Jakob Stoklund Olesen | 8bfe508 | 2011-01-06 01:21:53 +0000 | [diff] [blame^] | 1 | //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the spill code placement analysis. |
| 11 | // |
| 12 | // Each edge bundle corresponds to a node in a Hopfield network. Constraints on |
| 13 | // basic blocks are weighted by the block frequency and added to become the node |
| 14 | // bias. |
| 15 | // |
| 16 | // Transparent basic blocks have the variable live through, but don't care if it |
| 17 | // is spilled or in a register. These blocks become connections in the Hopfield |
| 18 | // network, again weighted by block frequency. |
| 19 | // |
| 20 | // The Hopfield network minimizes (possibly locally) its energy function: |
| 21 | // |
| 22 | // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) |
| 23 | // |
| 24 | // The energy function represents the expected spill code execution frequency, |
| 25 | // or the cost of spilling. This is a Lyapunov function which never increases |
| 26 | // when a node is updated. It is guaranteed to converge to a local minimum. |
| 27 | // |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | |
| 30 | #include "SpillPlacement.h" |
| 31 | #include "llvm/CodeGen/EdgeBundles.h" |
| 32 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| 33 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 34 | #include "llvm/CodeGen/MachineFunction.h" |
| 35 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 36 | #include "llvm/CodeGen/Passes.h" |
| 37 | #include "llvm/Support/Debug.h" |
| 38 | #include "llvm/Support/Format.h" |
| 39 | |
| 40 | using namespace llvm; |
| 41 | |
| 42 | char SpillPlacement::ID = 0; |
| 43 | INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement", |
| 44 | "Spill Code Placement Analysis", true, true) |
| 45 | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
| 46 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| 47 | INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement", |
| 48 | "Spill Code Placement Analysis", true, true) |
| 49 | |
| 50 | char &llvm::SpillPlacementID = SpillPlacement::ID; |
| 51 | |
| 52 | void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { |
| 53 | AU.setPreservesAll(); |
| 54 | AU.addRequiredTransitive<EdgeBundles>(); |
| 55 | AU.addRequiredTransitive<MachineLoopInfo>(); |
| 56 | MachineFunctionPass::getAnalysisUsage(AU); |
| 57 | } |
| 58 | |
| 59 | /// Node - Each edge bundle corresponds to a Hopfield node. |
| 60 | /// |
| 61 | /// The node contains precomputed frequency data that only depends on the CFG, |
| 62 | /// but Bias and Links are computed each time placeSpills is called. |
| 63 | /// |
| 64 | /// The node Value is positive when the variable should be in a register. The |
| 65 | /// value can change when linked nodes change, but convergence is very fast |
| 66 | /// because all weights are positive. |
| 67 | /// |
| 68 | struct SpillPlacement::Node { |
| 69 | /// Frequency - Total block frequency feeding into[0] or out of[1] the bundle. |
| 70 | /// Ideally, these two numbers should be identical, but inaccuracies in the |
| 71 | /// block frequency estimates means that we need to normalize ingoing and |
| 72 | /// outgoing frequencies separately so they are commensurate. |
| 73 | float Frequency[2]; |
| 74 | |
| 75 | /// Bias - Normalized contributions from non-transparent blocks. |
| 76 | /// A bundle connected to a MustSpill block has a huge negative bias, |
| 77 | /// otherwise it is a number in the range [-2;2]. |
| 78 | float Bias; |
| 79 | |
| 80 | /// Value - Output value of this node computed from the Bias and links. |
| 81 | /// This is always in the range [-1;1]. A positive number means the variable |
| 82 | /// should go in a register through this bundle. |
| 83 | float Value; |
| 84 | |
| 85 | typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector; |
| 86 | |
| 87 | /// Links - (Weight, BundleNo) for all transparent blocks connecting to other |
| 88 | /// bundles. The weights are all positive and add up to at most 2, weights |
| 89 | /// from ingoing and outgoing nodes separately add up to a most 1. The weight |
| 90 | /// sum can be less than 2 when the variable is not live into / out of some |
| 91 | /// connected basic blocks. |
| 92 | LinkVector Links; |
| 93 | |
| 94 | /// preferReg - Return true when this node prefers to be in a register. |
| 95 | bool preferReg() const { |
| 96 | // Undecided nodes (Value==0) go on the stack. |
| 97 | return Value > 0; |
| 98 | } |
| 99 | |
| 100 | /// mustSpill - Return True if this node is so biased that it must spill. |
| 101 | bool mustSpill() const { |
| 102 | // Actually, we must spill if Bias < sum(weights). |
| 103 | // It may be worth it to compute the weight sum here? |
| 104 | return Bias < -2.0f; |
| 105 | } |
| 106 | |
| 107 | /// Node - Create a blank Node. |
| 108 | Node() { |
| 109 | Frequency[0] = Frequency[1] = 0; |
| 110 | } |
| 111 | |
| 112 | /// clear - Reset per-query data, but preserve frequencies that only depend on |
| 113 | // the CFG. |
| 114 | void clear() { |
| 115 | Bias = Value = 0; |
| 116 | Links.clear(); |
| 117 | } |
| 118 | |
| 119 | /// addLink - Add a link to bundle b with weight w. |
| 120 | /// out=0 for an ingoing link, and 1 for an outgoing link. |
| 121 | void addLink(unsigned b, float w, bool out) { |
| 122 | // Normalize w relative to all connected blocks from that direction. |
| 123 | w /= Frequency[out]; |
| 124 | |
| 125 | // There can be multiple links to the same bundle, add them up. |
| 126 | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) |
| 127 | if (I->second == b) { |
| 128 | I->first += w; |
| 129 | return; |
| 130 | } |
| 131 | // This must be the first link to b. |
| 132 | Links.push_back(std::make_pair(w, b)); |
| 133 | } |
| 134 | |
| 135 | /// addBias - Bias this node from an ingoing[0] or outgoing[1] link. |
| 136 | void addBias(float w, bool out) { |
| 137 | // Normalize w relative to all connected blocks from that direction. |
| 138 | w /= Frequency[out]; |
| 139 | Bias += w; |
| 140 | } |
| 141 | |
| 142 | /// update - Recompute Value from Bias and Links. Return true when node |
| 143 | /// preference changes. |
| 144 | bool update(const Node nodes[]) { |
| 145 | // Compute the weighted sum of inputs. |
| 146 | float Sum = Bias; |
| 147 | for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) |
| 148 | Sum += I->first * nodes[I->second].Value; |
| 149 | |
| 150 | // The weighted sum is going to be in the range [-2;2]. Ideally, we should |
| 151 | // simply set Value = sign(Sum), but we will add a dead zone around 0 for |
| 152 | // two reasons: |
| 153 | // 1. It avoids arbitrary bias when all links are 0 as is possible during |
| 154 | // initial iterations. |
| 155 | // 2. It helps tame rounding errors when the links nominally sum to 0. |
| 156 | const float Thres = 1e-4; |
| 157 | bool Before = preferReg(); |
| 158 | if (Sum < -Thres) |
| 159 | Value = -1; |
| 160 | else if (Sum > Thres) |
| 161 | Value = 1; |
| 162 | else |
| 163 | Value = 0; |
| 164 | return Before != preferReg(); |
| 165 | } |
| 166 | }; |
| 167 | |
| 168 | bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { |
| 169 | MF = &mf; |
| 170 | bundles = &getAnalysis<EdgeBundles>(); |
| 171 | loops = &getAnalysis<MachineLoopInfo>(); |
| 172 | |
| 173 | assert(!nodes && "Leaking node array"); |
| 174 | nodes = new Node[bundles->getNumBundles()]; |
| 175 | |
| 176 | // Compute total ingoing and outgoing block frequencies for all bundles. |
| 177 | for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) { |
| 178 | float Freq = getBlockFrequency(I); |
| 179 | unsigned Num = I->getNumber(); |
| 180 | nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq; |
| 181 | nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq; |
| 182 | } |
| 183 | |
| 184 | // We never change the function. |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | void SpillPlacement::releaseMemory() { |
| 189 | delete[] nodes; |
| 190 | nodes = 0; |
| 191 | } |
| 192 | |
| 193 | /// activate - mark node n as active if it wasn't already. |
| 194 | void SpillPlacement::activate(unsigned n) { |
| 195 | if (ActiveNodes->test(n)) |
| 196 | return; |
| 197 | ActiveNodes->set(n); |
| 198 | nodes[n].clear(); |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /// prepareNodes - Compute node biases and weights from a set of constraints. |
| 203 | /// Set a bit in NodeMask for each active node. |
| 204 | void SpillPlacement:: |
| 205 | prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) { |
| 206 | DEBUG(dbgs() << "Building Hopfield network from " << LiveBlocks.size() |
| 207 | << " constraint blocks:\n"); |
| 208 | for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(), |
| 209 | E = LiveBlocks.end(); I != E; ++I) { |
| 210 | MachineBasicBlock *MBB = MF->getBlockNumbered(I->Number); |
| 211 | float Freq = getBlockFrequency(MBB); |
| 212 | DEBUG(dbgs() << " BB#" << I->Number << format(", Freq = %.1f", Freq)); |
| 213 | |
| 214 | // Is this a transparent block? Link ingoing and outgoing bundles. |
| 215 | if (I->Entry == DontCare && I->Exit == DontCare) { |
| 216 | unsigned ib = bundles->getBundle(I->Number, 0); |
| 217 | unsigned ob = bundles->getBundle(I->Number, 1); |
| 218 | DEBUG(dbgs() << ", transparent EB#" << ib << " -> EB#" << ob << '\n'); |
| 219 | |
| 220 | // Ignore self-loops. |
| 221 | if (ib == ob) |
| 222 | continue; |
| 223 | activate(ib); |
| 224 | activate(ob); |
| 225 | nodes[ib].addLink(ob, Freq, 1); |
| 226 | nodes[ob].addLink(ib, Freq, 0); |
| 227 | continue; |
| 228 | } |
| 229 | |
| 230 | // This block is not transparent, but it can still add bias. |
| 231 | const float Bias[] = { |
| 232 | 0, // DontCare, |
| 233 | 1, // PrefReg, |
| 234 | -1, // PrefSpill |
| 235 | -HUGE_VALF // MustSpill |
| 236 | }; |
| 237 | |
| 238 | // Live-in to block? |
| 239 | if (I->Entry != DontCare) { |
| 240 | unsigned ib = bundles->getBundle(I->Number, 0); |
| 241 | activate(ib); |
| 242 | nodes[ib].addBias(Freq * Bias[I->Entry], 1); |
| 243 | DEBUG(dbgs() << format(", entry EB#%u %+.1f", ib, Freq * Bias[I->Entry])); |
| 244 | } |
| 245 | |
| 246 | // Live-out from block? |
| 247 | if (I->Exit != DontCare) { |
| 248 | unsigned ob = bundles->getBundle(I->Number, 1); |
| 249 | activate(ob); |
| 250 | nodes[ob].addBias(Freq * Bias[I->Exit], 0); |
| 251 | DEBUG(dbgs() << format(", exit EB#%u %+.1f", ob, Freq * Bias[I->Exit])); |
| 252 | } |
| 253 | |
| 254 | DEBUG(dbgs() << '\n'); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /// iterate - Repeatedly update the Hopfield nodes until stability or the |
| 259 | /// maximum number of iterations is reached. |
| 260 | /// @param Linked - Numbers of linked nodes that need updating. |
| 261 | void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) { |
| 262 | DEBUG(dbgs() << "Iterating over " << Linked.size() << " linked nodes:\n"); |
| 263 | if (Linked.empty()) |
| 264 | return; |
| 265 | |
| 266 | // Run up to 10 iterations. The edge bundle numbering is closely related to |
| 267 | // basic block numbering, so there is a strong tendency towards chains of |
| 268 | // linked nodes with sequential numbers. By scanning the linked nodes |
| 269 | // backwards and forwards, we make it very likely that a single node can |
| 270 | // affect the entire network in a single iteration. That means very fast |
| 271 | // convergence, usually in a single iteration. |
| 272 | for (unsigned iteration = 0; iteration != 10; ++iteration) { |
| 273 | // Scan backwards, skipping the last node which was just updated. |
| 274 | bool Changed = false; |
| 275 | for (SmallVectorImpl<unsigned>::const_reverse_iterator I = |
| 276 | llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { |
| 277 | unsigned n = *I; |
| 278 | bool C = nodes[n].update(nodes); |
| 279 | Changed |= C; |
| 280 | DEBUG(dbgs() << " \\EB#" << n << format(" = %+2.0f", nodes[n].Value) |
| 281 | << (C ? " *\n" : "\n")); |
| 282 | } |
| 283 | if (!Changed) |
| 284 | return; |
| 285 | |
| 286 | // Scan forwards, skipping the first node which was just updated. |
| 287 | Changed = false; |
| 288 | for (SmallVectorImpl<unsigned>::const_iterator I = |
| 289 | llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) { |
| 290 | unsigned n = *I; |
| 291 | bool C = nodes[n].update(nodes); |
| 292 | Changed |= C; |
| 293 | DEBUG(dbgs() << " /EB#" << n << format(" = %+2.0f", nodes[n].Value) |
| 294 | << (C ? " *\n" : "\n")); |
| 295 | } |
| 296 | if (!Changed) |
| 297 | return; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | bool |
| 302 | SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks, |
| 303 | BitVector &RegBundles) { |
| 304 | // Reuse RegBundles as our ActiveNodes vector. |
| 305 | ActiveNodes = &RegBundles; |
| 306 | ActiveNodes->clear(); |
| 307 | ActiveNodes->resize(bundles->getNumBundles()); |
| 308 | |
| 309 | // Compute active nodes, links and biases. |
| 310 | prepareNodes(LiveBlocks); |
| 311 | |
| 312 | // Update all active nodes, and find the ones that are actually linked to |
| 313 | // something so their value may change when iterating. |
| 314 | DEBUG(dbgs() << "Network has " << RegBundles.count() << " active nodes:\n"); |
| 315 | SmallVector<unsigned, 8> Linked; |
| 316 | for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) { |
| 317 | nodes[n].update(nodes); |
| 318 | // A node that must spill, or a node without any links is not going to |
| 319 | // change its value ever again, so exclude it from iterations. |
| 320 | if (!nodes[n].Links.empty() && !nodes[n].mustSpill()) |
| 321 | Linked.push_back(n); |
| 322 | |
| 323 | DEBUG({ |
| 324 | dbgs() << " EB#" << n << format(" = %+2.0f", nodes[n].Value) |
| 325 | << format(", Bias %+.2f", nodes[n].Bias) |
| 326 | << format(", Freq %.1f/%.1f", nodes[n].Frequency[0], |
| 327 | nodes[n].Frequency[1]); |
| 328 | for (unsigned i = 0, e = nodes[n].Links.size(); i != e; ++i) |
| 329 | dbgs() << format(", %.2f -> EB#%u", nodes[n].Links[i].first, |
| 330 | nodes[n].Links[i].second); |
| 331 | dbgs() << '\n'; |
| 332 | }); |
| 333 | } |
| 334 | |
| 335 | // Iterate the network to convergence. |
| 336 | iterate(Linked); |
| 337 | |
| 338 | // Write preferences back to RegBundles. |
| 339 | bool Perfect = true; |
| 340 | for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) |
| 341 | if (!nodes[n].preferReg()) { |
| 342 | RegBundles.reset(n); |
| 343 | Perfect = false; |
| 344 | } |
| 345 | return Perfect; |
| 346 | } |
| 347 | |
| 348 | /// getBlockFrequency - Return our best estimate of the block frequency which is |
| 349 | /// the expected number of block executions per function invocation. |
| 350 | float SpillPlacement::getBlockFrequency(const MachineBasicBlock *MBB) { |
| 351 | // Use the unnormalized spill weight for real block frequencies. |
| 352 | return LiveIntervals::getSpillWeight(true, false, loops->getLoopDepth(MBB)); |
| 353 | } |
| 354 | |