blob: 312477bfdc8ef6aa76ac96e8ada0bfa027a18908 [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattnercb533582003-08-03 21:14:38 +000031#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Chris Lattner847df252004-01-30 22:25:18 +000040#include "llvm/Function.h" // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h" // FIXME: remove when using MBB CFG!
Chris Lattnera11136b2003-08-01 22:21:34 +000042#include "Support/Debug.h"
Chris Lattner847df252004-01-30 22:25:18 +000043#include "Support/DepthFirstIterator.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include "Support/Statistic.h"
45#include <algorithm>
Chris Lattner847df252004-01-30 22:25:18 +000046#include <set>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000047using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000048
Chris Lattnera960d952003-01-13 01:01:59 +000049namespace {
50 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
51 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
52
53 struct FPS : public MachineFunctionPass {
54 virtual bool runOnMachineFunction(MachineFunction &MF);
55
56 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
57
58 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59 AU.addRequired<LiveVariables>();
60 MachineFunctionPass::getAnalysisUsage(AU);
61 }
62 private:
63 LiveVariables *LV; // Live variable info for current function...
64 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 std::cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 std::cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 std::cerr << "\n";
76 }
77 private:
78 // getSlot - Return the stack slot number a particular register number is
79 // in...
80 unsigned getSlot(unsigned RegNo) const {
81 assert(RegNo < 8 && "Regno out of range!");
82 return RegMap[RegNo];
83 }
84
85 // getStackEntry - Return the X86::FP<n> register in register ST(i)
86 unsigned getStackEntry(unsigned STi) const {
87 assert(STi < StackTop && "Access past stack top!");
88 return Stack[StackTop-1-STi];
89 }
90
91 // getSTReg - Return the X86::ST(i) register which contains the specified
92 // FP<RegNo> register
93 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000094 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000095 }
96
97 // pushReg - Push the specifiex FP<n> register onto the stack
98 void pushReg(unsigned Reg) {
99 assert(Reg < 8 && "Register number out of range!");
100 assert(StackTop < 8 && "Stack overflow!");
101 Stack[StackTop] = Reg;
102 RegMap[Reg] = StackTop++;
103 }
104
105 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
106 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
107 if (!isAtTop(RegNo)) {
108 unsigned Slot = getSlot(RegNo);
109 unsigned STReg = getSTReg(RegNo);
110 unsigned RegOnTop = getStackEntry(0);
111
112 // Swap the slots the regs are in
113 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
114
115 // Swap stack slot contents
116 assert(RegMap[RegOnTop] < StackTop);
117 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
118
119 // Emit an fxch to update the runtime processors version of the state
120 MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
121 I = 1+MBB->insert(I, MI);
122 NumFXCH++;
123 }
124 }
125
126 void duplicateToTop(unsigned RegNo, unsigned AsReg,
127 MachineBasicBlock::iterator &I) {
128 unsigned STReg = getSTReg(RegNo);
129 pushReg(AsReg); // New register on top of stack
130
131 MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
132 I = 1+MBB->insert(I, MI);
133 }
134
135 // popStackAfter - Pop the current value off of the top of the FP stack
136 // after the specified instruction.
137 void popStackAfter(MachineBasicBlock::iterator &I);
138
139 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
140
141 void handleZeroArgFP(MachineBasicBlock::iterator &I);
142 void handleOneArgFP(MachineBasicBlock::iterator &I);
143 void handleTwoArgFP(MachineBasicBlock::iterator &I);
144 void handleSpecialFP(MachineBasicBlock::iterator &I);
145 };
146}
147
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000148FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000149
150/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
151/// register references into FP stack references.
152///
153bool FPS::runOnMachineFunction(MachineFunction &MF) {
154 LV = &getAnalysis<LiveVariables>();
155 StackTop = 0;
156
Chris Lattner847df252004-01-30 22:25:18 +0000157 // Figure out the mapping of MBB's to BB's.
158 //
159 // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
160 // we will need to extend this when one llvm basic block can codegen to
161 // multiple MBBs.
162 //
163 // FIXME again: Just use the mapping established by LiveVariables!
164 //
165 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
Chris Lattnera960d952003-01-13 01:01:59 +0000166 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Chris Lattner847df252004-01-30 22:25:18 +0000167 MBBMap[I->getBasicBlock()] = I;
168
169 // Process the function in depth first order so that we process at least one
170 // of the predecessors for every reachable block in the function.
171 std::set<const BasicBlock*> Processed;
172 const BasicBlock *Entry = MF.getFunction()->begin();
173
174 bool Changed = false;
175 for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
176 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
177 I != E; ++I)
178 Changed |= processBasicBlock(MF, *MBBMap[*I]);
179
180 assert(MBBMap.size() == Processed.size() &&
181 "Doesn't handle unreachable code yet!");
182
Chris Lattnera960d952003-01-13 01:01:59 +0000183 return Changed;
184}
185
186/// processBasicBlock - Loop over all of the instructions in the basic block,
187/// transforming FP instructions into their stack form.
188///
189bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
190 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
191 bool Changed = false;
192 MBB = &BB;
193
194 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
195 MachineInstr *MI = *I;
Chris Lattnera960d952003-01-13 01:01:59 +0000196 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
Chris Lattner847df252004-01-30 22:25:18 +0000197 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
198 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000199
Chris Lattner847df252004-01-30 22:25:18 +0000200 MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
Chris Lattnera960d952003-01-13 01:01:59 +0000201
202 ++NumFP; // Keep track of # of pseudo instrs
203 DEBUG(std::cerr << "\nFPInst:\t";
204 MI->print(std::cerr, MF.getTarget()));
205
206 // Get dead variables list now because the MI pointer may be deleted as part
207 // of processing!
208 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
209 LiveVariables::killed_iterator IE = LV->dead_end(MI);
210
211 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
212 LiveVariables::killed_iterator I = LV->killed_begin(MI);
213 LiveVariables::killed_iterator E = LV->killed_end(MI);
214 if (I != E) {
215 std::cerr << "Killed Operands:";
216 for (; I != E; ++I)
217 std::cerr << " %" << MRI->getName(I->second);
218 std::cerr << "\n";
219 });
220
221 switch (Flags & X86II::FPTypeMask) {
222 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
223 case X86II::OneArgFP: handleOneArgFP(I); break;
224
225 case X86II::OneArgFPRW: // ST(0) = fsqrt(ST(0))
226 assert(0 && "FP instr type not handled yet!");
227
228 case X86II::TwoArgFP: handleTwoArgFP(I); break;
229 case X86II::SpecialFP: handleSpecialFP(I); break;
230 default: assert(0 && "Unknown FP Type!");
231 }
232
233 // Check to see if any of the values defined by this instruction are dead
234 // after definition. If so, pop them.
235 for (; IB != IE; ++IB) {
236 unsigned Reg = IB->second;
237 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
238 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
239 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000240 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000241 --I; // Move to fxch or old instruction
242 popStackAfter(I); // Pop the top of the stack, killing value
243 }
244 }
245
246 // Print out all of the instructions expanded to if -debug
247 DEBUG(if (*I == PrevMI) {
248 std::cerr<< "Just deleted pseudo instruction\n";
249 } else {
250 MachineBasicBlock::iterator Start = I;
251 // Rewind to first instruction newly inserted.
252 while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
Brian Gaeked7908f62003-06-27 00:00:48 +0000253 std::cerr << "Inserted instructions:\n\t";
254 (*Start)->print(std::cerr, MF.getTarget());
Chris Lattnera960d952003-01-13 01:01:59 +0000255 while (++Start != I+1);
256 }
257 dumpStack();
258 );
259
260 Changed = true;
261 }
262
263 assert(StackTop == 0 && "Stack not empty at end of basic block?");
264 return Changed;
265}
266
267//===----------------------------------------------------------------------===//
268// Efficient Lookup Table Support
269//===----------------------------------------------------------------------===//
270
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000271namespace {
272 struct TableEntry {
273 unsigned from;
274 unsigned to;
275 bool operator<(const TableEntry &TE) const { return from < TE.from; }
276 bool operator<(unsigned V) const { return from < V; }
277 };
278}
Chris Lattnera960d952003-01-13 01:01:59 +0000279
280static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
281 for (unsigned i = 0; i != NumEntries-1; ++i)
282 if (!(Table[i] < Table[i+1])) return false;
283 return true;
284}
285
286static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
287 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
288 if (I != Table+N && I->from == Opcode)
289 return I->to;
290 return -1;
291}
292
293#define ARRAY_SIZE(TABLE) \
294 (sizeof(TABLE)/sizeof(TABLE[0]))
295
296#ifdef NDEBUG
297#define ASSERT_SORTED(TABLE)
298#else
299#define ASSERT_SORTED(TABLE) \
300 { static bool TABLE##Checked = false; \
301 if (!TABLE##Checked) \
302 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
303 "All lookup tables must be sorted for efficient access!"); \
304 }
305#endif
306
307
308//===----------------------------------------------------------------------===//
309// Helper Methods
310//===----------------------------------------------------------------------===//
311
312// PopTable - Sorted map of instructions to their popping version. The first
313// element is an instruction, the second is the version which pops.
314//
315static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000316 { X86::FADDrST0 , X86::FADDPrST0 },
317
318 { X86::FDIVRrST0, X86::FDIVRPrST0 },
319 { X86::FDIVrST0 , X86::FDIVPrST0 },
320
Chris Lattnera960d952003-01-13 01:01:59 +0000321 { X86::FISTr16 , X86::FISTPr16 },
322 { X86::FISTr32 , X86::FISTPr32 },
323
Chris Lattnera960d952003-01-13 01:01:59 +0000324 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000325
Chris Lattner113455b2003-08-03 21:56:36 +0000326 { X86::FSTr32 , X86::FSTPr32 },
327 { X86::FSTr64 , X86::FSTPr64 },
328 { X86::FSTrr , X86::FSTPrr },
329
330 { X86::FSUBRrST0, X86::FSUBRPrST0 },
331 { X86::FSUBrST0 , X86::FSUBPrST0 },
332
Chris Lattnera960d952003-01-13 01:01:59 +0000333 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000334 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000335};
336
337/// popStackAfter - Pop the current value off of the top of the FP stack after
338/// the specified instruction. This attempts to be sneaky and combine the pop
339/// into the instruction itself if possible. The iterator is left pointing to
340/// the last instruction, be it a new pop instruction inserted, or the old
341/// instruction if it was modified in place.
342///
343void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
344 ASSERT_SORTED(PopTable);
345 assert(StackTop > 0 && "Cannot pop empty stack!");
346 RegMap[Stack[--StackTop]] = ~0; // Update state
347
348 // Check to see if there is a popping version of this instruction...
349 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
350 if (Opcode != -1) {
351 (*I)->setOpcode(Opcode);
352 if (Opcode == X86::FUCOMPPr)
353 (*I)->RemoveOperand(0);
354
355 } else { // Insert an explicit pop
356 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
357 I = MBB->insert(I+1, MI);
358 }
359}
360
361static unsigned getFPReg(const MachineOperand &MO) {
362 assert(MO.isPhysicalRegister() && "Expected an FP register!");
363 unsigned Reg = MO.getReg();
364 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
365 return Reg - X86::FP0;
366}
367
368
369//===----------------------------------------------------------------------===//
370// Instruction transformation implementation
371//===----------------------------------------------------------------------===//
372
373/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
374//
375void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
376 MachineInstr *MI = *I;
377 unsigned DestReg = getFPReg(MI->getOperand(0));
378 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
379
380 // Result gets pushed on the stack...
381 pushReg(DestReg);
382}
383
384/// handleOneArgFP - fst ST(0), <mem>
385//
386void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
387 MachineInstr *MI = *I;
388 assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
389
390 unsigned Reg = getFPReg(MI->getOperand(4));
391 bool KillsSrc = false;
392 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
393 E = LV->killed_end(MI); KI != E; ++KI)
394 KillsSrc |= KI->second == X86::FP0+Reg;
395
396 // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
397 // If we have one _and_ we don't want to pop the operand, duplicate the value
398 // on the stack instead of moving it. This ensure that popping the value is
399 // always ok.
400 //
401 if ((MI->getOpcode() == X86::FSTPr80 ||
402 MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
403 duplicateToTop(Reg, 7 /*temp register*/, I);
404 } else {
405 moveToTop(Reg, I); // Move to the top of the stack...
406 }
407 MI->RemoveOperand(4); // Remove explicit ST(0) operand
408
409 if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
410 assert(StackTop > 0 && "Stack empty??");
411 --StackTop;
412 } else if (KillsSrc) { // Last use of operand?
413 popStackAfter(I);
414 }
415}
416
417//===----------------------------------------------------------------------===//
418// Define tables of various ways to map pseudo instructions
419//
420
421// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
422static const TableEntry ForwardST0Table[] = {
423 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000424 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000425 { X86::FpMUL, X86::FMULST0r },
426 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000427 { X86::FpUCOM, X86::FUCOMr },
428};
429
430// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
431static const TableEntry ReverseST0Table[] = {
432 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000433 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000434 { X86::FpMUL, X86::FMULST0r }, // commutative
435 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000436 { X86::FpUCOM, ~0 },
437};
438
439// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
440static const TableEntry ForwardSTiTable[] = {
441 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000442 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000443 { X86::FpMUL, X86::FMULrST0 }, // commutative
444 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000445 { X86::FpUCOM, X86::FUCOMr },
446};
447
448// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
449static const TableEntry ReverseSTiTable[] = {
450 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000451 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000452 { X86::FpMUL, X86::FMULrST0 },
453 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000454 { X86::FpUCOM, ~0 },
455};
456
457
458/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
459/// instructions which need to be simplified and possibly transformed.
460///
461/// Result: ST(0) = fsub ST(0), ST(i)
462/// ST(i) = fsub ST(0), ST(i)
463/// ST(0) = fsubr ST(0), ST(i)
464/// ST(i) = fsubr ST(0), ST(i)
465///
466/// In addition to three address instructions, this also handles the FpUCOM
467/// instruction which only has two operands, but no destination. This
468/// instruction is also annoying because there is no "reverse" form of it
469/// available.
470///
471void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
472 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
473 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
474 MachineInstr *MI = *I;
475
476 unsigned NumOperands = MI->getNumOperands();
477 assert(NumOperands == 3 ||
478 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
479 "Illegal TwoArgFP instruction!");
480 unsigned Dest = getFPReg(MI->getOperand(0));
481 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
482 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
483 bool KillsOp0 = false, KillsOp1 = false;
484
485 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
486 E = LV->killed_end(MI); KI != E; ++KI) {
487 KillsOp0 |= (KI->second == X86::FP0+Op0);
488 KillsOp1 |= (KI->second == X86::FP0+Op1);
489 }
490
491 // If this is an FpUCOM instruction, we must make sure the first operand is on
492 // the top of stack, the other one can be anywhere...
493 if (MI->getOpcode() == X86::FpUCOM)
494 moveToTop(Op0, I);
495
496 unsigned TOS = getStackEntry(0);
497
498 // One of our operands must be on the top of the stack. If neither is yet, we
499 // need to move one.
500 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
501 // We can choose to move either operand to the top of the stack. If one of
502 // the operands is killed by this instruction, we want that one so that we
503 // can update right on top of the old version.
504 if (KillsOp0) {
505 moveToTop(Op0, I); // Move dead operand to TOS.
506 TOS = Op0;
507 } else if (KillsOp1) {
508 moveToTop(Op1, I);
509 TOS = Op1;
510 } else {
511 // All of the operands are live after this instruction executes, so we
512 // cannot update on top of any operand. Because of this, we must
513 // duplicate one of the stack elements to the top. It doesn't matter
514 // which one we pick.
515 //
516 duplicateToTop(Op0, Dest, I);
517 Op0 = TOS = Dest;
518 KillsOp0 = true;
519 }
520 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
521 // If we DO have one of our operands at the top of the stack, but we don't
522 // have a dead operand, we must duplicate one of the operands to a new slot
523 // on the stack.
524 duplicateToTop(Op0, Dest, I);
525 Op0 = TOS = Dest;
526 KillsOp0 = true;
527 }
528
529 // Now we know that one of our operands is on the top of the stack, and at
530 // least one of our operands is killed by this instruction.
531 assert((TOS == Op0 || TOS == Op1) &&
532 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
533 "Stack conditions not set up right!");
534
535 // We decide which form to use based on what is on the top of the stack, and
536 // which operand is killed by this instruction.
537 const TableEntry *InstTable;
538 bool isForward = TOS == Op0;
539 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
540 if (updateST0) {
541 if (isForward)
542 InstTable = ForwardST0Table;
543 else
544 InstTable = ReverseST0Table;
545 } else {
546 if (isForward)
547 InstTable = ForwardSTiTable;
548 else
549 InstTable = ReverseSTiTable;
550 }
551
552 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
553 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
554
555 // NotTOS - The register which is not on the top of stack...
556 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
557
558 // Replace the old instruction with a new instruction
559 *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
560
561 // If both operands are killed, pop one off of the stack in addition to
562 // overwriting the other one.
563 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
564 assert(!updateST0 && "Should have updated other operand!");
565 popStackAfter(I); // Pop the top of stack
566 }
567
568 // Insert an explicit pop of the "updated" operand for FUCOM
569 if (MI->getOpcode() == X86::FpUCOM) {
570 if (KillsOp0 && !KillsOp1)
571 popStackAfter(I); // If we kill the first operand, pop it!
572 else if (KillsOp1 && Op0 != Op1) {
573 if (getStackEntry(0) == Op1) {
574 popStackAfter(I); // If it's right at the top of stack, just pop it
575 } else {
576 // Otherwise, move the top of stack into the dead slot, killing the
577 // operand without having to add in an explicit xchg then pop.
578 //
579 unsigned STReg = getSTReg(Op1);
580 unsigned OldSlot = getSlot(Op1);
581 unsigned TopReg = Stack[StackTop-1];
582 Stack[OldSlot] = TopReg;
583 RegMap[TopReg] = OldSlot;
584 RegMap[Op1] = ~0;
585 Stack[--StackTop] = ~0;
586
587 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
588 I = MBB->insert(I+1, MI);
589 }
590 }
591 }
592
593 // Update stack information so that we know the destination register is now on
594 // the stack.
595 if (MI->getOpcode() != X86::FpUCOM) {
596 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
597 assert(UpdatedSlot < StackTop && Dest < 7);
598 Stack[UpdatedSlot] = Dest;
599 RegMap[Dest] = UpdatedSlot;
600 }
601 delete MI; // Remove the old instruction
602}
603
604
605/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000606/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000607/// instructions.
608///
609void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
610 MachineInstr *MI = *I;
611 switch (MI->getOpcode()) {
612 default: assert(0 && "Unknown SpecialFP instruction!");
613 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
614 assert(StackTop == 0 && "Stack should be empty after a call!");
615 pushReg(getFPReg(MI->getOperand(0)));
616 break;
617 case X86::FpSETRESULT:
618 assert(StackTop == 1 && "Stack should have one element on it to return!");
619 --StackTop; // "Forget" we have something on the top of stack!
620 break;
621 case X86::FpMOV: {
622 unsigned SrcReg = getFPReg(MI->getOperand(1));
623 unsigned DestReg = getFPReg(MI->getOperand(0));
624 bool KillsSrc = false;
625 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
626 E = LV->killed_end(MI); KI != E; ++KI)
627 KillsSrc |= KI->second == X86::FP0+SrcReg;
628
629 if (KillsSrc) {
630 // If the input operand is killed, we can just change the owner of the
631 // incoming stack slot into the result.
632 unsigned Slot = getSlot(SrcReg);
633 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
634 Stack[Slot] = DestReg;
635 RegMap[DestReg] = Slot;
636
637 } else {
638 // For FMOV we just duplicate the specified value to a new stack slot.
639 // This could be made better, but would require substantial changes.
640 duplicateToTop(SrcReg, DestReg, I);
641 }
642 break;
643 }
644 }
645
646 I = MBB->erase(I)-1; // Remove the pseudo instruction
Chris Lattner90685742003-12-20 10:12:17 +0000647 delete MI;
Chris Lattnera960d952003-01-13 01:01:59 +0000648}