blob: 4f9e949829282bbdafd625ad21e877ea2c68d8c1 [file] [log] [blame]
Nick Lewycky9f856342009-04-12 20:47:23 +00001#include "llvm/DerivedTypes.h"
2#include "llvm/ExecutionEngine/ExecutionEngine.h"
Xerxes Ranby6ce6daa2009-07-19 08:10:01 +00003#include "llvm/ExecutionEngine/Interpreter.h"
4#include "llvm/ExecutionEngine/JIT.h"
Owen Anderson8b477ed2009-07-01 16:58:40 +00005#include "llvm/LLVMContext.h"
Nick Lewycky9f856342009-04-12 20:47:23 +00006#include "llvm/Module.h"
7#include "llvm/ModuleProvider.h"
8#include "llvm/PassManager.h"
9#include "llvm/Analysis/Verifier.h"
10#include "llvm/Target/TargetData.h"
Chris Lattnerda062882009-06-17 16:48:44 +000011#include "llvm/Target/TargetSelect.h"
Nick Lewycky9f856342009-04-12 20:47:23 +000012#include "llvm/Transforms/Scalar.h"
13#include "llvm/Support/IRBuilder.h"
14#include <cstdio>
15#include <string>
16#include <map>
17#include <vector>
18using namespace llvm;
19
20//===----------------------------------------------------------------------===//
21// Lexer
22//===----------------------------------------------------------------------===//
23
24// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25// of these for known things.
26enum Token {
27 tok_eof = -1,
28
29 // commands
30 tok_def = -2, tok_extern = -3,
31
32 // primary
33 tok_identifier = -4, tok_number = -5,
34
35 // control
36 tok_if = -6, tok_then = -7, tok_else = -8,
37 tok_for = -9, tok_in = -10,
38
39 // operators
40 tok_binary = -11, tok_unary = -12,
41
42 // var definition
43 tok_var = -13
44};
45
46static std::string IdentifierStr; // Filled in if tok_identifier
47static double NumVal; // Filled in if tok_number
48
49/// gettok - Return the next token from standard input.
50static int gettok() {
51 static int LastChar = ' ';
52
53 // Skip any whitespace.
54 while (isspace(LastChar))
55 LastChar = getchar();
56
57 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
58 IdentifierStr = LastChar;
59 while (isalnum((LastChar = getchar())))
60 IdentifierStr += LastChar;
61
62 if (IdentifierStr == "def") return tok_def;
63 if (IdentifierStr == "extern") return tok_extern;
64 if (IdentifierStr == "if") return tok_if;
65 if (IdentifierStr == "then") return tok_then;
66 if (IdentifierStr == "else") return tok_else;
67 if (IdentifierStr == "for") return tok_for;
68 if (IdentifierStr == "in") return tok_in;
69 if (IdentifierStr == "binary") return tok_binary;
70 if (IdentifierStr == "unary") return tok_unary;
71 if (IdentifierStr == "var") return tok_var;
72 return tok_identifier;
73 }
74
75 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
76 std::string NumStr;
77 do {
78 NumStr += LastChar;
79 LastChar = getchar();
80 } while (isdigit(LastChar) || LastChar == '.');
81
82 NumVal = strtod(NumStr.c_str(), 0);
83 return tok_number;
84 }
85
86 if (LastChar == '#') {
87 // Comment until end of line.
88 do LastChar = getchar();
89 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
90
91 if (LastChar != EOF)
92 return gettok();
93 }
94
95 // Check for end of file. Don't eat the EOF.
96 if (LastChar == EOF)
97 return tok_eof;
98
99 // Otherwise, just return the character as its ascii value.
100 int ThisChar = LastChar;
101 LastChar = getchar();
102 return ThisChar;
103}
104
105//===----------------------------------------------------------------------===//
106// Abstract Syntax Tree (aka Parse Tree)
107//===----------------------------------------------------------------------===//
108
109/// ExprAST - Base class for all expression nodes.
110class ExprAST {
111public:
112 virtual ~ExprAST() {}
113 virtual Value *Codegen() = 0;
114};
115
116/// NumberExprAST - Expression class for numeric literals like "1.0".
117class NumberExprAST : public ExprAST {
118 double Val;
119public:
120 NumberExprAST(double val) : Val(val) {}
121 virtual Value *Codegen();
122};
123
124/// VariableExprAST - Expression class for referencing a variable, like "a".
125class VariableExprAST : public ExprAST {
126 std::string Name;
127public:
128 VariableExprAST(const std::string &name) : Name(name) {}
129 const std::string &getName() const { return Name; }
130 virtual Value *Codegen();
131};
132
133/// UnaryExprAST - Expression class for a unary operator.
134class UnaryExprAST : public ExprAST {
135 char Opcode;
136 ExprAST *Operand;
137public:
138 UnaryExprAST(char opcode, ExprAST *operand)
139 : Opcode(opcode), Operand(operand) {}
140 virtual Value *Codegen();
141};
142
143/// BinaryExprAST - Expression class for a binary operator.
144class BinaryExprAST : public ExprAST {
145 char Op;
146 ExprAST *LHS, *RHS;
147public:
148 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
149 : Op(op), LHS(lhs), RHS(rhs) {}
150 virtual Value *Codegen();
151};
152
153/// CallExprAST - Expression class for function calls.
154class CallExprAST : public ExprAST {
155 std::string Callee;
156 std::vector<ExprAST*> Args;
157public:
158 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
159 : Callee(callee), Args(args) {}
160 virtual Value *Codegen();
161};
162
163/// IfExprAST - Expression class for if/then/else.
164class IfExprAST : public ExprAST {
165 ExprAST *Cond, *Then, *Else;
166public:
167 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
168 : Cond(cond), Then(then), Else(_else) {}
169 virtual Value *Codegen();
170};
171
172/// ForExprAST - Expression class for for/in.
173class ForExprAST : public ExprAST {
174 std::string VarName;
175 ExprAST *Start, *End, *Step, *Body;
176public:
177 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
178 ExprAST *step, ExprAST *body)
179 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
180 virtual Value *Codegen();
181};
182
183/// VarExprAST - Expression class for var/in
184class VarExprAST : public ExprAST {
185 std::vector<std::pair<std::string, ExprAST*> > VarNames;
186 ExprAST *Body;
187public:
188 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
189 ExprAST *body)
190 : VarNames(varnames), Body(body) {}
191
192 virtual Value *Codegen();
193};
194
195/// PrototypeAST - This class represents the "prototype" for a function,
196/// which captures its argument names as well as if it is an operator.
197class PrototypeAST {
198 std::string Name;
199 std::vector<std::string> Args;
200 bool isOperator;
201 unsigned Precedence; // Precedence if a binary op.
202public:
203 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
204 bool isoperator = false, unsigned prec = 0)
205 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
206
207 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
208 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
209
210 char getOperatorName() const {
211 assert(isUnaryOp() || isBinaryOp());
212 return Name[Name.size()-1];
213 }
214
215 unsigned getBinaryPrecedence() const { return Precedence; }
216
217 Function *Codegen();
218
219 void CreateArgumentAllocas(Function *F);
220};
221
222/// FunctionAST - This class represents a function definition itself.
223class FunctionAST {
224 PrototypeAST *Proto;
225 ExprAST *Body;
226public:
227 FunctionAST(PrototypeAST *proto, ExprAST *body)
228 : Proto(proto), Body(body) {}
229
230 Function *Codegen();
231};
232
233//===----------------------------------------------------------------------===//
234// Parser
235//===----------------------------------------------------------------------===//
236
237/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
238/// token the parser it looking at. getNextToken reads another token from the
239/// lexer and updates CurTok with its results.
240static int CurTok;
241static int getNextToken() {
242 return CurTok = gettok();
243}
244
245/// BinopPrecedence - This holds the precedence for each binary operator that is
246/// defined.
247static std::map<char, int> BinopPrecedence;
248
249/// GetTokPrecedence - Get the precedence of the pending binary operator token.
250static int GetTokPrecedence() {
251 if (!isascii(CurTok))
252 return -1;
253
254 // Make sure it's a declared binop.
255 int TokPrec = BinopPrecedence[CurTok];
256 if (TokPrec <= 0) return -1;
257 return TokPrec;
258}
259
260/// Error* - These are little helper functions for error handling.
261ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
262PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
263FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
264
265static ExprAST *ParseExpression();
266
267/// identifierexpr
268/// ::= identifier
269/// ::= identifier '(' expression* ')'
270static ExprAST *ParseIdentifierExpr() {
271 std::string IdName = IdentifierStr;
272
273 getNextToken(); // eat identifier.
274
275 if (CurTok != '(') // Simple variable ref.
276 return new VariableExprAST(IdName);
277
278 // Call.
279 getNextToken(); // eat (
280 std::vector<ExprAST*> Args;
281 if (CurTok != ')') {
282 while (1) {
283 ExprAST *Arg = ParseExpression();
284 if (!Arg) return 0;
285 Args.push_back(Arg);
286
287 if (CurTok == ')') break;
288
289 if (CurTok != ',')
290 return Error("Expected ')' or ',' in argument list");
291 getNextToken();
292 }
293 }
294
295 // Eat the ')'.
296 getNextToken();
297
298 return new CallExprAST(IdName, Args);
299}
300
301/// numberexpr ::= number
302static ExprAST *ParseNumberExpr() {
303 ExprAST *Result = new NumberExprAST(NumVal);
304 getNextToken(); // consume the number
305 return Result;
306}
307
308/// parenexpr ::= '(' expression ')'
309static ExprAST *ParseParenExpr() {
310 getNextToken(); // eat (.
311 ExprAST *V = ParseExpression();
312 if (!V) return 0;
313
314 if (CurTok != ')')
315 return Error("expected ')'");
316 getNextToken(); // eat ).
317 return V;
318}
319
320/// ifexpr ::= 'if' expression 'then' expression 'else' expression
321static ExprAST *ParseIfExpr() {
322 getNextToken(); // eat the if.
323
324 // condition.
325 ExprAST *Cond = ParseExpression();
326 if (!Cond) return 0;
327
328 if (CurTok != tok_then)
329 return Error("expected then");
330 getNextToken(); // eat the then
331
332 ExprAST *Then = ParseExpression();
333 if (Then == 0) return 0;
334
335 if (CurTok != tok_else)
336 return Error("expected else");
337
338 getNextToken();
339
340 ExprAST *Else = ParseExpression();
341 if (!Else) return 0;
342
343 return new IfExprAST(Cond, Then, Else);
344}
345
346/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
347static ExprAST *ParseForExpr() {
348 getNextToken(); // eat the for.
349
350 if (CurTok != tok_identifier)
351 return Error("expected identifier after for");
352
353 std::string IdName = IdentifierStr;
354 getNextToken(); // eat identifier.
355
356 if (CurTok != '=')
357 return Error("expected '=' after for");
358 getNextToken(); // eat '='.
359
360
361 ExprAST *Start = ParseExpression();
362 if (Start == 0) return 0;
363 if (CurTok != ',')
364 return Error("expected ',' after for start value");
365 getNextToken();
366
367 ExprAST *End = ParseExpression();
368 if (End == 0) return 0;
369
370 // The step value is optional.
371 ExprAST *Step = 0;
372 if (CurTok == ',') {
373 getNextToken();
374 Step = ParseExpression();
375 if (Step == 0) return 0;
376 }
377
378 if (CurTok != tok_in)
379 return Error("expected 'in' after for");
380 getNextToken(); // eat 'in'.
381
382 ExprAST *Body = ParseExpression();
383 if (Body == 0) return 0;
384
385 return new ForExprAST(IdName, Start, End, Step, Body);
386}
387
388/// varexpr ::= 'var' identifier ('=' expression)?
389// (',' identifier ('=' expression)?)* 'in' expression
390static ExprAST *ParseVarExpr() {
391 getNextToken(); // eat the var.
392
393 std::vector<std::pair<std::string, ExprAST*> > VarNames;
394
395 // At least one variable name is required.
396 if (CurTok != tok_identifier)
397 return Error("expected identifier after var");
398
399 while (1) {
400 std::string Name = IdentifierStr;
401 getNextToken(); // eat identifier.
402
403 // Read the optional initializer.
404 ExprAST *Init = 0;
405 if (CurTok == '=') {
406 getNextToken(); // eat the '='.
407
408 Init = ParseExpression();
409 if (Init == 0) return 0;
410 }
411
412 VarNames.push_back(std::make_pair(Name, Init));
413
414 // End of var list, exit loop.
415 if (CurTok != ',') break;
416 getNextToken(); // eat the ','.
417
418 if (CurTok != tok_identifier)
419 return Error("expected identifier list after var");
420 }
421
422 // At this point, we have to have 'in'.
423 if (CurTok != tok_in)
424 return Error("expected 'in' keyword after 'var'");
425 getNextToken(); // eat 'in'.
426
427 ExprAST *Body = ParseExpression();
428 if (Body == 0) return 0;
429
430 return new VarExprAST(VarNames, Body);
431}
432
433
434/// primary
435/// ::= identifierexpr
436/// ::= numberexpr
437/// ::= parenexpr
438/// ::= ifexpr
439/// ::= forexpr
440/// ::= varexpr
441static ExprAST *ParsePrimary() {
442 switch (CurTok) {
443 default: return Error("unknown token when expecting an expression");
444 case tok_identifier: return ParseIdentifierExpr();
445 case tok_number: return ParseNumberExpr();
446 case '(': return ParseParenExpr();
447 case tok_if: return ParseIfExpr();
448 case tok_for: return ParseForExpr();
449 case tok_var: return ParseVarExpr();
450 }
451}
452
453/// unary
454/// ::= primary
455/// ::= '!' unary
456static ExprAST *ParseUnary() {
457 // If the current token is not an operator, it must be a primary expr.
458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459 return ParsePrimary();
460
461 // If this is a unary operator, read it.
462 int Opc = CurTok;
463 getNextToken();
464 if (ExprAST *Operand = ParseUnary())
465 return new UnaryExprAST(Opc, Operand);
466 return 0;
467}
468
469/// binoprhs
470/// ::= ('+' unary)*
471static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472 // If this is a binop, find its precedence.
473 while (1) {
474 int TokPrec = GetTokPrecedence();
475
476 // If this is a binop that binds at least as tightly as the current binop,
477 // consume it, otherwise we are done.
478 if (TokPrec < ExprPrec)
479 return LHS;
480
481 // Okay, we know this is a binop.
482 int BinOp = CurTok;
483 getNextToken(); // eat binop
484
485 // Parse the unary expression after the binary operator.
486 ExprAST *RHS = ParseUnary();
487 if (!RHS) return 0;
488
489 // If BinOp binds less tightly with RHS than the operator after RHS, let
490 // the pending operator take RHS as its LHS.
491 int NextPrec = GetTokPrecedence();
492 if (TokPrec < NextPrec) {
493 RHS = ParseBinOpRHS(TokPrec+1, RHS);
494 if (RHS == 0) return 0;
495 }
496
497 // Merge LHS/RHS.
498 LHS = new BinaryExprAST(BinOp, LHS, RHS);
499 }
500}
501
502/// expression
503/// ::= unary binoprhs
504///
505static ExprAST *ParseExpression() {
506 ExprAST *LHS = ParseUnary();
507 if (!LHS) return 0;
508
509 return ParseBinOpRHS(0, LHS);
510}
511
512/// prototype
513/// ::= id '(' id* ')'
514/// ::= binary LETTER number? (id, id)
515/// ::= unary LETTER (id)
516static PrototypeAST *ParsePrototype() {
517 std::string FnName;
518
Bill Wendling71267022009-04-13 19:45:05 +0000519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
Nick Lewycky9f856342009-04-12 20:47:23 +0000520 unsigned BinaryPrecedence = 30;
521
522 switch (CurTok) {
523 default:
524 return ErrorP("Expected function name in prototype");
525 case tok_identifier:
526 FnName = IdentifierStr;
527 Kind = 0;
528 getNextToken();
529 break;
530 case tok_unary:
531 getNextToken();
532 if (!isascii(CurTok))
533 return ErrorP("Expected unary operator");
534 FnName = "unary";
535 FnName += (char)CurTok;
536 Kind = 1;
537 getNextToken();
538 break;
539 case tok_binary:
540 getNextToken();
541 if (!isascii(CurTok))
542 return ErrorP("Expected binary operator");
543 FnName = "binary";
544 FnName += (char)CurTok;
545 Kind = 2;
546 getNextToken();
547
548 // Read the precedence if present.
549 if (CurTok == tok_number) {
550 if (NumVal < 1 || NumVal > 100)
551 return ErrorP("Invalid precedecnce: must be 1..100");
552 BinaryPrecedence = (unsigned)NumVal;
553 getNextToken();
554 }
555 break;
556 }
557
558 if (CurTok != '(')
559 return ErrorP("Expected '(' in prototype");
560
561 std::vector<std::string> ArgNames;
562 while (getNextToken() == tok_identifier)
563 ArgNames.push_back(IdentifierStr);
564 if (CurTok != ')')
565 return ErrorP("Expected ')' in prototype");
566
567 // success.
568 getNextToken(); // eat ')'.
569
570 // Verify right number of names for operator.
571 if (Kind && ArgNames.size() != Kind)
572 return ErrorP("Invalid number of operands for operator");
573
574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
575}
576
577/// definition ::= 'def' prototype expression
578static FunctionAST *ParseDefinition() {
579 getNextToken(); // eat def.
580 PrototypeAST *Proto = ParsePrototype();
581 if (Proto == 0) return 0;
582
583 if (ExprAST *E = ParseExpression())
584 return new FunctionAST(Proto, E);
585 return 0;
586}
587
588/// toplevelexpr ::= expression
589static FunctionAST *ParseTopLevelExpr() {
590 if (ExprAST *E = ParseExpression()) {
591 // Make an anonymous proto.
592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593 return new FunctionAST(Proto, E);
594 }
595 return 0;
596}
597
598/// external ::= 'extern' prototype
599static PrototypeAST *ParseExtern() {
600 getNextToken(); // eat extern.
601 return ParsePrototype();
602}
603
604//===----------------------------------------------------------------------===//
605// Code Generation
606//===----------------------------------------------------------------------===//
607
608static Module *TheModule;
Owen Andersond1fbd142009-07-08 20:50:47 +0000609static IRBuilder<> Builder(getGlobalContext());
Nick Lewycky9f856342009-04-12 20:47:23 +0000610static std::map<std::string, AllocaInst*> NamedValues;
611static FunctionPassManager *TheFPM;
612
613Value *ErrorV(const char *Str) { Error(Str); return 0; }
614
615/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
616/// the function. This is used for mutable variables etc.
617static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
618 const std::string &VarName) {
619 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
620 TheFunction->getEntryBlock().begin());
621 return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
622}
623
624
625Value *NumberExprAST::Codegen() {
Owen Anderson914e50c2009-07-16 19:05:41 +0000626 return getGlobalContext().getConstantFP(APFloat(Val));
Nick Lewycky9f856342009-04-12 20:47:23 +0000627}
628
629Value *VariableExprAST::Codegen() {
630 // Look this variable up in the function.
631 Value *V = NamedValues[Name];
632 if (V == 0) return ErrorV("Unknown variable name");
633
634 // Load the value.
635 return Builder.CreateLoad(V, Name.c_str());
636}
637
638Value *UnaryExprAST::Codegen() {
639 Value *OperandV = Operand->Codegen();
640 if (OperandV == 0) return 0;
641
642 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
643 if (F == 0)
644 return ErrorV("Unknown unary operator");
645
646 return Builder.CreateCall(F, OperandV, "unop");
647}
648
649
650Value *BinaryExprAST::Codegen() {
651 // Special case '=' because we don't want to emit the LHS as an expression.
652 if (Op == '=') {
653 // Assignment requires the LHS to be an identifier.
654 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
655 if (!LHSE)
656 return ErrorV("destination of '=' must be a variable");
657 // Codegen the RHS.
658 Value *Val = RHS->Codegen();
659 if (Val == 0) return 0;
660
661 // Look up the name.
662 Value *Variable = NamedValues[LHSE->getName()];
663 if (Variable == 0) return ErrorV("Unknown variable name");
664
665 Builder.CreateStore(Val, Variable);
666 return Val;
667 }
668
669
670 Value *L = LHS->Codegen();
671 Value *R = RHS->Codegen();
672 if (L == 0 || R == 0) return 0;
673
674 switch (Op) {
675 case '+': return Builder.CreateAdd(L, R, "addtmp");
676 case '-': return Builder.CreateSub(L, R, "subtmp");
677 case '*': return Builder.CreateMul(L, R, "multmp");
678 case '<':
679 L = Builder.CreateFCmpULT(L, R, "cmptmp");
680 // Convert bool 0/1 to double 0.0 or 1.0
681 return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
682 default: break;
683 }
684
685 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
686 // a call to it.
687 Function *F = TheModule->getFunction(std::string("binary")+Op);
688 assert(F && "binary operator not found!");
689
690 Value *Ops[] = { L, R };
691 return Builder.CreateCall(F, Ops, Ops+2, "binop");
692}
693
694Value *CallExprAST::Codegen() {
695 // Look up the name in the global module table.
696 Function *CalleeF = TheModule->getFunction(Callee);
697 if (CalleeF == 0)
698 return ErrorV("Unknown function referenced");
699
700 // If argument mismatch error.
701 if (CalleeF->arg_size() != Args.size())
702 return ErrorV("Incorrect # arguments passed");
703
704 std::vector<Value*> ArgsV;
705 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
706 ArgsV.push_back(Args[i]->Codegen());
707 if (ArgsV.back() == 0) return 0;
708 }
709
710 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
711}
712
713Value *IfExprAST::Codegen() {
714 Value *CondV = Cond->Codegen();
715 if (CondV == 0) return 0;
716
717 // Convert condition to a bool by comparing equal to 0.0.
718 CondV = Builder.CreateFCmpONE(CondV,
Owen Anderson914e50c2009-07-16 19:05:41 +0000719 getGlobalContext().getConstantFP(APFloat(0.0)),
Nick Lewycky9f856342009-04-12 20:47:23 +0000720 "ifcond");
721
722 Function *TheFunction = Builder.GetInsertBlock()->getParent();
723
724 // Create blocks for the then and else cases. Insert the 'then' block at the
725 // end of the function.
726 BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction);
727 BasicBlock *ElseBB = BasicBlock::Create("else");
728 BasicBlock *MergeBB = BasicBlock::Create("ifcont");
729
730 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
731
732 // Emit then value.
733 Builder.SetInsertPoint(ThenBB);
734
735 Value *ThenV = Then->Codegen();
736 if (ThenV == 0) return 0;
737
738 Builder.CreateBr(MergeBB);
739 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
740 ThenBB = Builder.GetInsertBlock();
741
742 // Emit else block.
743 TheFunction->getBasicBlockList().push_back(ElseBB);
744 Builder.SetInsertPoint(ElseBB);
745
746 Value *ElseV = Else->Codegen();
747 if (ElseV == 0) return 0;
748
749 Builder.CreateBr(MergeBB);
750 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
751 ElseBB = Builder.GetInsertBlock();
752
753 // Emit merge block.
754 TheFunction->getBasicBlockList().push_back(MergeBB);
755 Builder.SetInsertPoint(MergeBB);
756 PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
757
758 PN->addIncoming(ThenV, ThenBB);
759 PN->addIncoming(ElseV, ElseBB);
760 return PN;
761}
762
763Value *ForExprAST::Codegen() {
764 // Output this as:
765 // var = alloca double
766 // ...
767 // start = startexpr
768 // store start -> var
769 // goto loop
770 // loop:
771 // ...
772 // bodyexpr
773 // ...
774 // loopend:
775 // step = stepexpr
776 // endcond = endexpr
777 //
778 // curvar = load var
779 // nextvar = curvar + step
780 // store nextvar -> var
781 // br endcond, loop, endloop
782 // outloop:
783
784 Function *TheFunction = Builder.GetInsertBlock()->getParent();
785
786 // Create an alloca for the variable in the entry block.
787 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
788
789 // Emit the start code first, without 'variable' in scope.
790 Value *StartVal = Start->Codegen();
791 if (StartVal == 0) return 0;
792
793 // Store the value into the alloca.
794 Builder.CreateStore(StartVal, Alloca);
795
796 // Make the new basic block for the loop header, inserting after current
797 // block.
Nick Lewycky9f856342009-04-12 20:47:23 +0000798 BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction);
799
800 // Insert an explicit fall through from the current block to the LoopBB.
801 Builder.CreateBr(LoopBB);
802
803 // Start insertion in LoopBB.
804 Builder.SetInsertPoint(LoopBB);
805
806 // Within the loop, the variable is defined equal to the PHI node. If it
807 // shadows an existing variable, we have to restore it, so save it now.
808 AllocaInst *OldVal = NamedValues[VarName];
809 NamedValues[VarName] = Alloca;
810
811 // Emit the body of the loop. This, like any other expr, can change the
812 // current BB. Note that we ignore the value computed by the body, but don't
813 // allow an error.
814 if (Body->Codegen() == 0)
815 return 0;
816
817 // Emit the step value.
818 Value *StepVal;
819 if (Step) {
820 StepVal = Step->Codegen();
821 if (StepVal == 0) return 0;
822 } else {
823 // If not specified, use 1.0.
Owen Anderson914e50c2009-07-16 19:05:41 +0000824 StepVal = getGlobalContext().getConstantFP(APFloat(1.0));
Nick Lewycky9f856342009-04-12 20:47:23 +0000825 }
826
827 // Compute the end condition.
828 Value *EndCond = End->Codegen();
829 if (EndCond == 0) return EndCond;
830
831 // Reload, increment, and restore the alloca. This handles the case where
832 // the body of the loop mutates the variable.
833 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
834 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
835 Builder.CreateStore(NextVar, Alloca);
836
837 // Convert condition to a bool by comparing equal to 0.0.
838 EndCond = Builder.CreateFCmpONE(EndCond,
Owen Anderson914e50c2009-07-16 19:05:41 +0000839 getGlobalContext().getConstantFP(APFloat(0.0)),
Nick Lewycky9f856342009-04-12 20:47:23 +0000840 "loopcond");
841
842 // Create the "after loop" block and insert it.
Nick Lewycky9f856342009-04-12 20:47:23 +0000843 BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction);
844
845 // Insert the conditional branch into the end of LoopEndBB.
846 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
847
848 // Any new code will be inserted in AfterBB.
849 Builder.SetInsertPoint(AfterBB);
850
851 // Restore the unshadowed variable.
852 if (OldVal)
853 NamedValues[VarName] = OldVal;
854 else
855 NamedValues.erase(VarName);
856
857
858 // for expr always returns 0.0.
Owen Anderson0a5372e2009-07-13 04:09:18 +0000859 return TheFunction->getContext()->getNullValue(Type::DoubleTy);
Nick Lewycky9f856342009-04-12 20:47:23 +0000860}
861
862Value *VarExprAST::Codegen() {
863 std::vector<AllocaInst *> OldBindings;
864
865 Function *TheFunction = Builder.GetInsertBlock()->getParent();
866
867 // Register all variables and emit their initializer.
868 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
869 const std::string &VarName = VarNames[i].first;
870 ExprAST *Init = VarNames[i].second;
871
872 // Emit the initializer before adding the variable to scope, this prevents
873 // the initializer from referencing the variable itself, and permits stuff
874 // like this:
875 // var a = 1 in
876 // var a = a in ... # refers to outer 'a'.
877 Value *InitVal;
878 if (Init) {
879 InitVal = Init->Codegen();
880 if (InitVal == 0) return 0;
881 } else { // If not specified, use 0.0.
Owen Anderson914e50c2009-07-16 19:05:41 +0000882 InitVal = getGlobalContext().getConstantFP(APFloat(0.0));
Nick Lewycky9f856342009-04-12 20:47:23 +0000883 }
884
885 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
886 Builder.CreateStore(InitVal, Alloca);
887
888 // Remember the old variable binding so that we can restore the binding when
889 // we unrecurse.
890 OldBindings.push_back(NamedValues[VarName]);
891
892 // Remember this binding.
893 NamedValues[VarName] = Alloca;
894 }
895
896 // Codegen the body, now that all vars are in scope.
897 Value *BodyVal = Body->Codegen();
898 if (BodyVal == 0) return 0;
899
900 // Pop all our variables from scope.
901 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
902 NamedValues[VarNames[i].first] = OldBindings[i];
903
904 // Return the body computation.
905 return BodyVal;
906}
907
908
909Function *PrototypeAST::Codegen() {
910 // Make the function type: double(double,double) etc.
911 std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
Owen Anderson914e50c2009-07-16 19:05:41 +0000912 FunctionType *FT =
913 getGlobalContext().getFunctionType(Type::DoubleTy, Doubles, false);
Nick Lewycky9f856342009-04-12 20:47:23 +0000914
915 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
916
917 // If F conflicted, there was already something named 'Name'. If it has a
918 // body, don't allow redefinition or reextern.
919 if (F->getName() != Name) {
920 // Delete the one we just made and get the existing one.
921 F->eraseFromParent();
922 F = TheModule->getFunction(Name);
923
924 // If F already has a body, reject this.
925 if (!F->empty()) {
926 ErrorF("redefinition of function");
927 return 0;
928 }
929
930 // If F took a different number of args, reject.
931 if (F->arg_size() != Args.size()) {
932 ErrorF("redefinition of function with different # args");
933 return 0;
934 }
935 }
936
937 // Set names for all arguments.
938 unsigned Idx = 0;
939 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
940 ++AI, ++Idx)
941 AI->setName(Args[Idx]);
942
943 return F;
944}
945
946/// CreateArgumentAllocas - Create an alloca for each argument and register the
947/// argument in the symbol table so that references to it will succeed.
948void PrototypeAST::CreateArgumentAllocas(Function *F) {
949 Function::arg_iterator AI = F->arg_begin();
950 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
951 // Create an alloca for this variable.
952 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
953
954 // Store the initial value into the alloca.
955 Builder.CreateStore(AI, Alloca);
956
957 // Add arguments to variable symbol table.
958 NamedValues[Args[Idx]] = Alloca;
959 }
960}
961
962
963Function *FunctionAST::Codegen() {
964 NamedValues.clear();
965
966 Function *TheFunction = Proto->Codegen();
967 if (TheFunction == 0)
968 return 0;
969
970 // If this is an operator, install it.
971 if (Proto->isBinaryOp())
972 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
973
974 // Create a new basic block to start insertion into.
975 BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
976 Builder.SetInsertPoint(BB);
977
978 // Add all arguments to the symbol table and create their allocas.
979 Proto->CreateArgumentAllocas(TheFunction);
980
981 if (Value *RetVal = Body->Codegen()) {
982 // Finish off the function.
983 Builder.CreateRet(RetVal);
984
985 // Validate the generated code, checking for consistency.
986 verifyFunction(*TheFunction);
987
988 // Optimize the function.
989 TheFPM->run(*TheFunction);
990
991 return TheFunction;
992 }
993
994 // Error reading body, remove function.
995 TheFunction->eraseFromParent();
996
997 if (Proto->isBinaryOp())
998 BinopPrecedence.erase(Proto->getOperatorName());
999 return 0;
1000}
1001
1002//===----------------------------------------------------------------------===//
1003// Top-Level parsing and JIT Driver
1004//===----------------------------------------------------------------------===//
1005
1006static ExecutionEngine *TheExecutionEngine;
1007
1008static void HandleDefinition() {
1009 if (FunctionAST *F = ParseDefinition()) {
1010 if (Function *LF = F->Codegen()) {
1011 fprintf(stderr, "Read function definition:");
1012 LF->dump();
1013 }
1014 } else {
1015 // Skip token for error recovery.
1016 getNextToken();
1017 }
1018}
1019
1020static void HandleExtern() {
1021 if (PrototypeAST *P = ParseExtern()) {
1022 if (Function *F = P->Codegen()) {
1023 fprintf(stderr, "Read extern: ");
1024 F->dump();
1025 }
1026 } else {
1027 // Skip token for error recovery.
1028 getNextToken();
1029 }
1030}
1031
1032static void HandleTopLevelExpression() {
1033 // Evaluate a top level expression into an anonymous function.
1034 if (FunctionAST *F = ParseTopLevelExpr()) {
1035 if (Function *LF = F->Codegen()) {
1036 // JIT the function, returning a function pointer.
1037 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1038
1039 // Cast it to the right type (takes no arguments, returns a double) so we
1040 // can call it as a native function.
Chris Lattnerd25bff62009-04-15 00:16:05 +00001041 double (*FP)() = (double (*)())(intptr_t)FPtr;
Nick Lewycky9f856342009-04-12 20:47:23 +00001042 fprintf(stderr, "Evaluated to %f\n", FP());
1043 }
1044 } else {
1045 // Skip token for error recovery.
1046 getNextToken();
1047 }
1048}
1049
1050/// top ::= definition | external | expression | ';'
1051static void MainLoop() {
1052 while (1) {
1053 fprintf(stderr, "ready> ");
1054 switch (CurTok) {
1055 case tok_eof: return;
1056 case ';': getNextToken(); break; // ignore top level semicolons.
1057 case tok_def: HandleDefinition(); break;
1058 case tok_extern: HandleExtern(); break;
1059 default: HandleTopLevelExpression(); break;
1060 }
1061 }
1062}
1063
1064
1065
1066//===----------------------------------------------------------------------===//
1067// "Library" functions that can be "extern'd" from user code.
1068//===----------------------------------------------------------------------===//
1069
1070/// putchard - putchar that takes a double and returns 0.
1071extern "C"
1072double putchard(double X) {
1073 putchar((char)X);
1074 return 0;
1075}
1076
1077/// printd - printf that takes a double prints it as "%f\n", returning 0.
1078extern "C"
1079double printd(double X) {
1080 printf("%f\n", X);
1081 return 0;
1082}
1083
1084//===----------------------------------------------------------------------===//
1085// Main driver code.
1086//===----------------------------------------------------------------------===//
1087
1088int main() {
Chris Lattnerda062882009-06-17 16:48:44 +00001089 InitializeNativeTarget();
Owen Anderson914e50c2009-07-16 19:05:41 +00001090 LLVMContext &Context = getGlobalContext();
Chris Lattnerda062882009-06-17 16:48:44 +00001091
Nick Lewycky9f856342009-04-12 20:47:23 +00001092 // Install standard binary operators.
1093 // 1 is lowest precedence.
1094 BinopPrecedence['='] = 2;
1095 BinopPrecedence['<'] = 10;
1096 BinopPrecedence['+'] = 20;
1097 BinopPrecedence['-'] = 20;
1098 BinopPrecedence['*'] = 40; // highest.
1099
1100 // Prime the first token.
1101 fprintf(stderr, "ready> ");
1102 getNextToken();
1103
1104 // Make the module, which holds all the code.
Owen Anderson31895e72009-07-01 21:22:36 +00001105 TheModule = new Module("my cool jit", Context);
Nick Lewycky9f856342009-04-12 20:47:23 +00001106
1107 // Create the JIT.
Reid Kleckner4b1511b2009-07-18 00:42:18 +00001108 TheExecutionEngine = EngineBuilder(TheModule).create();
Nick Lewycky9f856342009-04-12 20:47:23 +00001109
1110 {
1111 ExistingModuleProvider OurModuleProvider(TheModule);
1112 FunctionPassManager OurFPM(&OurModuleProvider);
1113
1114 // Set up the optimizer pipeline. Start with registering info about how the
1115 // target lays out data structures.
1116 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
1117 // Promote allocas to registers.
1118 OurFPM.add(createPromoteMemoryToRegisterPass());
1119 // Do simple "peephole" optimizations and bit-twiddling optzns.
1120 OurFPM.add(createInstructionCombiningPass());
1121 // Reassociate expressions.
1122 OurFPM.add(createReassociatePass());
1123 // Eliminate Common SubExpressions.
1124 OurFPM.add(createGVNPass());
1125 // Simplify the control flow graph (deleting unreachable blocks, etc).
1126 OurFPM.add(createCFGSimplificationPass());
1127
Eli Friedman8e9b1712009-07-20 14:50:07 +00001128 OurFPM.doInitialization();
1129
Nick Lewycky9f856342009-04-12 20:47:23 +00001130 // Set the global so the code gen can use this.
1131 TheFPM = &OurFPM;
1132
1133 // Run the main "interpreter loop" now.
1134 MainLoop();
1135
1136 TheFPM = 0;
1137
1138 // Print out all of the generated code.
1139 TheModule->dump();
1140
1141 } // Free module provider (and thus the module) and pass manager.
1142
1143 return 0;
1144}