821 //
822 if (idxVec.size() > 0)
823 {
824 bool isConstantOffset = false;
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000825 unsigned offset = 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000826
827 const PointerType* ptrType = (PointerType*) ptrVal->getType();
828
Chris Lattner7a176752001-12-04 00:03:30 +0000829 if (ptrType->getElementType()->isStructType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000830 {
831 // the offset is always constant for structs
832 isConstantOffset = true;
833
834 // Compute the offset value using the index vector
835 offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
836 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000837 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000838 {
839 // It must be an array ref. Check if the offset is a constant,
840 // and that the indexing has been lowered to a single offset.
841 //
Chris Lattner7a176752001-12-04 00:03:30 +0000842 assert(ptrType->getElementType()->isArrayType());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000843 assert(arrayOffsetVal != NULL
844 && "Expect to be given Value* for array offsets");
845
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000846 if (Constant *CPV = dyn_cast<Constant>(arrayOffsetVal))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000847 {
848 isConstantOffset = true; // always constant for structs
849 assert(arrayOffsetVal->getType()->isIntegral());
850 offset = (CPV->getType()->isSigned()
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000851 ? cast<ConstantSInt>(CPV)->getValue()
852 : (int64_t) cast<ConstantUInt>(CPV)->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000853 }
854 else
855 {
856 valueForRegOffset = arrayOffsetVal;
857 }
858 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000859
860 if (isConstantOffset)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000861 {
862 // create a virtual register for the constant
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000863 valueForRegOffset = ConstantSInt::get(Type::IntTy, offset);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000864 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000865 }
866 else
867 {
868 offsetOpType = MachineOperand::MO_SignExtendedImmed;
869 smallConstOffset = 0;
870 }
871
872 // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
873 // It is the left child in the instruction tree in all cases.
874 Value* leftVal = vmInstrNode->leftChild()->getValue();
875 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
876
877 // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000878 // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
Chris Lattner20b1ea02001-09-14 03:47:57 +0000879 //
880 unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
881 if (offsetOpType == MachineOperand::MO_VirtualRegister)
882 {
883 assert(valueForRegOffset != NULL);
884 minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
885 }
886 else
887 minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
888
889 if (memInst->getOpcode() == Instruction::Store)
890 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
891 else
892 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000893 vmInstrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000894}
895
896
Chris Lattner20b1ea02001-09-14 03:47:57 +0000897//
898// Substitute operand `operandNum' of the instruction in node `treeNode'
Vikram S. Advec025fc12001-10-14 23:28:43 +0000899// in place of the use(s) of that instruction in node `parent'.
900// Check both explicit and implicit operands!
Chris Lattner20b1ea02001-09-14 03:47:57 +0000901//
902static void
903ForwardOperand(InstructionNode* treeNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000904 InstrTreeNode* parent,
905 int operandNum)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000906{
Vikram S. Adve243dd452001-09-18 13:03:13 +0000907 assert(treeNode && parent && "Invalid invocation of ForwardOperand");
908
Chris Lattner20b1ea02001-09-14 03:47:57 +0000909 Instruction* unusedOp = treeNode->getInstruction();
910 Value* fwdOp = unusedOp->getOperand(operandNum);
Vikram S. Adve243dd452001-09-18 13:03:13 +0000911
912 // The parent itself may be a list node, so find the real parent instruction
913 while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
914 {
915 parent = parent->parent();
916 assert(parent && "ERROR: Non-instruction node has no parent in tree.");
917 }
918 InstructionNode* parentInstrNode = (InstructionNode*) parent;
919
920 Instruction* userInstr = parentInstrNode->getInstruction();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000921 MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
922 for (unsigned i=0, N=mvec.size(); i < N; i++)
923 {
924 MachineInstr* minstr = mvec[i];
Vikram S. Advec025fc12001-10-14 23:28:43 +0000925
926 for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000927 {
928 const MachineOperand& mop = minstr->getOperand(i);
929 if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
930 mop.getVRegValue() == unusedOp)
931 {
932 minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
933 fwdOp);
934 }
935 }
Vikram S. Advec025fc12001-10-14 23:28:43 +0000936
937 for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
938 if (minstr->getImplicitRef(i) == unusedOp)
939 minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000940 }
941}
942
943
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000944
945void UltraSparcInstrInfo::
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000946CreateCopyInstructionsByType(const TargetMachine& target,
947 Value* src,
948 Instruction* dest,
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000949 vector<MachineInstr*>& minstrVec) const
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000950{
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000951 bool loadConstantToReg = false;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000952
953 const Type* resultType = dest->getType();
954
955 MachineOpCode opCode = ChooseAddInstructionByType(resultType);
956 if (opCode == INVALID_OPCODE)
957 {
958 assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000959 return;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000960 }
961
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000962 // if `src' is a constant that doesn't fit in the immed field or if it is
963 // a global variable (i.e., a constant address), generate a load
964 // instruction instead of an add
965 //
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000966 if (isa<Constant>(src))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000967 {
968 unsigned int machineRegNum;
969 int64_t immedValue;
970 MachineOperand::MachineOperandType opType =
971 ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
972 machineRegNum, immedValue);
973
974 if (opType == MachineOperand::MO_VirtualRegister)
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000975 loadConstantToReg = true;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000976 }
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000977 else if (isa<GlobalValue>(src))
978 loadConstantToReg = true;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000979
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000980 if (loadConstantToReg)
981 { // `src' is constant and cannot fit in immed field for the ADD
982 // Insert instructions to "load" the constant into a register
983 vector<TmpInstruction*> tempVec;
984 target.getInstrInfo().CreateCodeToLoadConst(src,dest,minstrVec,tempVec);
985 for (unsigned i=0; i < tempVec.size(); i++)
986 dest->getMachineInstrVec().addTempValue(tempVec[i]);
987 }
988 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000989 { // Create the appropriate add instruction.
990 // Make `src' the second operand, in case it is a constant
991 // Use (unsigned long) 0 for a NULL pointer value.
992 //
993 const Type* nullValueType =
994 (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
995 : resultType;
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000996 MachineInstr* minstr = new MachineInstr(opCode);
997 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000998 Constant::getNullConstant(nullValueType));
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000999 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
1000 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
1001 minstrVec.push_back(minstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001002 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001003}
1004
1005
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00001006
Vikram S. Advefb361122001-10-22 13:36:31 +00001007//******************* Externally Visible Functions *************************/
1008
1009
1010//------------------------------------------------------------------------
1011// External Function: GetInstructionsForProlog
1012// External Function: GetInstructionsForEpilog
1013//
1014// Purpose:
1015// Create prolog and epilog code for procedure entry and exit
1016//------------------------------------------------------------------------
1017
1018extern unsigned
1019GetInstructionsForProlog(BasicBlock* entryBB,
1020 TargetMachine &target,
1021 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001022{
Vikram S. Advefb361122001-10-22 13:36:31 +00001023 int64_t s0=0; // used to avoid overloading ambiguity below
Chris Lattner20b1ea02001-09-14 03:47:57 +00001024
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001025 const MachineFrameInfo& frameInfo = target.getFrameInfo();
1026
Vikram S. Advefb361122001-10-22 13:36:31 +00001027 // The second operand is the stack size. If it does not fit in the
1028 // immediate field, we either have to find an unused register in the
1029 // caller's window or move some elements to the dynamically allocated
1030 // area of the stack frame (just above save area and method args).
1031 Method* method = entryBB->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001032 MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
1033 unsigned int staticStackSize = mcInfo.getStaticStackSize();
1034
1035 if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
1036 staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
1037
1038 if (unsigned padsz = (staticStackSize %
1039 (unsigned) frameInfo.getStackFrameSizeAlignment()))
Vikram S. Advefd9b7dc2001-11-12 05:16:39 +00001040 staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001041
Vikram S. Advefb361122001-10-22 13:36:31 +00001042 assert(target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize)
1043 && "Stack size too large for immediate field of SAVE instruction. Need additional work as described in the comment above");
Chris Lattner20b1ea02001-09-14 03:47:57 +00001044
Vikram S. Advefb361122001-10-22 13:36:31 +00001045 mvec[0] = new MachineInstr(SAVE);
1046 mvec[0]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
1047 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001048 - (int) staticStackSize);
Vikram S. Advefb361122001-10-22 13:36:31 +00001049 mvec[0]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
1050
1051 return 1;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001052}
1053
1054
Vikram S. Advefb361122001-10-22 13:36:31 +00001055extern unsigned
1056GetInstructionsForEpilog(BasicBlock* anExitBB,
1057 TargetMachine &target,
1058 MachineInstr** mvec)
1059{
1060 int64_t s0=0; // used to avoid overloading ambiguity below
1061
1062 mvec[0] = new MachineInstr(RESTORE);
1063 mvec[0]->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
1064 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
1065 mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
1066
1067 return 1;
1068}
1069
1070
1071//------------------------------------------------------------------------
1072// External Function: ThisIsAChainRule
1073//
1074// Purpose:
1075// Check if a given BURG rule is a chain rule.
1076//------------------------------------------------------------------------
1077
1078extern bool
1079ThisIsAChainRule(int eruleno)
1080{
1081 switch(eruleno)
1082 {
1083 case 111: // stmt: reg
1084 case 113: // stmt: bool
1085 case 123:
1086 case 124:
1087 case 125:
1088 case 126:
1089 case 127:
1090 case 128:
1091 case 129:
1092 case 130:
1093 case 131:
1094 case 132:
1095 case 133:
1096 case 155:
1097 case 221:
1098 case 222:
1099 case 241:
1100 case 242:
1101 case 243:
1102 case 244:
1103 return true; break;
1104
1105 default:
1106 return false; break;
1107 }
1108}
Chris Lattner20b1ea02001-09-14 03:47:57 +00001109
1110
1111//------------------------------------------------------------------------
1112// External Function: GetInstructionsByRule
1113//
1114// Purpose:
1115// Choose machine instructions for the SPARC according to the
1116// patterns chosen by the BURG-generated parser.
1117//------------------------------------------------------------------------
1118
1119unsigned
1120GetInstructionsByRule(InstructionNode* subtreeRoot,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001121 int ruleForNode,
1122 short* nts,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001123 TargetMachine &target,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001124 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001125{
1126 int numInstr = 1; // initialize for common case
1127 bool checkCast = false; // initialize here to use fall-through
Chris Lattner20b1ea02001-09-14 03:47:57 +00001128 int nextRule;
1129 int forwardOperandNum = -1;
Vikram S. Adve8557b222001-10-10 20:56:33 +00001130 int64_t s0=0, s8=8; // variables holding constants to avoid
1131 uint64_t u0=0; // overloading ambiguities below
Chris Lattner20b1ea02001-09-14 03:47:57 +00001132
Vikram S. Advefb361122001-10-22 13:36:31 +00001133 for (unsigned i=0; i < MAX_INSTR_PER_VMINSTR; i++)
1134 mvec[i] = NULL;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001135
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001136 //
1137 // Let's check for chain rules outside the switch so that we don't have
1138 // to duplicate the list of chain rule production numbers here again
1139 //
1140 if (ThisIsAChainRule(ruleForNode))
Chris Lattner20b1ea02001-09-14 03:47:57 +00001141 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001142 // Chain rules have a single nonterminal on the RHS.
1143 // Get the rule that matches the RHS non-terminal and use that instead.
1144 //
1145 assert(nts[0] && ! nts[1]
1146 && "A chain rule should have only one RHS non-terminal!");
1147 nextRule = burm_rule(subtreeRoot->state, nts[0]);
1148 nts = burm_nts[nextRule];
1149 numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001150 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001151 else
Chris Lattner20b1ea02001-09-14 03:47:57 +00001152 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001153 switch(ruleForNode) {
1154 case 1: // stmt: Ret
1155 case 2: // stmt: RetValue(reg)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001156 { // NOTE: Prepass of register allocation is responsible
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001157 // for moving return value to appropriate register.
1158 // Mark the return-address register as a hidden virtual reg.
Vikram S. Advea995e602001-10-11 04:23:19 +00001159 // Mark the return value register as an implicit ref of
1160 // the machine instruction.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001161 // Finally put a NOP in the delay slot.
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001162 ReturnInst *returnInstr =
1163 cast<ReturnInst>(subtreeRoot->getInstruction());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001164 assert(returnInstr->getOpcode() == Instruction::Ret);
Vikram S. Advefb361122001-10-22 13:36:31 +00001165 Method* method = returnInstr->getParent()->getParent();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001166
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001167 Instruction* returnReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001168 returnInstr, NULL);
1169 returnInstr->getMachineInstrVec().addTempValue(returnReg);
Vikram S. Advefb361122001-10-22 13:36:31 +00001170
1171 mvec[0] = new MachineInstr(JMPLRET);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001172 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1173 returnReg);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001174 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
Vikram S. Advefb361122001-10-22 13:36:31 +00001175 mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001176
Vikram S. Advea995e602001-10-11 04:23:19 +00001177 if (returnInstr->getReturnValue() != NULL)
1178 mvec[0]->addImplicitRef(returnInstr->getReturnValue());
1179
Vikram S. Advefb361122001-10-22 13:36:31 +00001180 unsigned n = numInstr++; // delay slot
1181 mvec[n] = new MachineInstr(NOP);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001182
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001183 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001184 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001185
1186 case 3: // stmt: Store(reg,reg)
1187 case 4: // stmt: Store(reg,ptrreg)
1188 mvec[0] = new MachineInstr(
1189 ChooseStoreInstruction(
1190 subtreeRoot->leftChild()->getValue()->getType()));
1191 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1192 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001193
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001194 case 5: // stmt: BrUncond
1195 mvec[0] = new MachineInstr(BA);
1196 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1197 (Value*)NULL);
1198 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001199 cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001200
1201 // delay slot
1202 mvec[numInstr++] = new MachineInstr(NOP);
1203 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001204
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001205 case 206: // stmt: BrCond(setCCconst)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001206 { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001207 // If the constant is ZERO, we can use the branch-on-integer-register
1208 // instructions and avoid the SUBcc instruction entirely.
1209 // Otherwise this is just the same as case 5, so just fall through.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001210 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001211 InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
1212 assert(constNode &&
1213 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001214 Constant *constVal = cast<Constant>(constNode->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001215 bool isValidConst;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001216
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001217 if ((constVal->getType()->isIntegral()
1218 || constVal->getType()->isPointerType())
1219 && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
1220 && isValidConst)
1221 {
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001222 BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
1223
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001224 // That constant is a zero after all...
1225 // Use the left child of setCC as the first argument!
1226 mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
1227 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1228 subtreeRoot->leftChild()->leftChild()->getValue());
1229 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001230 brInst->getSuccessor(0));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001231
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001232 // delay slot
1233 mvec[numInstr++] = new MachineInstr(NOP);
1234
1235 // false branch
1236 int n = numInstr++;
1237 mvec[n] = new MachineInstr(BA);
1238 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1239 (Value*) NULL);
1240 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001241 brInst->getSuccessor(1));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001242
1243 // delay slot
1244 mvec[numInstr++] = new MachineInstr(NOP);
1245
1246 break;
1247 }
1248 // ELSE FALL THROUGH
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001249 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001250
1251 case 6: // stmt: BrCond(bool)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001252 { // bool => boolean was computed with some boolean operator
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001253 // (SetCC, Not, ...). We need to check whether the type was a FP,
1254 // signed int or unsigned int, and check the branching condition in
1255 // order to choose the branch to use.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001256 // If it is an integer CC, we also need to find the unique
1257 // TmpInstruction representing that CC.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001258 //
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001259 BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001260 bool isFPBranch;
1261 mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
1262 isFPBranch));
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001263
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001264 Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
1265 brInst->getParent()->getParent(),
1266 isFPBranch? Type::FloatTy : Type::IntTy);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001267
1268 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, ccValue);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001269 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001270 brInst->getSuccessor(0));
1271
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001272 // delay slot
1273 mvec[numInstr++] = new MachineInstr(NOP);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001274
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001275 // false branch
1276 int n = numInstr++;
1277 mvec[n] = new MachineInstr(BA);
1278 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1279 (Value*) NULL);
1280 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001281 brInst->getSuccessor(1));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001282
1283 // delay slot
1284 mvec[numInstr++] = new MachineInstr(NOP);
1285 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001286 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001287
1288 case 208: // stmt: BrCond(boolconst)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001289 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001290 // boolconst => boolean is a constant; use BA to first or second label
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001291 Constant* constVal =
1292 cast<Constant>(subtreeRoot->leftChild()->getValue());
1293 unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001294
1295 mvec[0] = new MachineInstr(BA);
1296 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1297 (Value*) NULL);
1298 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1299 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
1300
1301 // delay slot
1302 mvec[numInstr++] = new MachineInstr(NOP);
1303 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001304 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001305
1306 case 8: // stmt: BrCond(boolreg)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001307 { // boolreg => boolean is stored in an existing register.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001308 // Just use the branch-on-integer-register instruction!
1309 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001310 mvec[0] = new MachineInstr(BRNZ);
1311 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1312 subtreeRoot->leftChild()->getValue());
1313 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1314 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1315
1316 // delay slot
1317 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1318
1319 // false branch
1320 int n = numInstr++;
1321 mvec[n] = new MachineInstr(BA);
1322 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1323 (Value*) NULL);
1324 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1325 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1326
1327 // delay slot
1328 mvec[numInstr++] = new MachineInstr(NOP);
1329 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001330 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001331
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001332 case 9: // stmt: Switch(reg)
1333 assert(0 && "*** SWITCH instruction is not implemented yet.");
1334 numInstr = 0;
1335 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001336
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001337 case 10: // reg: VRegList(reg, reg)
1338 assert(0 && "VRegList should never be the topmost non-chain rule");
1339 break;
1340
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001341 case 21: // bool: Not(bool): Both these are implemented as:
1342 case 321: // reg: BNot(reg) : reg = reg XOR-NOT 0
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001343 mvec[0] = new MachineInstr(XNOR);
1344 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1345 subtreeRoot->leftChild()->getValue());
1346 mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1347 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1348 subtreeRoot->getValue());
1349 break;
1350
1351 case 322: // reg: ToBoolTy(bool):
1352 case 22: // reg: ToBoolTy(reg):
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001353 {
1354 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
1355 assert(opType->isIntegral() || opType->isPointerType()
1356 || opType == Type::BoolTy);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001357 numInstr = 0;
1358 forwardOperandNum = 0;
1359 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001360 }
1361
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001362 case 23: // reg: ToUByteTy(reg)
1363 case 25: // reg: ToUShortTy(reg)
1364 case 27: // reg: ToUIntTy(reg)
1365 case 29: // reg: ToULongTy(reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001366 {
1367 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001368 assert(opType->isIntegral() ||
1369 opType->isPointerType() ||
1370 opType == Type::BoolTy && "Cast is illegal for other types");
1371 numInstr = 0;
1372 forwardOperandNum = 0;
1373 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001374 }
1375
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001376 case 24: // reg: ToSByteTy(reg)
1377 case 26: // reg: ToShortTy(reg)
1378 case 28: // reg: ToIntTy(reg)
1379 case 30: // reg: ToLongTy(reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001380 {
1381 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
1382 if (opType->isIntegral()
1383 || opType->isPointerType()
1384 || opType == Type::BoolTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001385 {
1386 numInstr = 0;
1387 forwardOperandNum = 0;
1388 }
1389 else
1390 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001391 // If the source operand is an FP type, the int result must be
1392 // copied from float to int register via memory!
1393 Instruction *dest = subtreeRoot->getInstruction();
1394 Value* leftVal = subtreeRoot->leftChild()->getValue();
1395 Value* destForCast;
1396 vector<MachineInstr*> minstrVec;
1397
1398 if (opType == Type::FloatTy || opType == Type::DoubleTy)
1399 {
1400 // Create a temporary to represent the INT register
1401 // into which the FP value will be copied via memory.
1402 // The type of this temporary will determine the FP
1403 // register used: single-prec for a 32-bit int or smaller,
1404 // double-prec for a 64-bit int.
1405 //
1406 const Type* destTypeToUse =
1407 (dest->getType() == Type::LongTy)? Type::DoubleTy
1408 : Type::FloatTy;
1409 destForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1410 destTypeToUse, leftVal, NULL);
1411 dest->getMachineInstrVec().addTempValue(destForCast);
1412
1413 vector<TmpInstruction*> tempVec;
1414 target.getInstrInfo().CreateCodeToCopyFloatToInt(
1415 dest->getParent()->getParent(),
1416 (TmpInstruction*) destForCast, dest,
1417 minstrVec, tempVec, target);
1418
1419 for (unsigned i=0; i < tempVec.size(); ++i)
1420 dest->getMachineInstrVec().addTempValue(tempVec[i]);
1421 }
1422 else
1423 destForCast = leftVal;
1424
1425 MachineOpCode opCode=ChooseConvertToIntInstr(subtreeRoot, opType);
1426 assert(opCode != INVALID_OPCODE && "Expected to need conversion!");
1427
1428 mvec[0] = new MachineInstr(opCode);
1429 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1430 leftVal);
1431 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1432 destForCast);
1433
1434 assert(numInstr == 1 && "Should be initialized to 1 at the top");
1435 for (unsigned i=0; i < minstrVec.size(); ++i)
1436 mvec[numInstr++] = minstrVec[i];
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001437 }
1438 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001439 }
1440
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001441 case 31: // reg: ToFloatTy(reg):
1442 case 32: // reg: ToDoubleTy(reg):
1443 case 232: // reg: ToDoubleTy(Constant):
1444
1445 // If this instruction has a parent (a user) in the tree
1446 // and the user is translated as an FsMULd instruction,
1447 // then the cast is unnecessary. So check that first.
1448 // In the future, we'll want to do the same for the FdMULq instruction,
1449 // so do the check here instead of only for ToFloatTy(reg).
1450 //
1451 if (subtreeRoot->parent() != NULL &&
1452 ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
1453 {
1454 numInstr = 0;
1455 forwardOperandNum = 0;
1456 }
1457 else
1458 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001459 Value* leftVal = subtreeRoot->leftChild()->getValue();
1460 const Type* opType = leftVal->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001461 MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
1462 if (opCode == INVALID_OPCODE) // no conversion needed
1463 {
1464 numInstr = 0;
1465 forwardOperandNum = 0;
1466 }
1467 else
1468 {
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001469 // If the source operand is a non-FP type it must be
1470 // first copied from int to float register via memory!
1471 Instruction *dest = subtreeRoot->getInstruction();
1472 Value* srcForCast;
1473 int n = 0;
1474 if (opType != Type::FloatTy && opType != Type::DoubleTy)
1475 {
1476 // Create a temporary to represent the FP register
1477 // into which the integer will be copied via memory.
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001478 // The type of this temporary will determine the FP
1479 // register used: single-prec for a 32-bit int or smaller,
1480 // double-prec for a 64-bit int.
1481 //
1482 const Type* srcTypeToUse =
1483 (leftVal->getType() == Type::LongTy)? Type::DoubleTy
1484 : Type::FloatTy;
1485
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001486 srcForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001487 srcTypeToUse, dest, NULL);
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001488 dest->getMachineInstrVec().addTempValue(srcForCast);
1489
1490 vector<MachineInstr*> minstrVec;
1491 vector<TmpInstruction*> tempVec;
1492 target.getInstrInfo().CreateCodeToCopyIntToFloat(
1493 dest->getParent()->getParent(),
1494 leftVal, (TmpInstruction*) srcForCast,
1495 minstrVec, tempVec, target);
1496
1497 for (unsigned i=0; i < minstrVec.size(); ++i)
1498 mvec[n++] = minstrVec[i];
1499
1500 for (unsigned i=0; i < tempVec.size(); ++i)
1501 dest->getMachineInstrVec().addTempValue(tempVec[i]);
1502 }
1503 else
1504 srcForCast = leftVal;
1505
1506 MachineInstr* castI = new MachineInstr(opCode);
1507 castI->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1508 srcForCast);
1509 castI->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1510 dest);
1511 mvec[n++] = castI;
1512 numInstr = n;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001513 }
1514 }
1515 break;
1516
1517 case 19: // reg: ToArrayTy(reg):
1518 case 20: // reg: ToPointerTy(reg):
1519 numInstr = 0;
1520 forwardOperandNum = 0;
1521 break;
1522
1523 case 233: // reg: Add(reg, Constant)
1524 mvec[0] = CreateAddConstInstruction(subtreeRoot);
1525 if (mvec[0] != NULL)
1526 break;
1527 // ELSE FALL THROUGH
1528
1529 case 33: // reg: Add(reg, reg)
1530 mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
1531 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1532 break;
1533
1534 case 234: // reg: Sub(reg, Constant)
1535 mvec[0] = CreateSubConstInstruction(subtreeRoot);
1536 if (mvec[0] != NULL)
1537 break;
1538 // ELSE FALL THROUGH
1539
1540 case 34: // reg: Sub(reg, reg)
Vikram S. Adve510eec72001-11-04 21:59:14 +00001541 mvec[0] = new MachineInstr(ChooseSubInstructionByType(
1542 subtreeRoot->getInstruction()->getType()));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001543 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1544 break;
1545
1546 case 135: // reg: Mul(todouble, todouble)
1547 checkCast = true;
1548 // FALL THROUGH
1549
1550 case 35: // reg: Mul(reg, reg)
1551 mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
1552 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1553 break;
1554
1555 case 335: // reg: Mul(todouble, todoubleConst)
1556 checkCast = true;
1557 // FALL THROUGH
1558
1559 case 235: // reg: Mul(reg, Constant)
1560 mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
1561 if (mvec[0] == NULL)
1562 {
1563 mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
1564 checkCast));
1565 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1566 }
1567 else
1568 if (mvec[1] != NULL)
1569 ++numInstr;
1570 break;
1571
1572 case 236: // reg: Div(reg, Constant)
1573 mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
1574 if (mvec[0] != NULL)
1575 {
1576 if (mvec[1] != NULL)
1577 ++numInstr;
1578 }
1579 else
1580 // ELSE FALL THROUGH
1581
1582 case 36: // reg: Div(reg, reg)
1583 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1584 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1585 break;
1586
1587 case 37: // reg: Rem(reg, reg)
1588 case 237: // reg: Rem(reg, Constant)
Vikram S. Adve510eec72001-11-04 21:59:14 +00001589 {
1590 Instruction* remInstr = subtreeRoot->getInstruction();
1591
1592 TmpInstruction* quot = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1593 subtreeRoot->leftChild()->getValue(),
1594 subtreeRoot->rightChild()->getValue());
1595 TmpInstruction* prod = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1596 quot,
1597 subtreeRoot->rightChild()->getValue());
1598 remInstr->getMachineInstrVec().addTempValue(quot);
1599 remInstr->getMachineInstrVec().addTempValue(prod);
1600
1601 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1602 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1603 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,quot);
1604
1605 int n = numInstr++;
1606 mvec[n] = new MachineInstr(ChooseMulInstructionByType(
1607 subtreeRoot->getInstruction()->getType()));
1608 mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,quot);
1609 mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1610 subtreeRoot->rightChild()->getValue());
1611 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,prod);
1612
1613 n = numInstr++;
1614 mvec[n] = new MachineInstr(ChooseSubInstructionByType(
1615 subtreeRoot->getInstruction()->getType()));
1616 Set3OperandsFromInstr(mvec[n], subtreeRoot, target);
1617 mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,prod);
1618
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001619 break;
Vikram S. Adve510eec72001-11-04 21:59:14 +00001620 }
1621
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001622 case 38: // bool: And(bool, bool)
1623 case 238: // bool: And(bool, boolconst)
1624 case 338: // reg : BAnd(reg, reg)
1625 case 538: // reg : BAnd(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001626 mvec[0] = new MachineInstr(AND);
1627 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1628 break;
1629
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001630 case 138: // bool: And(bool, not)
1631 case 438: // bool: BAnd(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001632 mvec[0] = new MachineInstr(ANDN);
1633 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1634 break;
1635
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001636 case 39: // bool: Or(bool, bool)
1637 case 239: // bool: Or(bool, boolconst)
1638 case 339: // reg : BOr(reg, reg)
1639 case 539: // reg : BOr(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001640 mvec[0] = new MachineInstr(ORN);
1641 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1642 break;
1643
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001644 case 139: // bool: Or(bool, not)
1645 case 439: // bool: BOr(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001646 mvec[0] = new MachineInstr(ORN);
1647 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1648 break;
1649
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001650 case 40: // bool: Xor(bool, bool)
1651 case 240: // bool: Xor(bool, boolconst)
1652 case 340: // reg : BXor(reg, reg)
1653 case 540: // reg : BXor(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001654 mvec[0] = new MachineInstr(XOR);
1655 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1656 break;
1657
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001658 case 140: // bool: Xor(bool, not)
1659 case 440: // bool: BXor(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001660 mvec[0] = new MachineInstr(XNOR);
1661 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1662 break;
1663
1664 case 41: // boolconst: SetCC(reg, Constant)
1665 // Check if this is an integer comparison, and
1666 // there is a parent, and the parent decided to use
1667 // a branch-on-integer-register instead of branch-on-condition-code.
1668 // If so, the SUBcc instruction is not required.
1669 // (However, we must still check for constants to be loaded from
1670 // the constant pool so that such a load can be associated with
1671 // this instruction.)
1672 //
1673 // Otherwise this is just the same as case 42, so just fall through.
1674 //
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001675 if ((subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
1676 subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
1677 && subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001678 {
1679 InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
1680 assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
1681 const vector<MachineInstr*>&
1682 minstrVec = parent->getInstruction()->getMachineInstrVec();
1683 MachineOpCode parentOpCode;
1684 if (parent->getInstruction()->getOpcode() == Instruction::Br &&
1685 (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
1686 parentOpCode <= BRGEZ)
1687 {
1688 numInstr = 0; // don't forward the operand!
1689 break;
1690 }
1691 }
1692 // ELSE FALL THROUGH
1693
1694 case 42: // bool: SetCC(reg, reg):
1695 {
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001696 // This generates a SUBCC instruction, putting the difference in
1697 // a result register, and setting a condition code.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001698 //
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001699 // If the boolean result of the SetCC is used by anything other
1700 // than a single branch instruction, the boolean must be
1701 // computed and stored in the result register. Otherwise, discard
1702 // the difference (by using %g0) and keep only the condition code.
1703 //
1704 // To compute the boolean result in a register we use a conditional
1705 // move, unless the result of the SUBCC instruction can be used as
1706 // the bool! This assumes that zero is FALSE and any non-zero
1707 // integer is TRUE.
1708 //
1709 InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
1710 Instruction* setCCInstr = subtreeRoot->getInstruction();
1711 bool keepBoolVal = (parentNode == NULL ||
1712 parentNode->getInstruction()->getOpcode()
1713 != Instruction::Br);
1714 bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001715 bool keepSubVal = keepBoolVal && subValIsBoolVal;
1716 bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
1717
1718 bool mustClearReg;
1719 int valueToMove;
Chris Lattner8e5c0b42001-11-07 14:01:59 +00001720 MachineOpCode movOpCode = 0;
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001721
1722 // Mark the 4th operand as being a CC register, and as a def
1723 // A TmpInstruction is created to represent the CC "result".
1724 // Unlike other instances of TmpInstruction, this one is used
1725 // by machine code of multiple LLVM instructions, viz.,
1726 // the SetCC and the branch. Make sure to get the same one!
1727 // Note that we do this even for FP CC registers even though they
1728 // are explicit operands, because the type of the operand
1729 // needs to be a floating point condition code, not an integer
1730 // condition code. Think of this as casting the bool result to
1731 // a FP condition code register.
1732 //
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001733 Value* leftVal = subtreeRoot->leftChild()->getValue();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001734 bool isFPCompare = (leftVal->getType() == Type::FloatTy ||
1735 leftVal->getType() == Type::DoubleTy);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001736
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001737 TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
1738 setCCInstr->getParent()->getParent(),
1739 isFPCompare? Type::FloatTy : Type::IntTy);
1740 setCCInstr->getMachineInstrVec().addTempValue(tmpForCC);
1741
1742 if (! isFPCompare)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001743 {
1744 // Integer condition: dest. should be %g0 or an integer register.
1745 // If result must be saved but condition is not SetEQ then we need
1746 // a separate instruction to compute the bool result, so discard
1747 // result of SUBcc instruction anyway.
1748 //
1749 mvec[0] = new MachineInstr(SUBcc);
1750 Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
1751
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001752 mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001753 tmpForCC, /*def*/true);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001754
1755 if (computeBoolVal)
1756 { // recompute bool using the integer condition codes
1757 movOpCode =
1758 ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
1759 }
1760 }
1761 else
1762 {
1763 // FP condition: dest of FCMP should be some FCCn register
1764 mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001765 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001766 tmpForCC);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001767 mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1768 subtreeRoot->leftChild()->getValue());
1769 mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1770 subtreeRoot->rightChild()->getValue());
1771
1772 if (computeBoolVal)
1773 {// recompute bool using the FP condition codes
1774 mustClearReg = true;
1775 valueToMove = 1;
1776 movOpCode = ChooseMovFpccInstruction(subtreeRoot);
1777 }
1778 }
1779
1780 if (computeBoolVal)
1781 {
1782 if (mustClearReg)
1783 {// Unconditionally set register to 0
1784 int n = numInstr++;
1785 mvec[n] = new MachineInstr(SETHI);
1786 mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
1787 s0);
1788 mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001789 setCCInstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001790 }
1791
1792 // Now conditionally move `valueToMove' (0 or 1) into the register
1793 int n = numInstr++;
1794 mvec[n] = new MachineInstr(movOpCode);
1795 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001796 tmpForCC);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001797 mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
1798 valueToMove);
1799 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001800 setCCInstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001801 }
1802 break;
1803 }
1804
1805 case 43: // boolreg: VReg
1806 case 44: // boolreg: Constant
1807 numInstr = 0;
1808 break;
1809
1810 case 51: // reg: Load(reg)
1811 case 52: // reg: Load(ptrreg)
1812 case 53: // reg: LoadIdx(reg,reg)
1813 case 54: // reg: LoadIdx(ptrreg,reg)
1814 mvec[0] = new MachineInstr(ChooseLoadInstruction(
1815 subtreeRoot->getValue()->getType()));
1816 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1817 break;
1818
1819 case 55: // reg: GetElemPtr(reg)
1820 case 56: // reg: GetElemPtrIdx(reg,reg)
1821 if (subtreeRoot->parent() != NULL)
1822 {
Vikram S. Adve671b16d2001-11-10 01:05:26 +00001823 // If the parent was a memory operation and not an array access,
1824 // the parent will fold this instruction in so generate nothing.
1825 //
1826 Instruction* parent =
1827 cast<Instruction>(subtreeRoot->parent()->getValue());
1828 if (parent->getOpcode() == Instruction::Load ||
1829 parent->getOpcode() == Instruction::Store ||
1830 parent->getOpcode() == Instruction::GetElementPtr)
1831 {
1832 // Check if the parent is an array access,
1833 // If so, we still need to generate this instruction.
1834 GetElementPtrInst* getElemInst =
1835 cast<GetElementPtrInst>(subtreeRoot->getInstruction());
1836 const PointerType* ptrType =
Chris Lattner65ea1712001-11-14 11:27:58 +00001837 cast<PointerType>(getElemInst->getPointerOperand()->getType());
Chris Lattner7a176752001-12-04 00:03:30 +00001838 if (! ptrType->getElementType()->isArrayType())
Vikram S. Adve671b16d2001-11-10 01:05:26 +00001839 {// we don't need a separate instr
1840 numInstr = 0; // don't forward operand!
1841 break;
1842 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001843 }
1844 }
1845 // else in all other cases we need to a separate ADD instruction
1846 mvec[0] = new MachineInstr(ADD);
1847 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1848 break;
1849
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001850 case 57: // reg: Alloca: Implement as 1 instruction:
1851 { // add %fp, offsetFromFP -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001852 Instruction* instr = subtreeRoot->getInstruction();
1853 const PointerType* instrType = (const PointerType*) instr->getType();
1854 assert(instrType->isPointerType());
1855 int tsize = (int)
Chris Lattner7a176752001-12-04 00:03:30 +00001856 target.findOptimalStorageSize(instrType->getElementType());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001857 assert(tsize != 0 && "Just to check when this can happen");
1858
Vikram S. Advefb361122001-10-22 13:36:31 +00001859 Method* method = instr->getParent()->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001860 MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
Vikram S. Adve345bcc82001-11-15 15:22:39 +00001861 int offsetFromFP = mcInfo.allocateLocalVar(target, instr, (unsigned int) tsize);
Vikram S. Advefb361122001-10-22 13:36:31 +00001862
1863 // Create a temporary Value to hold the constant offset.
1864 // This is needed because it may not fit in the immediate field.
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001865 ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
Vikram S. Advefb361122001-10-22 13:36:31 +00001866
1867 // Instruction 1: add %fp, offsetFromFP -> result
1868 mvec[0] = new MachineInstr(ADD);
1869 mvec[0]->SetMachineOperand(0, target.getRegInfo().getFramePointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001870 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001871 offsetVal);
1872 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001873 instr);
1874 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001875 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001876
1877 case 58: // reg: Alloca(reg): Implement as 3 instructions:
1878 // mul num, typeSz -> tmp
1879 // sub %sp, tmp -> %sp
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001880 { // add %sp, frameSizeBelowDynamicArea -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001881 Instruction* instr = subtreeRoot->getInstruction();
1882 const PointerType* instrType = (const PointerType*) instr->getType();
1883 assert(instrType->isPointerType() &&
Chris Lattner7a176752001-12-04 00:03:30 +00001884 instrType->getElementType()->isArrayType());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001885 const Type* eltType =
Chris Lattner7a176752001-12-04 00:03:30 +00001886 ((ArrayType*) instrType->getElementType())->getElementType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001887 int tsize = (int) target.findOptimalStorageSize(eltType);
Vikram S. Advefb361122001-10-22 13:36:31 +00001888
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001889 assert(tsize != 0 && "Just to check when this can happen");
Vikram S. Advefb361122001-10-22 13:36:31 +00001890
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001891 // Create a temporary Value to hold the constant type-size
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001892 ConstantSInt* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
Vikram S. Advefb361122001-10-22 13:36:31 +00001893
1894 // Create a temporary Value to hold the constant offset from SP
1895 Method* method = instr->getParent()->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001896 bool ignore; // we don't need this
Chris Lattnere9bb2df2001-12-03 22:26:30 +00001897 ConstantSInt* dynamicAreaOffset = ConstantSInt::get(Type::IntTy,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001898 target.getFrameInfo().getDynamicAreaOffset(MachineCodeForMethod::get(method),
1899 ignore));
Vikram S. Advefb361122001-10-22 13:36:31 +00001900
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001901 // Create a temporary value to hold `tmp'
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001902 Instruction* tmpInstr = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001903 subtreeRoot->leftChild()->getValue(),
1904 NULL /*could insert tsize here*/);
1905 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
1906
1907 // Instruction 1: mul numElements, typeSize -> tmp
1908 mvec[0] = new MachineInstr(MULX);
1909 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001910 subtreeRoot->leftChild()->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001911 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001912 tsizeVal);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001913 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1914 tmpInstr);
Vikram S. Advefb361122001-10-22 13:36:31 +00001915
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001916 // Instruction 2: sub %sp, tmp -> %sp
1917 numInstr++;
1918 mvec[1] = new MachineInstr(SUB);
Vikram S. Advefb361122001-10-22 13:36:31 +00001919 mvec[1]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001920 mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1921 tmpInstr);
Vikram S. Advefb361122001-10-22 13:36:31 +00001922 mvec[1]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001923
Vikram S. Advefb361122001-10-22 13:36:31 +00001924 // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001925 numInstr++;
1926 mvec[2] = new MachineInstr(ADD);
Vikram S. Advefb361122001-10-22 13:36:31 +00001927 mvec[2]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
1928 mvec[2]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001929 dynamicAreaOffset);
Vikram S. Advefb361122001-10-22 13:36:31 +00001930 mvec[2]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,instr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001931 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001932 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001933
1934 case 61: // reg: Call
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001935 { // Generate a call-indirect (i.e., jmpl) for now to expose
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001936 // the potential need for registers. If an absolute address
1937 // is available, replace this with a CALL instruction.
1938 // Mark both the indirection register and the return-address
1939 // register as hidden virtual registers.
Vikram S. Advea995e602001-10-11 04:23:19 +00001940 // Also, mark the operands of the Call and return value (if
1941 // any) as implicit operands of the CALL machine instruction.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001942 //
Chris Lattnerb00c5822001-10-02 03:41:24 +00001943 CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Chris Lattner749655f2001-10-13 06:54:30 +00001944 Value *callee = callInstr->getCalledValue();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001945
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001946 Instruction* retAddrReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001947 callInstr, NULL);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001948
Vikram S. Advea995e602001-10-11 04:23:19 +00001949 // Note temporary values in the machineInstrVec for the VM instr.
Vikram S. Adve8557b222001-10-10 20:56:33 +00001950 //
1951 // WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
1952 // The result value must go in slot N. This is assumed
1953 // in register allocation.
1954 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001955 callInstr->getMachineInstrVec().addTempValue(retAddrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001956
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001957
1958 // Generate the machine instruction and its operands.
1959 // Use CALL for direct function calls; this optimistically assumes
1960 // the PC-relative address fits in the CALL address field (22 bits).
1961 // Use JMPL for indirect calls.
1962 //
1963 if (callee->getValueType() == Value::MethodVal)
1964 { // direct function call
1965 mvec[0] = new MachineInstr(CALL);
1966 mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
1967 callee);
1968 }
1969 else
1970 { // indirect function call
Vikram S. Advefb361122001-10-22 13:36:31 +00001971 mvec[0] = new MachineInstr(JMPLCALL);
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001972 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1973 callee);
1974 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
1975 (int64_t) 0);
1976 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1977 retAddrReg);
1978 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001979
Vikram S. Advea995e602001-10-11 04:23:19 +00001980 // Add the call operands and return value as implicit refs
1981 for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
1982 if (callInstr->getOperand(i) != callee)
1983 mvec[0]->addImplicitRef(callInstr->getOperand(i));
1984
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001985 if (callInstr->getType() != Type::VoidTy)
Vikram S. Advea995e602001-10-11 04:23:19 +00001986 mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
1987
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001988 // For the CALL instruction, the ret. addr. reg. is also implicit
1989 if (callee->getValueType() == Value::MethodVal)
1990 mvec[0]->addImplicitRef(retAddrReg, /*isDef*/ true);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001991
1992 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1993 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001994 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001995
1996 case 62: // reg: Shl(reg, reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001997 { const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001998 assert(opType->isIntegral()
1999 || opType == Type::BoolTy
2000 || opType->isPointerType()&& "Shl unsupported for other types");
2001 mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
2002 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2003 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002004 }
2005
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002006 case 63: // reg: Shr(reg, reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002007 { const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002008 assert(opType->isIntegral()
2009 || opType == Type::BoolTy
2010 || opType->isPointerType() &&"Shr unsupported for other types");
2011 mvec[0] = new MachineInstr((opType->isSigned()
2012 ? ((opType == Type::LongTy)? SRAX : SRA)
2013 : ((opType == Type::LongTy)? SRLX : SRL)));
2014 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2015 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002016 }
2017
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002018 case 64: // reg: Phi(reg,reg)
Vikram S. Adve3438b212001-11-12 18:54:11 +00002019 numInstr = 0; // don't forward the value
2020 break;
2021#undef NEED_PHI_MACHINE_INSTRS
2022#ifdef NEED_PHI_MACHINE_INSTRS
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002023 { // This instruction has variable #operands, so resultPos is 0.
2024 Instruction* phi = subtreeRoot->getInstruction();
2025 mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
2026 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2027 subtreeRoot->getValue());
2028 for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
2029 mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
2030 phi->getOperand(i));
2031 break;
2032 }
Vikram S. Adve3438b212001-11-12 18:54:11 +00002033#endif NEED_PHI_MACHINE_INSTRS
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002034
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002035 case 71: // reg: VReg
2036 case 72: // reg: Constant
2037 numInstr = 0; // don't forward the value
2038 break;
2039
2040 default:
2041 assert(0 && "Unrecognized BURG rule");
2042 numInstr = 0;
2043 break;
2044 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002045 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002046
2047 if (forwardOperandNum >= 0)
2048 { // We did not generate a machine instruction but need to use operand.
2049 // If user is in the same tree, replace Value in its machine operand.
2050 // If not, insert a copy instruction which should get coalesced away
2051 // by register allocation.
2052 if (subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002053 ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
Chris Lattner20b1ea02001-09-14 03:47:57 +00002054 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002055 {
Vikram S. Adve7fe27872001-10-18 00:26:20 +00002056 vector<MachineInstr*> minstrVec;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00002057 target.getInstrInfo().CreateCopyInstructionsByType(target,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002058 subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
Vikram S. Adve7fe27872001-10-18 00:26:20 +00002059 subtreeRoot->getInstruction(), minstrVec);
2060 assert(minstrVec.size() > 0);
2061 for (unsigned i=0; i < minstrVec.size(); ++i)
2062 mvec[numInstr++] = minstrVec[i];
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002063 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002064 }
2065
Chris Lattner20b1ea02001-09-14 03:47:57 +00002066 return numInstr;
2067}
2068
2069