blob: 8ff1f0fa6fd511059a4bc9c9ea82e31baf225b85 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000130bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
134}
135
Dan Gohman70a1fe72009-05-18 15:22:39 +0000136bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
140}
Chris Lattner53e677a2004-04-02 20:23:17 +0000141
Dan Gohman4d289bf2009-06-24 00:30:26 +0000142bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
146}
147
Owen Anderson753ad612009-06-22 21:57:23 +0000148SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000149 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000150
Chris Lattner53e677a2004-04-02 20:23:17 +0000151bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000158 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000159}
160
161bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000163 return false;
164}
165
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000166bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
167 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
168 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000169}
170
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000171void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000172 OS << "***COULDNOTCOMPUTE***";
173}
174
175bool SCEVCouldNotCompute::classof(const SCEV *S) {
176 return S->getSCEVType() == scCouldNotCompute;
177}
178
Dan Gohman0bba49c2009-07-07 17:06:11 +0000179const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000180 FoldingSetNodeID ID;
181 ID.AddInteger(scConstant);
182 ID.AddPointer(V);
183 void *IP = 0;
184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000185 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000186 UniqueSCEVs.InsertNode(S, IP);
187 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188}
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Dan Gohman0bba49c2009-07-07 17:06:11 +0000190const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000191 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000192}
193
Dan Gohman0bba49c2009-07-07 17:06:11 +0000194const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000195ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000196 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
197 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000198}
199
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000200const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000201
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000202void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000203 WriteAsOperand(OS, V, false);
204}
Chris Lattner53e677a2004-04-02 20:23:17 +0000205
Dan Gohman3bf63762010-06-18 19:54:20 +0000206SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000207 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000208 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000209
Dan Gohman84923602009-04-21 01:25:57 +0000210bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->dominates(BB, DT);
212}
213
Dan Gohman6e70e312009-09-27 15:26:03 +0000214bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
215 return Op->properlyDominates(BB, DT);
216}
217
Dan Gohman3bf63762010-06-18 19:54:20 +0000218SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000219 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000220 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000221 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
222 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224}
Chris Lattner53e677a2004-04-02 20:23:17 +0000225
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000226void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000227 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000228}
229
Dan Gohman3bf63762010-06-18 19:54:20 +0000230SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000231 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000232 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000233 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
234 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236}
237
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000238void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000239 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000240}
241
Dan Gohman3bf63762010-06-18 19:54:20 +0000242SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000243 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000244 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000245 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
246 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000247 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000248}
249
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000252}
253
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000254void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000255 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000256 OS << "(";
257 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
258 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000259 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000260 OS << OpStr;
261 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000262 OS << ")";
263}
264
Dan Gohmanecb403a2009-05-07 14:00:19 +0000265bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000266 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
267 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000268 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000269 return true;
270}
271
Dan Gohman6e70e312009-09-27 15:26:03 +0000272bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000273 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
274 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000275 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000276 return true;
277}
278
Dan Gohman2f199f92010-08-16 16:21:27 +0000279bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
280 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
281 if (!(*I)->isLoopInvariant(L))
282 return false;
283 return true;
284}
285
286// hasComputableLoopEvolution - N-ary expressions have computable loop
287// evolutions iff they have at least one operand that varies with the loop,
288// but that all varying operands are computable.
289bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
290 bool HasVarying = false;
291 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
292 const SCEV *S = *I;
293 if (!S->isLoopInvariant(L)) {
294 if (S->hasComputableLoopEvolution(L))
295 HasVarying = true;
296 else
297 return false;
298 }
299 }
300 return HasVarying;
301}
302
303bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
304 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
305 const SCEV *S = *I;
306 if (O == S || S->hasOperand(O))
307 return true;
308 }
309 return false;
310}
311
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000312bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
314}
315
Dan Gohman6e70e312009-09-27 15:26:03 +0000316bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
317 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
318}
319
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000320void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000321 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322}
323
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000324const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000325 // In most cases the types of LHS and RHS will be the same, but in some
326 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
327 // depend on the type for correctness, but handling types carefully can
328 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
329 // a pointer type than the RHS, so use the RHS' type here.
330 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000331}
332
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000333bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000334 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 if (!QueryLoop)
336 return false;
337
338 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000339 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000340 return false;
341
Dan Gohman71c41442010-08-13 20:11:39 +0000342 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
343 if (L->contains(QueryLoop))
344 return true;
345
Dan Gohmane890eea2009-06-26 22:17:21 +0000346 // This recurrence is variant w.r.t. QueryLoop if any of its operands
347 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000348 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
349 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000350 return false;
351
352 // Otherwise it's loop-invariant.
353 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000354}
355
Dan Gohman39125d82010-02-13 00:19:39 +0000356bool
357SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
358 return DT->dominates(L->getHeader(), BB) &&
359 SCEVNAryExpr::dominates(BB, DT);
360}
361
362bool
363SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
364 // This uses a "dominates" query instead of "properly dominates" query because
365 // the instruction which produces the addrec's value is a PHI, and a PHI
366 // effectively properly dominates its entire containing block.
367 return DT->dominates(L->getHeader(), BB) &&
368 SCEVNAryExpr::properlyDominates(BB, DT);
369}
370
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000371void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000372 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000373 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000374 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000375 OS << "}<";
376 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
377 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000378}
Chris Lattner53e677a2004-04-02 20:23:17 +0000379
Dan Gohmanab37f502010-08-02 23:49:30 +0000380void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000381 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000382 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000383 SE->UnsignedRanges.erase(this);
384 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000385
386 // Remove this SCEVUnknown from the uniquing map.
387 SE->UniqueSCEVs.RemoveNode(this);
388
389 // Release the value.
390 setValPtr(0);
391}
392
393void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000394 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000395 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000396 SE->UnsignedRanges.erase(this);
397 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000398
399 // Remove this SCEVUnknown from the uniquing map.
400 SE->UniqueSCEVs.RemoveNode(this);
401
402 // Update this SCEVUnknown to point to the new value. This is needed
403 // because there may still be outstanding SCEVs which still point to
404 // this SCEVUnknown.
405 setValPtr(New);
406}
407
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000408bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
409 // All non-instruction values are loop invariant. All instructions are loop
410 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000411 // Instructions are never considered invariant in the function body
412 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000413 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000414 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000415 return true;
416}
Chris Lattner53e677a2004-04-02 20:23:17 +0000417
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419 if (Instruction *I = dyn_cast<Instruction>(getValue()))
420 return DT->dominates(I->getParent(), BB);
421 return true;
422}
423
Dan Gohman6e70e312009-09-27 15:26:03 +0000424bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
425 if (Instruction *I = dyn_cast<Instruction>(getValue()))
426 return DT->properlyDominates(I->getParent(), BB);
427 return true;
428}
429
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000430const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000431 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000432}
Chris Lattner53e677a2004-04-02 20:23:17 +0000433
Dan Gohman0f5efe52010-01-28 02:15:55 +0000434bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000435 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000436 if (VCE->getOpcode() == Instruction::PtrToInt)
437 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000438 if (CE->getOpcode() == Instruction::GetElementPtr &&
439 CE->getOperand(0)->isNullValue() &&
440 CE->getNumOperands() == 2)
441 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
442 if (CI->isOne()) {
443 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
444 ->getElementType();
445 return true;
446 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000447
448 return false;
449}
450
451bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000452 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000453 if (VCE->getOpcode() == Instruction::PtrToInt)
454 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000455 if (CE->getOpcode() == Instruction::GetElementPtr &&
456 CE->getOperand(0)->isNullValue()) {
457 const Type *Ty =
458 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
459 if (const StructType *STy = dyn_cast<StructType>(Ty))
460 if (!STy->isPacked() &&
461 CE->getNumOperands() == 3 &&
462 CE->getOperand(1)->isNullValue()) {
463 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
464 if (CI->isOne() &&
465 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000466 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000467 AllocTy = STy->getElementType(1);
468 return true;
469 }
470 }
471 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000472
473 return false;
474}
475
Dan Gohman4f8eea82010-02-01 18:27:38 +0000476bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000477 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000478 if (VCE->getOpcode() == Instruction::PtrToInt)
479 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
480 if (CE->getOpcode() == Instruction::GetElementPtr &&
481 CE->getNumOperands() == 3 &&
482 CE->getOperand(0)->isNullValue() &&
483 CE->getOperand(1)->isNullValue()) {
484 const Type *Ty =
485 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
486 // Ignore vector types here so that ScalarEvolutionExpander doesn't
487 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000488 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000489 CTy = Ty;
490 FieldNo = CE->getOperand(2);
491 return true;
492 }
493 }
494
495 return false;
496}
497
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000498void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000499 const Type *AllocTy;
500 if (isSizeOf(AllocTy)) {
501 OS << "sizeof(" << *AllocTy << ")";
502 return;
503 }
504 if (isAlignOf(AllocTy)) {
505 OS << "alignof(" << *AllocTy << ")";
506 return;
507 }
508
Dan Gohman4f8eea82010-02-01 18:27:38 +0000509 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000510 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000511 if (isOffsetOf(CTy, FieldNo)) {
512 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000513 WriteAsOperand(OS, FieldNo, false);
514 OS << ")";
515 return;
516 }
517
518 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000519 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000520}
521
Chris Lattner8d741b82004-06-20 06:23:15 +0000522//===----------------------------------------------------------------------===//
523// SCEV Utilities
524//===----------------------------------------------------------------------===//
525
526namespace {
527 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
528 /// than the complexity of the RHS. This comparator is used to canonicalize
529 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000530 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000531 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000532 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000533 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000536 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return compare(LHS, RHS) < 0;
538 }
539
540 // Return negative, zero, or positive, if LHS is less than, equal to, or
541 // greater than RHS, respectively. A three-way result allows recursive
542 // comparisons to be more efficient.
543 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000544 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
545 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000547
Dan Gohman72861302009-05-07 14:39:04 +0000548 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000549 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
550 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000552
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 // Aside from the getSCEVType() ordering, the particular ordering
554 // isn't very important except that it's beneficial to be consistent,
555 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000556 switch (LType) {
557 case scUnknown: {
558 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000559 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560
561 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
562 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000563 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000564
565 // Order pointer values after integer values. This helps SCEVExpander
566 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000567 bool LIsPointer = LV->getType()->isPointerTy(),
568 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000569 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000570 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000571
572 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000573 unsigned LID = LV->getValueID(),
574 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000575 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577
578 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000579 if (const Argument *LA = dyn_cast<Argument>(LV)) {
580 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 }
584
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585 // For instructions, compare their loop depth, and their operand
586 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000587 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
588 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000589
590 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000591 const BasicBlock *LParent = LInst->getParent(),
592 *RParent = RInst->getParent();
593 if (LParent != RParent) {
594 unsigned LDepth = LI->getLoopDepth(LParent),
595 RDepth = LI->getLoopDepth(RParent);
596 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000598 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000599
600 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000601 unsigned LNumOps = LInst->getNumOperands(),
602 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000604 }
605
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 }
608
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 case scConstant: {
610 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000612
613 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000614 const APInt &LA = LC->getValue()->getValue();
615 const APInt &RA = RC->getValue()->getValue();
616 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000617 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000618 return (int)LBitWidth - (int)RBitWidth;
619 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000620 }
621
Dan Gohman67ef74e2010-08-27 15:26:01 +0000622 case scAddRecExpr: {
623 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000624 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000627 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
628 if (LLoop != RLoop) {
629 unsigned LDepth = LLoop->getLoopDepth(),
630 RDepth = RLoop->getLoopDepth();
631 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000632 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000633 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000634
635 // Addrec complexity grows with operand count.
636 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
637 if (LNumOps != RNumOps)
638 return (int)LNumOps - (int)RNumOps;
639
640 // Lexicographically compare.
641 for (unsigned i = 0; i != LNumOps; ++i) {
642 long X = compare(LA->getOperand(i), RA->getOperand(i));
643 if (X != 0)
644 return X;
645 }
646
647 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000648 }
649
Dan Gohman67ef74e2010-08-27 15:26:01 +0000650 case scAddExpr:
651 case scMulExpr:
652 case scSMaxExpr:
653 case scUMaxExpr: {
654 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000655 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000656
657 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000658 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
659 for (unsigned i = 0; i != LNumOps; ++i) {
660 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000661 return 1;
662 long X = compare(LC->getOperand(i), RC->getOperand(i));
663 if (X != 0)
664 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000665 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000666 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000667 }
668
Dan Gohman67ef74e2010-08-27 15:26:01 +0000669 case scUDivExpr: {
670 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000671 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000672
673 // Lexicographically compare udiv expressions.
674 long X = compare(LC->getLHS(), RC->getLHS());
675 if (X != 0)
676 return X;
677 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000678 }
679
Dan Gohman67ef74e2010-08-27 15:26:01 +0000680 case scTruncate:
681 case scZeroExtend:
682 case scSignExtend: {
683 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000684 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000685
686 // Compare cast expressions by operand.
687 return compare(LC->getOperand(), RC->getOperand());
688 }
689
690 default:
691 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000692 }
693
694 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000695 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000696 }
697 };
698}
699
700/// GroupByComplexity - Given a list of SCEV objects, order them by their
701/// complexity, and group objects of the same complexity together by value.
702/// When this routine is finished, we know that any duplicates in the vector are
703/// consecutive and that complexity is monotonically increasing.
704///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000705/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000706/// results from this routine. In other words, we don't want the results of
707/// this to depend on where the addresses of various SCEV objects happened to
708/// land in memory.
709///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000710static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000711 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000712 if (Ops.size() < 2) return; // Noop
713 if (Ops.size() == 2) {
714 // This is the common case, which also happens to be trivially simple.
715 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000716 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
717 if (SCEVComplexityCompare(LI)(RHS, LHS))
718 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000719 return;
720 }
721
Dan Gohman3bf63762010-06-18 19:54:20 +0000722 // Do the rough sort by complexity.
723 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
724
725 // Now that we are sorted by complexity, group elements of the same
726 // complexity. Note that this is, at worst, N^2, but the vector is likely to
727 // be extremely short in practice. Note that we take this approach because we
728 // do not want to depend on the addresses of the objects we are grouping.
729 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
730 const SCEV *S = Ops[i];
731 unsigned Complexity = S->getSCEVType();
732
733 // If there are any objects of the same complexity and same value as this
734 // one, group them.
735 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
736 if (Ops[j] == S) { // Found a duplicate.
737 // Move it to immediately after i'th element.
738 std::swap(Ops[i+1], Ops[j]);
739 ++i; // no need to rescan it.
740 if (i == e-2) return; // Done!
741 }
742 }
743 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000744}
745
Chris Lattner53e677a2004-04-02 20:23:17 +0000746
Chris Lattner53e677a2004-04-02 20:23:17 +0000747
748//===----------------------------------------------------------------------===//
749// Simple SCEV method implementations
750//===----------------------------------------------------------------------===//
751
Eli Friedmanb42a6262008-08-04 23:49:06 +0000752/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000753/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000754static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000755 ScalarEvolution &SE,
756 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000757 // Handle the simplest case efficiently.
758 if (K == 1)
759 return SE.getTruncateOrZeroExtend(It, ResultTy);
760
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000761 // We are using the following formula for BC(It, K):
762 //
763 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
764 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // Suppose, W is the bitwidth of the return value. We must be prepared for
766 // overflow. Hence, we must assure that the result of our computation is
767 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
768 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000769 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000770 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000771 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000772 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
773 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000774 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777 // This formula is trivially equivalent to the previous formula. However,
778 // this formula can be implemented much more efficiently. The trick is that
779 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
780 // arithmetic. To do exact division in modular arithmetic, all we have
781 // to do is multiply by the inverse. Therefore, this step can be done at
782 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000783 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000784 // The next issue is how to safely do the division by 2^T. The way this
785 // is done is by doing the multiplication step at a width of at least W + T
786 // bits. This way, the bottom W+T bits of the product are accurate. Then,
787 // when we perform the division by 2^T (which is equivalent to a right shift
788 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
789 // truncated out after the division by 2^T.
790 //
791 // In comparison to just directly using the first formula, this technique
792 // is much more efficient; using the first formula requires W * K bits,
793 // but this formula less than W + K bits. Also, the first formula requires
794 // a division step, whereas this formula only requires multiplies and shifts.
795 //
796 // It doesn't matter whether the subtraction step is done in the calculation
797 // width or the input iteration count's width; if the subtraction overflows,
798 // the result must be zero anyway. We prefer here to do it in the width of
799 // the induction variable because it helps a lot for certain cases; CodeGen
800 // isn't smart enough to ignore the overflow, which leads to much less
801 // efficient code if the width of the subtraction is wider than the native
802 // register width.
803 //
804 // (It's possible to not widen at all by pulling out factors of 2 before
805 // the multiplication; for example, K=2 can be calculated as
806 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
807 // extra arithmetic, so it's not an obvious win, and it gets
808 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000809
Eli Friedmanb42a6262008-08-04 23:49:06 +0000810 // Protection from insane SCEVs; this bound is conservative,
811 // but it probably doesn't matter.
812 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000813 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000814
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000815 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000816
Eli Friedmanb42a6262008-08-04 23:49:06 +0000817 // Calculate K! / 2^T and T; we divide out the factors of two before
818 // multiplying for calculating K! / 2^T to avoid overflow.
819 // Other overflow doesn't matter because we only care about the bottom
820 // W bits of the result.
821 APInt OddFactorial(W, 1);
822 unsigned T = 1;
823 for (unsigned i = 3; i <= K; ++i) {
824 APInt Mult(W, i);
825 unsigned TwoFactors = Mult.countTrailingZeros();
826 T += TwoFactors;
827 Mult = Mult.lshr(TwoFactors);
828 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000829 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000830
Eli Friedmanb42a6262008-08-04 23:49:06 +0000831 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000832 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000833
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000834 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000835 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
836
837 // Calculate the multiplicative inverse of K! / 2^T;
838 // this multiplication factor will perform the exact division by
839 // K! / 2^T.
840 APInt Mod = APInt::getSignedMinValue(W+1);
841 APInt MultiplyFactor = OddFactorial.zext(W+1);
842 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
843 MultiplyFactor = MultiplyFactor.trunc(W);
844
845 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000846 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
847 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000848 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000849 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000850 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000851 Dividend = SE.getMulExpr(Dividend,
852 SE.getTruncateOrZeroExtend(S, CalculationTy));
853 }
854
855 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000857
858 // Truncate the result, and divide by K! / 2^T.
859
860 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
861 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000862}
863
Chris Lattner53e677a2004-04-02 20:23:17 +0000864/// evaluateAtIteration - Return the value of this chain of recurrences at
865/// the specified iteration number. We can evaluate this recurrence by
866/// multiplying each element in the chain by the binomial coefficient
867/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
868///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000869/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000870///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000871/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000872///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000873const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000874 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000877 // The computation is correct in the face of overflow provided that the
878 // multiplication is performed _after_ the evaluation of the binomial
879 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000880 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000881 if (isa<SCEVCouldNotCompute>(Coeff))
882 return Coeff;
883
884 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 }
886 return Result;
887}
888
Chris Lattner53e677a2004-04-02 20:23:17 +0000889//===----------------------------------------------------------------------===//
890// SCEV Expression folder implementations
891//===----------------------------------------------------------------------===//
892
Dan Gohman0bba49c2009-07-07 17:06:11 +0000893const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000894 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000895 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000896 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000897 assert(isSCEVable(Ty) &&
898 "This is not a conversion to a SCEVable type!");
899 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000900
Dan Gohmanc050fd92009-07-13 20:50:19 +0000901 FoldingSetNodeID ID;
902 ID.AddInteger(scTruncate);
903 ID.AddPointer(Op);
904 ID.AddPointer(Ty);
905 void *IP = 0;
906 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
907
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000908 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000910 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000911 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
912 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000913
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000915 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 return getTruncateExpr(ST->getOperand(), Ty);
917
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000918 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000919 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000920 return getTruncateOrSignExtend(SS->getOperand(), Ty);
921
922 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000924 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
925
Dan Gohman6864db62009-06-18 16:24:47 +0000926 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000927 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000928 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000929 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000930 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
931 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 }
933
Dan Gohmanf53462d2010-07-15 20:02:11 +0000934 // As a special case, fold trunc(undef) to undef. We don't want to
935 // know too much about SCEVUnknowns, but this special case is handy
936 // and harmless.
937 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
938 if (isa<UndefValue>(U->getValue()))
939 return getSCEV(UndefValue::get(Ty));
940
Dan Gohman420ab912010-06-25 18:47:08 +0000941 // The cast wasn't folded; create an explicit cast node. We can reuse
942 // the existing insert position since if we get here, we won't have
943 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000944 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
945 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000946 UniqueSCEVs.InsertNode(S, IP);
947 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000948}
949
Dan Gohman0bba49c2009-07-07 17:06:11 +0000950const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000951 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000952 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000953 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000954 assert(isSCEVable(Ty) &&
955 "This is not a conversion to a SCEVable type!");
956 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000957
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000958 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000959 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
960 return getConstant(
961 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
962 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000963
Dan Gohman20900ca2009-04-22 16:20:48 +0000964 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000965 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000966 return getZeroExtendExpr(SZ->getOperand(), Ty);
967
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000968 // Before doing any expensive analysis, check to see if we've already
969 // computed a SCEV for this Op and Ty.
970 FoldingSetNodeID ID;
971 ID.AddInteger(scZeroExtend);
972 ID.AddPointer(Op);
973 ID.AddPointer(Ty);
974 void *IP = 0;
975 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
976
Dan Gohman01ecca22009-04-27 20:16:15 +0000977 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000978 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000979 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000980 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000982 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000983 const SCEV *Start = AR->getStart();
984 const SCEV *Step = AR->getStepRecurrence(*this);
985 unsigned BitWidth = getTypeSizeInBits(AR->getType());
986 const Loop *L = AR->getLoop();
987
Dan Gohmaneb490a72009-07-25 01:22:26 +0000988 // If we have special knowledge that this addrec won't overflow,
989 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000990 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getZeroExtendExpr(Step, Ty),
993 L);
994
Dan Gohman01ecca22009-04-27 20:16:15 +0000995 // Check whether the backedge-taken count is SCEVCouldNotCompute.
996 // Note that this serves two purposes: It filters out loops that are
997 // simply not analyzable, and it covers the case where this code is
998 // being called from within backedge-taken count analysis, such that
999 // attempting to ask for the backedge-taken count would likely result
1000 // in infinite recursion. In the later case, the analysis code will
1001 // cope with a conservative value, and it will take care to purge
1002 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001003 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001004 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001005 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001006 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001007
1008 // Check whether the backedge-taken count can be losslessly casted to
1009 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001010 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001011 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001012 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001013 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1014 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001015 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001016 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001017 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001018 const SCEV *Add = getAddExpr(Start, ZMul);
1019 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001020 getAddExpr(getZeroExtendExpr(Start, WideTy),
1021 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1022 getZeroExtendExpr(Step, WideTy)));
1023 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001024 // Return the expression with the addrec on the outside.
1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001028
1029 // Similar to above, only this time treat the step value as signed.
1030 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001031 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001032 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001033 OperandExtendedAdd =
1034 getAddExpr(getZeroExtendExpr(Start, WideTy),
1035 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1036 getSignExtendExpr(Step, WideTy)));
1037 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001038 // Return the expression with the addrec on the outside.
1039 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001041 L);
1042 }
1043
1044 // If the backedge is guarded by a comparison with the pre-inc value
1045 // the addrec is safe. Also, if the entry is guarded by a comparison
1046 // with the start value and the backedge is guarded by a comparison
1047 // with the post-inc value, the addrec is safe.
1048 if (isKnownPositive(Step)) {
1049 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1050 getUnsignedRange(Step).getUnsignedMax());
1051 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001052 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001053 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1054 AR->getPostIncExpr(*this), N)))
1055 // Return the expression with the addrec on the outside.
1056 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1057 getZeroExtendExpr(Step, Ty),
1058 L);
1059 } else if (isKnownNegative(Step)) {
1060 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1061 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001062 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1063 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001064 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1065 AR->getPostIncExpr(*this), N)))
1066 // Return the expression with the addrec on the outside.
1067 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1068 getSignExtendExpr(Step, Ty),
1069 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001070 }
1071 }
1072 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001073
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001074 // The cast wasn't folded; create an explicit cast node.
1075 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001076 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001077 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1078 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001079 UniqueSCEVs.InsertNode(S, IP);
1080 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001081}
1082
Dan Gohman0bba49c2009-07-07 17:06:11 +00001083const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001084 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001085 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001086 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001087 assert(isSCEVable(Ty) &&
1088 "This is not a conversion to a SCEVable type!");
1089 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001090
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001091 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001092 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1093 return getConstant(
1094 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1095 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001096
Dan Gohman20900ca2009-04-22 16:20:48 +00001097 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001098 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001099 return getSignExtendExpr(SS->getOperand(), Ty);
1100
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001101 // Before doing any expensive analysis, check to see if we've already
1102 // computed a SCEV for this Op and Ty.
1103 FoldingSetNodeID ID;
1104 ID.AddInteger(scSignExtend);
1105 ID.AddPointer(Op);
1106 ID.AddPointer(Ty);
1107 void *IP = 0;
1108 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1109
Dan Gohman01ecca22009-04-27 20:16:15 +00001110 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001111 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001112 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001113 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001114 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001115 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001116 const SCEV *Start = AR->getStart();
1117 const SCEV *Step = AR->getStepRecurrence(*this);
1118 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1119 const Loop *L = AR->getLoop();
1120
Dan Gohmaneb490a72009-07-25 01:22:26 +00001121 // If we have special knowledge that this addrec won't overflow,
1122 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001123 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001124 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125 getSignExtendExpr(Step, Ty),
1126 L);
1127
Dan Gohman01ecca22009-04-27 20:16:15 +00001128 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1129 // Note that this serves two purposes: It filters out loops that are
1130 // simply not analyzable, and it covers the case where this code is
1131 // being called from within backedge-taken count analysis, such that
1132 // attempting to ask for the backedge-taken count would likely result
1133 // in infinite recursion. In the later case, the analysis code will
1134 // cope with a conservative value, and it will take care to purge
1135 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001136 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001137 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001138 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001139 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001140
1141 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001142 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001143 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001144 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001145 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001146 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1147 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001148 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001149 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001150 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *Add = getAddExpr(Start, SMul);
1152 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001153 getAddExpr(getSignExtendExpr(Start, WideTy),
1154 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1155 getSignExtendExpr(Step, WideTy)));
1156 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001157 // Return the expression with the addrec on the outside.
1158 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1159 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001160 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001161
1162 // Similar to above, only this time treat the step value as unsigned.
1163 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001164 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001165 Add = getAddExpr(Start, UMul);
1166 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001167 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001168 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1169 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001170 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001171 // Return the expression with the addrec on the outside.
1172 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1173 getZeroExtendExpr(Step, Ty),
1174 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001175 }
1176
1177 // If the backedge is guarded by a comparison with the pre-inc value
1178 // the addrec is safe. Also, if the entry is guarded by a comparison
1179 // with the start value and the backedge is guarded by a comparison
1180 // with the post-inc value, the addrec is safe.
1181 if (isKnownPositive(Step)) {
1182 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1183 getSignedRange(Step).getSignedMax());
1184 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001185 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001186 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1187 AR->getPostIncExpr(*this), N)))
1188 // Return the expression with the addrec on the outside.
1189 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1190 getSignExtendExpr(Step, Ty),
1191 L);
1192 } else if (isKnownNegative(Step)) {
1193 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1194 getSignedRange(Step).getSignedMin());
1195 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001196 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001197 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1198 AR->getPostIncExpr(*this), N)))
1199 // Return the expression with the addrec on the outside.
1200 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1201 getSignExtendExpr(Step, Ty),
1202 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 }
1204 }
1205 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001206
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001207 // The cast wasn't folded; create an explicit cast node.
1208 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001209 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001210 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1211 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001212 UniqueSCEVs.InsertNode(S, IP);
1213 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001214}
1215
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001216/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1217/// unspecified bits out to the given type.
1218///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001219const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001220 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001221 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1222 "This is not an extending conversion!");
1223 assert(isSCEVable(Ty) &&
1224 "This is not a conversion to a SCEVable type!");
1225 Ty = getEffectiveSCEVType(Ty);
1226
1227 // Sign-extend negative constants.
1228 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1229 if (SC->getValue()->getValue().isNegative())
1230 return getSignExtendExpr(Op, Ty);
1231
1232 // Peel off a truncate cast.
1233 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001234 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001235 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1236 return getAnyExtendExpr(NewOp, Ty);
1237 return getTruncateOrNoop(NewOp, Ty);
1238 }
1239
1240 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001242 if (!isa<SCEVZeroExtendExpr>(ZExt))
1243 return ZExt;
1244
1245 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001246 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001247 if (!isa<SCEVSignExtendExpr>(SExt))
1248 return SExt;
1249
Dan Gohmana10756e2010-01-21 02:09:26 +00001250 // Force the cast to be folded into the operands of an addrec.
1251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1252 SmallVector<const SCEV *, 4> Ops;
1253 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1254 I != E; ++I)
1255 Ops.push_back(getAnyExtendExpr(*I, Ty));
1256 return getAddRecExpr(Ops, AR->getLoop());
1257 }
1258
Dan Gohmanf53462d2010-07-15 20:02:11 +00001259 // As a special case, fold anyext(undef) to undef. We don't want to
1260 // know too much about SCEVUnknowns, but this special case is handy
1261 // and harmless.
1262 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1263 if (isa<UndefValue>(U->getValue()))
1264 return getSCEV(UndefValue::get(Ty));
1265
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001266 // If the expression is obviously signed, use the sext cast value.
1267 if (isa<SCEVSMaxExpr>(Op))
1268 return SExt;
1269
1270 // Absent any other information, use the zext cast value.
1271 return ZExt;
1272}
1273
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001274/// CollectAddOperandsWithScales - Process the given Ops list, which is
1275/// a list of operands to be added under the given scale, update the given
1276/// map. This is a helper function for getAddRecExpr. As an example of
1277/// what it does, given a sequence of operands that would form an add
1278/// expression like this:
1279///
1280/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1281///
1282/// where A and B are constants, update the map with these values:
1283///
1284/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1285///
1286/// and add 13 + A*B*29 to AccumulatedConstant.
1287/// This will allow getAddRecExpr to produce this:
1288///
1289/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1290///
1291/// This form often exposes folding opportunities that are hidden in
1292/// the original operand list.
1293///
1294/// Return true iff it appears that any interesting folding opportunities
1295/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1296/// the common case where no interesting opportunities are present, and
1297/// is also used as a check to avoid infinite recursion.
1298///
1299static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001300CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1301 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001302 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001303 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001304 const APInt &Scale,
1305 ScalarEvolution &SE) {
1306 bool Interesting = false;
1307
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001308 // Iterate over the add operands. They are sorted, with constants first.
1309 unsigned i = 0;
1310 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1311 ++i;
1312 // Pull a buried constant out to the outside.
1313 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1314 Interesting = true;
1315 AccumulatedConstant += Scale * C->getValue()->getValue();
1316 }
1317
1318 // Next comes everything else. We're especially interested in multiplies
1319 // here, but they're in the middle, so just visit the rest with one loop.
1320 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001321 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1322 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1323 APInt NewScale =
1324 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1325 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1326 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001327 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001328 Interesting |=
1329 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001330 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001331 NewScale, SE);
1332 } else {
1333 // A multiplication of a constant with some other value. Update
1334 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1336 const SCEV *Key = SE.getMulExpr(MulOps);
1337 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001338 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001340 NewOps.push_back(Pair.first->first);
1341 } else {
1342 Pair.first->second += NewScale;
1343 // The map already had an entry for this value, which may indicate
1344 // a folding opportunity.
1345 Interesting = true;
1346 }
1347 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001348 } else {
1349 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001350 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001351 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001352 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001353 NewOps.push_back(Pair.first->first);
1354 } else {
1355 Pair.first->second += Scale;
1356 // The map already had an entry for this value, which may indicate
1357 // a folding opportunity.
1358 Interesting = true;
1359 }
1360 }
1361 }
1362
1363 return Interesting;
1364}
1365
1366namespace {
1367 struct APIntCompare {
1368 bool operator()(const APInt &LHS, const APInt &RHS) const {
1369 return LHS.ult(RHS);
1370 }
1371 };
1372}
1373
Dan Gohman6c0866c2009-05-24 23:45:28 +00001374/// getAddExpr - Get a canonical add expression, or something simpler if
1375/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001376const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1377 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001378 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001379 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001380#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001381 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001382 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001383 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001384 "SCEVAddExpr operand types don't match!");
1385#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001386
Dan Gohmana10756e2010-01-21 02:09:26 +00001387 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1388 if (!HasNUW && HasNSW) {
1389 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001390 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1391 E = Ops.end(); I != E; ++I)
1392 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001393 All = false;
1394 break;
1395 }
1396 if (All) HasNUW = true;
1397 }
1398
Chris Lattner53e677a2004-04-02 20:23:17 +00001399 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001400 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001401
1402 // If there are any constants, fold them together.
1403 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001404 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001406 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001407 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001409 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1410 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001411 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001412 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001413 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 }
1415
1416 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001417 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 Ops.erase(Ops.begin());
1419 --Idx;
1420 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001421
Dan Gohmanbca091d2010-04-12 23:08:18 +00001422 if (Ops.size() == 1) return Ops[0];
1423 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001424
Dan Gohman68ff7762010-08-27 21:39:59 +00001425 // Okay, check to see if the same value occurs in the operand list more than
1426 // once. If so, merge them together into an multiply expression. Since we
1427 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001428 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001429 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001430 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001432 // Scan ahead to count how many equal operands there are.
1433 unsigned Count = 2;
1434 while (i+Count != e && Ops[i+Count] == Ops[i])
1435 ++Count;
1436 // Merge the values into a multiply.
1437 const SCEV *Scale = getConstant(Ty, Count);
1438 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1439 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001440 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001441 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001442 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001443 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001444 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001445 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001446 if (FoundMatch)
1447 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001448
Dan Gohman728c7f32009-05-08 21:03:19 +00001449 // Check for truncates. If all the operands are truncated from the same
1450 // type, see if factoring out the truncate would permit the result to be
1451 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1452 // if the contents of the resulting outer trunc fold to something simple.
1453 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1454 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1455 const Type *DstType = Trunc->getType();
1456 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001457 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001458 bool Ok = true;
1459 // Check all the operands to see if they can be represented in the
1460 // source type of the truncate.
1461 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1462 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1463 if (T->getOperand()->getType() != SrcType) {
1464 Ok = false;
1465 break;
1466 }
1467 LargeOps.push_back(T->getOperand());
1468 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001469 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001470 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001471 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001472 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1473 if (const SCEVTruncateExpr *T =
1474 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1475 if (T->getOperand()->getType() != SrcType) {
1476 Ok = false;
1477 break;
1478 }
1479 LargeMulOps.push_back(T->getOperand());
1480 } else if (const SCEVConstant *C =
1481 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001482 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001483 } else {
1484 Ok = false;
1485 break;
1486 }
1487 }
1488 if (Ok)
1489 LargeOps.push_back(getMulExpr(LargeMulOps));
1490 } else {
1491 Ok = false;
1492 break;
1493 }
1494 }
1495 if (Ok) {
1496 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001497 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001498 // If it folds to something simple, use it. Otherwise, don't.
1499 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1500 return getTruncateExpr(Fold, DstType);
1501 }
1502 }
1503
1504 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1506 ++Idx;
1507
1508 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 if (Idx < Ops.size()) {
1510 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001511 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 // If we have an add, expand the add operands onto the end of the operands
1513 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001515 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 DeletedAdd = true;
1517 }
1518
1519 // If we deleted at least one add, we added operands to the end of the list,
1520 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001521 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001522 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001523 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 }
1525
1526 // Skip over the add expression until we get to a multiply.
1527 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1528 ++Idx;
1529
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001530 // Check to see if there are any folding opportunities present with
1531 // operands multiplied by constant values.
1532 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1533 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 DenseMap<const SCEV *, APInt> M;
1535 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001536 APInt AccumulatedConstant(BitWidth, 0);
1537 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001538 Ops.data(), Ops.size(),
1539 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001540 // Some interesting folding opportunity is present, so its worthwhile to
1541 // re-generate the operands list. Group the operands by constant scale,
1542 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001544 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001545 E = NewOps.end(); I != E; ++I)
1546 MulOpLists[M.find(*I)->second].push_back(*I);
1547 // Re-generate the operands list.
1548 Ops.clear();
1549 if (AccumulatedConstant != 0)
1550 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001551 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1552 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001553 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001554 Ops.push_back(getMulExpr(getConstant(I->first),
1555 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001556 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001557 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001558 if (Ops.size() == 1)
1559 return Ops[0];
1560 return getAddExpr(Ops);
1561 }
1562 }
1563
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 // If we are adding something to a multiply expression, make sure the
1565 // something is not already an operand of the multiply. If so, merge it into
1566 // the multiply.
1567 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001568 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001569 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001570 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001571 if (isa<SCEVConstant>(MulOpSCEV))
1572 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001574 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001576 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 if (Mul->getNumOperands() != 2) {
1578 // If the multiply has more than two operands, we must get the
1579 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001580 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1581 Mul->op_begin()+MulOp);
1582 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001583 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001585 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001586 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001587 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 if (Ops.size() == 2) return OuterMul;
1589 if (AddOp < Idx) {
1590 Ops.erase(Ops.begin()+AddOp);
1591 Ops.erase(Ops.begin()+Idx-1);
1592 } else {
1593 Ops.erase(Ops.begin()+Idx);
1594 Ops.erase(Ops.begin()+AddOp-1);
1595 }
1596 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001597 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001599
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 // Check this multiply against other multiplies being added together.
1601 for (unsigned OtherMulIdx = Idx+1;
1602 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1603 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001604 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If MulOp occurs in OtherMul, we can fold the two multiplies
1606 // together.
1607 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1608 OMulOp != e; ++OMulOp)
1609 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1610 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001611 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001613 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001614 Mul->op_begin()+MulOp);
1615 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001616 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001618 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001620 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001621 OtherMul->op_begin()+OMulOp);
1622 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001623 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001624 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001625 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1626 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001628 Ops.erase(Ops.begin()+Idx);
1629 Ops.erase(Ops.begin()+OtherMulIdx-1);
1630 Ops.push_back(OuterMul);
1631 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 }
1633 }
1634 }
1635 }
1636
1637 // If there are any add recurrences in the operands list, see if any other
1638 // added values are loop invariant. If so, we can fold them into the
1639 // recurrence.
1640 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1641 ++Idx;
1642
1643 // Scan over all recurrences, trying to fold loop invariants into them.
1644 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1645 // Scan all of the other operands to this add and add them to the vector if
1646 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001647 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001648 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001649 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001651 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 LIOps.push_back(Ops[i]);
1653 Ops.erase(Ops.begin()+i);
1654 --i; --e;
1655 }
1656
1657 // If we found some loop invariants, fold them into the recurrence.
1658 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001659 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 LIOps.push_back(AddRec->getStart());
1661
Dan Gohman0bba49c2009-07-07 17:06:11 +00001662 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001663 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001664 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001665
Dan Gohmanb9f96512010-06-30 07:16:37 +00001666 // Build the new addrec. Propagate the NUW and NSW flags if both the
1667 // outer add and the inner addrec are guaranteed to have no overflow.
1668 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1669 HasNUW && AddRec->hasNoUnsignedWrap(),
1670 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001671
Chris Lattner53e677a2004-04-02 20:23:17 +00001672 // If all of the other operands were loop invariant, we are done.
1673 if (Ops.size() == 1) return NewRec;
1674
1675 // Otherwise, add the folded AddRec by the non-liv parts.
1676 for (unsigned i = 0;; ++i)
1677 if (Ops[i] == AddRec) {
1678 Ops[i] = NewRec;
1679 break;
1680 }
Dan Gohman246b2562007-10-22 18:31:58 +00001681 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 }
1683
1684 // Okay, if there weren't any loop invariants to be folded, check to see if
1685 // there are multiple AddRec's with the same loop induction variable being
1686 // added together. If so, we can fold them.
1687 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001688 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1689 ++OtherIdx)
1690 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1691 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1692 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1693 AddRec->op_end());
1694 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1695 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001696 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001697 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001698 if (OtherAddRec->getLoop() == AddRecLoop) {
1699 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1700 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001701 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001702 AddRecOps.append(OtherAddRec->op_begin()+i,
1703 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001704 break;
1705 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001706 AddRecOps[i] = getAddExpr(AddRecOps[i],
1707 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001708 }
1709 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 }
Dan Gohman32527152010-08-27 20:45:56 +00001711 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1712 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 }
1714
1715 // Otherwise couldn't fold anything into this recurrence. Move onto the
1716 // next one.
1717 }
1718
1719 // Okay, it looks like we really DO need an add expr. Check to see if we
1720 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001721 FoldingSetNodeID ID;
1722 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001723 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1724 ID.AddPointer(Ops[i]);
1725 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001726 SCEVAddExpr *S =
1727 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1728 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001729 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1730 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001731 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1732 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001733 UniqueSCEVs.InsertNode(S, IP);
1734 }
Dan Gohman3645b012009-10-09 00:10:36 +00001735 if (HasNUW) S->setHasNoUnsignedWrap(true);
1736 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001737 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001738}
1739
Dan Gohman6c0866c2009-05-24 23:45:28 +00001740/// getMulExpr - Get a canonical multiply expression, or something simpler if
1741/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001742const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1743 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001744 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001745 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001746#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001747 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001748 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001749 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001750 "SCEVMulExpr operand types don't match!");
1751#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001752
Dan Gohmana10756e2010-01-21 02:09:26 +00001753 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1754 if (!HasNUW && HasNSW) {
1755 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001756 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1757 E = Ops.end(); I != E; ++I)
1758 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001759 All = false;
1760 break;
1761 }
1762 if (All) HasNUW = true;
1763 }
1764
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001766 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
1768 // If there are any constants, fold them together.
1769 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001770 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001771
1772 // C1*(C2+V) -> C1*C2 + C1*V
1773 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001774 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 if (Add->getNumOperands() == 2 &&
1776 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001777 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1778 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001779
Chris Lattner53e677a2004-04-02 20:23:17 +00001780 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001781 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001782 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001783 ConstantInt *Fold = ConstantInt::get(getContext(),
1784 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001785 RHSC->getValue()->getValue());
1786 Ops[0] = getConstant(Fold);
1787 Ops.erase(Ops.begin()+1); // Erase the folded element
1788 if (Ops.size() == 1) return Ops[0];
1789 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001790 }
1791
1792 // If we are left with a constant one being multiplied, strip it off.
1793 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1794 Ops.erase(Ops.begin());
1795 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001796 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 // If we have a multiply of zero, it will always be zero.
1798 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001799 } else if (Ops[0]->isAllOnesValue()) {
1800 // If we have a mul by -1 of an add, try distributing the -1 among the
1801 // add operands.
1802 if (Ops.size() == 2)
1803 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1804 SmallVector<const SCEV *, 4> NewOps;
1805 bool AnyFolded = false;
1806 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1807 I != E; ++I) {
1808 const SCEV *Mul = getMulExpr(Ops[0], *I);
1809 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1810 NewOps.push_back(Mul);
1811 }
1812 if (AnyFolded)
1813 return getAddExpr(NewOps);
1814 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001815 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001816
1817 if (Ops.size() == 1)
1818 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 }
1820
1821 // Skip over the add expression until we get to a multiply.
1822 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1823 ++Idx;
1824
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 // If there are mul operands inline them all into this expression.
1826 if (Idx < Ops.size()) {
1827 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001828 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001829 // If we have an mul, expand the mul operands onto the end of the operands
1830 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001831 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001832 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 DeletedMul = true;
1834 }
1835
1836 // If we deleted at least one mul, we added operands to the end of the list,
1837 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001838 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001839 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001840 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001841 }
1842
1843 // If there are any add recurrences in the operands list, see if any other
1844 // added values are loop invariant. If so, we can fold them into the
1845 // recurrence.
1846 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1847 ++Idx;
1848
1849 // Scan over all recurrences, trying to fold loop invariants into them.
1850 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1851 // Scan all of the other operands to this mul and add them to the vector if
1852 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001853 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001854 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001855 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001856 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001857 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 LIOps.push_back(Ops[i]);
1859 Ops.erase(Ops.begin()+i);
1860 --i; --e;
1861 }
1862
1863 // If we found some loop invariants, fold them into the recurrence.
1864 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001865 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001866 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001867 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001868 const SCEV *Scale = getMulExpr(LIOps);
1869 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1870 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001871
Dan Gohmanb9f96512010-06-30 07:16:37 +00001872 // Build the new addrec. Propagate the NUW and NSW flags if both the
1873 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001874 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001875 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001876 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001877
1878 // If all of the other operands were loop invariant, we are done.
1879 if (Ops.size() == 1) return NewRec;
1880
1881 // Otherwise, multiply the folded AddRec by the non-liv parts.
1882 for (unsigned i = 0;; ++i)
1883 if (Ops[i] == AddRec) {
1884 Ops[i] = NewRec;
1885 break;
1886 }
Dan Gohman246b2562007-10-22 18:31:58 +00001887 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001888 }
1889
1890 // Okay, if there weren't any loop invariants to be folded, check to see if
1891 // there are multiple AddRec's with the same loop induction variable being
1892 // multiplied together. If so, we can fold them.
1893 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001894 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895 ++OtherIdx)
1896 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1897 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1898 // {A*C,+,F*D + G*B + B*D}<L>
1899 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1900 ++OtherIdx)
1901 if (const SCEVAddRecExpr *OtherAddRec =
1902 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1903 if (OtherAddRec->getLoop() == AddRecLoop) {
1904 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1905 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1906 const SCEV *B = F->getStepRecurrence(*this);
1907 const SCEV *D = G->getStepRecurrence(*this);
1908 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1909 getMulExpr(G, B),
1910 getMulExpr(B, D));
1911 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1912 F->getLoop());
1913 if (Ops.size() == 2) return NewAddRec;
1914 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1915 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1916 }
1917 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 }
1919
1920 // Otherwise couldn't fold anything into this recurrence. Move onto the
1921 // next one.
1922 }
1923
1924 // Okay, it looks like we really DO need an mul expr. Check to see if we
1925 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001926 FoldingSetNodeID ID;
1927 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1929 ID.AddPointer(Ops[i]);
1930 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001931 SCEVMulExpr *S =
1932 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1933 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1935 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001936 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1937 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001938 UniqueSCEVs.InsertNode(S, IP);
1939 }
Dan Gohman3645b012009-10-09 00:10:36 +00001940 if (HasNUW) S->setHasNoUnsignedWrap(true);
1941 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001942 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001943}
1944
Andreas Bolka8a11c982009-08-07 22:55:26 +00001945/// getUDivExpr - Get a canonical unsigned division expression, or something
1946/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001947const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1948 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001949 assert(getEffectiveSCEVType(LHS->getType()) ==
1950 getEffectiveSCEVType(RHS->getType()) &&
1951 "SCEVUDivExpr operand types don't match!");
1952
Dan Gohman622ed672009-05-04 22:02:23 +00001953 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001955 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001956 // If the denominator is zero, the result of the udiv is undefined. Don't
1957 // try to analyze it, because the resolution chosen here may differ from
1958 // the resolution chosen in other parts of the compiler.
1959 if (!RHSC->getValue()->isZero()) {
1960 // Determine if the division can be folded into the operands of
1961 // its operands.
1962 // TODO: Generalize this to non-constants by using known-bits information.
1963 const Type *Ty = LHS->getType();
1964 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001965 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001966 // For non-power-of-two values, effectively round the value up to the
1967 // nearest power of two.
1968 if (!RHSC->getValue()->getValue().isPowerOf2())
1969 ++MaxShiftAmt;
1970 const IntegerType *ExtTy =
1971 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1972 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1974 if (const SCEVConstant *Step =
1975 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1976 if (!Step->getValue()->getValue()
1977 .urem(RHSC->getValue()->getValue()) &&
1978 getZeroExtendExpr(AR, ExtTy) ==
1979 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1980 getZeroExtendExpr(Step, ExtTy),
1981 AR->getLoop())) {
1982 SmallVector<const SCEV *, 4> Operands;
1983 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1984 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1985 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001986 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001987 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1988 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1989 SmallVector<const SCEV *, 4> Operands;
1990 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1991 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1992 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1993 // Find an operand that's safely divisible.
1994 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1995 const SCEV *Op = M->getOperand(i);
1996 const SCEV *Div = getUDivExpr(Op, RHSC);
1997 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1998 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1999 M->op_end());
2000 Operands[i] = Div;
2001 return getMulExpr(Operands);
2002 }
2003 }
Dan Gohman185cf032009-05-08 20:18:49 +00002004 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002005 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2006 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2007 SmallVector<const SCEV *, 4> Operands;
2008 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2009 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2010 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2011 Operands.clear();
2012 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2013 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2014 if (isa<SCEVUDivExpr>(Op) ||
2015 getMulExpr(Op, RHS) != A->getOperand(i))
2016 break;
2017 Operands.push_back(Op);
2018 }
2019 if (Operands.size() == A->getNumOperands())
2020 return getAddExpr(Operands);
2021 }
2022 }
Dan Gohman185cf032009-05-08 20:18:49 +00002023
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002024 // Fold if both operands are constant.
2025 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2026 Constant *LHSCV = LHSC->getValue();
2027 Constant *RHSCV = RHSC->getValue();
2028 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2029 RHSCV)));
2030 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002031 }
2032 }
2033
Dan Gohman1c343752009-06-27 21:21:31 +00002034 FoldingSetNodeID ID;
2035 ID.AddInteger(scUDivExpr);
2036 ID.AddPointer(LHS);
2037 ID.AddPointer(RHS);
2038 void *IP = 0;
2039 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002040 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2041 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002042 UniqueSCEVs.InsertNode(S, IP);
2043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044}
2045
2046
Dan Gohman6c0866c2009-05-24 23:45:28 +00002047/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2048/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002049const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002050 const SCEV *Step, const Loop *L,
2051 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002052 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002053 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002054 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002055 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002056 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002057 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002058 }
2059
2060 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002061 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002062}
2063
Dan Gohman6c0866c2009-05-24 23:45:28 +00002064/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2065/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002066const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002067ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002068 const Loop *L,
2069 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002070 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002071#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002072 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002073 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002074 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002075 "SCEVAddRecExpr operand types don't match!");
2076#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002077
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002078 if (Operands.back()->isZero()) {
2079 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002080 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002081 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002082
Dan Gohmanbc028532010-02-19 18:49:22 +00002083 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2084 // use that information to infer NUW and NSW flags. However, computing a
2085 // BE count requires calling getAddRecExpr, so we may not yet have a
2086 // meaningful BE count at this point (and if we don't, we'd be stuck
2087 // with a SCEVCouldNotCompute as the cached BE count).
2088
Dan Gohmana10756e2010-01-21 02:09:26 +00002089 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2090 if (!HasNUW && HasNSW) {
2091 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002092 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2093 E = Operands.end(); I != E; ++I)
2094 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002095 All = false;
2096 break;
2097 }
2098 if (All) HasNUW = true;
2099 }
2100
Dan Gohmand9cc7492008-08-08 18:33:12 +00002101 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002102 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002103 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002104 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002105 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002106 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002107 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002108 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002109 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002110 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002111 // AddRecs require their operands be loop-invariant with respect to their
2112 // loops. Don't perform this transformation if it would break this
2113 // requirement.
2114 bool AllInvariant = true;
2115 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2116 if (!Operands[i]->isLoopInvariant(L)) {
2117 AllInvariant = false;
2118 break;
2119 }
2120 if (AllInvariant) {
2121 NestedOperands[0] = getAddRecExpr(Operands, L);
2122 AllInvariant = true;
2123 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2124 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2125 AllInvariant = false;
2126 break;
2127 }
2128 if (AllInvariant)
2129 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002130 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002131 }
2132 // Reset Operands to its original state.
2133 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002134 }
2135 }
2136
Dan Gohman67847532010-01-19 22:27:22 +00002137 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2138 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002139 FoldingSetNodeID ID;
2140 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002141 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2142 ID.AddPointer(Operands[i]);
2143 ID.AddPointer(L);
2144 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002145 SCEVAddRecExpr *S =
2146 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2147 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002148 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2149 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002150 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2151 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002152 UniqueSCEVs.InsertNode(S, IP);
2153 }
Dan Gohman3645b012009-10-09 00:10:36 +00002154 if (HasNUW) S->setHasNoUnsignedWrap(true);
2155 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002156 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002157}
2158
Dan Gohman9311ef62009-06-24 14:49:00 +00002159const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2160 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002161 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002162 Ops.push_back(LHS);
2163 Ops.push_back(RHS);
2164 return getSMaxExpr(Ops);
2165}
2166
Dan Gohman0bba49c2009-07-07 17:06:11 +00002167const SCEV *
2168ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002169 assert(!Ops.empty() && "Cannot get empty smax!");
2170 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002171#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002172 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002173 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002174 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002175 "SCEVSMaxExpr operand types don't match!");
2176#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002177
2178 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002179 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002180
2181 // If there are any constants, fold them together.
2182 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002183 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002184 ++Idx;
2185 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002186 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002187 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002188 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002189 APIntOps::smax(LHSC->getValue()->getValue(),
2190 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 Ops[0] = getConstant(Fold);
2192 Ops.erase(Ops.begin()+1); // Erase the folded element
2193 if (Ops.size() == 1) return Ops[0];
2194 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002195 }
2196
Dan Gohmane5aceed2009-06-24 14:46:22 +00002197 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002198 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2199 Ops.erase(Ops.begin());
2200 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002201 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2202 // If we have an smax with a constant maximum-int, it will always be
2203 // maximum-int.
2204 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002205 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002206
Dan Gohman3ab13122010-04-13 16:49:23 +00002207 if (Ops.size() == 1) return Ops[0];
2208 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002209
2210 // Find the first SMax
2211 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2212 ++Idx;
2213
2214 // Check to see if one of the operands is an SMax. If so, expand its operands
2215 // onto our operand list, and recurse to simplify.
2216 if (Idx < Ops.size()) {
2217 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002218 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002219 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002220 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002221 DeletedSMax = true;
2222 }
2223
2224 if (DeletedSMax)
2225 return getSMaxExpr(Ops);
2226 }
2227
2228 // Okay, check to see if the same value occurs in the operand list twice. If
2229 // so, delete one. Since we sorted the list, these values are required to
2230 // be adjacent.
2231 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002232 // X smax Y smax Y --> X smax Y
2233 // X smax Y --> X, if X is always greater than Y
2234 if (Ops[i] == Ops[i+1] ||
2235 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2236 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2237 --i; --e;
2238 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002239 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2240 --i; --e;
2241 }
2242
2243 if (Ops.size() == 1) return Ops[0];
2244
2245 assert(!Ops.empty() && "Reduced smax down to nothing!");
2246
Nick Lewycky3e630762008-02-20 06:48:22 +00002247 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002248 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002249 FoldingSetNodeID ID;
2250 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002251 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2252 ID.AddPointer(Ops[i]);
2253 void *IP = 0;
2254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002255 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2256 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002257 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2258 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002259 UniqueSCEVs.InsertNode(S, IP);
2260 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002261}
2262
Dan Gohman9311ef62009-06-24 14:49:00 +00002263const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2264 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002265 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002266 Ops.push_back(LHS);
2267 Ops.push_back(RHS);
2268 return getUMaxExpr(Ops);
2269}
2270
Dan Gohman0bba49c2009-07-07 17:06:11 +00002271const SCEV *
2272ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002273 assert(!Ops.empty() && "Cannot get empty umax!");
2274 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002276 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002277 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002278 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002279 "SCEVUMaxExpr operand types don't match!");
2280#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002281
2282 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002283 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002284
2285 // If there are any constants, fold them together.
2286 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002287 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002288 ++Idx;
2289 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002290 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002291 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002292 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002293 APIntOps::umax(LHSC->getValue()->getValue(),
2294 RHSC->getValue()->getValue()));
2295 Ops[0] = getConstant(Fold);
2296 Ops.erase(Ops.begin()+1); // Erase the folded element
2297 if (Ops.size() == 1) return Ops[0];
2298 LHSC = cast<SCEVConstant>(Ops[0]);
2299 }
2300
Dan Gohmane5aceed2009-06-24 14:46:22 +00002301 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002302 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2303 Ops.erase(Ops.begin());
2304 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002305 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2306 // If we have an umax with a constant maximum-int, it will always be
2307 // maximum-int.
2308 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002309 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002310
Dan Gohman3ab13122010-04-13 16:49:23 +00002311 if (Ops.size() == 1) return Ops[0];
2312 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002313
2314 // Find the first UMax
2315 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2316 ++Idx;
2317
2318 // Check to see if one of the operands is a UMax. If so, expand its operands
2319 // onto our operand list, and recurse to simplify.
2320 if (Idx < Ops.size()) {
2321 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002322 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002323 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002324 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002325 DeletedUMax = true;
2326 }
2327
2328 if (DeletedUMax)
2329 return getUMaxExpr(Ops);
2330 }
2331
2332 // Okay, check to see if the same value occurs in the operand list twice. If
2333 // so, delete one. Since we sorted the list, these values are required to
2334 // be adjacent.
2335 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002336 // X umax Y umax Y --> X umax Y
2337 // X umax Y --> X, if X is always greater than Y
2338 if (Ops[i] == Ops[i+1] ||
2339 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2340 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2341 --i; --e;
2342 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002343 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2344 --i; --e;
2345 }
2346
2347 if (Ops.size() == 1) return Ops[0];
2348
2349 assert(!Ops.empty() && "Reduced umax down to nothing!");
2350
2351 // Okay, it looks like we really DO need a umax expr. Check to see if we
2352 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002353 FoldingSetNodeID ID;
2354 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002355 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2356 ID.AddPointer(Ops[i]);
2357 void *IP = 0;
2358 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002359 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2360 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002361 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2362 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002363 UniqueSCEVs.InsertNode(S, IP);
2364 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002365}
2366
Dan Gohman9311ef62009-06-24 14:49:00 +00002367const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2368 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002369 // ~smax(~x, ~y) == smin(x, y).
2370 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2371}
2372
Dan Gohman9311ef62009-06-24 14:49:00 +00002373const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002375 // ~umax(~x, ~y) == umin(x, y)
2376 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2377}
2378
Dan Gohman4f8eea82010-02-01 18:27:38 +00002379const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002380 // If we have TargetData, we can bypass creating a target-independent
2381 // constant expression and then folding it back into a ConstantInt.
2382 // This is just a compile-time optimization.
2383 if (TD)
2384 return getConstant(TD->getIntPtrType(getContext()),
2385 TD->getTypeAllocSize(AllocTy));
2386
Dan Gohman4f8eea82010-02-01 18:27:38 +00002387 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002389 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2390 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002391 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2392 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2393}
2394
2395const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2396 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002398 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2399 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002400 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2401 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2402}
2403
2404const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2405 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002406 // If we have TargetData, we can bypass creating a target-independent
2407 // constant expression and then folding it back into a ConstantInt.
2408 // This is just a compile-time optimization.
2409 if (TD)
2410 return getConstant(TD->getIntPtrType(getContext()),
2411 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2412
Dan Gohman0f5efe52010-01-28 02:15:55 +00002413 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002415 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2416 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002417 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002418 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002419}
2420
Dan Gohman4f8eea82010-02-01 18:27:38 +00002421const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2422 Constant *FieldNo) {
2423 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002425 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2426 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002427 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002428 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002429}
2430
Dan Gohman0bba49c2009-07-07 17:06:11 +00002431const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002432 // Don't attempt to do anything other than create a SCEVUnknown object
2433 // here. createSCEV only calls getUnknown after checking for all other
2434 // interesting possibilities, and any other code that calls getUnknown
2435 // is doing so in order to hide a value from SCEV canonicalization.
2436
Dan Gohman1c343752009-06-27 21:21:31 +00002437 FoldingSetNodeID ID;
2438 ID.AddInteger(scUnknown);
2439 ID.AddPointer(V);
2440 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002441 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2442 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2443 "Stale SCEVUnknown in uniquing map!");
2444 return S;
2445 }
2446 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2447 FirstUnknown);
2448 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002449 UniqueSCEVs.InsertNode(S, IP);
2450 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002451}
2452
Chris Lattner53e677a2004-04-02 20:23:17 +00002453//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002454// Basic SCEV Analysis and PHI Idiom Recognition Code
2455//
2456
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002457/// isSCEVable - Test if values of the given type are analyzable within
2458/// the SCEV framework. This primarily includes integer types, and it
2459/// can optionally include pointer types if the ScalarEvolution class
2460/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002461bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002462 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002463 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002464}
2465
2466/// getTypeSizeInBits - Return the size in bits of the specified type,
2467/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002468uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002469 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2470
2471 // If we have a TargetData, use it!
2472 if (TD)
2473 return TD->getTypeSizeInBits(Ty);
2474
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002475 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002476 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002477 return Ty->getPrimitiveSizeInBits();
2478
2479 // The only other support type is pointer. Without TargetData, conservatively
2480 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002481 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002482 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002483}
2484
2485/// getEffectiveSCEVType - Return a type with the same bitwidth as
2486/// the given type and which represents how SCEV will treat the given
2487/// type, for which isSCEVable must return true. For pointer types,
2488/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002489const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002490 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2491
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002492 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002493 return Ty;
2494
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002495 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002496 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002497 if (TD) return TD->getIntPtrType(getContext());
2498
2499 // Without TargetData, conservatively assume pointers are 64-bit.
2500 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002501}
Chris Lattner53e677a2004-04-02 20:23:17 +00002502
Dan Gohman0bba49c2009-07-07 17:06:11 +00002503const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002504 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002505}
2506
Chris Lattner53e677a2004-04-02 20:23:17 +00002507/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2508/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002509const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002510 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002511
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002512 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2513 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002514 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002515
2516 // The process of creating a SCEV for V may have caused other SCEVs
2517 // to have been created, so it's necessary to insert the new entry
2518 // from scratch, rather than trying to remember the insert position
2519 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002520 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002521 return S;
2522}
2523
Dan Gohman2d1be872009-04-16 03:18:22 +00002524/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2525///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002526const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002527 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002528 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002529 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002530
2531 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002532 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002533 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002534 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002535}
2536
2537/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002538const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002539 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002540 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002541 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002542
2543 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002544 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002545 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002546 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002547 return getMinusSCEV(AllOnes, V);
2548}
2549
2550/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2551///
Dan Gohman9311ef62009-06-24 14:49:00 +00002552const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2553 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002554 // Fast path: X - X --> 0.
2555 if (LHS == RHS)
2556 return getConstant(LHS->getType(), 0);
2557
Dan Gohman2d1be872009-04-16 03:18:22 +00002558 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002559 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002560}
2561
2562/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2563/// input value to the specified type. If the type must be extended, it is zero
2564/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002565const SCEV *
2566ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002567 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002568 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002569 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2570 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002571 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002572 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002573 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002574 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002575 return getTruncateExpr(V, Ty);
2576 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002577}
2578
2579/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2580/// input value to the specified type. If the type must be extended, it is sign
2581/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002582const SCEV *
2583ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002584 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002585 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002586 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2587 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002588 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002589 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002590 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002591 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002592 return getTruncateExpr(V, Ty);
2593 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002594}
2595
Dan Gohman467c4302009-05-13 03:46:30 +00002596/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2597/// input value to the specified type. If the type must be extended, it is zero
2598/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002599const SCEV *
2600ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002601 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002602 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2603 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002604 "Cannot noop or zero extend with non-integer arguments!");
2605 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2606 "getNoopOrZeroExtend cannot truncate!");
2607 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2608 return V; // No conversion
2609 return getZeroExtendExpr(V, Ty);
2610}
2611
2612/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2613/// input value to the specified type. If the type must be extended, it is sign
2614/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002615const SCEV *
2616ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002617 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002618 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2619 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002620 "Cannot noop or sign extend with non-integer arguments!");
2621 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2622 "getNoopOrSignExtend cannot truncate!");
2623 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2624 return V; // No conversion
2625 return getSignExtendExpr(V, Ty);
2626}
2627
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002628/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2629/// the input value to the specified type. If the type must be extended,
2630/// it is extended with unspecified bits. The conversion must not be
2631/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002632const SCEV *
2633ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002634 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002635 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2636 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002637 "Cannot noop or any extend with non-integer arguments!");
2638 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2639 "getNoopOrAnyExtend cannot truncate!");
2640 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2641 return V; // No conversion
2642 return getAnyExtendExpr(V, Ty);
2643}
2644
Dan Gohman467c4302009-05-13 03:46:30 +00002645/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2646/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002647const SCEV *
2648ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002649 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002650 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2651 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002652 "Cannot truncate or noop with non-integer arguments!");
2653 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2654 "getTruncateOrNoop cannot extend!");
2655 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2656 return V; // No conversion
2657 return getTruncateExpr(V, Ty);
2658}
2659
Dan Gohmana334aa72009-06-22 00:31:57 +00002660/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2661/// the types using zero-extension, and then perform a umax operation
2662/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002663const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2664 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002665 const SCEV *PromotedLHS = LHS;
2666 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002667
2668 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2669 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2670 else
2671 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2672
2673 return getUMaxExpr(PromotedLHS, PromotedRHS);
2674}
2675
Dan Gohmanc9759e82009-06-22 15:03:27 +00002676/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2677/// the types using zero-extension, and then perform a umin operation
2678/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002679const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2680 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002681 const SCEV *PromotedLHS = LHS;
2682 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002683
2684 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2685 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2686 else
2687 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2688
2689 return getUMinExpr(PromotedLHS, PromotedRHS);
2690}
2691
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002692/// PushDefUseChildren - Push users of the given Instruction
2693/// onto the given Worklist.
2694static void
2695PushDefUseChildren(Instruction *I,
2696 SmallVectorImpl<Instruction *> &Worklist) {
2697 // Push the def-use children onto the Worklist stack.
2698 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2699 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002700 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002701}
2702
2703/// ForgetSymbolicValue - This looks up computed SCEV values for all
2704/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002705/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002706/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002707void
Dan Gohman85669632010-02-25 06:57:05 +00002708ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002709 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002710 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002711
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002712 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002713 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002714 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002715 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002716 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002717
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002718 ValueExprMapType::iterator It =
2719 ValueExprMap.find(static_cast<Value *>(I));
2720 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002721 const SCEV *Old = It->second;
2722
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002723 // Short-circuit the def-use traversal if the symbolic name
2724 // ceases to appear in expressions.
Dan Gohman6678e7b2010-11-17 02:44:44 +00002725 if (Old != SymName && !Old->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002726 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002727
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002728 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002729 // structure, it's a PHI that's in the progress of being computed
2730 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2731 // additional loop trip count information isn't going to change anything.
2732 // In the second case, createNodeForPHI will perform the necessary
2733 // updates on its own when it gets to that point. In the third, we do
2734 // want to forget the SCEVUnknown.
2735 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002736 !isa<SCEVUnknown>(Old) ||
2737 (I != PN && Old == SymName)) {
2738 ValuesAtScopes.erase(Old);
2739 UnsignedRanges.erase(Old);
2740 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002741 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002742 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002743 }
2744
2745 PushDefUseChildren(I, Worklist);
2746 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002747}
Chris Lattner53e677a2004-04-02 20:23:17 +00002748
2749/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2750/// a loop header, making it a potential recurrence, or it doesn't.
2751///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002752const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002753 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2754 if (L->getHeader() == PN->getParent()) {
2755 // The loop may have multiple entrances or multiple exits; we can analyze
2756 // this phi as an addrec if it has a unique entry value and a unique
2757 // backedge value.
2758 Value *BEValueV = 0, *StartValueV = 0;
2759 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2760 Value *V = PN->getIncomingValue(i);
2761 if (L->contains(PN->getIncomingBlock(i))) {
2762 if (!BEValueV) {
2763 BEValueV = V;
2764 } else if (BEValueV != V) {
2765 BEValueV = 0;
2766 break;
2767 }
2768 } else if (!StartValueV) {
2769 StartValueV = V;
2770 } else if (StartValueV != V) {
2771 StartValueV = 0;
2772 break;
2773 }
2774 }
2775 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002776 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002777 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002778 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002779 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002780 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002781
2782 // Using this symbolic name for the PHI, analyze the value coming around
2783 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002784 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002785
2786 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2787 // has a special value for the first iteration of the loop.
2788
2789 // If the value coming around the backedge is an add with the symbolic
2790 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002791 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002792 // If there is a single occurrence of the symbolic value, replace it
2793 // with a recurrence.
2794 unsigned FoundIndex = Add->getNumOperands();
2795 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2796 if (Add->getOperand(i) == SymbolicName)
2797 if (FoundIndex == e) {
2798 FoundIndex = i;
2799 break;
2800 }
2801
2802 if (FoundIndex != Add->getNumOperands()) {
2803 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002804 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002805 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2806 if (i != FoundIndex)
2807 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002808 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002809
2810 // This is not a valid addrec if the step amount is varying each
2811 // loop iteration, but is not itself an addrec in this loop.
2812 if (Accum->isLoopInvariant(L) ||
2813 (isa<SCEVAddRecExpr>(Accum) &&
2814 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002815 bool HasNUW = false;
2816 bool HasNSW = false;
2817
2818 // If the increment doesn't overflow, then neither the addrec nor
2819 // the post-increment will overflow.
2820 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2821 if (OBO->hasNoUnsignedWrap())
2822 HasNUW = true;
2823 if (OBO->hasNoSignedWrap())
2824 HasNSW = true;
2825 }
2826
Dan Gohman27dead42010-04-12 07:49:36 +00002827 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002828 const SCEV *PHISCEV =
2829 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002830
Dan Gohmana10756e2010-01-21 02:09:26 +00002831 // Since the no-wrap flags are on the increment, they apply to the
2832 // post-incremented value as well.
2833 if (Accum->isLoopInvariant(L))
2834 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2835 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002836
2837 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002838 // to be symbolic. We now need to go back and purge all of the
2839 // entries for the scalars that use the symbolic expression.
2840 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002841 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002842 return PHISCEV;
2843 }
2844 }
Dan Gohman622ed672009-05-04 22:02:23 +00002845 } else if (const SCEVAddRecExpr *AddRec =
2846 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002847 // Otherwise, this could be a loop like this:
2848 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2849 // In this case, j = {1,+,1} and BEValue is j.
2850 // Because the other in-value of i (0) fits the evolution of BEValue
2851 // i really is an addrec evolution.
2852 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002853 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002854
2855 // If StartVal = j.start - j.stride, we can use StartVal as the
2856 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002857 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002858 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002859 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002860 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002861
2862 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002863 // to be symbolic. We now need to go back and purge all of the
2864 // entries for the scalars that use the symbolic expression.
2865 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002866 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002867 return PHISCEV;
2868 }
2869 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002870 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002871 }
Dan Gohman27dead42010-04-12 07:49:36 +00002872 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002873
Dan Gohman85669632010-02-25 06:57:05 +00002874 // If the PHI has a single incoming value, follow that value, unless the
2875 // PHI's incoming blocks are in a different loop, in which case doing so
2876 // risks breaking LCSSA form. Instcombine would normally zap these, but
2877 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsa0c52442010-11-17 04:18:45 +00002878 if (Value *V = SimplifyInstruction(PN, TD, DT)) {
2879 // TODO: The following check is suboptimal. For example, it is pointless
2880 // if V is a constant. Since the problematic case is if V is defined inside
2881 // a deeper loop, it would be better to check for that directly.
Dan Gohman85669632010-02-25 06:57:05 +00002882 bool AllSameLoop = true;
2883 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2884 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2885 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2886 AllSameLoop = false;
2887 break;
2888 }
2889 if (AllSameLoop)
2890 return getSCEV(V);
2891 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002892
Chris Lattner53e677a2004-04-02 20:23:17 +00002893 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002894 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002895}
2896
Dan Gohman26466c02009-05-08 20:26:55 +00002897/// createNodeForGEP - Expand GEP instructions into add and multiply
2898/// operations. This allows them to be analyzed by regular SCEV code.
2899///
Dan Gohmand281ed22009-12-18 02:09:29 +00002900const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002901
Dan Gohmanb9f96512010-06-30 07:16:37 +00002902 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2903 // Add expression, because the Instruction may be guarded by control flow
2904 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002905 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002906
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002907 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002908 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002909 // Don't attempt to analyze GEPs over unsized objects.
2910 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2911 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002912 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002913 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002914 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002915 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002916 I != E; ++I) {
2917 Value *Index = *I;
2918 // Compute the (potentially symbolic) offset in bytes for this index.
2919 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2920 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002921 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002922 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2923
Dan Gohmanb9f96512010-06-30 07:16:37 +00002924 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002925 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002926 } else {
2927 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002928 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2929 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002930 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002931 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2932
Dan Gohmanb9f96512010-06-30 07:16:37 +00002933 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002934 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002935
2936 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002937 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002938 }
2939 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002940
2941 // Get the SCEV for the GEP base.
2942 const SCEV *BaseS = getSCEV(Base);
2943
Dan Gohmanb9f96512010-06-30 07:16:37 +00002944 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002945 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002946}
2947
Nick Lewycky83bb0052007-11-22 07:59:40 +00002948/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2949/// guaranteed to end in (at every loop iteration). It is, at the same time,
2950/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2951/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002952uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002953ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002954 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002955 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002956
Dan Gohman622ed672009-05-04 22:02:23 +00002957 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002958 return std::min(GetMinTrailingZeros(T->getOperand()),
2959 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002960
Dan Gohman622ed672009-05-04 22:02:23 +00002961 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002962 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2963 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2964 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002965 }
2966
Dan Gohman622ed672009-05-04 22:02:23 +00002967 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002968 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2969 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2970 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002971 }
2972
Dan Gohman622ed672009-05-04 22:02:23 +00002973 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002974 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002975 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002976 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002977 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002978 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002979 }
2980
Dan Gohman622ed672009-05-04 22:02:23 +00002981 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002982 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002983 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2984 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002985 for (unsigned i = 1, e = M->getNumOperands();
2986 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002987 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002988 BitWidth);
2989 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002990 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002991
Dan Gohman622ed672009-05-04 22:02:23 +00002992 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002993 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002994 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002995 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002996 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002997 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002998 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002999
Dan Gohman622ed672009-05-04 22:02:23 +00003000 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003001 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003002 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003003 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003004 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003005 return MinOpRes;
3006 }
3007
Dan Gohman622ed672009-05-04 22:02:23 +00003008 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003009 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003010 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003011 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003013 return MinOpRes;
3014 }
3015
Dan Gohman2c364ad2009-06-19 23:29:04 +00003016 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3017 // For a SCEVUnknown, ask ValueTracking.
3018 unsigned BitWidth = getTypeSizeInBits(U->getType());
3019 APInt Mask = APInt::getAllOnesValue(BitWidth);
3020 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3021 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3022 return Zeros.countTrailingOnes();
3023 }
3024
3025 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003026 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003027}
Chris Lattner53e677a2004-04-02 20:23:17 +00003028
Dan Gohman85b05a22009-07-13 21:35:55 +00003029/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3030///
3031ConstantRange
3032ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003033 // See if we've computed this range already.
3034 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3035 if (I != UnsignedRanges.end())
3036 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003037
3038 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003039 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003040
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003041 unsigned BitWidth = getTypeSizeInBits(S->getType());
3042 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3043
3044 // If the value has known zeros, the maximum unsigned value will have those
3045 // known zeros as well.
3046 uint32_t TZ = GetMinTrailingZeros(S);
3047 if (TZ != 0)
3048 ConservativeResult =
3049 ConstantRange(APInt::getMinValue(BitWidth),
3050 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3051
Dan Gohman85b05a22009-07-13 21:35:55 +00003052 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3053 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3054 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3055 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003056 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003057 }
3058
3059 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3060 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3061 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3062 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003063 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 }
3065
3066 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3067 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3068 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3069 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003070 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003071 }
3072
3073 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3074 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3075 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3076 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003077 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003078 }
3079
3080 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3081 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3082 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003083 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 }
3085
3086 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3087 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003088 return setUnsignedRange(ZExt,
3089 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003090 }
3091
3092 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3093 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003094 return setUnsignedRange(SExt,
3095 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003096 }
3097
3098 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3099 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003100 return setUnsignedRange(Trunc,
3101 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003102 }
3103
Dan Gohman85b05a22009-07-13 21:35:55 +00003104 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003105 // If there's no unsigned wrap, the value will never be less than its
3106 // initial value.
3107 if (AddRec->hasNoUnsignedWrap())
3108 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003109 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003110 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003111 ConservativeResult.intersectWith(
3112 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003113
3114 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003115 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003116 const Type *Ty = AddRec->getType();
3117 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003118 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3119 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003120 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3121
3122 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003123 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003124
3125 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003126 ConstantRange StepRange = getSignedRange(Step);
3127 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3128 ConstantRange EndRange =
3129 StartRange.add(MaxBECountRange.multiply(StepRange));
3130
3131 // Check for overflow. This must be done with ConstantRange arithmetic
3132 // because we could be called from within the ScalarEvolution overflow
3133 // checking code.
3134 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3135 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3136 ConstantRange ExtMaxBECountRange =
3137 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3138 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3139 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3140 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003141 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003142
Dan Gohman85b05a22009-07-13 21:35:55 +00003143 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3144 EndRange.getUnsignedMin());
3145 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3146 EndRange.getUnsignedMax());
3147 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003148 return setUnsignedRange(AddRec, ConservativeResult);
3149 return setUnsignedRange(AddRec,
3150 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003151 }
3152 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003153
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003154 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003155 }
3156
3157 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3158 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003159 APInt Mask = APInt::getAllOnesValue(BitWidth);
3160 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3161 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003162 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003163 return setUnsignedRange(U, ConservativeResult);
3164 return setUnsignedRange(U,
3165 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003166 }
3167
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003168 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003169}
3170
Dan Gohman85b05a22009-07-13 21:35:55 +00003171/// getSignedRange - Determine the signed range for a particular SCEV.
3172///
3173ConstantRange
3174ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003175 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3176 if (I != SignedRanges.end())
3177 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003178
Dan Gohman85b05a22009-07-13 21:35:55 +00003179 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003180 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003181
Dan Gohman52fddd32010-01-26 04:40:18 +00003182 unsigned BitWidth = getTypeSizeInBits(S->getType());
3183 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3184
3185 // If the value has known zeros, the maximum signed value will have those
3186 // known zeros as well.
3187 uint32_t TZ = GetMinTrailingZeros(S);
3188 if (TZ != 0)
3189 ConservativeResult =
3190 ConstantRange(APInt::getSignedMinValue(BitWidth),
3191 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3192
Dan Gohman85b05a22009-07-13 21:35:55 +00003193 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3194 ConstantRange X = getSignedRange(Add->getOperand(0));
3195 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3196 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003197 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003198 }
3199
Dan Gohman85b05a22009-07-13 21:35:55 +00003200 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3201 ConstantRange X = getSignedRange(Mul->getOperand(0));
3202 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3203 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003204 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003205 }
3206
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3208 ConstantRange X = getSignedRange(SMax->getOperand(0));
3209 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3210 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003211 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003212 }
Dan Gohman62849c02009-06-24 01:05:09 +00003213
Dan Gohman85b05a22009-07-13 21:35:55 +00003214 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3215 ConstantRange X = getSignedRange(UMax->getOperand(0));
3216 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3217 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003218 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003219 }
Dan Gohman62849c02009-06-24 01:05:09 +00003220
Dan Gohman85b05a22009-07-13 21:35:55 +00003221 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3222 ConstantRange X = getSignedRange(UDiv->getLHS());
3223 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003224 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003225 }
Dan Gohman62849c02009-06-24 01:05:09 +00003226
Dan Gohman85b05a22009-07-13 21:35:55 +00003227 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3228 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003229 return setSignedRange(ZExt,
3230 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003231 }
3232
3233 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3234 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003235 return setSignedRange(SExt,
3236 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003237 }
3238
3239 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3240 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003241 return setSignedRange(Trunc,
3242 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003243 }
3244
Dan Gohman85b05a22009-07-13 21:35:55 +00003245 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003246 // If there's no signed wrap, and all the operands have the same sign or
3247 // zero, the value won't ever change sign.
3248 if (AddRec->hasNoSignedWrap()) {
3249 bool AllNonNeg = true;
3250 bool AllNonPos = true;
3251 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3252 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3253 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3254 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003255 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003256 ConservativeResult = ConservativeResult.intersectWith(
3257 ConstantRange(APInt(BitWidth, 0),
3258 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003259 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003260 ConservativeResult = ConservativeResult.intersectWith(
3261 ConstantRange(APInt::getSignedMinValue(BitWidth),
3262 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003263 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003264
3265 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003266 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003267 const Type *Ty = AddRec->getType();
3268 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003269 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3270 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003271 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3272
3273 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003274 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003275
3276 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003277 ConstantRange StepRange = getSignedRange(Step);
3278 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3279 ConstantRange EndRange =
3280 StartRange.add(MaxBECountRange.multiply(StepRange));
3281
3282 // Check for overflow. This must be done with ConstantRange arithmetic
3283 // because we could be called from within the ScalarEvolution overflow
3284 // checking code.
3285 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3286 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3287 ConstantRange ExtMaxBECountRange =
3288 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3289 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3290 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3291 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003292 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003293
Dan Gohman85b05a22009-07-13 21:35:55 +00003294 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3295 EndRange.getSignedMin());
3296 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3297 EndRange.getSignedMax());
3298 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003299 return setSignedRange(AddRec, ConservativeResult);
3300 return setSignedRange(AddRec,
3301 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003302 }
Dan Gohman62849c02009-06-24 01:05:09 +00003303 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003304
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003305 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003306 }
3307
Dan Gohman2c364ad2009-06-19 23:29:04 +00003308 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3309 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003310 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003311 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003312 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3313 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003314 return setSignedRange(U, ConservativeResult);
3315 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003316 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003318 }
3319
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003320 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003321}
3322
Chris Lattner53e677a2004-04-02 20:23:17 +00003323/// createSCEV - We know that there is no SCEV for the specified value.
3324/// Analyze the expression.
3325///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003326const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003327 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003328 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003329
Dan Gohman6c459a22008-06-22 19:56:46 +00003330 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003331 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003332 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003333
3334 // Don't attempt to analyze instructions in blocks that aren't
3335 // reachable. Such instructions don't matter, and they aren't required
3336 // to obey basic rules for definitions dominating uses which this
3337 // analysis depends on.
3338 if (!DT->isReachableFromEntry(I->getParent()))
3339 return getUnknown(V);
3340 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003341 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003342 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3343 return getConstant(CI);
3344 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003345 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003346 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3347 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003348 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003349 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003350
Dan Gohmanca178902009-07-17 20:47:02 +00003351 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003352 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003353 case Instruction::Add: {
3354 // The simple thing to do would be to just call getSCEV on both operands
3355 // and call getAddExpr with the result. However if we're looking at a
3356 // bunch of things all added together, this can be quite inefficient,
3357 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3358 // Instead, gather up all the operands and make a single getAddExpr call.
3359 // LLVM IR canonical form means we need only traverse the left operands.
3360 SmallVector<const SCEV *, 4> AddOps;
3361 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003362 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3363 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3364 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3365 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003366 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003367 const SCEV *Op1 = getSCEV(U->getOperand(1));
3368 if (Opcode == Instruction::Sub)
3369 AddOps.push_back(getNegativeSCEV(Op1));
3370 else
3371 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003372 }
3373 AddOps.push_back(getSCEV(U->getOperand(0)));
3374 return getAddExpr(AddOps);
3375 }
3376 case Instruction::Mul: {
3377 // See the Add code above.
3378 SmallVector<const SCEV *, 4> MulOps;
3379 MulOps.push_back(getSCEV(U->getOperand(1)));
3380 for (Value *Op = U->getOperand(0);
3381 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3382 Op = U->getOperand(0)) {
3383 U = cast<Operator>(Op);
3384 MulOps.push_back(getSCEV(U->getOperand(1)));
3385 }
3386 MulOps.push_back(getSCEV(U->getOperand(0)));
3387 return getMulExpr(MulOps);
3388 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003389 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003390 return getUDivExpr(getSCEV(U->getOperand(0)),
3391 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003392 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 return getMinusSCEV(getSCEV(U->getOperand(0)),
3394 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003395 case Instruction::And:
3396 // For an expression like x&255 that merely masks off the high bits,
3397 // use zext(trunc(x)) as the SCEV expression.
3398 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003399 if (CI->isNullValue())
3400 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003401 if (CI->isAllOnesValue())
3402 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003403 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003404
3405 // Instcombine's ShrinkDemandedConstant may strip bits out of
3406 // constants, obscuring what would otherwise be a low-bits mask.
3407 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3408 // knew about to reconstruct a low-bits mask value.
3409 unsigned LZ = A.countLeadingZeros();
3410 unsigned BitWidth = A.getBitWidth();
3411 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3412 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3413 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3414
3415 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3416
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003417 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003418 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003419 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003420 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003421 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003422 }
3423 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003424
Dan Gohman6c459a22008-06-22 19:56:46 +00003425 case Instruction::Or:
3426 // If the RHS of the Or is a constant, we may have something like:
3427 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3428 // optimizations will transparently handle this case.
3429 //
3430 // In order for this transformation to be safe, the LHS must be of the
3431 // form X*(2^n) and the Or constant must be less than 2^n.
3432 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003433 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003434 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003435 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003436 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3437 // Build a plain add SCEV.
3438 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3439 // If the LHS of the add was an addrec and it has no-wrap flags,
3440 // transfer the no-wrap flags, since an or won't introduce a wrap.
3441 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3442 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3443 if (OldAR->hasNoUnsignedWrap())
3444 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3445 if (OldAR->hasNoSignedWrap())
3446 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3447 }
3448 return S;
3449 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003450 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003451 break;
3452 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003454 // If the RHS of the xor is a signbit, then this is just an add.
3455 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003456 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003457 return getAddExpr(getSCEV(U->getOperand(0)),
3458 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003459
3460 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003461 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003462 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003463
3464 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3465 // This is a variant of the check for xor with -1, and it handles
3466 // the case where instcombine has trimmed non-demanded bits out
3467 // of an xor with -1.
3468 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3469 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3470 if (BO->getOpcode() == Instruction::And &&
3471 LCI->getValue() == CI->getValue())
3472 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003473 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003474 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003475 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003476 const Type *Z0Ty = Z0->getType();
3477 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3478
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003479 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003480 // mask off the high bits. Complement the operand and
3481 // re-apply the zext.
3482 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3483 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3484
3485 // If C is a single bit, it may be in the sign-bit position
3486 // before the zero-extend. In this case, represent the xor
3487 // using an add, which is equivalent, and re-apply the zext.
3488 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3489 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3490 Trunc.isSignBit())
3491 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3492 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003493 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003494 }
3495 break;
3496
3497 case Instruction::Shl:
3498 // Turn shift left of a constant amount into a multiply.
3499 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003500 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003501
3502 // If the shift count is not less than the bitwidth, the result of
3503 // the shift is undefined. Don't try to analyze it, because the
3504 // resolution chosen here may differ from the resolution chosen in
3505 // other parts of the compiler.
3506 if (SA->getValue().uge(BitWidth))
3507 break;
3508
Owen Andersoneed707b2009-07-24 23:12:02 +00003509 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003510 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003511 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003512 }
3513 break;
3514
Nick Lewycky01eaf802008-07-07 06:15:49 +00003515 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003516 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003517 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003518 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003519
3520 // If the shift count is not less than the bitwidth, the result of
3521 // the shift is undefined. Don't try to analyze it, because the
3522 // resolution chosen here may differ from the resolution chosen in
3523 // other parts of the compiler.
3524 if (SA->getValue().uge(BitWidth))
3525 break;
3526
Owen Andersoneed707b2009-07-24 23:12:02 +00003527 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003528 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003529 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003530 }
3531 break;
3532
Dan Gohman4ee29af2009-04-21 02:26:00 +00003533 case Instruction::AShr:
3534 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3535 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003536 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003537 if (L->getOpcode() == Instruction::Shl &&
3538 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003539 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3540
3541 // If the shift count is not less than the bitwidth, the result of
3542 // the shift is undefined. Don't try to analyze it, because the
3543 // resolution chosen here may differ from the resolution chosen in
3544 // other parts of the compiler.
3545 if (CI->getValue().uge(BitWidth))
3546 break;
3547
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003548 uint64_t Amt = BitWidth - CI->getZExtValue();
3549 if (Amt == BitWidth)
3550 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003551 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003552 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003553 IntegerType::get(getContext(),
3554 Amt)),
3555 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003556 }
3557 break;
3558
Dan Gohman6c459a22008-06-22 19:56:46 +00003559 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003560 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003561
3562 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003564
3565 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003566 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003567
3568 case Instruction::BitCast:
3569 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003570 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003571 return getSCEV(U->getOperand(0));
3572 break;
3573
Dan Gohman4f8eea82010-02-01 18:27:38 +00003574 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3575 // lead to pointer expressions which cannot safely be expanded to GEPs,
3576 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3577 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003578
Dan Gohman26466c02009-05-08 20:26:55 +00003579 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003580 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003581
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 case Instruction::PHI:
3583 return createNodeForPHI(cast<PHINode>(U));
3584
3585 case Instruction::Select:
3586 // This could be a smax or umax that was lowered earlier.
3587 // Try to recover it.
3588 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3589 Value *LHS = ICI->getOperand(0);
3590 Value *RHS = ICI->getOperand(1);
3591 switch (ICI->getPredicate()) {
3592 case ICmpInst::ICMP_SLT:
3593 case ICmpInst::ICMP_SLE:
3594 std::swap(LHS, RHS);
3595 // fall through
3596 case ICmpInst::ICMP_SGT:
3597 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003598 // a >s b ? a+x : b+x -> smax(a, b)+x
3599 // a >s b ? b+x : a+x -> smin(a, b)+x
3600 if (LHS->getType() == U->getType()) {
3601 const SCEV *LS = getSCEV(LHS);
3602 const SCEV *RS = getSCEV(RHS);
3603 const SCEV *LA = getSCEV(U->getOperand(1));
3604 const SCEV *RA = getSCEV(U->getOperand(2));
3605 const SCEV *LDiff = getMinusSCEV(LA, LS);
3606 const SCEV *RDiff = getMinusSCEV(RA, RS);
3607 if (LDiff == RDiff)
3608 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3609 LDiff = getMinusSCEV(LA, RS);
3610 RDiff = getMinusSCEV(RA, LS);
3611 if (LDiff == RDiff)
3612 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3613 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003614 break;
3615 case ICmpInst::ICMP_ULT:
3616 case ICmpInst::ICMP_ULE:
3617 std::swap(LHS, RHS);
3618 // fall through
3619 case ICmpInst::ICMP_UGT:
3620 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003621 // a >u b ? a+x : b+x -> umax(a, b)+x
3622 // a >u b ? b+x : a+x -> umin(a, b)+x
3623 if (LHS->getType() == U->getType()) {
3624 const SCEV *LS = getSCEV(LHS);
3625 const SCEV *RS = getSCEV(RHS);
3626 const SCEV *LA = getSCEV(U->getOperand(1));
3627 const SCEV *RA = getSCEV(U->getOperand(2));
3628 const SCEV *LDiff = getMinusSCEV(LA, LS);
3629 const SCEV *RDiff = getMinusSCEV(RA, RS);
3630 if (LDiff == RDiff)
3631 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3632 LDiff = getMinusSCEV(LA, RS);
3633 RDiff = getMinusSCEV(RA, LS);
3634 if (LDiff == RDiff)
3635 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3636 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003637 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003638 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003639 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3640 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003641 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003642 cast<ConstantInt>(RHS)->isZero()) {
3643 const SCEV *One = getConstant(LHS->getType(), 1);
3644 const SCEV *LS = getSCEV(LHS);
3645 const SCEV *LA = getSCEV(U->getOperand(1));
3646 const SCEV *RA = getSCEV(U->getOperand(2));
3647 const SCEV *LDiff = getMinusSCEV(LA, LS);
3648 const SCEV *RDiff = getMinusSCEV(RA, One);
3649 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003650 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003651 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003652 break;
3653 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003654 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3655 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003656 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003657 cast<ConstantInt>(RHS)->isZero()) {
3658 const SCEV *One = getConstant(LHS->getType(), 1);
3659 const SCEV *LS = getSCEV(LHS);
3660 const SCEV *LA = getSCEV(U->getOperand(1));
3661 const SCEV *RA = getSCEV(U->getOperand(2));
3662 const SCEV *LDiff = getMinusSCEV(LA, One);
3663 const SCEV *RDiff = getMinusSCEV(RA, LS);
3664 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003665 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003666 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003667 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003668 default:
3669 break;
3670 }
3671 }
3672
3673 default: // We cannot analyze this expression.
3674 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003675 }
3676
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003677 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003678}
3679
3680
3681
3682//===----------------------------------------------------------------------===//
3683// Iteration Count Computation Code
3684//
3685
Dan Gohman46bdfb02009-02-24 18:55:53 +00003686/// getBackedgeTakenCount - If the specified loop has a predictable
3687/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3688/// object. The backedge-taken count is the number of times the loop header
3689/// will be branched to from within the loop. This is one less than the
3690/// trip count of the loop, since it doesn't count the first iteration,
3691/// when the header is branched to from outside the loop.
3692///
3693/// Note that it is not valid to call this method on a loop without a
3694/// loop-invariant backedge-taken count (see
3695/// hasLoopInvariantBackedgeTakenCount).
3696///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003697const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003698 return getBackedgeTakenInfo(L).Exact;
3699}
3700
3701/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3702/// return the least SCEV value that is known never to be less than the
3703/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003704const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003705 return getBackedgeTakenInfo(L).Max;
3706}
3707
Dan Gohman59ae6b92009-07-08 19:23:34 +00003708/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3709/// onto the given Worklist.
3710static void
3711PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3712 BasicBlock *Header = L->getHeader();
3713
3714 // Push all Loop-header PHIs onto the Worklist stack.
3715 for (BasicBlock::iterator I = Header->begin();
3716 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3717 Worklist.push_back(PN);
3718}
3719
Dan Gohmana1af7572009-04-30 20:47:05 +00003720const ScalarEvolution::BackedgeTakenInfo &
3721ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003722 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003723 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003724 // update the value. The temporary CouldNotCompute value tells SCEV
3725 // code elsewhere that it shouldn't attempt to request a new
3726 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003727 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003728 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3729 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003730 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3731 if (BECount.Exact != getCouldNotCompute()) {
3732 assert(BECount.Exact->isLoopInvariant(L) &&
3733 BECount.Max->isLoopInvariant(L) &&
3734 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003735 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003736
Dan Gohman01ecca22009-04-27 20:16:15 +00003737 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003738 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003739 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003740 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003741 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003742 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003743 if (isa<PHINode>(L->getHeader()->begin()))
3744 // Only count loops that have phi nodes as not being computable.
3745 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003746 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003747
3748 // Now that we know more about the trip count for this loop, forget any
3749 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003750 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003751 // information. This is similar to the code in forgetLoop, except that
3752 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003753 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003754 SmallVector<Instruction *, 16> Worklist;
3755 PushLoopPHIs(L, Worklist);
3756
3757 SmallPtrSet<Instruction *, 8> Visited;
3758 while (!Worklist.empty()) {
3759 Instruction *I = Worklist.pop_back_val();
3760 if (!Visited.insert(I)) continue;
3761
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003762 ValueExprMapType::iterator It =
3763 ValueExprMap.find(static_cast<Value *>(I));
3764 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003765 const SCEV *Old = It->second;
3766
Dan Gohman59ae6b92009-07-08 19:23:34 +00003767 // SCEVUnknown for a PHI either means that it has an unrecognized
3768 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003769 // by createNodeForPHI. In the former case, additional loop trip
3770 // count information isn't going to change anything. In the later
3771 // case, createNodeForPHI will perform the necessary updates on its
3772 // own when it gets to that point.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003773 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3774 ValuesAtScopes.erase(Old);
3775 UnsignedRanges.erase(Old);
3776 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003777 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003778 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003779 if (PHINode *PN = dyn_cast<PHINode>(I))
3780 ConstantEvolutionLoopExitValue.erase(PN);
3781 }
3782
3783 PushDefUseChildren(I, Worklist);
3784 }
3785 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003786 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003787 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003788}
3789
Dan Gohman4c7279a2009-10-31 15:04:55 +00003790/// forgetLoop - This method should be called by the client when it has
3791/// changed a loop in a way that may effect ScalarEvolution's ability to
3792/// compute a trip count, or if the loop is deleted.
3793void ScalarEvolution::forgetLoop(const Loop *L) {
3794 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003795 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003796
Dan Gohman4c7279a2009-10-31 15:04:55 +00003797 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003798 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003799 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003800
Dan Gohman59ae6b92009-07-08 19:23:34 +00003801 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003802 while (!Worklist.empty()) {
3803 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003804 if (!Visited.insert(I)) continue;
3805
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003806 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3807 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003808 const SCEV *Old = It->second;
3809 ValuesAtScopes.erase(Old);
3810 UnsignedRanges.erase(Old);
3811 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003812 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003813 if (PHINode *PN = dyn_cast<PHINode>(I))
3814 ConstantEvolutionLoopExitValue.erase(PN);
3815 }
3816
3817 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003818 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003819
3820 // Forget all contained loops too, to avoid dangling entries in the
3821 // ValuesAtScopes map.
3822 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3823 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003824}
3825
Eric Christophere6cbfa62010-07-29 01:25:38 +00003826/// forgetValue - This method should be called by the client when it has
3827/// changed a value in a way that may effect its value, or which may
3828/// disconnect it from a def-use chain linking it to a loop.
3829void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003830 Instruction *I = dyn_cast<Instruction>(V);
3831 if (!I) return;
3832
3833 // Drop information about expressions based on loop-header PHIs.
3834 SmallVector<Instruction *, 16> Worklist;
3835 Worklist.push_back(I);
3836
3837 SmallPtrSet<Instruction *, 8> Visited;
3838 while (!Worklist.empty()) {
3839 I = Worklist.pop_back_val();
3840 if (!Visited.insert(I)) continue;
3841
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003842 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3843 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003844 const SCEV *Old = It->second;
3845 ValuesAtScopes.erase(Old);
3846 UnsignedRanges.erase(Old);
3847 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003848 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003849 if (PHINode *PN = dyn_cast<PHINode>(I))
3850 ConstantEvolutionLoopExitValue.erase(PN);
3851 }
3852
3853 PushDefUseChildren(I, Worklist);
3854 }
3855}
3856
Dan Gohman46bdfb02009-02-24 18:55:53 +00003857/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3858/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003859ScalarEvolution::BackedgeTakenInfo
3860ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003861 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003862 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003863
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003865 const SCEV *BECount = getCouldNotCompute();
3866 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003867 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003868 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3869 BackedgeTakenInfo NewBTI =
3870 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003871
Dan Gohman1c343752009-06-27 21:21:31 +00003872 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003874 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003875 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003876 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003878 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003879 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003880 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003881 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003882 }
Dan Gohman1c343752009-06-27 21:21:31 +00003883 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003884 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003885 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003886 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003887 }
3888
3889 return BackedgeTakenInfo(BECount, MaxBECount);
3890}
3891
3892/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3893/// of the specified loop will execute if it exits via the specified block.
3894ScalarEvolution::BackedgeTakenInfo
3895ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3896 BasicBlock *ExitingBlock) {
3897
3898 // Okay, we've chosen an exiting block. See what condition causes us to
3899 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003900 //
3901 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003902 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003903 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003904 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003905
Chris Lattner8b0e3602007-01-07 02:24:26 +00003906 // At this point, we know we have a conditional branch that determines whether
3907 // the loop is exited. However, we don't know if the branch is executed each
3908 // time through the loop. If not, then the execution count of the branch will
3909 // not be equal to the trip count of the loop.
3910 //
3911 // Currently we check for this by checking to see if the Exit branch goes to
3912 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003913 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003914 // loop header. This is common for un-rotated loops.
3915 //
3916 // If both of those tests fail, walk up the unique predecessor chain to the
3917 // header, stopping if there is an edge that doesn't exit the loop. If the
3918 // header is reached, the execution count of the branch will be equal to the
3919 // trip count of the loop.
3920 //
3921 // More extensive analysis could be done to handle more cases here.
3922 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003923 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003924 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003925 ExitBr->getParent() != L->getHeader()) {
3926 // The simple checks failed, try climbing the unique predecessor chain
3927 // up to the header.
3928 bool Ok = false;
3929 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3930 BasicBlock *Pred = BB->getUniquePredecessor();
3931 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003932 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003933 TerminatorInst *PredTerm = Pred->getTerminator();
3934 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3935 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3936 if (PredSucc == BB)
3937 continue;
3938 // If the predecessor has a successor that isn't BB and isn't
3939 // outside the loop, assume the worst.
3940 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003941 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003942 }
3943 if (Pred == L->getHeader()) {
3944 Ok = true;
3945 break;
3946 }
3947 BB = Pred;
3948 }
3949 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003950 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003951 }
3952
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003953 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003954 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3955 ExitBr->getSuccessor(0),
3956 ExitBr->getSuccessor(1));
3957}
3958
3959/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3960/// backedge of the specified loop will execute if its exit condition
3961/// were a conditional branch of ExitCond, TBB, and FBB.
3962ScalarEvolution::BackedgeTakenInfo
3963ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3964 Value *ExitCond,
3965 BasicBlock *TBB,
3966 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003967 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003968 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3969 if (BO->getOpcode() == Instruction::And) {
3970 // Recurse on the operands of the and.
3971 BackedgeTakenInfo BTI0 =
3972 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3973 BackedgeTakenInfo BTI1 =
3974 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003975 const SCEV *BECount = getCouldNotCompute();
3976 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003977 if (L->contains(TBB)) {
3978 // Both conditions must be true for the loop to continue executing.
3979 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003980 if (BTI0.Exact == getCouldNotCompute() ||
3981 BTI1.Exact == getCouldNotCompute())
3982 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003983 else
3984 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003985 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003986 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003987 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003988 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003989 else
3990 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003991 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003992 // Both conditions must be true at the same time for the loop to exit.
3993 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003994 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003995 if (BTI0.Max == BTI1.Max)
3996 MaxBECount = BTI0.Max;
3997 if (BTI0.Exact == BTI1.Exact)
3998 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003999 }
4000
4001 return BackedgeTakenInfo(BECount, MaxBECount);
4002 }
4003 if (BO->getOpcode() == Instruction::Or) {
4004 // Recurse on the operands of the or.
4005 BackedgeTakenInfo BTI0 =
4006 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4007 BackedgeTakenInfo BTI1 =
4008 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004009 const SCEV *BECount = getCouldNotCompute();
4010 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004011 if (L->contains(FBB)) {
4012 // Both conditions must be false for the loop to continue executing.
4013 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00004014 if (BTI0.Exact == getCouldNotCompute() ||
4015 BTI1.Exact == getCouldNotCompute())
4016 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004017 else
4018 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00004019 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004020 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004021 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004022 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004023 else
4024 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004025 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004026 // Both conditions must be false at the same time for the loop to exit.
4027 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004028 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00004029 if (BTI0.Max == BTI1.Max)
4030 MaxBECount = BTI0.Max;
4031 if (BTI0.Exact == BTI1.Exact)
4032 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004033 }
4034
4035 return BackedgeTakenInfo(BECount, MaxBECount);
4036 }
4037 }
4038
4039 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004040 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004041 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4042 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004043
Dan Gohman00cb5b72010-02-19 18:12:07 +00004044 // Check for a constant condition. These are normally stripped out by
4045 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4046 // preserve the CFG and is temporarily leaving constant conditions
4047 // in place.
4048 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4049 if (L->contains(FBB) == !CI->getZExtValue())
4050 // The backedge is always taken.
4051 return getCouldNotCompute();
4052 else
4053 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004054 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004055 }
4056
Eli Friedman361e54d2009-05-09 12:32:42 +00004057 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004058 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4059}
4060
4061/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4062/// backedge of the specified loop will execute if its exit condition
4063/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4064ScalarEvolution::BackedgeTakenInfo
4065ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4066 ICmpInst *ExitCond,
4067 BasicBlock *TBB,
4068 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004069
Reid Spencere4d87aa2006-12-23 06:05:41 +00004070 // If the condition was exit on true, convert the condition to exit on false
4071 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004072 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004073 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004074 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004075 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004076
4077 // Handle common loops like: for (X = "string"; *X; ++X)
4078 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4079 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004080 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004081 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004082 if (ItCnt.hasAnyInfo())
4083 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004084 }
4085
Dan Gohman0bba49c2009-07-07 17:06:11 +00004086 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4087 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004088
4089 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004090 LHS = getSCEVAtScope(LHS, L);
4091 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004092
Dan Gohman64a845e2009-06-24 04:48:43 +00004093 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004094 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004095 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4096 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004097 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004098 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004099 }
4100
Dan Gohman03557dc2010-05-03 16:35:17 +00004101 // Simplify the operands before analyzing them.
4102 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4103
Chris Lattner53e677a2004-04-02 20:23:17 +00004104 // If we have a comparison of a chrec against a constant, try to use value
4105 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004106 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4107 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004108 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004109 // Form the constant range.
4110 ConstantRange CompRange(
4111 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004112
Dan Gohman0bba49c2009-07-07 17:06:11 +00004113 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004114 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004115 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004116
Chris Lattner53e677a2004-04-02 20:23:17 +00004117 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004118 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004119 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004120 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4121 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004122 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004123 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004124 case ICmpInst::ICMP_EQ: { // while (X == Y)
4125 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004126 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4127 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004128 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004129 }
4130 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004131 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4132 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004133 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004134 }
4135 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004136 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4137 getNotSCEV(RHS), L, true);
4138 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004139 break;
4140 }
4141 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004142 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4143 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004144 break;
4145 }
4146 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004147 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4148 getNotSCEV(RHS), L, false);
4149 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004150 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004151 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004152 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004153#if 0
David Greene25e0e872009-12-23 22:18:14 +00004154 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004155 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004156 dbgs() << "[unsigned] ";
4157 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004158 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004159 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004160#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004161 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004162 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004163 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004164 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004165}
4166
Chris Lattner673e02b2004-10-12 01:49:27 +00004167static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004168EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4169 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004170 const SCEV *InVal = SE.getConstant(C);
4171 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004172 assert(isa<SCEVConstant>(Val) &&
4173 "Evaluation of SCEV at constant didn't fold correctly?");
4174 return cast<SCEVConstant>(Val)->getValue();
4175}
4176
4177/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4178/// and a GEP expression (missing the pointer index) indexing into it, return
4179/// the addressed element of the initializer or null if the index expression is
4180/// invalid.
4181static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004182GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004183 const std::vector<ConstantInt*> &Indices) {
4184 Constant *Init = GV->getInitializer();
4185 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004186 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004187 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4188 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4189 Init = cast<Constant>(CS->getOperand(Idx));
4190 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4191 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4192 Init = cast<Constant>(CA->getOperand(Idx));
4193 } else if (isa<ConstantAggregateZero>(Init)) {
4194 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4195 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004196 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004197 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4198 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004199 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004200 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004201 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004202 }
4203 return 0;
4204 } else {
4205 return 0; // Unknown initializer type
4206 }
4207 }
4208 return Init;
4209}
4210
Dan Gohman46bdfb02009-02-24 18:55:53 +00004211/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4212/// 'icmp op load X, cst', try to see if we can compute the backedge
4213/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004214ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004215ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4216 LoadInst *LI,
4217 Constant *RHS,
4218 const Loop *L,
4219 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004220 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004221
4222 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004223 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004224 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004225 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004226
4227 // Make sure that it is really a constant global we are gepping, with an
4228 // initializer, and make sure the first IDX is really 0.
4229 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004230 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004231 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4232 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004233 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004234
4235 // Okay, we allow one non-constant index into the GEP instruction.
4236 Value *VarIdx = 0;
4237 std::vector<ConstantInt*> Indexes;
4238 unsigned VarIdxNum = 0;
4239 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4240 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4241 Indexes.push_back(CI);
4242 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004243 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004244 VarIdx = GEP->getOperand(i);
4245 VarIdxNum = i-2;
4246 Indexes.push_back(0);
4247 }
4248
4249 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4250 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004251 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004252 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004253
4254 // We can only recognize very limited forms of loop index expressions, in
4255 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004256 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004257 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4258 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4259 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004260 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004261
4262 unsigned MaxSteps = MaxBruteForceIterations;
4263 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004264 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004265 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004266 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004267
4268 // Form the GEP offset.
4269 Indexes[VarIdxNum] = Val;
4270
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004271 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004272 if (Result == 0) break; // Cannot compute!
4273
4274 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004275 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004276 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004277 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004278#if 0
David Greene25e0e872009-12-23 22:18:14 +00004279 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004280 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4281 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004282#endif
4283 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004284 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004285 }
4286 }
Dan Gohman1c343752009-06-27 21:21:31 +00004287 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004288}
4289
4290
Chris Lattner3221ad02004-04-17 22:58:41 +00004291/// CanConstantFold - Return true if we can constant fold an instruction of the
4292/// specified type, assuming that all operands were constants.
4293static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004294 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004295 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4296 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004297
Chris Lattner3221ad02004-04-17 22:58:41 +00004298 if (const CallInst *CI = dyn_cast<CallInst>(I))
4299 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004300 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004301 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004302}
4303
Chris Lattner3221ad02004-04-17 22:58:41 +00004304/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4305/// in the loop that V is derived from. We allow arbitrary operations along the
4306/// way, but the operands of an operation must either be constants or a value
4307/// derived from a constant PHI. If this expression does not fit with these
4308/// constraints, return null.
4309static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4310 // If this is not an instruction, or if this is an instruction outside of the
4311 // loop, it can't be derived from a loop PHI.
4312 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004313 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004314
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004315 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004316 if (L->getHeader() == I->getParent())
4317 return PN;
4318 else
4319 // We don't currently keep track of the control flow needed to evaluate
4320 // PHIs, so we cannot handle PHIs inside of loops.
4321 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004322 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004323
4324 // If we won't be able to constant fold this expression even if the operands
4325 // are constants, return early.
4326 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004327
Chris Lattner3221ad02004-04-17 22:58:41 +00004328 // Otherwise, we can evaluate this instruction if all of its operands are
4329 // constant or derived from a PHI node themselves.
4330 PHINode *PHI = 0;
4331 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004332 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004333 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4334 if (P == 0) return 0; // Not evolving from PHI
4335 if (PHI == 0)
4336 PHI = P;
4337 else if (PHI != P)
4338 return 0; // Evolving from multiple different PHIs.
4339 }
4340
4341 // This is a expression evolving from a constant PHI!
4342 return PHI;
4343}
4344
4345/// EvaluateExpression - Given an expression that passes the
4346/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4347/// in the loop has the value PHIVal. If we can't fold this expression for some
4348/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004349static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4350 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004351 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004352 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004353 Instruction *I = cast<Instruction>(V);
4354
Dan Gohman9d4588f2010-06-22 13:15:46 +00004355 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004356
4357 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004358 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004359 if (Operands[i] == 0) return 0;
4360 }
4361
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004362 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004363 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004364 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004365 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004366 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004367}
4368
4369/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4370/// in the header of its containing loop, we know the loop executes a
4371/// constant number of times, and the PHI node is just a recurrence
4372/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004373Constant *
4374ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004375 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004376 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004377 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004378 ConstantEvolutionLoopExitValue.find(PN);
4379 if (I != ConstantEvolutionLoopExitValue.end())
4380 return I->second;
4381
Dan Gohmane0567812010-04-08 23:03:40 +00004382 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004383 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4384
4385 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4386
4387 // Since the loop is canonicalized, the PHI node must have two entries. One
4388 // entry must be a constant (coming in from outside of the loop), and the
4389 // second must be derived from the same PHI.
4390 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4391 Constant *StartCST =
4392 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4393 if (StartCST == 0)
4394 return RetVal = 0; // Must be a constant.
4395
4396 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004397 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4398 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004399 return RetVal = 0; // Not derived from same PHI.
4400
4401 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004402 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004403 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004404
Dan Gohman46bdfb02009-02-24 18:55:53 +00004405 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004406 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004407 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4408 if (IterationNum == NumIterations)
4409 return RetVal = PHIVal; // Got exit value!
4410
4411 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004412 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004413 if (NextPHI == PHIVal)
4414 return RetVal = NextPHI; // Stopped evolving!
4415 if (NextPHI == 0)
4416 return 0; // Couldn't evaluate!
4417 PHIVal = NextPHI;
4418 }
4419}
4420
Dan Gohman07ad19b2009-07-27 16:09:48 +00004421/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004422/// constant number of times (the condition evolves only from constants),
4423/// try to evaluate a few iterations of the loop until we get the exit
4424/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004425/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004426const SCEV *
4427ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4428 Value *Cond,
4429 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004430 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004431 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004432
Dan Gohmanb92654d2010-06-19 14:17:24 +00004433 // If the loop is canonicalized, the PHI will have exactly two entries.
4434 // That's the only form we support here.
4435 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4436
4437 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004438 // second must be derived from the same PHI.
4439 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4440 Constant *StartCST =
4441 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004442 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004443
4444 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004445 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4446 !isa<Constant>(BEValue))
4447 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004448
4449 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4450 // the loop symbolically to determine when the condition gets a value of
4451 // "ExitWhen".
4452 unsigned IterationNum = 0;
4453 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4454 for (Constant *PHIVal = StartCST;
4455 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004456 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004457 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004458
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004459 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004460 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004461
Reid Spencere8019bb2007-03-01 07:25:48 +00004462 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004463 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004464 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004465 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004466
Chris Lattner3221ad02004-04-17 22:58:41 +00004467 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004468 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004469 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004470 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004471 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004472 }
4473
4474 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004475 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004476}
4477
Dan Gohmane7125f42009-09-03 15:00:26 +00004478/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004479/// at the specified scope in the program. The L value specifies a loop
4480/// nest to evaluate the expression at, where null is the top-level or a
4481/// specified loop is immediately inside of the loop.
4482///
4483/// This method can be used to compute the exit value for a variable defined
4484/// in a loop by querying what the value will hold in the parent loop.
4485///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004486/// In the case that a relevant loop exit value cannot be computed, the
4487/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004488const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004489 // Check to see if we've folded this expression at this loop before.
4490 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4491 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4492 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4493 if (!Pair.second)
4494 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004495
Dan Gohman42214892009-08-31 21:15:23 +00004496 // Otherwise compute it.
4497 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004498 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004499 return C;
4500}
4501
4502const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004503 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004504
Nick Lewycky3e630762008-02-20 06:48:22 +00004505 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004506 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004507 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004508 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004509 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004510 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4511 if (PHINode *PN = dyn_cast<PHINode>(I))
4512 if (PN->getParent() == LI->getHeader()) {
4513 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004514 // to see if the loop that contains it has a known backedge-taken
4515 // count. If so, we may be able to force computation of the exit
4516 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004517 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004518 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004519 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004520 // Okay, we know how many times the containing loop executes. If
4521 // this is a constant evolving PHI node, get the final value at
4522 // the specified iteration number.
4523 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004524 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004525 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004526 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004527 }
4528 }
4529
Reid Spencer09906f32006-12-04 21:33:23 +00004530 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004531 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004532 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004533 // result. This is particularly useful for computing loop exit values.
4534 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004535 SmallVector<Constant *, 4> Operands;
4536 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004537 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4538 Value *Op = I->getOperand(i);
4539 if (Constant *C = dyn_cast<Constant>(Op)) {
4540 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004541 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004542 }
Dan Gohman11046452010-06-29 23:43:06 +00004543
4544 // If any of the operands is non-constant and if they are
4545 // non-integer and non-pointer, don't even try to analyze them
4546 // with scev techniques.
4547 if (!isSCEVable(Op->getType()))
4548 return V;
4549
4550 const SCEV *OrigV = getSCEV(Op);
4551 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4552 MadeImprovement |= OrigV != OpV;
4553
4554 Constant *C = 0;
4555 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4556 C = SC->getValue();
4557 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4558 C = dyn_cast<Constant>(SU->getValue());
4559 if (!C) return V;
4560 if (C->getType() != Op->getType())
4561 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4562 Op->getType(),
4563 false),
4564 C, Op->getType());
4565 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004566 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004567
Dan Gohman11046452010-06-29 23:43:06 +00004568 // Check to see if getSCEVAtScope actually made an improvement.
4569 if (MadeImprovement) {
4570 Constant *C = 0;
4571 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4572 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4573 Operands[0], Operands[1], TD);
4574 else
4575 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4576 &Operands[0], Operands.size(), TD);
4577 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004578 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004579 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004580 }
4581 }
4582
4583 // This is some other type of SCEVUnknown, just return it.
4584 return V;
4585 }
4586
Dan Gohman622ed672009-05-04 22:02:23 +00004587 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004588 // Avoid performing the look-up in the common case where the specified
4589 // expression has no loop-variant portions.
4590 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004591 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004592 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004593 // Okay, at least one of these operands is loop variant but might be
4594 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004595 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4596 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004597 NewOps.push_back(OpAtScope);
4598
4599 for (++i; i != e; ++i) {
4600 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 NewOps.push_back(OpAtScope);
4602 }
4603 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004604 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004605 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004606 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004607 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004608 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004609 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004610 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004611 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004612 }
4613 }
4614 // If we got here, all operands are loop invariant.
4615 return Comm;
4616 }
4617
Dan Gohman622ed672009-05-04 22:02:23 +00004618 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004619 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4620 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004621 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4622 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004623 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004624 }
4625
4626 // If this is a loop recurrence for a loop that does not contain L, then we
4627 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004628 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004629 // First, attempt to evaluate each operand.
4630 // Avoid performing the look-up in the common case where the specified
4631 // expression has no loop-variant portions.
4632 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4633 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4634 if (OpAtScope == AddRec->getOperand(i))
4635 continue;
4636
4637 // Okay, at least one of these operands is loop variant but might be
4638 // foldable. Build a new instance of the folded commutative expression.
4639 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4640 AddRec->op_begin()+i);
4641 NewOps.push_back(OpAtScope);
4642 for (++i; i != e; ++i)
4643 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4644
4645 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4646 break;
4647 }
4648
4649 // If the scope is outside the addrec's loop, evaluate it by using the
4650 // loop exit value of the addrec.
4651 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004652 // To evaluate this recurrence, we need to know how many times the AddRec
4653 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004654 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004655 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004656
Eli Friedmanb42a6262008-08-04 23:49:06 +00004657 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004658 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004659 }
Dan Gohman11046452010-06-29 23:43:06 +00004660
Dan Gohmand594e6f2009-05-24 23:25:42 +00004661 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004662 }
4663
Dan Gohman622ed672009-05-04 22:02:23 +00004664 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004665 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004666 if (Op == Cast->getOperand())
4667 return Cast; // must be loop invariant
4668 return getZeroExtendExpr(Op, Cast->getType());
4669 }
4670
Dan Gohman622ed672009-05-04 22:02:23 +00004671 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004672 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004673 if (Op == Cast->getOperand())
4674 return Cast; // must be loop invariant
4675 return getSignExtendExpr(Op, Cast->getType());
4676 }
4677
Dan Gohman622ed672009-05-04 22:02:23 +00004678 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004679 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004680 if (Op == Cast->getOperand())
4681 return Cast; // must be loop invariant
4682 return getTruncateExpr(Op, Cast->getType());
4683 }
4684
Torok Edwinc23197a2009-07-14 16:55:14 +00004685 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004686 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004687}
4688
Dan Gohman66a7e852009-05-08 20:38:54 +00004689/// getSCEVAtScope - This is a convenience function which does
4690/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004691const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004692 return getSCEVAtScope(getSCEV(V), L);
4693}
4694
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004695/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4696/// following equation:
4697///
4698/// A * X = B (mod N)
4699///
4700/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4701/// A and B isn't important.
4702///
4703/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004704static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004705 ScalarEvolution &SE) {
4706 uint32_t BW = A.getBitWidth();
4707 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4708 assert(A != 0 && "A must be non-zero.");
4709
4710 // 1. D = gcd(A, N)
4711 //
4712 // The gcd of A and N may have only one prime factor: 2. The number of
4713 // trailing zeros in A is its multiplicity
4714 uint32_t Mult2 = A.countTrailingZeros();
4715 // D = 2^Mult2
4716
4717 // 2. Check if B is divisible by D.
4718 //
4719 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4720 // is not less than multiplicity of this prime factor for D.
4721 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004722 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004723
4724 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4725 // modulo (N / D).
4726 //
4727 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4728 // bit width during computations.
4729 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4730 APInt Mod(BW + 1, 0);
4731 Mod.set(BW - Mult2); // Mod = N / D
4732 APInt I = AD.multiplicativeInverse(Mod);
4733
4734 // 4. Compute the minimum unsigned root of the equation:
4735 // I * (B / D) mod (N / D)
4736 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4737
4738 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4739 // bits.
4740 return SE.getConstant(Result.trunc(BW));
4741}
Chris Lattner53e677a2004-04-02 20:23:17 +00004742
4743/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4744/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4745/// might be the same) or two SCEVCouldNotCompute objects.
4746///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004747static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004748SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004749 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004750 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4751 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4752 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Chris Lattner53e677a2004-04-02 20:23:17 +00004754 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004755 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004756 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004757 return std::make_pair(CNC, CNC);
4758 }
4759
Reid Spencere8019bb2007-03-01 07:25:48 +00004760 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004761 const APInt &L = LC->getValue()->getValue();
4762 const APInt &M = MC->getValue()->getValue();
4763 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004764 APInt Two(BitWidth, 2);
4765 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004766
Dan Gohman64a845e2009-06-24 04:48:43 +00004767 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004768 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004769 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004770 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4771 // The B coefficient is M-N/2
4772 APInt B(M);
4773 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004774
Reid Spencere8019bb2007-03-01 07:25:48 +00004775 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004776 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004777
Reid Spencere8019bb2007-03-01 07:25:48 +00004778 // Compute the B^2-4ac term.
4779 APInt SqrtTerm(B);
4780 SqrtTerm *= B;
4781 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004782
Reid Spencere8019bb2007-03-01 07:25:48 +00004783 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4784 // integer value or else APInt::sqrt() will assert.
4785 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004786
Dan Gohman64a845e2009-06-24 04:48:43 +00004787 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004788 // The divisions must be performed as signed divisions.
4789 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004790 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004791 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004792 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004793 return std::make_pair(CNC, CNC);
4794 }
4795
Owen Andersone922c022009-07-22 00:24:57 +00004796 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004797
4798 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004799 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004800 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004801 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004802
Dan Gohman64a845e2009-06-24 04:48:43 +00004803 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004804 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004805 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004806}
4807
4808/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004809/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004810ScalarEvolution::BackedgeTakenInfo
4811ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004812 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004813 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004814 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004815 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004816 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004817 }
4818
Dan Gohman35738ac2009-05-04 22:30:44 +00004819 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004820 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004821 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004822
4823 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004824 // If this is an affine expression, the execution count of this branch is
4825 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004826 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004827 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004828 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004829 // equivalent to:
4830 //
4831 // Step*N = -Start (mod 2^BW)
4832 //
4833 // where BW is the common bit width of Start and Step.
4834
Chris Lattner53e677a2004-04-02 20:23:17 +00004835 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004836 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4837 L->getParentLoop());
4838 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4839 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004840
Dan Gohman622ed672009-05-04 22:02:23 +00004841 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004842 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004843
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004844 // First, handle unitary steps.
4845 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004846 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004847 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4848 return Start; // N = Start (as unsigned)
4849
4850 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004851 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004852 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004853 -StartC->getValue()->getValue(),
4854 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004855 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004856 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004857 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4858 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004859 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004860 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004861 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4862 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004863 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004864#if 0
David Greene25e0e872009-12-23 22:18:14 +00004865 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004866 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004867#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004868 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004869 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004870 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004871 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004872 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004873 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004874
Chris Lattner53e677a2004-04-02 20:23:17 +00004875 // We can only use this value if the chrec ends up with an exact zero
4876 // value at this index. When solving for "X*X != 5", for example, we
4877 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004878 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004879 if (Val->isZero())
4880 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004881 }
4882 }
4883 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004884
Dan Gohman1c343752009-06-27 21:21:31 +00004885 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004886}
4887
4888/// HowFarToNonZero - Return the number of times a backedge checking the
4889/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004890/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004891ScalarEvolution::BackedgeTakenInfo
4892ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004893 // Loops that look like: while (X == 0) are very strange indeed. We don't
4894 // handle them yet except for the trivial case. This could be expanded in the
4895 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004896
Chris Lattner53e677a2004-04-02 20:23:17 +00004897 // If the value is a constant, check to see if it is known to be non-zero
4898 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004900 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004901 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004902 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004903 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004904
Chris Lattner53e677a2004-04-02 20:23:17 +00004905 // We could implement others, but I really doubt anyone writes loops like
4906 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004907 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004908}
4909
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004910/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4911/// (which may not be an immediate predecessor) which has exactly one
4912/// successor from which BB is reachable, or null if no such block is
4913/// found.
4914///
Dan Gohman005752b2010-04-15 16:19:08 +00004915std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004916ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004917 // If the block has a unique predecessor, then there is no path from the
4918 // predecessor to the block that does not go through the direct edge
4919 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004920 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004921 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004922
4923 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004924 // If the header has a unique predecessor outside the loop, it must be
4925 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004926 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004927 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004928
Dan Gohman005752b2010-04-15 16:19:08 +00004929 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004930}
4931
Dan Gohman763bad12009-06-20 00:35:32 +00004932/// HasSameValue - SCEV structural equivalence is usually sufficient for
4933/// testing whether two expressions are equal, however for the purposes of
4934/// looking for a condition guarding a loop, it can be useful to be a little
4935/// more general, since a front-end may have replicated the controlling
4936/// expression.
4937///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004938static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004939 // Quick check to see if they are the same SCEV.
4940 if (A == B) return true;
4941
4942 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4943 // two different instructions with the same value. Check for this case.
4944 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4945 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4946 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4947 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004948 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004949 return true;
4950
4951 // Otherwise assume they may have a different value.
4952 return false;
4953}
4954
Dan Gohmane9796502010-04-24 01:28:42 +00004955/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4956/// predicate Pred. Return true iff any changes were made.
4957///
4958bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4959 const SCEV *&LHS, const SCEV *&RHS) {
4960 bool Changed = false;
4961
4962 // Canonicalize a constant to the right side.
4963 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4964 // Check for both operands constant.
4965 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4966 if (ConstantExpr::getICmp(Pred,
4967 LHSC->getValue(),
4968 RHSC->getValue())->isNullValue())
4969 goto trivially_false;
4970 else
4971 goto trivially_true;
4972 }
4973 // Otherwise swap the operands to put the constant on the right.
4974 std::swap(LHS, RHS);
4975 Pred = ICmpInst::getSwappedPredicate(Pred);
4976 Changed = true;
4977 }
4978
4979 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004980 // addrec's loop, put the addrec on the left. Also make a dominance check,
4981 // as both operands could be addrecs loop-invariant in each other's loop.
4982 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4983 const Loop *L = AR->getLoop();
4984 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004985 std::swap(LHS, RHS);
4986 Pred = ICmpInst::getSwappedPredicate(Pred);
4987 Changed = true;
4988 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004989 }
Dan Gohmane9796502010-04-24 01:28:42 +00004990
4991 // If there's a constant operand, canonicalize comparisons with boundary
4992 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4993 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4994 const APInt &RA = RC->getValue()->getValue();
4995 switch (Pred) {
4996 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4997 case ICmpInst::ICMP_EQ:
4998 case ICmpInst::ICMP_NE:
4999 break;
5000 case ICmpInst::ICMP_UGE:
5001 if ((RA - 1).isMinValue()) {
5002 Pred = ICmpInst::ICMP_NE;
5003 RHS = getConstant(RA - 1);
5004 Changed = true;
5005 break;
5006 }
5007 if (RA.isMaxValue()) {
5008 Pred = ICmpInst::ICMP_EQ;
5009 Changed = true;
5010 break;
5011 }
5012 if (RA.isMinValue()) goto trivially_true;
5013
5014 Pred = ICmpInst::ICMP_UGT;
5015 RHS = getConstant(RA - 1);
5016 Changed = true;
5017 break;
5018 case ICmpInst::ICMP_ULE:
5019 if ((RA + 1).isMaxValue()) {
5020 Pred = ICmpInst::ICMP_NE;
5021 RHS = getConstant(RA + 1);
5022 Changed = true;
5023 break;
5024 }
5025 if (RA.isMinValue()) {
5026 Pred = ICmpInst::ICMP_EQ;
5027 Changed = true;
5028 break;
5029 }
5030 if (RA.isMaxValue()) goto trivially_true;
5031
5032 Pred = ICmpInst::ICMP_ULT;
5033 RHS = getConstant(RA + 1);
5034 Changed = true;
5035 break;
5036 case ICmpInst::ICMP_SGE:
5037 if ((RA - 1).isMinSignedValue()) {
5038 Pred = ICmpInst::ICMP_NE;
5039 RHS = getConstant(RA - 1);
5040 Changed = true;
5041 break;
5042 }
5043 if (RA.isMaxSignedValue()) {
5044 Pred = ICmpInst::ICMP_EQ;
5045 Changed = true;
5046 break;
5047 }
5048 if (RA.isMinSignedValue()) goto trivially_true;
5049
5050 Pred = ICmpInst::ICMP_SGT;
5051 RHS = getConstant(RA - 1);
5052 Changed = true;
5053 break;
5054 case ICmpInst::ICMP_SLE:
5055 if ((RA + 1).isMaxSignedValue()) {
5056 Pred = ICmpInst::ICMP_NE;
5057 RHS = getConstant(RA + 1);
5058 Changed = true;
5059 break;
5060 }
5061 if (RA.isMinSignedValue()) {
5062 Pred = ICmpInst::ICMP_EQ;
5063 Changed = true;
5064 break;
5065 }
5066 if (RA.isMaxSignedValue()) goto trivially_true;
5067
5068 Pred = ICmpInst::ICMP_SLT;
5069 RHS = getConstant(RA + 1);
5070 Changed = true;
5071 break;
5072 case ICmpInst::ICMP_UGT:
5073 if (RA.isMinValue()) {
5074 Pred = ICmpInst::ICMP_NE;
5075 Changed = true;
5076 break;
5077 }
5078 if ((RA + 1).isMaxValue()) {
5079 Pred = ICmpInst::ICMP_EQ;
5080 RHS = getConstant(RA + 1);
5081 Changed = true;
5082 break;
5083 }
5084 if (RA.isMaxValue()) goto trivially_false;
5085 break;
5086 case ICmpInst::ICMP_ULT:
5087 if (RA.isMaxValue()) {
5088 Pred = ICmpInst::ICMP_NE;
5089 Changed = true;
5090 break;
5091 }
5092 if ((RA - 1).isMinValue()) {
5093 Pred = ICmpInst::ICMP_EQ;
5094 RHS = getConstant(RA - 1);
5095 Changed = true;
5096 break;
5097 }
5098 if (RA.isMinValue()) goto trivially_false;
5099 break;
5100 case ICmpInst::ICMP_SGT:
5101 if (RA.isMinSignedValue()) {
5102 Pred = ICmpInst::ICMP_NE;
5103 Changed = true;
5104 break;
5105 }
5106 if ((RA + 1).isMaxSignedValue()) {
5107 Pred = ICmpInst::ICMP_EQ;
5108 RHS = getConstant(RA + 1);
5109 Changed = true;
5110 break;
5111 }
5112 if (RA.isMaxSignedValue()) goto trivially_false;
5113 break;
5114 case ICmpInst::ICMP_SLT:
5115 if (RA.isMaxSignedValue()) {
5116 Pred = ICmpInst::ICMP_NE;
5117 Changed = true;
5118 break;
5119 }
5120 if ((RA - 1).isMinSignedValue()) {
5121 Pred = ICmpInst::ICMP_EQ;
5122 RHS = getConstant(RA - 1);
5123 Changed = true;
5124 break;
5125 }
5126 if (RA.isMinSignedValue()) goto trivially_false;
5127 break;
5128 }
5129 }
5130
5131 // Check for obvious equality.
5132 if (HasSameValue(LHS, RHS)) {
5133 if (ICmpInst::isTrueWhenEqual(Pred))
5134 goto trivially_true;
5135 if (ICmpInst::isFalseWhenEqual(Pred))
5136 goto trivially_false;
5137 }
5138
Dan Gohman03557dc2010-05-03 16:35:17 +00005139 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5140 // adding or subtracting 1 from one of the operands.
5141 switch (Pred) {
5142 case ICmpInst::ICMP_SLE:
5143 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5144 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5145 /*HasNUW=*/false, /*HasNSW=*/true);
5146 Pred = ICmpInst::ICMP_SLT;
5147 Changed = true;
5148 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005149 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005150 /*HasNUW=*/false, /*HasNSW=*/true);
5151 Pred = ICmpInst::ICMP_SLT;
5152 Changed = true;
5153 }
5154 break;
5155 case ICmpInst::ICMP_SGE:
5156 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005157 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005158 /*HasNUW=*/false, /*HasNSW=*/true);
5159 Pred = ICmpInst::ICMP_SGT;
5160 Changed = true;
5161 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5162 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5163 /*HasNUW=*/false, /*HasNSW=*/true);
5164 Pred = ICmpInst::ICMP_SGT;
5165 Changed = true;
5166 }
5167 break;
5168 case ICmpInst::ICMP_ULE:
5169 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005170 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005171 /*HasNUW=*/true, /*HasNSW=*/false);
5172 Pred = ICmpInst::ICMP_ULT;
5173 Changed = true;
5174 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005175 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005176 /*HasNUW=*/true, /*HasNSW=*/false);
5177 Pred = ICmpInst::ICMP_ULT;
5178 Changed = true;
5179 }
5180 break;
5181 case ICmpInst::ICMP_UGE:
5182 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005183 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005184 /*HasNUW=*/true, /*HasNSW=*/false);
5185 Pred = ICmpInst::ICMP_UGT;
5186 Changed = true;
5187 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005188 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005189 /*HasNUW=*/true, /*HasNSW=*/false);
5190 Pred = ICmpInst::ICMP_UGT;
5191 Changed = true;
5192 }
5193 break;
5194 default:
5195 break;
5196 }
5197
Dan Gohmane9796502010-04-24 01:28:42 +00005198 // TODO: More simplifications are possible here.
5199
5200 return Changed;
5201
5202trivially_true:
5203 // Return 0 == 0.
5204 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5205 Pred = ICmpInst::ICMP_EQ;
5206 return true;
5207
5208trivially_false:
5209 // Return 0 != 0.
5210 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5211 Pred = ICmpInst::ICMP_NE;
5212 return true;
5213}
5214
Dan Gohman85b05a22009-07-13 21:35:55 +00005215bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5216 return getSignedRange(S).getSignedMax().isNegative();
5217}
5218
5219bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5220 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5221}
5222
5223bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5224 return !getSignedRange(S).getSignedMin().isNegative();
5225}
5226
5227bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5228 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5229}
5230
5231bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5232 return isKnownNegative(S) || isKnownPositive(S);
5233}
5234
5235bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5236 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005237 // Canonicalize the inputs first.
5238 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5239
Dan Gohman53c66ea2010-04-11 22:16:48 +00005240 // If LHS or RHS is an addrec, check to see if the condition is true in
5241 // every iteration of the loop.
5242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5243 if (isLoopEntryGuardedByCond(
5244 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5245 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005246 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005247 return true;
5248 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5249 if (isLoopEntryGuardedByCond(
5250 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5251 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005252 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005253 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005254
Dan Gohman53c66ea2010-04-11 22:16:48 +00005255 // Otherwise see what can be done with known constant ranges.
5256 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5257}
5258
5259bool
5260ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5261 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005262 if (HasSameValue(LHS, RHS))
5263 return ICmpInst::isTrueWhenEqual(Pred);
5264
Dan Gohman53c66ea2010-04-11 22:16:48 +00005265 // This code is split out from isKnownPredicate because it is called from
5266 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005267 switch (Pred) {
5268 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005269 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005270 break;
5271 case ICmpInst::ICMP_SGT:
5272 Pred = ICmpInst::ICMP_SLT;
5273 std::swap(LHS, RHS);
5274 case ICmpInst::ICMP_SLT: {
5275 ConstantRange LHSRange = getSignedRange(LHS);
5276 ConstantRange RHSRange = getSignedRange(RHS);
5277 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5278 return true;
5279 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5280 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005281 break;
5282 }
5283 case ICmpInst::ICMP_SGE:
5284 Pred = ICmpInst::ICMP_SLE;
5285 std::swap(LHS, RHS);
5286 case ICmpInst::ICMP_SLE: {
5287 ConstantRange LHSRange = getSignedRange(LHS);
5288 ConstantRange RHSRange = getSignedRange(RHS);
5289 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5290 return true;
5291 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5292 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005293 break;
5294 }
5295 case ICmpInst::ICMP_UGT:
5296 Pred = ICmpInst::ICMP_ULT;
5297 std::swap(LHS, RHS);
5298 case ICmpInst::ICMP_ULT: {
5299 ConstantRange LHSRange = getUnsignedRange(LHS);
5300 ConstantRange RHSRange = getUnsignedRange(RHS);
5301 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5302 return true;
5303 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5304 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005305 break;
5306 }
5307 case ICmpInst::ICMP_UGE:
5308 Pred = ICmpInst::ICMP_ULE;
5309 std::swap(LHS, RHS);
5310 case ICmpInst::ICMP_ULE: {
5311 ConstantRange LHSRange = getUnsignedRange(LHS);
5312 ConstantRange RHSRange = getUnsignedRange(RHS);
5313 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5314 return true;
5315 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5316 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005317 break;
5318 }
5319 case ICmpInst::ICMP_NE: {
5320 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5321 return true;
5322 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5323 return true;
5324
5325 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5326 if (isKnownNonZero(Diff))
5327 return true;
5328 break;
5329 }
5330 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005331 // The check at the top of the function catches the case where
5332 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005333 break;
5334 }
5335 return false;
5336}
5337
5338/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5339/// protected by a conditional between LHS and RHS. This is used to
5340/// to eliminate casts.
5341bool
5342ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5343 ICmpInst::Predicate Pred,
5344 const SCEV *LHS, const SCEV *RHS) {
5345 // Interpret a null as meaning no loop, where there is obviously no guard
5346 // (interprocedural conditions notwithstanding).
5347 if (!L) return true;
5348
5349 BasicBlock *Latch = L->getLoopLatch();
5350 if (!Latch)
5351 return false;
5352
5353 BranchInst *LoopContinuePredicate =
5354 dyn_cast<BranchInst>(Latch->getTerminator());
5355 if (!LoopContinuePredicate ||
5356 LoopContinuePredicate->isUnconditional())
5357 return false;
5358
Dan Gohmanaf08a362010-08-10 23:46:30 +00005359 return isImpliedCond(Pred, LHS, RHS,
5360 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005361 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005362}
5363
Dan Gohman3948d0b2010-04-11 19:27:13 +00005364/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005365/// by a conditional between LHS and RHS. This is used to help avoid max
5366/// expressions in loop trip counts, and to eliminate casts.
5367bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005368ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5369 ICmpInst::Predicate Pred,
5370 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005371 // Interpret a null as meaning no loop, where there is obviously no guard
5372 // (interprocedural conditions notwithstanding).
5373 if (!L) return false;
5374
Dan Gohman859b4822009-05-18 15:36:09 +00005375 // Starting at the loop predecessor, climb up the predecessor chain, as long
5376 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005377 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005378 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005379 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005380 Pair.first;
5381 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005382
5383 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005384 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005385 if (!LoopEntryPredicate ||
5386 LoopEntryPredicate->isUnconditional())
5387 continue;
5388
Dan Gohmanaf08a362010-08-10 23:46:30 +00005389 if (isImpliedCond(Pred, LHS, RHS,
5390 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005391 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005392 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005393 }
5394
Dan Gohman38372182008-08-12 20:17:31 +00005395 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005396}
5397
Dan Gohman0f4b2852009-07-21 23:03:19 +00005398/// isImpliedCond - Test whether the condition described by Pred, LHS,
5399/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005400bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005401 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005402 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005403 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005404 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005405 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005406 if (BO->getOpcode() == Instruction::And) {
5407 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005408 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5409 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005410 } else if (BO->getOpcode() == Instruction::Or) {
5411 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005412 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5413 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005414 }
5415 }
5416
Dan Gohmanaf08a362010-08-10 23:46:30 +00005417 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005418 if (!ICI) return false;
5419
Dan Gohman85b05a22009-07-13 21:35:55 +00005420 // Bail if the ICmp's operands' types are wider than the needed type
5421 // before attempting to call getSCEV on them. This avoids infinite
5422 // recursion, since the analysis of widening casts can require loop
5423 // exit condition information for overflow checking, which would
5424 // lead back here.
5425 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005426 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005427 return false;
5428
Dan Gohman0f4b2852009-07-21 23:03:19 +00005429 // Now that we found a conditional branch that dominates the loop, check to
5430 // see if it is the comparison we are looking for.
5431 ICmpInst::Predicate FoundPred;
5432 if (Inverse)
5433 FoundPred = ICI->getInversePredicate();
5434 else
5435 FoundPred = ICI->getPredicate();
5436
5437 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5438 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005439
5440 // Balance the types. The case where FoundLHS' type is wider than
5441 // LHS' type is checked for above.
5442 if (getTypeSizeInBits(LHS->getType()) >
5443 getTypeSizeInBits(FoundLHS->getType())) {
5444 if (CmpInst::isSigned(Pred)) {
5445 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5446 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5447 } else {
5448 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5449 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5450 }
5451 }
5452
Dan Gohman0f4b2852009-07-21 23:03:19 +00005453 // Canonicalize the query to match the way instcombine will have
5454 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005455 if (SimplifyICmpOperands(Pred, LHS, RHS))
5456 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005457 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005458 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5459 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005460 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005461
5462 // Check to see if we can make the LHS or RHS match.
5463 if (LHS == FoundRHS || RHS == FoundLHS) {
5464 if (isa<SCEVConstant>(RHS)) {
5465 std::swap(FoundLHS, FoundRHS);
5466 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5467 } else {
5468 std::swap(LHS, RHS);
5469 Pred = ICmpInst::getSwappedPredicate(Pred);
5470 }
5471 }
5472
5473 // Check whether the found predicate is the same as the desired predicate.
5474 if (FoundPred == Pred)
5475 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5476
5477 // Check whether swapping the found predicate makes it the same as the
5478 // desired predicate.
5479 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5480 if (isa<SCEVConstant>(RHS))
5481 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5482 else
5483 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5484 RHS, LHS, FoundLHS, FoundRHS);
5485 }
5486
5487 // Check whether the actual condition is beyond sufficient.
5488 if (FoundPred == ICmpInst::ICMP_EQ)
5489 if (ICmpInst::isTrueWhenEqual(Pred))
5490 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5491 return true;
5492 if (Pred == ICmpInst::ICMP_NE)
5493 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5494 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5495 return true;
5496
5497 // Otherwise assume the worst.
5498 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005499}
5500
Dan Gohman0f4b2852009-07-21 23:03:19 +00005501/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005502/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005503/// and FoundRHS is true.
5504bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5505 const SCEV *LHS, const SCEV *RHS,
5506 const SCEV *FoundLHS,
5507 const SCEV *FoundRHS) {
5508 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5509 FoundLHS, FoundRHS) ||
5510 // ~x < ~y --> x > y
5511 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5512 getNotSCEV(FoundRHS),
5513 getNotSCEV(FoundLHS));
5514}
5515
5516/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005517/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005518/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005519bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005520ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5521 const SCEV *LHS, const SCEV *RHS,
5522 const SCEV *FoundLHS,
5523 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005524 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005525 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5526 case ICmpInst::ICMP_EQ:
5527 case ICmpInst::ICMP_NE:
5528 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5529 return true;
5530 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005531 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005532 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005533 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5534 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005535 return true;
5536 break;
5537 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005538 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005539 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5540 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005541 return true;
5542 break;
5543 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005544 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005545 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5546 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005547 return true;
5548 break;
5549 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005550 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005551 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5552 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005553 return true;
5554 break;
5555 }
5556
5557 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005558}
5559
Dan Gohman51f53b72009-06-21 23:46:38 +00005560/// getBECount - Subtract the end and start values and divide by the step,
5561/// rounding up, to get the number of times the backedge is executed. Return
5562/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005563const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005564 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005565 const SCEV *Step,
5566 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005567 assert(!isKnownNegative(Step) &&
5568 "This code doesn't handle negative strides yet!");
5569
Dan Gohman51f53b72009-06-21 23:46:38 +00005570 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005571 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005572 const SCEV *Diff = getMinusSCEV(End, Start);
5573 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005574
5575 // Add an adjustment to the difference between End and Start so that
5576 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005577 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005578
Dan Gohman1f96e672009-09-17 18:05:20 +00005579 if (!NoWrap) {
5580 // Check Add for unsigned overflow.
5581 // TODO: More sophisticated things could be done here.
5582 const Type *WideTy = IntegerType::get(getContext(),
5583 getTypeSizeInBits(Ty) + 1);
5584 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5585 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5586 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5587 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5588 return getCouldNotCompute();
5589 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005590
5591 return getUDivExpr(Add, Step);
5592}
5593
Chris Lattnerdb25de42005-08-15 23:33:51 +00005594/// HowManyLessThans - Return the number of times a backedge containing the
5595/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005596/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005597ScalarEvolution::BackedgeTakenInfo
5598ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5599 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005600 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005601 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005602
Dan Gohman35738ac2009-05-04 22:30:44 +00005603 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005604 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005605 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005606
Dan Gohman1f96e672009-09-17 18:05:20 +00005607 // Check to see if we have a flag which makes analysis easy.
5608 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5609 AddRec->hasNoUnsignedWrap();
5610
Chris Lattnerdb25de42005-08-15 23:33:51 +00005611 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005612 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005613 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005614
Dan Gohman52fddd32010-01-26 04:40:18 +00005615 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005616 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005617 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005618 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005619 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005620 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005621 // value and past the maximum value for its type in a single step.
5622 // Note that it's not sufficient to check NoWrap here, because even
5623 // though the value after a wrap is undefined, it's not undefined
5624 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005625 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005626 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005627 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005628 if (isSigned) {
5629 APInt Max = APInt::getSignedMaxValue(BitWidth);
5630 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5631 .slt(getSignedRange(RHS).getSignedMax()))
5632 return getCouldNotCompute();
5633 } else {
5634 APInt Max = APInt::getMaxValue(BitWidth);
5635 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5636 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5637 return getCouldNotCompute();
5638 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005639 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005640 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005641 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005642
Dan Gohmana1af7572009-04-30 20:47:05 +00005643 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5644 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5645 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005646 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005647
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005648 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005649 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005650
Dan Gohmana1af7572009-04-30 20:47:05 +00005651 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005652 const SCEV *MinStart = getConstant(isSigned ?
5653 getSignedRange(Start).getSignedMin() :
5654 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005655
Dan Gohmana1af7572009-04-30 20:47:05 +00005656 // If we know that the condition is true in order to enter the loop,
5657 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005658 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5659 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005660 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005661 if (!isLoopEntryGuardedByCond(L,
5662 isSigned ? ICmpInst::ICMP_SLT :
5663 ICmpInst::ICMP_ULT,
5664 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005665 End = isSigned ? getSMaxExpr(RHS, Start)
5666 : getUMaxExpr(RHS, Start);
5667
5668 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005669 const SCEV *MaxEnd = getConstant(isSigned ?
5670 getSignedRange(End).getSignedMax() :
5671 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005672
Dan Gohman52fddd32010-01-26 04:40:18 +00005673 // If MaxEnd is within a step of the maximum integer value in its type,
5674 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005675 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005676 // compute the correct value.
5677 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005678 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005679 MaxEnd = isSigned ?
5680 getSMinExpr(MaxEnd,
5681 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5682 StepMinusOne)) :
5683 getUMinExpr(MaxEnd,
5684 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5685 StepMinusOne));
5686
Dan Gohmana1af7572009-04-30 20:47:05 +00005687 // Finally, we subtract these two values and divide, rounding up, to get
5688 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005689 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005690
5691 // The maximum backedge count is similar, except using the minimum start
5692 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005693 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005694
5695 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005696 }
5697
Dan Gohman1c343752009-06-27 21:21:31 +00005698 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005699}
5700
Chris Lattner53e677a2004-04-02 20:23:17 +00005701/// getNumIterationsInRange - Return the number of iterations of this loop that
5702/// produce values in the specified constant range. Another way of looking at
5703/// this is that it returns the first iteration number where the value is not in
5704/// the condition, thus computing the exit count. If the iteration count can't
5705/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005706const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005707 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005708 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005709 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005710
5711 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005712 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005713 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005714 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005715 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005716 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005717 if (const SCEVAddRecExpr *ShiftedAddRec =
5718 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005719 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005720 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005721 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005722 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005723 }
5724
5725 // The only time we can solve this is when we have all constant indices.
5726 // Otherwise, we cannot determine the overflow conditions.
5727 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5728 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005729 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005730
5731
5732 // Okay at this point we know that all elements of the chrec are constants and
5733 // that the start element is zero.
5734
5735 // First check to see if the range contains zero. If not, the first
5736 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005737 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005738 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005739 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005740
Chris Lattner53e677a2004-04-02 20:23:17 +00005741 if (isAffine()) {
5742 // If this is an affine expression then we have this situation:
5743 // Solve {0,+,A} in Range === Ax in Range
5744
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005745 // We know that zero is in the range. If A is positive then we know that
5746 // the upper value of the range must be the first possible exit value.
5747 // If A is negative then the lower of the range is the last possible loop
5748 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005749 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005750 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5751 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005752
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005753 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005754 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005755 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005756
5757 // Evaluate at the exit value. If we really did fall out of the valid
5758 // range, then we computed our trip count, otherwise wrap around or other
5759 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005760 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005761 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005762 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005763
5764 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005765 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005766 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005767 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005768 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005769 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005770 } else if (isQuadratic()) {
5771 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5772 // quadratic equation to solve it. To do this, we must frame our problem in
5773 // terms of figuring out when zero is crossed, instead of when
5774 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005775 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005776 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005777 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005778
5779 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005780 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005781 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005782 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5783 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005784 if (R1) {
5785 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005786 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005787 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005788 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005789 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005790 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005791
Chris Lattner53e677a2004-04-02 20:23:17 +00005792 // Make sure the root is not off by one. The returned iteration should
5793 // not be in the range, but the previous one should be. When solving
5794 // for "X*X < 5", for example, we should not return a root of 2.
5795 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005796 R1->getValue(),
5797 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005798 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005799 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005800 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005801 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005802
Dan Gohman246b2562007-10-22 18:31:58 +00005803 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005804 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005805 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005806 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005807 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005808
Chris Lattner53e677a2004-04-02 20:23:17 +00005809 // If R1 was not in the range, then it is a good return value. Make
5810 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005811 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005812 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005813 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005814 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005815 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005816 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005817 }
5818 }
5819 }
5820
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005821 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005822}
5823
5824
5825
5826//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005827// SCEVCallbackVH Class Implementation
5828//===----------------------------------------------------------------------===//
5829
Dan Gohman1959b752009-05-19 19:22:47 +00005830void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005831 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005832 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5833 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005834 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005835 // this now dangles!
5836}
5837
Dan Gohman81f91212010-07-28 01:09:07 +00005838void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005839 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005840
Dan Gohman35738ac2009-05-04 22:30:44 +00005841 // Forget all the expressions associated with users of the old value,
5842 // so that future queries will recompute the expressions using the new
5843 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005844 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005845 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005846 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005847 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5848 UI != UE; ++UI)
5849 Worklist.push_back(*UI);
5850 while (!Worklist.empty()) {
5851 User *U = Worklist.pop_back_val();
5852 // Deleting the Old value will cause this to dangle. Postpone
5853 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005854 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005855 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005856 if (!Visited.insert(U))
5857 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005858 if (PHINode *PN = dyn_cast<PHINode>(U))
5859 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005860 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005861 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5862 UI != UE; ++UI)
5863 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005864 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005865 // Delete the Old value.
5866 if (PHINode *PN = dyn_cast<PHINode>(Old))
5867 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005868 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005869 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005870}
5871
Dan Gohman1959b752009-05-19 19:22:47 +00005872ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005873 : CallbackVH(V), SE(se) {}
5874
5875//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005876// ScalarEvolution Class Implementation
5877//===----------------------------------------------------------------------===//
5878
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005879ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005880 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005881 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005882}
5883
Chris Lattner53e677a2004-04-02 20:23:17 +00005884bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005885 this->F = &F;
5886 LI = &getAnalysis<LoopInfo>();
5887 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005888 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005889 return false;
5890}
5891
5892void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005893 // Iterate through all the SCEVUnknown instances and call their
5894 // destructors, so that they release their references to their values.
5895 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5896 U->~SCEVUnknown();
5897 FirstUnknown = 0;
5898
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005899 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005900 BackedgeTakenCounts.clear();
5901 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005902 ValuesAtScopes.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005903 UnsignedRanges.clear();
5904 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005905 UniqueSCEVs.clear();
5906 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005907}
5908
5909void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5910 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005911 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005912 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005913}
5914
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005915bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005916 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005917}
5918
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005919static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005920 const Loop *L) {
5921 // Print all inner loops first
5922 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5923 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005924
Dan Gohman30733292010-01-09 18:17:45 +00005925 OS << "Loop ";
5926 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5927 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005928
Dan Gohman5d984912009-12-18 01:14:11 +00005929 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005930 L->getExitBlocks(ExitBlocks);
5931 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005932 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005933
Dan Gohman46bdfb02009-02-24 18:55:53 +00005934 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5935 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005936 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005937 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005938 }
5939
Dan Gohman30733292010-01-09 18:17:45 +00005940 OS << "\n"
5941 "Loop ";
5942 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5943 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005944
5945 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5946 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5947 } else {
5948 OS << "Unpredictable max backedge-taken count. ";
5949 }
5950
5951 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005952}
5953
Dan Gohman5d984912009-12-18 01:14:11 +00005954void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005955 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005956 // out SCEV values of all instructions that are interesting. Doing
5957 // this potentially causes it to create new SCEV objects though,
5958 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005959 // observable from outside the class though, so casting away the
5960 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005961 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005962
Dan Gohman30733292010-01-09 18:17:45 +00005963 OS << "Classifying expressions for: ";
5964 WriteAsOperand(OS, F, /*PrintType=*/false);
5965 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005966 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005967 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005968 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005969 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005970 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005971 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005972
Dan Gohman0c689c52009-06-19 17:49:54 +00005973 const Loop *L = LI->getLoopFor((*I).getParent());
5974
Dan Gohman0bba49c2009-07-07 17:06:11 +00005975 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005976 if (AtUse != SV) {
5977 OS << " --> ";
5978 AtUse->print(OS);
5979 }
5980
5981 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005982 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005983 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005984 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005985 OS << "<<Unknown>>";
5986 } else {
5987 OS << *ExitValue;
5988 }
5989 }
5990
Chris Lattner53e677a2004-04-02 20:23:17 +00005991 OS << "\n";
5992 }
5993
Dan Gohman30733292010-01-09 18:17:45 +00005994 OS << "Determining loop execution counts for: ";
5995 WriteAsOperand(OS, F, /*PrintType=*/false);
5996 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005997 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5998 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005999}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006000