Chris Lattner | d32a961 | 2001-11-01 02:42:08 +0000 | [diff] [blame^] | 1 | //===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=// |
| 2 | // |
| 3 | // This file implements the 'raising' part of the LevelChange API. This is |
| 4 | // useful because, in general, it makes the LLVM code terser and easier to |
| 5 | // analyze. Note that it is good to run DCE after doing this transformation. |
| 6 | // |
| 7 | // Eliminate silly things in the source that do not effect the level, but do |
| 8 | // clean up the code: |
| 9 | // * Casts of casts |
| 10 | // - getelementptr/load & getelementptr/store are folded into a direct |
| 11 | // load or store |
| 12 | // - Convert this code (for both alloca and malloc): |
| 13 | // %reg110 = shl uint %n, ubyte 2 ;;<uint> |
| 14 | // %reg108 = alloca ubyte, uint %reg110 ;;<ubyte*> |
| 15 | // %cast76 = cast ubyte* %reg108 to uint* ;;<uint*> |
| 16 | // To: %cast76 = alloca uint, uint %n |
| 17 | // Convert explicit addressing to use getelementptr instruction where possible |
| 18 | // - ... |
| 19 | // |
| 20 | // Convert explicit addressing on pointers to use getelementptr instruction. |
| 21 | // - If a pointer is used by arithmetic operation, insert an array casted |
| 22 | // version into the source program, only for the following pointer types: |
| 23 | // * Method argument pointers |
| 24 | // - Pointers returned by alloca or malloc |
| 25 | // - Pointers returned by function calls |
| 26 | // - If a pointer is indexed with a value scaled by a constant size equal |
| 27 | // to the element size of the array, the expression is replaced with a |
| 28 | // getelementptr instruction. |
| 29 | // |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | |
| 32 | #include "llvm/Transforms/LevelChange.h" |
| 33 | #include "llvm/Method.h" |
| 34 | #include "llvm/Support/STLExtras.h" |
| 35 | #include "llvm/iOther.h" |
| 36 | #include "llvm/iMemory.h" |
| 37 | #include "llvm/ConstPoolVals.h" |
| 38 | #include "llvm/Target/TargetData.h" |
| 39 | #include <map> |
| 40 | #include <algorithm> |
| 41 | |
| 42 | #include "llvm/Assembly/Writer.h" |
| 43 | |
| 44 | //#define DEBUG_PEEPHOLE_INSTS 1 |
| 45 | |
| 46 | #ifdef DEBUG_PEEPHOLE_INSTS |
| 47 | #define PRINT_PEEPHOLE(ID, NUM, I) \ |
| 48 | cerr << "Inst P/H " << ID << "[" << NUM << "] " << I; |
| 49 | #else |
| 50 | #define PRINT_PEEPHOLE(ID, NUM, I) |
| 51 | #endif |
| 52 | |
| 53 | #define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0) |
| 54 | #define PRINT_PEEPHOLE2(ID, I1, I2) \ |
| 55 | do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0) |
| 56 | #define PRINT_PEEPHOLE3(ID, I1, I2, I3) \ |
| 57 | do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ |
| 58 | PRINT_PEEPHOLE(ID, 2, I3); } while (0) |
| 59 | |
| 60 | |
| 61 | // TargetData Hack: Eventually we will have annotations given to us by the |
| 62 | // backend so that we know stuff about type size and alignments. For now |
| 63 | // though, just use this, because it happens to match the model that GCC uses. |
| 64 | // |
| 65 | const TargetData TD("LevelRaise: Should be GCC though!"); |
| 66 | |
| 67 | |
| 68 | // losslessCastableTypes - Return true if the types are bitwise equivalent. |
| 69 | // This predicate returns true if it is possible to cast from one type to |
| 70 | // another without gaining or losing precision, or altering the bits in any way. |
| 71 | // |
| 72 | static bool losslessCastableTypes(const Type *T1, const Type *T2) { |
| 73 | assert(T1->isPrimitiveType() || isa<PointerType>(T1)); |
| 74 | assert(T2->isPrimitiveType() || isa<PointerType>(T2)); |
| 75 | |
| 76 | if (T1->getPrimitiveID() == T2->getPrimitiveID()) |
| 77 | return true; // Handles identity cast, and cast of differing pointer types |
| 78 | |
| 79 | // Now we know that they are two differing primitive or pointer types |
| 80 | switch (T1->getPrimitiveID()) { |
| 81 | case Type::UByteTyID: return T2 == Type::SByteTy; |
| 82 | case Type::SByteTyID: return T2 == Type::UByteTy; |
| 83 | case Type::UShortTyID: return T2 == Type::ShortTy; |
| 84 | case Type::ShortTyID: return T2 == Type::UShortTy; |
| 85 | case Type::UIntTyID: return T2 == Type::IntTy; |
| 86 | case Type::IntTyID: return T2 == Type::UIntTy; |
| 87 | case Type::ULongTyID: |
| 88 | case Type::LongTyID: |
| 89 | case Type::PointerTyID: |
| 90 | return T2 == Type::ULongTy || T2 == Type::LongTy || |
| 91 | T2->getPrimitiveID() == Type::PointerTyID; |
| 92 | default: |
| 93 | return false; // Other types have no identity values |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | |
| 98 | // isReinterpretingCast - Return true if the cast instruction specified will |
| 99 | // cause the operand to be "reinterpreted". A value is reinterpreted if the |
| 100 | // cast instruction would cause the underlying bits to change. |
| 101 | // |
| 102 | static inline bool isReinterpretingCast(const CastInst *CI) { |
| 103 | return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType()); |
| 104 | } |
| 105 | |
| 106 | |
| 107 | // getPointedToStruct - If the argument is a pointer type, and the pointed to |
| 108 | // value is a struct type, return the struct type, else return null. |
| 109 | // |
| 110 | static const StructType *getPointedToStruct(const Type *Ty) { |
| 111 | const PointerType *PT = dyn_cast<PointerType>(Ty); |
| 112 | return PT ? dyn_cast<StructType>(PT->getValueType()) : 0; |
| 113 | } |
| 114 | |
| 115 | |
| 116 | // getStructOffsetType - Return a vector of offsets that are to be used to index |
| 117 | // into the specified struct type to get as close as possible to index as we |
| 118 | // can. Note that it is possible that we cannot get exactly to Offset, in which |
| 119 | // case we update offset to be the offset we actually obtained. The resultant |
| 120 | // leaf type is returned. |
| 121 | // |
| 122 | static const Type *getStructOffsetType(const Type *Ty, unsigned &Offset, |
| 123 | vector<ConstPoolVal*> &Offsets) { |
| 124 | if (!isa<StructType>(Ty)) { |
| 125 | Offset = 0; // Return the offset that we were able to acheive |
| 126 | return Ty; // Return the leaf type |
| 127 | } |
| 128 | |
| 129 | assert(Offset < TD.getTypeSize(Ty) && "Offset not in struct!"); |
| 130 | const StructType *STy = cast<StructType>(Ty); |
| 131 | const StructLayout *SL = TD.getStructLayout(STy); |
| 132 | |
| 133 | // This loop terminates always on a 0 <= i < MemberOffsets.size() |
| 134 | unsigned i; |
| 135 | for (i = 0; i < SL->MemberOffsets.size()-1; ++i) |
| 136 | if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]) |
| 137 | break; |
| 138 | |
| 139 | assert(Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]); |
| 140 | |
| 141 | // Make sure to save the current index... |
| 142 | Offsets.push_back(ConstPoolUInt::get(Type::UByteTy, i)); |
| 143 | |
| 144 | unsigned SubOffs = Offset - SL->MemberOffsets[i]; |
| 145 | const Type *LeafTy = getStructOffsetType(STy->getElementTypes()[i], SubOffs, |
| 146 | Offsets); |
| 147 | Offset = SL->MemberOffsets[i] + SubOffs; |
| 148 | return LeafTy; |
| 149 | } |
| 150 | |
| 151 | |
| 152 | |
| 153 | // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) |
| 154 | // with a value, then remove and delete the original instruction. |
| 155 | // |
| 156 | static void ReplaceInstWithValue(BasicBlock::InstListType &BIL, |
| 157 | BasicBlock::iterator &BI, Value *V) { |
| 158 | Instruction *I = *BI; |
| 159 | // Replaces all of the uses of the instruction with uses of the value |
| 160 | I->replaceAllUsesWith(V); |
| 161 | |
| 162 | // Remove the unneccesary instruction now... |
| 163 | BIL.remove(BI); |
| 164 | |
| 165 | // Make sure to propogate a name if there is one already... |
| 166 | if (I->hasName() && !V->hasName()) |
| 167 | V->setName(I->getName(), BIL.getParent()->getSymbolTable()); |
| 168 | |
| 169 | // Remove the dead instruction now... |
| 170 | delete I; |
| 171 | } |
| 172 | |
| 173 | |
| 174 | // ReplaceInstWithInst - Replace the instruction specified by BI with the |
| 175 | // instruction specified by I. The original instruction is deleted and BI is |
| 176 | // updated to point to the new instruction. |
| 177 | // |
| 178 | static void ReplaceInstWithInst(BasicBlock::InstListType &BIL, |
| 179 | BasicBlock::iterator &BI, Instruction *I) { |
| 180 | assert(I->getParent() == 0 && |
| 181 | "ReplaceInstWithInst: Instruction already inserted into basic block!"); |
| 182 | |
| 183 | // Insert the new instruction into the basic block... |
| 184 | BI = BIL.insert(BI, I)+1; |
| 185 | |
| 186 | // Replace all uses of the old instruction, and delete it. |
| 187 | ReplaceInstWithValue(BIL, BI, I); |
| 188 | |
| 189 | // Reexamine the instruction just inserted next time around the cleanup pass |
| 190 | // loop. |
| 191 | --BI; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | // ExpressionConvertableToType - Return true if it is possible |
| 196 | static bool ExpressionConvertableToType(Value *V, const Type *Ty) { |
| 197 | Instruction *I = dyn_cast<Instruction>(V); |
| 198 | if (I == 0) return false; // Noninstructions can't convert |
| 199 | if (I->getType() == Ty) return false; // Expression already correct type! |
| 200 | |
| 201 | switch (I->getOpcode()) { |
| 202 | case Instruction::Cast: |
| 203 | // We can convert the expr if the cast destination type is losslessly |
| 204 | // convertable to the requested type. |
| 205 | return losslessCastableTypes(Ty, I->getType()); |
| 206 | |
| 207 | case Instruction::Add: |
| 208 | case Instruction::Sub: |
| 209 | return ExpressionConvertableToType(I->getOperand(0), Ty) && |
| 210 | ExpressionConvertableToType(I->getOperand(1), Ty); |
| 211 | case Instruction::Shl: |
| 212 | case Instruction::Shr: |
| 213 | return ExpressionConvertableToType(I->getOperand(0), Ty); |
| 214 | } |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | |
| 219 | static Instruction *ConvertExpressionToType(Value *V, const Type *Ty) { |
| 220 | Instruction *I = cast<Instruction>(V); |
| 221 | assert(ExpressionConvertableToType(I, Ty) && "Inst is not convertable!"); |
| 222 | BasicBlock *BB = I->getParent(); |
| 223 | BasicBlock::InstListType &BIL = BB->getInstList(); |
| 224 | string Name = I->getName(); if (!Name.empty()) I->setName(""); |
| 225 | Instruction *Res; // Result of conversion |
| 226 | |
| 227 | //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl; |
| 228 | |
| 229 | switch (I->getOpcode()) { |
| 230 | case Instruction::Cast: |
| 231 | Res = new CastInst(I->getOperand(0), Ty, Name); |
| 232 | break; |
| 233 | |
| 234 | case Instruction::Add: |
| 235 | case Instruction::Sub: |
| 236 | Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(), |
| 237 | ConvertExpressionToType(I->getOperand(0), Ty), |
| 238 | ConvertExpressionToType(I->getOperand(1), Ty), |
| 239 | Name); |
| 240 | break; |
| 241 | |
| 242 | case Instruction::Shl: |
| 243 | case Instruction::Shr: |
| 244 | Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), |
| 245 | ConvertExpressionToType(I->getOperand(0), Ty), |
| 246 | I->getOperand(1), Name); |
| 247 | break; |
| 248 | |
| 249 | default: |
| 250 | assert(0 && "Expression convertable, but don't know how to convert?"); |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); |
| 255 | assert(It != BIL.end() && "Instruction not in own basic block??"); |
| 256 | BIL.insert(It, Res); |
| 257 | |
| 258 | //cerr << "RInst: " << Res << "BB After: " << BB << endl << endl; |
| 259 | |
| 260 | return Res; |
| 261 | } |
| 262 | |
| 263 | |
| 264 | |
| 265 | // DoInsertArrayCast - If the argument value has a pointer type, and if the |
| 266 | // argument value is used as an array, insert a cast before the specified |
| 267 | // basic block iterator that casts the value to an array pointer. Return the |
| 268 | // new cast instruction (in the CastResult var), or null if no cast is inserted. |
| 269 | // |
| 270 | static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB, |
| 271 | BasicBlock::iterator &InsertBefore, |
| 272 | CastInst *&CastResult) { |
| 273 | const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType()); |
| 274 | if (!ThePtrType) return false; |
| 275 | bool InsertCast = false; |
| 276 | |
| 277 | for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { |
| 278 | Instruction *Inst = cast<Instruction>(*I); |
| 279 | switch (Inst->getOpcode()) { |
| 280 | default: break; // Not an interesting use... |
| 281 | case Instruction::Add: // It's being used as an array index! |
| 282 | //case Instruction::Sub: |
| 283 | InsertCast = true; |
| 284 | break; |
| 285 | case Instruction::Cast: // There is already a cast instruction! |
| 286 | if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType())) |
| 287 | if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType())) |
| 288 | if (AT->getElementType() == ThePtrType->getValueType()) { |
| 289 | // Cast already exists! Return the existing one! |
| 290 | CastResult = cast<CastInst>(Inst); |
| 291 | return false; // No changes made to program though... |
| 292 | } |
| 293 | break; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | if (!InsertCast) return false; // There is no reason to insert a cast! |
| 298 | |
| 299 | // Insert a cast! |
| 300 | const Type *ElTy = ThePtrType->getValueType(); |
| 301 | const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); |
| 302 | |
| 303 | CastResult = new CastInst(V, DestTy); |
| 304 | BB->getInstList().insert(InsertBefore, CastResult); |
| 305 | //cerr << "Inserted cast: " << CastResult; |
| 306 | return true; // Made a change! |
| 307 | } |
| 308 | |
| 309 | |
| 310 | // DoInsertArrayCasts - Loop over all "incoming" values in the specified method, |
| 311 | // inserting a cast for pointer values that are used as arrays. For our |
| 312 | // purposes, an incoming value is considered to be either a value that is |
| 313 | // either a method parameter, a value created by alloca or malloc, or a value |
| 314 | // returned from a function call. All casts are kept attached to their original |
| 315 | // values through the PtrCasts map. |
| 316 | // |
| 317 | static bool DoInsertArrayCasts(Method *M, map<Value*, CastInst*> &PtrCasts) { |
| 318 | assert(!M->isExternal() && "Can't handle external methods!"); |
| 319 | |
| 320 | // Insert casts for all arguments to the function... |
| 321 | bool Changed = false; |
| 322 | BasicBlock *CurBB = M->front(); |
| 323 | BasicBlock::iterator It = CurBB->begin(); |
| 324 | for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), |
| 325 | AE = M->getArgumentList().end(); AI != AE; ++AI) { |
| 326 | CastInst *TheCast = 0; |
| 327 | if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) { |
| 328 | It = CurBB->begin(); // We might have just invalidated the iterator! |
| 329 | Changed = true; // Yes we made a change |
| 330 | ++It; // Insert next cast AFTER this one... |
| 331 | } |
| 332 | |
| 333 | if (TheCast) // Is there a cast associated with this value? |
| 334 | PtrCasts[*AI] = TheCast; // Yes, add it to the map... |
| 335 | } |
| 336 | |
| 337 | // TODO: insert casts for alloca, malloc, and function call results. Also, |
| 338 | // look for pointers that already have casts, to add to the map. |
| 339 | |
| 340 | return Changed; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | |
| 345 | |
| 346 | // DoElminatePointerArithmetic - Loop over each incoming pointer variable, |
| 347 | // replacing indexing arithmetic with getelementptr calls. |
| 348 | // |
| 349 | static bool DoEliminatePointerArithmetic(const pair<Value*, CastInst*> &Val) { |
| 350 | Value *V = Val.first; // The original pointer |
| 351 | CastInst *CV = Val.second; // The array casted version of the pointer... |
| 352 | |
| 353 | for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { |
| 354 | Instruction *Inst = cast<Instruction>(*I); |
| 355 | if (Inst->getOpcode() != Instruction::Add) |
| 356 | continue; // We only care about add instructions |
| 357 | |
| 358 | BinaryOperator *Add = cast<BinaryOperator>(Inst); |
| 359 | |
| 360 | // Make sure the array is the first operand of the add expression... |
| 361 | if (Add->getOperand(0) != V) |
| 362 | Add->swapOperands(); |
| 363 | |
| 364 | // Get the amount added to the pointer value... |
| 365 | Value *AddAmount = Add->getOperand(1); |
| 366 | |
| 367 | |
| 368 | } |
| 369 | return false; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | // Peephole Malloc instructions: we take a look at the use chain of the |
| 374 | // malloc instruction, and try to find out if the following conditions hold: |
| 375 | // 1. The malloc is of the form: 'malloc [sbyte], uint <constant>' |
| 376 | // 2. The only users of the malloc are cast instructions |
| 377 | // 3. Of the cast instructions, there is only one destination pointer type |
| 378 | // [RTy] where the size of the pointed to object is equal to the number |
| 379 | // of bytes allocated. |
| 380 | // |
| 381 | // If these conditions hold, we convert the malloc to allocate an [RTy] |
| 382 | // element. This should be extended in the future to handle arrays. TODO |
| 383 | // |
| 384 | static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) { |
| 385 | MallocInst *MI = cast<MallocInst>(*BI); |
| 386 | if (!MI->isArrayAllocation()) return false; // No array allocation? |
| 387 | |
| 388 | ConstPoolUInt *Amt = dyn_cast<ConstPoolUInt>(MI->getArraySize()); |
| 389 | if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy)) |
| 390 | return false; |
| 391 | |
| 392 | // Get the number of bytes allocated... |
| 393 | unsigned Size = Amt->getValue(); |
| 394 | const Type *ResultTy = 0; |
| 395 | |
| 396 | // Loop over all of the uses of the malloc instruction, inspecting casts. |
| 397 | for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); |
| 398 | I != E; ++I) { |
| 399 | if (!isa<CastInst>(*I)) { |
| 400 | //cerr << "\tnon" << *I; |
| 401 | return false; // A non cast user? |
| 402 | } |
| 403 | CastInst *CI = cast<CastInst>(*I); |
| 404 | //cerr << "\t" << CI; |
| 405 | |
| 406 | // We only work on casts to pointer types for sure, be conservative |
| 407 | if (!isa<PointerType>(CI->getType())) { |
| 408 | cerr << "Found cast of malloc value to non pointer type:\n" << CI; |
| 409 | return false; |
| 410 | } |
| 411 | |
| 412 | const Type *DestTy = cast<PointerType>(CI->getType())->getValueType(); |
| 413 | if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) { |
| 414 | // Does the size of the allocated type match the number of bytes |
| 415 | // allocated? |
| 416 | // |
| 417 | if (ResultTy == 0) { |
| 418 | ResultTy = DestTy; // Keep note of this for future uses... |
| 419 | } else { |
| 420 | // It's overdefined! We don't know which type to convert to! |
| 421 | return false; |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | // If we get this far, we have either found, or not, a type that is cast to |
| 427 | // that is of the same size as the malloc instruction. |
| 428 | if (!ResultTy) return false; |
| 429 | |
| 430 | PRINT_PEEPHOLE1("mall-refine:in ", MI); |
| 431 | ReplaceInstWithInst(BB->getInstList(), BI, |
| 432 | MI = new MallocInst(PointerType::get(ResultTy))); |
| 433 | PRINT_PEEPHOLE1("mall-refine:out", MI); |
| 434 | return true; |
| 435 | } |
| 436 | |
| 437 | |
| 438 | |
| 439 | static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { |
| 440 | Instruction *I = *BI; |
| 441 | if (I->use_size() == 0) return false; |
| 442 | |
| 443 | if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| 444 | Value *Src = CI->getOperand(0); |
| 445 | Instruction *SrcI = dyn_cast<Instruction>(Src); // Nonnull if instr source |
| 446 | const Type *DestTy = CI->getType(); |
| 447 | |
| 448 | // Check for a cast of the same type as the destination! |
| 449 | if (DestTy == Src->getType()) { |
| 450 | PRINT_PEEPHOLE1("cast-of-self-ty", CI); |
| 451 | CI->replaceAllUsesWith(Src); |
| 452 | if (!Src->hasName() && CI->hasName()) { |
| 453 | string Name = CI->getName(); |
| 454 | CI->setName(""); Src->setName(Name); |
| 455 | } |
| 456 | return true; |
| 457 | } |
| 458 | |
| 459 | // Check for a cast of cast, where no size information is lost... |
| 460 | if (SrcI) |
| 461 | if (CastInst *CSrc = dyn_cast<CastInst>(SrcI)) |
| 462 | if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) { |
| 463 | // We can only do c-c elimination if, at most, one cast does a |
| 464 | // reinterpretation of the input data. |
| 465 | // |
| 466 | // If legal, make this cast refer the the original casts argument! |
| 467 | // |
| 468 | PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc); |
| 469 | CI->setOperand(0, CSrc->getOperand(0)); |
| 470 | PRINT_PEEPHOLE1("cast-cast:out", CI); |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | // Check to see if it's a cast of an instruction that does not depend on the |
| 475 | // specific type of the operands to do it's job. |
| 476 | if (SrcI && !isReinterpretingCast(CI) && |
| 477 | ExpressionConvertableToType(SrcI, DestTy)) { |
| 478 | PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, SrcI); |
| 479 | CI->setOperand(0, ConvertExpressionToType(SrcI, DestTy)); |
| 480 | BI = BB->begin(); // Rescan basic block. BI might be invalidated. |
| 481 | PRINT_PEEPHOLE2("EXPR-CONV:out", CI, CI->getOperand(0)); |
| 482 | return true; |
| 483 | } |
| 484 | |
| 485 | } else if (MallocInst *MI = dyn_cast<MallocInst>(I)) { |
| 486 | if (PeepholeMallocInst(BB, BI)) return true; |
| 487 | } else if (I->getOpcode() == Instruction::Add && |
| 488 | isa<CastInst>(I->getOperand(1))) { |
| 489 | |
| 490 | // Peephole optimize the following instructions: |
| 491 | // %t1 = cast ulong <const int> to {<...>} * |
| 492 | // %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand |
| 493 | // |
| 494 | // or |
| 495 | // %t1 = cast {<...>}* %SP to int* |
| 496 | // %t5 = cast ulong <const int> to int* |
| 497 | // %t2 = add int* %t1, %t5 ;; int is same size as field |
| 498 | // |
| 499 | // Into: %t3 = getelementptr {<...>} * %SP, <element indices> |
| 500 | // %t2 = cast <eltype> * %t3 to {<...>}* |
| 501 | // |
| 502 | Value *AddOp1 = I->getOperand(0); |
| 503 | CastInst *AddOp2 = cast<CastInst>(I->getOperand(1)); |
| 504 | ConstPoolUInt *OffsetV = dyn_cast<ConstPoolUInt>(AddOp2->getOperand(0)); |
| 505 | unsigned Offset = OffsetV ? OffsetV->getValue() : 0; |
| 506 | Value *SrcPtr; // Of type pointer to struct... |
| 507 | const StructType *StructTy; |
| 508 | |
| 509 | if ((StructTy = getPointedToStruct(AddOp1->getType()))) { |
| 510 | SrcPtr = AddOp1; // Handle the first case... |
| 511 | } else if (CastInst *AddOp1c = dyn_cast<CastInst>(AddOp1)) { |
| 512 | SrcPtr = AddOp1c->getOperand(0); // Handle the second case... |
| 513 | StructTy = getPointedToStruct(SrcPtr->getType()); |
| 514 | } |
| 515 | |
| 516 | // Only proceed if we have detected all of our conditions successfully... |
| 517 | if (Offset && StructTy && SrcPtr && Offset < TD.getTypeSize(StructTy)) { |
| 518 | const StructLayout *SL = TD.getStructLayout(StructTy); |
| 519 | vector<ConstPoolVal*> Offsets; |
| 520 | unsigned ActualOffset = Offset; |
| 521 | const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); |
| 522 | |
| 523 | if (getPointedToStruct(AddOp1->getType())) { // case 1 |
| 524 | PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, I); |
| 525 | } else { |
| 526 | PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, I); |
| 527 | } |
| 528 | |
| 529 | GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets); |
| 530 | BI = BB->getInstList().insert(BI, GEP)+1; |
| 531 | |
| 532 | assert(Offset-ActualOffset == 0 && |
| 533 | "GEP to middle of element not implemented yet!"); |
| 534 | |
| 535 | ReplaceInstWithInst(BB->getInstList(), BI, |
| 536 | I = new CastInst(GEP, I->getType())); |
| 537 | PRINT_PEEPHOLE2("add-to-gep:out", GEP, I); |
| 538 | return true; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | return false; |
| 543 | } |
| 544 | |
| 545 | |
| 546 | |
| 547 | |
| 548 | static bool DoRaisePass(Method *M) { |
| 549 | bool Changed = false; |
| 550 | for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) { |
| 551 | BasicBlock *BB = *MI; |
| 552 | BasicBlock::InstListType &BIL = BB->getInstList(); |
| 553 | |
| 554 | for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { |
| 555 | if (PeepholeOptimize(BB, BI)) |
| 556 | Changed = true; |
| 557 | else |
| 558 | ++BI; |
| 559 | } |
| 560 | } |
| 561 | return Changed; |
| 562 | } |
| 563 | |
| 564 | |
| 565 | // RaisePointerReferences::doit - Raise a method representation to a higher |
| 566 | // level. |
| 567 | // |
| 568 | bool RaisePointerReferences::doit(Method *M) { |
| 569 | if (M->isExternal()) return false; |
| 570 | bool Changed = false; |
| 571 | |
| 572 | while (DoRaisePass(M)) Changed = true; |
| 573 | |
| 574 | // PtrCasts - Keep a mapping between the pointer values (the key of the |
| 575 | // map), and the cast to array pointer (the value) in this map. This is |
| 576 | // used when converting pointer math into array addressing. |
| 577 | // |
| 578 | map<Value*, CastInst*> PtrCasts; |
| 579 | |
| 580 | // Insert casts for all incoming pointer values. Keep track of those casts |
| 581 | // and the identified incoming values in the PtrCasts map. |
| 582 | // |
| 583 | Changed |= DoInsertArrayCasts(M, PtrCasts); |
| 584 | |
| 585 | // Loop over each incoming pointer variable, replacing indexing arithmetic |
| 586 | // with getelementptr calls. |
| 587 | // |
| 588 | Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(), |
| 589 | ptr_fun(DoEliminatePointerArithmetic)); |
| 590 | |
| 591 | return Changed; |
| 592 | } |