blob: 5da02c64742fa2ebb7c25dd1fc01f9ec44fc0144 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
Owen Anderson43ada1d2008-08-14 21:01:00 +000043#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
52
53namespace {
54 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55 static char ID;
Dan Gohman26f8c272008-09-04 17:05:41 +000056 FPS() : MachineFunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057
58 virtual bool runOnMachineFunction(MachineFunction &MF);
59
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 private:
63 const TargetInstrInfo *TII; // Machine instruction info.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 cerr << "\n";
76 }
77 private:
Chris Lattnerb56cc342008-03-11 03:23:40 +000078 /// isStackEmpty - Return true if the FP stack is empty.
79 bool isStackEmpty() const {
80 return StackTop == 0;
81 }
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // getSlot - Return the stack slot number a particular register number is
Chris Lattnerb56cc342008-03-11 03:23:40 +000084 // in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 unsigned getSlot(unsigned RegNo) const {
86 assert(RegNo < 8 && "Regno out of range!");
87 return RegMap[RegNo];
88 }
89
Chris Lattnerb56cc342008-03-11 03:23:40 +000090 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 unsigned getStackEntry(unsigned STi) const {
92 assert(STi < StackTop && "Access past stack top!");
93 return Stack[StackTop-1-STi];
94 }
95
96 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattnerb56cc342008-03-11 03:23:40 +000097 // FP<RegNo> register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 unsigned getSTReg(unsigned RegNo) const {
99 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
100 }
101
Chris Lattnerb56cc342008-03-11 03:23:40 +0000102 // pushReg - Push the specified FP<n> register onto the stack.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 void pushReg(unsigned Reg) {
104 assert(Reg < 8 && "Register number out of range!");
105 assert(StackTop < 8 && "Stack overflow!");
106 Stack[StackTop] = Reg;
107 RegMap[Reg] = StackTop++;
108 }
109
110 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattnerb56cc342008-03-11 03:23:40 +0000111 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
112 if (isAtTop(RegNo)) return;
113
114 unsigned STReg = getSTReg(RegNo);
115 unsigned RegOnTop = getStackEntry(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116
Chris Lattnerb56cc342008-03-11 03:23:40 +0000117 // Swap the slots the regs are in.
118 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
Chris Lattnerb56cc342008-03-11 03:23:40 +0000120 // Swap stack slot contents.
121 assert(RegMap[RegOnTop] < StackTop);
122 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123
Chris Lattnerb56cc342008-03-11 03:23:40 +0000124 // Emit an fxch to update the runtime processors version of the state.
125 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
126 NumFXCH++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 }
128
129 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
130 unsigned STReg = getSTReg(RegNo);
131 pushReg(AsReg); // New register on top of stack
132
133 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
134 }
135
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator &I);
139
140 // freeStackSlotAfter - Free the specified register from the register stack,
141 // so that it is no longer in a register. If the register is currently at
142 // the top of the stack, we just pop the current instruction, otherwise we
143 // store the current top-of-stack into the specified slot, then pop the top
144 // of stack.
145 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
146
147 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
148
149 void handleZeroArgFP(MachineBasicBlock::iterator &I);
150 void handleOneArgFP(MachineBasicBlock::iterator &I);
151 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
152 void handleTwoArgFP(MachineBasicBlock::iterator &I);
153 void handleCompareFP(MachineBasicBlock::iterator &I);
154 void handleCondMovFP(MachineBasicBlock::iterator &I);
155 void handleSpecialFP(MachineBasicBlock::iterator &I);
156 };
157 char FPS::ID = 0;
158}
159
160FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
161
Chris Lattner4b7054f2008-01-14 06:41:29 +0000162/// getFPReg - Return the X86::FPx register number for the specified operand.
163/// For example, this returns 3 for X86::FP3.
164static unsigned getFPReg(const MachineOperand &MO) {
165 assert(MO.isRegister() && "Expected an FP register!");
166 unsigned Reg = MO.getReg();
167 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
168 return Reg - X86::FP0;
169}
170
171
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000172/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
173/// register references into FP stack references.
174///
175bool FPS::runOnMachineFunction(MachineFunction &MF) {
176 // We only need to run this pass if there are any FP registers used in this
177 // function. If it is all integer, there is nothing for us to do!
178 bool FPIsUsed = false;
179
180 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
181 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner1b989192007-12-31 04:13:23 +0000182 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 FPIsUsed = true;
184 break;
185 }
186
187 // Early exit.
188 if (!FPIsUsed) return false;
189
190 TII = MF.getTarget().getInstrInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 StackTop = 0;
192
193 // Process the function in depth first order so that we process at least one
194 // of the predecessors for every reachable block in the function.
Owen Anderson43ada1d2008-08-14 21:01:00 +0000195 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 MachineBasicBlock *Entry = MF.begin();
197
198 bool Changed = false;
Owen Anderson43ada1d2008-08-14 21:01:00 +0000199 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000200 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
201 I != E; ++I)
202 Changed |= processBasicBlock(MF, **I);
203
204 return Changed;
205}
206
207/// processBasicBlock - Loop over all of the instructions in the basic block,
208/// transforming FP instructions into their stack form.
209///
210bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
211 bool Changed = false;
212 MBB = &BB;
213
214 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
215 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000216 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattner45b527c2008-03-11 19:50:13 +0000217
218 unsigned FPInstClass = Flags & X86II::FPTypeMask;
219 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
220 FPInstClass = X86II::SpecialFP;
221
222 if (FPInstClass == X86II::NotFP)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 continue; // Efficiently ignore non-fp insts!
224
225 MachineInstr *PrevMI = 0;
226 if (I != BB.begin())
Chris Lattner5d294e52008-03-09 07:05:32 +0000227 PrevMI = prior(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228
229 ++NumFP; // Keep track of # of pseudo instrs
230 DOUT << "\nFPInst:\t" << *MI;
231
232 // Get dead variables list now because the MI pointer may be deleted as part
233 // of processing!
234 SmallVector<unsigned, 8> DeadRegs;
235 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman38a9a9f2007-09-14 20:33:02 +0000237 if (MO.isRegister() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 DeadRegs.push_back(MO.getReg());
239 }
240
Chris Lattner45b527c2008-03-11 19:50:13 +0000241 switch (FPInstClass) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
243 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
244 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
245 case X86II::TwoArgFP: handleTwoArgFP(I); break;
246 case X86II::CompareFP: handleCompareFP(I); break;
247 case X86II::CondMovFP: handleCondMovFP(I); break;
248 case X86II::SpecialFP: handleSpecialFP(I); break;
249 default: assert(0 && "Unknown FP Type!");
250 }
251
252 // Check to see if any of the values defined by this instruction are dead
253 // after definition. If so, pop them.
254 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
255 unsigned Reg = DeadRegs[i];
256 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
257 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
258 freeStackSlotAfter(I, Reg-X86::FP0);
259 }
260 }
261
262 // Print out all of the instructions expanded to if -debug
263 DEBUG(
264 MachineBasicBlock::iterator PrevI(PrevMI);
265 if (I == PrevI) {
266 cerr << "Just deleted pseudo instruction\n";
267 } else {
268 MachineBasicBlock::iterator Start = I;
269 // Rewind to first instruction newly inserted.
270 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
271 cerr << "Inserted instructions:\n\t";
272 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000273 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 }
275 dumpStack();
276 );
277
278 Changed = true;
279 }
280
Chris Lattnerb56cc342008-03-11 03:23:40 +0000281 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 return Changed;
283}
284
285//===----------------------------------------------------------------------===//
286// Efficient Lookup Table Support
287//===----------------------------------------------------------------------===//
288
289namespace {
290 struct TableEntry {
291 unsigned from;
292 unsigned to;
293 bool operator<(const TableEntry &TE) const { return from < TE.from; }
294 friend bool operator<(const TableEntry &TE, unsigned V) {
295 return TE.from < V;
296 }
297 friend bool operator<(unsigned V, const TableEntry &TE) {
298 return V < TE.from;
299 }
300 };
301}
302
Evan Chengf86fee62008-07-21 20:02:45 +0000303#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
305 for (unsigned i = 0; i != NumEntries-1; ++i)
306 if (!(Table[i] < Table[i+1])) return false;
307 return true;
308}
Evan Chengf86fee62008-07-21 20:02:45 +0000309#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310
311static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
312 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
313 if (I != Table+N && I->from == Opcode)
314 return I->to;
315 return -1;
316}
317
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318#ifdef NDEBUG
319#define ASSERT_SORTED(TABLE)
320#else
321#define ASSERT_SORTED(TABLE) \
322 { static bool TABLE##Checked = false; \
323 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000324 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325 "All lookup tables must be sorted for efficient access!"); \
326 TABLE##Checked = true; \
327 } \
328 }
329#endif
330
331//===----------------------------------------------------------------------===//
332// Register File -> Register Stack Mapping Methods
333//===----------------------------------------------------------------------===//
334
335// OpcodeTable - Sorted map of register instructions to their stack version.
336// The first element is an register file pseudo instruction, the second is the
337// concrete X86 instruction which uses the register stack.
338//
339static const TableEntry OpcodeTable[] = {
340 { X86::ABS_Fp32 , X86::ABS_F },
341 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000342 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 { X86::ADD_Fp32m , X86::ADD_F32m },
344 { X86::ADD_Fp64m , X86::ADD_F64m },
345 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000346 { X86::ADD_Fp80m32 , X86::ADD_F32m },
347 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000348 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
349 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000350 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
352 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000353 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 { X86::CHS_Fp32 , X86::CHS_F },
355 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000356 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
358 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000359 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 { X86::CMOVB_Fp32 , X86::CMOVB_F },
361 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000362 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 { X86::CMOVE_Fp32 , X86::CMOVE_F },
364 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000365 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
367 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000368 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
370 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000371 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000372 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
373 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000374 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
376 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000377 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 { X86::CMOVP_Fp32 , X86::CMOVP_F },
379 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000380 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000381 { X86::COS_Fp32 , X86::COS_F },
382 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000383 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 { X86::DIVR_Fp32m , X86::DIVR_F32m },
385 { X86::DIVR_Fp64m , X86::DIVR_F64m },
386 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000387 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
388 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
390 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000391 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
393 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000394 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395 { X86::DIV_Fp32m , X86::DIV_F32m },
396 { X86::DIV_Fp64m , X86::DIV_F64m },
397 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000398 { X86::DIV_Fp80m32 , X86::DIV_F32m },
399 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
401 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000402 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
404 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000405 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 { X86::ILD_Fp16m32 , X86::ILD_F16m },
407 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000408 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 { X86::ILD_Fp32m32 , X86::ILD_F32m },
410 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000411 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412 { X86::ILD_Fp64m32 , X86::ILD_F64m },
413 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000414 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
416 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000417 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
419 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000420 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000421 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
422 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000423 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 { X86::IST_Fp16m32 , X86::IST_F16m },
425 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000426 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 { X86::IST_Fp32m32 , X86::IST_F32m },
428 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000429 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430 { X86::IST_Fp64m32 , X86::IST_FP64m },
431 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000432 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 { X86::LD_Fp032 , X86::LD_F0 },
434 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000435 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436 { X86::LD_Fp132 , X86::LD_F1 },
437 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000438 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000440 { X86::LD_Fp32m64 , X86::LD_F32m },
441 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000443 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000444 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 { X86::MUL_Fp32m , X86::MUL_F32m },
446 { X86::MUL_Fp64m , X86::MUL_F64m },
447 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000448 { X86::MUL_Fp80m32 , X86::MUL_F32m },
449 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
451 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000452 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
454 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000455 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 { X86::SIN_Fp32 , X86::SIN_F },
457 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000458 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 { X86::SQRT_Fp32 , X86::SQRT_F },
460 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000461 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000462 { X86::ST_Fp32m , X86::ST_F32m },
463 { X86::ST_Fp64m , X86::ST_F64m },
464 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000465 { X86::ST_Fp80m32 , X86::ST_F32m },
466 { X86::ST_Fp80m64 , X86::ST_F64m },
467 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 { X86::SUBR_Fp32m , X86::SUBR_F32m },
469 { X86::SUBR_Fp64m , X86::SUBR_F64m },
470 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000471 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
472 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
474 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000475 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000476 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
477 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000478 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000479 { X86::SUB_Fp32m , X86::SUB_F32m },
480 { X86::SUB_Fp64m , X86::SUB_F64m },
481 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000482 { X86::SUB_Fp80m32 , X86::SUB_F32m },
483 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
485 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000486 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
488 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000489 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 { X86::TST_Fp32 , X86::TST_F },
491 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000492 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000493 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
494 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000495 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000496 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
497 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000498 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499};
500
501static unsigned getConcreteOpcode(unsigned Opcode) {
502 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000503 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
505 return Opc;
506}
507
508//===----------------------------------------------------------------------===//
509// Helper Methods
510//===----------------------------------------------------------------------===//
511
512// PopTable - Sorted map of instructions to their popping version. The first
513// element is an instruction, the second is the version which pops.
514//
515static const TableEntry PopTable[] = {
516 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
517
518 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
519 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
520
521 { X86::IST_F16m , X86::IST_FP16m },
522 { X86::IST_F32m , X86::IST_FP32m },
523
524 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
525
526 { X86::ST_F32m , X86::ST_FP32m },
527 { X86::ST_F64m , X86::ST_FP64m },
528 { X86::ST_Frr , X86::ST_FPrr },
529
530 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
531 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
532
533 { X86::UCOM_FIr , X86::UCOM_FIPr },
534
535 { X86::UCOM_FPr , X86::UCOM_FPPr },
536 { X86::UCOM_Fr , X86::UCOM_FPr },
537};
538
539/// popStackAfter - Pop the current value off of the top of the FP stack after
540/// the specified instruction. This attempts to be sneaky and combine the pop
541/// into the instruction itself if possible. The iterator is left pointing to
542/// the last instruction, be it a new pop instruction inserted, or the old
543/// instruction if it was modified in place.
544///
545void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
546 ASSERT_SORTED(PopTable);
547 assert(StackTop > 0 && "Cannot pop empty stack!");
548 RegMap[Stack[--StackTop]] = ~0; // Update state
549
550 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000551 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 if (Opcode != -1) {
Chris Lattner86bb02f2008-01-11 18:10:50 +0000553 I->setDesc(TII->get(Opcode));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000554 if (Opcode == X86::UCOM_FPPr)
555 I->RemoveOperand(0);
556 } else { // Insert an explicit pop
557 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
558 }
559}
560
561/// freeStackSlotAfter - Free the specified register from the register stack, so
562/// that it is no longer in a register. If the register is currently at the top
563/// of the stack, we just pop the current instruction, otherwise we store the
564/// current top-of-stack into the specified slot, then pop the top of stack.
565void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
566 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
567 popStackAfter(I);
568 return;
569 }
570
571 // Otherwise, store the top of stack into the dead slot, killing the operand
572 // without having to add in an explicit xchg then pop.
573 //
574 unsigned STReg = getSTReg(FPRegNo);
575 unsigned OldSlot = getSlot(FPRegNo);
576 unsigned TopReg = Stack[StackTop-1];
577 Stack[OldSlot] = TopReg;
578 RegMap[TopReg] = OldSlot;
579 RegMap[FPRegNo] = ~0;
580 Stack[--StackTop] = ~0;
581 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
582}
583
584
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000585//===----------------------------------------------------------------------===//
586// Instruction transformation implementation
587//===----------------------------------------------------------------------===//
588
589/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
590///
591void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
592 MachineInstr *MI = I;
593 unsigned DestReg = getFPReg(MI->getOperand(0));
594
595 // Change from the pseudo instruction to the concrete instruction.
596 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000597 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000598
599 // Result gets pushed on the stack.
600 pushReg(DestReg);
601}
602
603/// handleOneArgFP - fst <mem>, ST(0)
604///
605void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
606 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000607 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608 assert((NumOps == 5 || NumOps == 1) &&
609 "Can only handle fst* & ftst instructions!");
610
611 // Is this the last use of the source register?
612 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000613 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000614
615 // FISTP64m is strange because there isn't a non-popping versions.
616 // If we have one _and_ we don't want to pop the operand, duplicate the value
617 // on the stack instead of moving it. This ensure that popping the value is
618 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000619 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620 //
621 if (!KillsSrc &&
622 (MI->getOpcode() == X86::IST_Fp64m32 ||
623 MI->getOpcode() == X86::ISTT_Fp16m32 ||
624 MI->getOpcode() == X86::ISTT_Fp32m32 ||
625 MI->getOpcode() == X86::ISTT_Fp64m32 ||
626 MI->getOpcode() == X86::IST_Fp64m64 ||
627 MI->getOpcode() == X86::ISTT_Fp16m64 ||
628 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000629 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000630 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000631 MI->getOpcode() == X86::ISTT_Fp16m80 ||
632 MI->getOpcode() == X86::ISTT_Fp32m80 ||
633 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000634 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 duplicateToTop(Reg, 7 /*temp register*/, I);
636 } else {
637 moveToTop(Reg, I); // Move to the top of the stack...
638 }
639
640 // Convert from the pseudo instruction to the concrete instruction.
641 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000642 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643
644 if (MI->getOpcode() == X86::IST_FP64m ||
645 MI->getOpcode() == X86::ISTT_FP16m ||
646 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000647 MI->getOpcode() == X86::ISTT_FP64m ||
648 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649 assert(StackTop > 0 && "Stack empty??");
650 --StackTop;
651 } else if (KillsSrc) { // Last use of operand?
652 popStackAfter(I);
653 }
654}
655
656
657/// handleOneArgFPRW: Handle instructions that read from the top of stack and
658/// replace the value with a newly computed value. These instructions may have
659/// non-fp operands after their FP operands.
660///
661/// Examples:
662/// R1 = fchs R2
663/// R1 = fadd R2, [mem]
664///
665void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
666 MachineInstr *MI = I;
Evan Chengf86fee62008-07-21 20:02:45 +0000667#ifndef NDEBUG
Chris Lattner5b930372008-01-07 07:27:27 +0000668 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chengf86fee62008-07-21 20:02:45 +0000670#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671
672 // Is this the last use of the source register?
673 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000674 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675
676 if (KillsSrc) {
677 // If this is the last use of the source register, just make sure it's on
678 // the top of the stack.
679 moveToTop(Reg, I);
680 assert(StackTop > 0 && "Stack cannot be empty!");
681 --StackTop;
682 pushReg(getFPReg(MI->getOperand(0)));
683 } else {
684 // If this is not the last use of the source register, _copy_ it to the top
685 // of the stack.
686 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
687 }
688
689 // Change from the pseudo instruction to the concrete instruction.
690 MI->RemoveOperand(1); // Drop the source operand.
691 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner86bb02f2008-01-11 18:10:50 +0000692 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693}
694
695
696//===----------------------------------------------------------------------===//
697// Define tables of various ways to map pseudo instructions
698//
699
700// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
701static const TableEntry ForwardST0Table[] = {
702 { X86::ADD_Fp32 , X86::ADD_FST0r },
703 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000704 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 { X86::DIV_Fp32 , X86::DIV_FST0r },
706 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000707 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 { X86::MUL_Fp32 , X86::MUL_FST0r },
709 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000710 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 { X86::SUB_Fp32 , X86::SUB_FST0r },
712 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000713 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714};
715
716// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
717static const TableEntry ReverseST0Table[] = {
718 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
719 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000720 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 { X86::DIV_Fp32 , X86::DIVR_FST0r },
722 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000723 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
725 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000726 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727 { X86::SUB_Fp32 , X86::SUBR_FST0r },
728 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000729 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730};
731
732// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
733static const TableEntry ForwardSTiTable[] = {
734 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
735 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000736 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
738 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000739 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
741 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000742 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
744 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000745 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746};
747
748// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
749static const TableEntry ReverseSTiTable[] = {
750 { X86::ADD_Fp32 , X86::ADD_FrST0 },
751 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000752 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 { X86::DIV_Fp32 , X86::DIV_FrST0 },
754 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000755 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 { X86::MUL_Fp32 , X86::MUL_FrST0 },
757 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000758 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 { X86::SUB_Fp32 , X86::SUB_FrST0 },
760 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000761 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762};
763
764
765/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
766/// instructions which need to be simplified and possibly transformed.
767///
768/// Result: ST(0) = fsub ST(0), ST(i)
769/// ST(i) = fsub ST(0), ST(i)
770/// ST(0) = fsubr ST(0), ST(i)
771/// ST(i) = fsubr ST(0), ST(i)
772///
773void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
774 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
775 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
776 MachineInstr *MI = I;
777
Chris Lattner5b930372008-01-07 07:27:27 +0000778 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
780 unsigned Dest = getFPReg(MI->getOperand(0));
781 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
782 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000783 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
784 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785
786 unsigned TOS = getStackEntry(0);
787
788 // One of our operands must be on the top of the stack. If neither is yet, we
789 // need to move one.
790 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
791 // We can choose to move either operand to the top of the stack. If one of
792 // the operands is killed by this instruction, we want that one so that we
793 // can update right on top of the old version.
794 if (KillsOp0) {
795 moveToTop(Op0, I); // Move dead operand to TOS.
796 TOS = Op0;
797 } else if (KillsOp1) {
798 moveToTop(Op1, I);
799 TOS = Op1;
800 } else {
801 // All of the operands are live after this instruction executes, so we
802 // cannot update on top of any operand. Because of this, we must
803 // duplicate one of the stack elements to the top. It doesn't matter
804 // which one we pick.
805 //
806 duplicateToTop(Op0, Dest, I);
807 Op0 = TOS = Dest;
808 KillsOp0 = true;
809 }
810 } else if (!KillsOp0 && !KillsOp1) {
811 // If we DO have one of our operands at the top of the stack, but we don't
812 // have a dead operand, we must duplicate one of the operands to a new slot
813 // on the stack.
814 duplicateToTop(Op0, Dest, I);
815 Op0 = TOS = Dest;
816 KillsOp0 = true;
817 }
818
819 // Now we know that one of our operands is on the top of the stack, and at
820 // least one of our operands is killed by this instruction.
821 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
822 "Stack conditions not set up right!");
823
824 // We decide which form to use based on what is on the top of the stack, and
825 // which operand is killed by this instruction.
826 const TableEntry *InstTable;
827 bool isForward = TOS == Op0;
828 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
829 if (updateST0) {
830 if (isForward)
831 InstTable = ForwardST0Table;
832 else
833 InstTable = ReverseST0Table;
834 } else {
835 if (isForward)
836 InstTable = ForwardSTiTable;
837 else
838 InstTable = ReverseSTiTable;
839 }
840
Owen Anderson1636de92007-09-07 04:06:50 +0000841 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
842 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
844
845 // NotTOS - The register which is not on the top of stack...
846 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
847
848 // Replace the old instruction with a new instruction
849 MBB->remove(I++);
850 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
851
852 // If both operands are killed, pop one off of the stack in addition to
853 // overwriting the other one.
854 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
855 assert(!updateST0 && "Should have updated other operand!");
856 popStackAfter(I); // Pop the top of stack
857 }
858
859 // Update stack information so that we know the destination register is now on
860 // the stack.
861 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
862 assert(UpdatedSlot < StackTop && Dest < 7);
863 Stack[UpdatedSlot] = Dest;
864 RegMap[Dest] = UpdatedSlot;
Dan Gohman221a4372008-07-07 23:14:23 +0000865 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866}
867
868/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
869/// register arguments and no explicit destinations.
870///
871void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
872 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
873 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
874 MachineInstr *MI = I;
875
Chris Lattner5b930372008-01-07 07:27:27 +0000876 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
878 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
879 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000880 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
881 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882
883 // Make sure the first operand is on the top of stack, the other one can be
884 // anywhere.
885 moveToTop(Op0, I);
886
887 // Change from the pseudo instruction to the concrete instruction.
888 MI->getOperand(0).setReg(getSTReg(Op1));
889 MI->RemoveOperand(1);
Chris Lattner86bb02f2008-01-11 18:10:50 +0000890 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000891
892 // If any of the operands are killed by this instruction, free them.
893 if (KillsOp0) freeStackSlotAfter(I, Op0);
894 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
895}
896
897/// handleCondMovFP - Handle two address conditional move instructions. These
898/// instructions move a st(i) register to st(0) iff a condition is true. These
899/// instructions require that the first operand is at the top of the stack, but
900/// otherwise don't modify the stack at all.
901void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
902 MachineInstr *MI = I;
903
904 unsigned Op0 = getFPReg(MI->getOperand(0));
905 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000906 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907
908 // The first operand *must* be on the top of the stack.
909 moveToTop(Op0, I);
910
911 // Change the second operand to the stack register that the operand is in.
912 // Change from the pseudo instruction to the concrete instruction.
913 MI->RemoveOperand(0);
914 MI->RemoveOperand(1);
915 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner86bb02f2008-01-11 18:10:50 +0000916 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917
918 // If we kill the second operand, make sure to pop it from the stack.
919 if (Op0 != Op1 && KillsOp1) {
920 // Get this value off of the register stack.
921 freeStackSlotAfter(I, Op1);
922 }
923}
924
925
926/// handleSpecialFP - Handle special instructions which behave unlike other
927/// floating point instructions. This is primarily intended for use by pseudo
928/// instructions.
929///
930void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
931 MachineInstr *MI = I;
932 switch (MI->getOpcode()) {
933 default: assert(0 && "Unknown SpecialFP instruction!");
Chris Lattner5d294e52008-03-09 07:05:32 +0000934 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
935 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
936 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 assert(StackTop == 0 && "Stack should be empty after a call!");
938 pushReg(getFPReg(MI->getOperand(0)));
939 break;
Chris Lattner60d14d82008-03-21 06:38:26 +0000940 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
941 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
942 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
943 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
944 // The pattern we expect is:
945 // CALL
946 // FP1 = FpGET_ST0
947 // FP4 = FpGET_ST1
948 //
949 // At this point, we've pushed FP1 on the top of stack, so it should be
950 // present if it isn't dead. If it was dead, we already emitted a pop to
951 // remove it from the stack and StackTop = 0.
952
953 // Push FP4 as top of stack next.
954 pushReg(getFPReg(MI->getOperand(0)));
955
956 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
957 // dead. In this case, the ST(1) value is the only thing that is live, so
958 // it should be on the TOS (after the pop that was emitted) and is. Just
959 // continue in this case.
960 if (StackTop == 1)
961 break;
962
963 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
964 // elements so that our accounting is correct.
965 unsigned RegOnTop = getStackEntry(0);
966 unsigned RegNo = getStackEntry(1);
967
968 // Swap the slots the regs are in.
969 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
970
971 // Swap stack slot contents.
972 assert(RegMap[RegOnTop] < StackTop);
973 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
974 break;
975 }
Chris Lattneraaef8dc2008-03-09 07:08:44 +0000976 case X86::FpSET_ST0_32:
977 case X86::FpSET_ST0_64:
978 case X86::FpSET_ST0_80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 assert(StackTop == 1 && "Stack should have one element on it to return!");
980 --StackTop; // "Forget" we have something on the top of stack!
981 break;
982 case X86::MOV_Fp3232:
983 case X86::MOV_Fp3264:
984 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000985 case X86::MOV_Fp6464:
986 case X86::MOV_Fp3280:
987 case X86::MOV_Fp6480:
988 case X86::MOV_Fp8032:
989 case X86::MOV_Fp8064:
990 case X86::MOV_Fp8080: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 unsigned SrcReg = getFPReg(MI->getOperand(1));
992 unsigned DestReg = getFPReg(MI->getOperand(0));
993
Evan Chengc7daf1f2008-03-05 00:59:57 +0000994 if (MI->killsRegister(X86::FP0+SrcReg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 // If the input operand is killed, we can just change the owner of the
996 // incoming stack slot into the result.
997 unsigned Slot = getSlot(SrcReg);
998 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
999 Stack[Slot] = DestReg;
1000 RegMap[DestReg] = Slot;
1001
1002 } else {
1003 // For FMOV we just duplicate the specified value to a new stack slot.
1004 // This could be made better, but would require substantial changes.
1005 duplicateToTop(SrcReg, DestReg, I);
1006 }
Nick Lewycky052a31f2008-03-11 05:56:09 +00001007 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 break;
Chris Lattner45b527c2008-03-11 19:50:13 +00001009 case TargetInstrInfo::INLINEASM: {
1010 // The inline asm MachineInstr currently only *uses* FP registers for the
1011 // 'f' constraint. These should be turned into the current ST(x) register
1012 // in the machine instr. Also, any kills should be explicitly popped after
1013 // the inline asm.
1014 unsigned Kills[7];
1015 unsigned NumKills = 0;
1016 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1017 MachineOperand &Op = MI->getOperand(i);
1018 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1019 continue;
1020 assert(Op.isUse() && "Only handle inline asm uses right now");
1021
1022 unsigned FPReg = getFPReg(Op);
1023 Op.setReg(getSTReg(FPReg));
1024
1025 // If we kill this operand, make sure to pop it from the stack after the
1026 // asm. We just remember it for now, and pop them all off at the end in
1027 // a batch.
1028 if (Op.isKill())
1029 Kills[NumKills++] = FPReg;
1030 }
1031
1032 // If this asm kills any FP registers (is the last use of them) we must
1033 // explicitly emit pop instructions for them. Do this now after the asm has
1034 // executed so that the ST(x) numbers are not off (which would happen if we
1035 // did this inline with operand rewriting).
1036 //
1037 // Note: this might be a non-optimal pop sequence. We might be able to do
1038 // better by trying to pop in stack order or something.
1039 MachineBasicBlock::iterator InsertPt = MI;
1040 while (NumKills)
1041 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1042
1043 // Don't delete the inline asm!
1044 return;
1045 }
1046
Chris Lattnerb56cc342008-03-11 03:23:40 +00001047 case X86::RET:
1048 case X86::RETI:
1049 // If RET has an FP register use operand, pass the first one in ST(0) and
1050 // the second one in ST(1).
1051 if (isStackEmpty()) return; // Quick check to see if any are possible.
1052
1053 // Find the register operands.
1054 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1055
1056 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1057 MachineOperand &Op = MI->getOperand(i);
1058 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1059 continue;
Chris Lattnerba4f8f12008-03-21 20:41:27 +00001060 // FP Register uses must be kills unless there are two uses of the same
1061 // register, in which case only one will be a kill.
1062 assert(Op.isUse() &&
1063 (Op.isKill() || // Marked kill.
1064 getFPReg(Op) == FirstFPRegOp || // Second instance.
1065 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1066 "Ret only defs operands, and values aren't live beyond it");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001067
1068 if (FirstFPRegOp == ~0U)
1069 FirstFPRegOp = getFPReg(Op);
1070 else {
1071 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1072 SecondFPRegOp = getFPReg(Op);
1073 }
1074
1075 // Remove the operand so that later passes don't see it.
1076 MI->RemoveOperand(i);
1077 --i, --e;
1078 }
1079
1080 // There are only four possibilities here:
1081 // 1) we are returning a single FP value. In this case, it has to be in
1082 // ST(0) already, so just declare success by removing the value from the
1083 // FP Stack.
1084 if (SecondFPRegOp == ~0U) {
1085 // Assert that the top of stack contains the right FP register.
1086 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1087 "Top of stack not the right register for RET!");
1088
1089 // Ok, everything is good, mark the value as not being on the stack
1090 // anymore so that our assertion about the stack being empty at end of
1091 // block doesn't fire.
1092 StackTop = 0;
1093 return;
1094 }
1095
Chris Lattnerb56cc342008-03-11 03:23:40 +00001096 // Otherwise, we are returning two values:
1097 // 2) If returning the same value for both, we only have one thing in the FP
1098 // stack. Consider: RET FP1, FP1
1099 if (StackTop == 1) {
1100 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1101 "Stack misconfiguration for RET!");
1102
1103 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1104 // register to hold it.
1105 unsigned NewReg = (FirstFPRegOp+1)%7;
1106 duplicateToTop(FirstFPRegOp, NewReg, MI);
1107 FirstFPRegOp = NewReg;
1108 }
1109
1110 /// Okay we know we have two different FPx operands now:
1111 assert(StackTop == 2 && "Must have two values live!");
1112
1113 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1114 /// in ST(1). In this case, emit an fxch.
1115 if (getStackEntry(0) == SecondFPRegOp) {
1116 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1117 moveToTop(FirstFPRegOp, MI);
1118 }
1119
1120 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1121 /// ST(1). Just remove both from our understanding of the stack and return.
1122 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner6bac50e2008-03-21 05:57:20 +00001123 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001124 StackTop = 0;
1125 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001127
1128 I = MBB->erase(I); // Remove the pseudo instruction
1129 --I;
1130}