blob: 1b7b436b0314ddd0dd9f52975f5bafa5b18296fc [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
Evan Cheng56966222007-01-12 02:11:51 +000024/// InitLibcallNames - Set default libcall names.
25///
Evan Cheng79cca502007-01-12 22:51:10 +000026static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000027 Names[RTLIB::SHL_I32] = "__ashlsi3";
28 Names[RTLIB::SHL_I64] = "__ashldi3";
29 Names[RTLIB::SRL_I32] = "__lshrsi3";
30 Names[RTLIB::SRL_I64] = "__lshrdi3";
31 Names[RTLIB::SRA_I32] = "__ashrsi3";
32 Names[RTLIB::SRA_I64] = "__ashrdi3";
33 Names[RTLIB::MUL_I32] = "__mulsi3";
34 Names[RTLIB::MUL_I64] = "__muldi3";
35 Names[RTLIB::SDIV_I32] = "__divsi3";
36 Names[RTLIB::SDIV_I64] = "__divdi3";
37 Names[RTLIB::UDIV_I32] = "__udivsi3";
38 Names[RTLIB::UDIV_I64] = "__udivdi3";
39 Names[RTLIB::SREM_I32] = "__modsi3";
40 Names[RTLIB::SREM_I64] = "__moddi3";
41 Names[RTLIB::UREM_I32] = "__umodsi3";
42 Names[RTLIB::UREM_I64] = "__umoddi3";
43 Names[RTLIB::NEG_I32] = "__negsi2";
44 Names[RTLIB::NEG_I64] = "__negdi2";
45 Names[RTLIB::ADD_F32] = "__addsf3";
46 Names[RTLIB::ADD_F64] = "__adddf3";
47 Names[RTLIB::SUB_F32] = "__subsf3";
48 Names[RTLIB::SUB_F64] = "__subdf3";
49 Names[RTLIB::MUL_F32] = "__mulsf3";
50 Names[RTLIB::MUL_F64] = "__muldf3";
51 Names[RTLIB::DIV_F32] = "__divsf3";
52 Names[RTLIB::DIV_F64] = "__divdf3";
53 Names[RTLIB::REM_F32] = "fmodf";
54 Names[RTLIB::REM_F64] = "fmod";
55 Names[RTLIB::NEG_F32] = "__negsf2";
56 Names[RTLIB::NEG_F64] = "__negdf2";
57 Names[RTLIB::POWI_F32] = "__powisf2";
58 Names[RTLIB::POWI_F64] = "__powidf2";
59 Names[RTLIB::SQRT_F32] = "sqrtf";
60 Names[RTLIB::SQRT_F64] = "sqrt";
61 Names[RTLIB::SIN_F32] = "sinf";
62 Names[RTLIB::SIN_F64] = "sin";
63 Names[RTLIB::COS_F32] = "cosf";
64 Names[RTLIB::COS_F64] = "cos";
65 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83 Names[RTLIB::OEQ_F32] = "__eqsf2";
84 Names[RTLIB::OEQ_F64] = "__eqdf2";
85 Names[RTLIB::UNE_F32] = "__nesf2";
86 Names[RTLIB::UNE_F64] = "__nedf2";
87 Names[RTLIB::OGE_F32] = "__gesf2";
88 Names[RTLIB::OGE_F64] = "__gedf2";
89 Names[RTLIB::OLT_F32] = "__ltsf2";
90 Names[RTLIB::OLT_F64] = "__ltdf2";
91 Names[RTLIB::OLE_F32] = "__lesf2";
92 Names[RTLIB::OLE_F64] = "__ledf2";
93 Names[RTLIB::OGT_F32] = "__gtsf2";
94 Names[RTLIB::OGT_F64] = "__gtdf2";
95 Names[RTLIB::UO_F32] = "__unordsf2";
96 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +000097 Names[RTLIB::O_F32] = "__unordsf2";
98 Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107 CCs[RTLIB::UNE_F32] = ISD::SETNE;
108 CCs[RTLIB::UNE_F64] = ISD::SETNE;
109 CCs[RTLIB::OGE_F32] = ISD::SETGE;
110 CCs[RTLIB::OGE_F64] = ISD::SETGE;
111 CCs[RTLIB::OLT_F32] = ISD::SETLT;
112 CCs[RTLIB::OLT_F64] = ISD::SETLT;
113 CCs[RTLIB::OLE_F32] = ISD::SETLE;
114 CCs[RTLIB::OLE_F64] = ISD::SETLE;
115 CCs[RTLIB::OGT_F32] = ISD::SETGT;
116 CCs[RTLIB::OGT_F64] = ISD::SETGT;
117 CCs[RTLIB::UO_F32] = ISD::SETNE;
118 CCs[RTLIB::UO_F64] = ISD::SETNE;
119 CCs[RTLIB::O_F32] = ISD::SETEQ;
120 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000121}
122
Chris Lattner310968c2005-01-07 07:44:53 +0000123TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000124 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000125 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000126 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000127 // All operations default to being supported.
128 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000129 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000130 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000131 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
132
133 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000134 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
135 for (unsigned IM = (unsigned)ISD::PRE_INC;
136 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
137 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
138 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
139 }
140 }
Chris Lattner310968c2005-01-07 07:44:53 +0000141
Owen Andersona69571c2006-05-03 01:29:57 +0000142 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000143 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000144 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000145 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000146 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +0000147 memset(TargetDAGCombineArray, 0,
148 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000149 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000150 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000151 UseUnderscoreSetJmp = false;
152 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000153 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000154 IntDivIsCheap = false;
155 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000156 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000157 ExceptionPointerRegister = 0;
158 ExceptionSelectorRegister = 0;
Evan Cheng0577a222006-01-25 18:52:42 +0000159 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000160 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000161 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000162 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000163
164 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000165 InitCmpLibcallCCs(CmpLibcallCCs);
Chris Lattner310968c2005-01-07 07:44:53 +0000166}
167
Chris Lattnercba82f92005-01-16 07:28:11 +0000168TargetLowering::~TargetLowering() {}
169
Chris Lattner310968c2005-01-07 07:44:53 +0000170/// computeRegisterProperties - Once all of the register classes are added,
171/// this allows us to compute derived properties we expose.
172void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000173 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000174 "Too many value types for ValueTypeActions to hold!");
175
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000176 // Everything defaults to needing one register.
177 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000178 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000179 RegisterTypeForVT[i] = TransformToType[i] = i;
180 }
181 // ...except isVoid, which doesn't need any registers.
182 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000183
Chris Lattner310968c2005-01-07 07:44:53 +0000184 // Find the largest integer register class.
185 unsigned LargestIntReg = MVT::i128;
186 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
187 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
188
189 // Every integer value type larger than this largest register takes twice as
190 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000191 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
192 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000193 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000194 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
195 TransformToType[ExpandedReg] = ExpandedReg - 1;
196 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000197 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000198
199 // Inspect all of the ValueType's smaller than the largest integer
200 // register to see which ones need promotion.
201 MVT::ValueType LegalIntReg = LargestIntReg;
202 for (MVT::ValueType IntReg = LargestIntReg - 1;
203 IntReg >= MVT::i1; --IntReg) {
204 if (isTypeLegal(IntReg)) {
205 LegalIntReg = IntReg;
206 } else {
207 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
208 ValueTypeActions.setTypeAction(IntReg, Promote);
209 }
210 }
211
212 // Decide how to handle f64. If the target does not have native f64 support,
213 // expand it to i64 and we will be generating soft float library calls.
214 if (!isTypeLegal(MVT::f64)) {
215 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
216 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
217 TransformToType[MVT::f64] = MVT::i64;
218 ValueTypeActions.setTypeAction(MVT::f64, Expand);
219 }
220
221 // Decide how to handle f32. If the target does not have native support for
222 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
223 if (!isTypeLegal(MVT::f32)) {
224 if (isTypeLegal(MVT::f64)) {
225 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
226 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
227 TransformToType[MVT::f32] = MVT::f64;
228 ValueTypeActions.setTypeAction(MVT::f32, Promote);
229 } else {
230 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
231 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
232 TransformToType[MVT::f32] = MVT::i32;
233 ValueTypeActions.setTypeAction(MVT::f32, Expand);
234 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000235 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000236
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000237 // Loop over all of the vector value types to see which need transformations.
238 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000239 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000240 if (!isTypeLegal(i)) {
241 MVT::ValueType IntermediateVT, RegisterVT;
242 unsigned NumIntermediates;
243 NumRegistersForVT[i] =
244 getVectorTypeBreakdown(i,
245 IntermediateVT, NumIntermediates,
246 RegisterVT);
247 RegisterTypeForVT[i] = RegisterVT;
248 TransformToType[i] = MVT::Other; // this isn't actually used
249 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000250 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000251 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000252}
Chris Lattnercba82f92005-01-16 07:28:11 +0000253
Evan Cheng72261582005-12-20 06:22:03 +0000254const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
255 return NULL;
256}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000257
Dan Gohman7f321562007-06-25 16:23:39 +0000258/// getVectorTypeBreakdown - Vector types are broken down into some number of
259/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000260/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000261/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000262///
Dan Gohman7f321562007-06-25 16:23:39 +0000263/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000264/// register. It also returns the VT and quantity of the intermediate values
265/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000266///
Dan Gohman7f321562007-06-25 16:23:39 +0000267unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000268 MVT::ValueType &IntermediateVT,
269 unsigned &NumIntermediates,
270 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000271 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000272 unsigned NumElts = MVT::getVectorNumElements(VT);
273 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000274
275 unsigned NumVectorRegs = 1;
276
277 // Divide the input until we get to a supported size. This will always
278 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000279 while (NumElts > 1 &&
280 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000281 NumElts >>= 1;
282 NumVectorRegs <<= 1;
283 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000284
285 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000286
Dan Gohman7f321562007-06-25 16:23:39 +0000287 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
288 if (!isTypeLegal(NewVT))
289 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000290 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000291
Dan Gohman7f321562007-06-25 16:23:39 +0000292 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000293 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000294 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000295 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000296 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000297 } else {
298 // Otherwise, promotion or legal types use the same number of registers as
299 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000300 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000301 }
302
Evan Chenge9b3da12006-05-17 18:10:06 +0000303 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000304}
305
Chris Lattnereb8146b2006-02-04 02:13:02 +0000306//===----------------------------------------------------------------------===//
307// Optimization Methods
308//===----------------------------------------------------------------------===//
309
Nate Begeman368e18d2006-02-16 21:11:51 +0000310/// ShrinkDemandedConstant - Check to see if the specified operand of the
311/// specified instruction is a constant integer. If so, check to see if there
312/// are any bits set in the constant that are not demanded. If so, shrink the
313/// constant and return true.
314bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
315 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000316 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000317 switch(Op.getOpcode()) {
318 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000319 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000320 case ISD::OR:
321 case ISD::XOR:
322 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
323 if ((~Demanded & C->getValue()) != 0) {
324 MVT::ValueType VT = Op.getValueType();
325 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
326 DAG.getConstant(Demanded & C->getValue(),
327 VT));
328 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000329 }
Nate Begemande996292006-02-03 22:24:05 +0000330 break;
331 }
332 return false;
333}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000334
Nate Begeman368e18d2006-02-16 21:11:51 +0000335/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
336/// DemandedMask bits of the result of Op are ever used downstream. If we can
337/// use this information to simplify Op, create a new simplified DAG node and
338/// return true, returning the original and new nodes in Old and New. Otherwise,
339/// analyze the expression and return a mask of KnownOne and KnownZero bits for
340/// the expression (used to simplify the caller). The KnownZero/One bits may
341/// only be accurate for those bits in the DemandedMask.
342bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
343 uint64_t &KnownZero,
344 uint64_t &KnownOne,
345 TargetLoweringOpt &TLO,
346 unsigned Depth) const {
347 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000348
349 // The masks are not wide enough to represent this type! Should use APInt.
350 if (Op.getValueType() == MVT::i128)
351 return false;
352
Nate Begeman368e18d2006-02-16 21:11:51 +0000353 // Other users may use these bits.
354 if (!Op.Val->hasOneUse()) {
355 if (Depth != 0) {
356 // If not at the root, Just compute the KnownZero/KnownOne bits to
357 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000358 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000359 return false;
360 }
361 // If this is the root being simplified, allow it to have multiple uses,
362 // just set the DemandedMask to all bits.
363 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
364 } else if (DemandedMask == 0) {
365 // Not demanding any bits from Op.
366 if (Op.getOpcode() != ISD::UNDEF)
367 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
368 return false;
369 } else if (Depth == 6) { // Limit search depth.
370 return false;
371 }
372
373 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000374 switch (Op.getOpcode()) {
375 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000376 // We know all of the bits for a constant!
377 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
378 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000379 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000380 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000381 // If the RHS is a constant, check to see if the LHS would be zero without
382 // using the bits from the RHS. Below, we use knowledge about the RHS to
383 // simplify the LHS, here we're using information from the LHS to simplify
384 // the RHS.
385 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
386 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000387 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
388 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000389 // If the LHS already has zeros where RHSC does, this and is dead.
390 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
391 return TLO.CombineTo(Op, Op.getOperand(0));
392 // If any of the set bits in the RHS are known zero on the LHS, shrink
393 // the constant.
394 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
395 return true;
396 }
397
Nate Begeman368e18d2006-02-16 21:11:51 +0000398 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
399 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000400 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000401 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000402 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
403 KnownZero2, KnownOne2, TLO, Depth+1))
404 return true;
405 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
406
407 // If all of the demanded bits are known one on one side, return the other.
408 // These bits cannot contribute to the result of the 'and'.
409 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
410 return TLO.CombineTo(Op, Op.getOperand(0));
411 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
412 return TLO.CombineTo(Op, Op.getOperand(1));
413 // If all of the demanded bits in the inputs are known zeros, return zero.
414 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
415 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
416 // If the RHS is a constant, see if we can simplify it.
417 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
418 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000419
Nate Begeman368e18d2006-02-16 21:11:51 +0000420 // Output known-1 bits are only known if set in both the LHS & RHS.
421 KnownOne &= KnownOne2;
422 // Output known-0 are known to be clear if zero in either the LHS | RHS.
423 KnownZero |= KnownZero2;
424 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000425 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000426 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
427 KnownOne, TLO, Depth+1))
428 return true;
429 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
430 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
431 KnownZero2, KnownOne2, TLO, Depth+1))
432 return true;
433 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
434
435 // If all of the demanded bits are known zero on one side, return the other.
436 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000437 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000438 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000439 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000440 return TLO.CombineTo(Op, Op.getOperand(1));
441 // If all of the potentially set bits on one side are known to be set on
442 // the other side, just use the 'other' side.
443 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
444 (DemandedMask & (~KnownZero)))
445 return TLO.CombineTo(Op, Op.getOperand(0));
446 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
447 (DemandedMask & (~KnownZero2)))
448 return TLO.CombineTo(Op, Op.getOperand(1));
449 // If the RHS is a constant, see if we can simplify it.
450 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
451 return true;
452
453 // Output known-0 bits are only known if clear in both the LHS & RHS.
454 KnownZero &= KnownZero2;
455 // Output known-1 are known to be set if set in either the LHS | RHS.
456 KnownOne |= KnownOne2;
457 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000458 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000459 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
460 KnownOne, TLO, Depth+1))
461 return true;
462 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
463 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
464 KnownOne2, TLO, Depth+1))
465 return true;
466 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
467
468 // If all of the demanded bits are known zero on one side, return the other.
469 // These bits cannot contribute to the result of the 'xor'.
470 if ((DemandedMask & KnownZero) == DemandedMask)
471 return TLO.CombineTo(Op, Op.getOperand(0));
472 if ((DemandedMask & KnownZero2) == DemandedMask)
473 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000474
475 // If all of the unknown bits are known to be zero on one side or the other
476 // (but not both) turn this into an *inclusive* or.
477 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
478 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
479 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
480 Op.getOperand(0),
481 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000482
483 // Output known-0 bits are known if clear or set in both the LHS & RHS.
484 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
485 // Output known-1 are known to be set if set in only one of the LHS, RHS.
486 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
487
Nate Begeman368e18d2006-02-16 21:11:51 +0000488 // If all of the demanded bits on one side are known, and all of the set
489 // bits on that side are also known to be set on the other side, turn this
490 // into an AND, as we know the bits will be cleared.
491 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
492 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
493 if ((KnownOne & KnownOne2) == KnownOne) {
494 MVT::ValueType VT = Op.getValueType();
495 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
496 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
497 ANDC));
498 }
499 }
500
501 // If the RHS is a constant, see if we can simplify it.
502 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
503 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
504 return true;
505
506 KnownZero = KnownZeroOut;
507 KnownOne = KnownOneOut;
508 break;
509 case ISD::SETCC:
510 // If we know the result of a setcc has the top bits zero, use this info.
511 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
512 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
513 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000514 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000515 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
516 KnownOne, TLO, Depth+1))
517 return true;
518 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
519 KnownOne2, TLO, Depth+1))
520 return true;
521 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
522 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
523
524 // If the operands are constants, see if we can simplify them.
525 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
526 return true;
527
528 // Only known if known in both the LHS and RHS.
529 KnownOne &= KnownOne2;
530 KnownZero &= KnownZero2;
531 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000532 case ISD::SELECT_CC:
533 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
534 KnownOne, TLO, Depth+1))
535 return true;
536 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
537 KnownOne2, TLO, Depth+1))
538 return true;
539 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
540 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
541
542 // If the operands are constants, see if we can simplify them.
543 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
544 return true;
545
546 // Only known if known in both the LHS and RHS.
547 KnownOne &= KnownOne2;
548 KnownZero &= KnownZero2;
549 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000550 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000551 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000552 unsigned ShAmt = SA->getValue();
553 SDOperand InOp = Op.getOperand(0);
554
555 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
556 // single shift. We can do this if the bottom bits (which are shifted
557 // out) are never demanded.
558 if (InOp.getOpcode() == ISD::SRL &&
559 isa<ConstantSDNode>(InOp.getOperand(1))) {
560 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
561 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
562 unsigned Opc = ISD::SHL;
563 int Diff = ShAmt-C1;
564 if (Diff < 0) {
565 Diff = -Diff;
566 Opc = ISD::SRL;
567 }
568
569 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000570 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000571 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000572 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000573 InOp.getOperand(0), NewSA));
574 }
575 }
576
577 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000578 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000579 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000580 KnownZero <<= SA->getValue();
581 KnownOne <<= SA->getValue();
582 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000583 }
584 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000585 case ISD::SRL:
586 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
587 MVT::ValueType VT = Op.getValueType();
588 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000589 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
590 unsigned VTSize = MVT::getSizeInBits(VT);
591 SDOperand InOp = Op.getOperand(0);
592
593 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
594 // single shift. We can do this if the top bits (which are shifted out)
595 // are never demanded.
596 if (InOp.getOpcode() == ISD::SHL &&
597 isa<ConstantSDNode>(InOp.getOperand(1))) {
598 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
599 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
600 unsigned Opc = ISD::SRL;
601 int Diff = ShAmt-C1;
602 if (Diff < 0) {
603 Diff = -Diff;
604 Opc = ISD::SHL;
605 }
606
607 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000608 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000609 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
610 InOp.getOperand(0), NewSA));
611 }
612 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000613
614 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000615 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000616 KnownZero, KnownOne, TLO, Depth+1))
617 return true;
618 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
619 KnownZero &= TypeMask;
620 KnownOne &= TypeMask;
621 KnownZero >>= ShAmt;
622 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000623
624 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000625 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000626 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000627 }
628 break;
629 case ISD::SRA:
630 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
631 MVT::ValueType VT = Op.getValueType();
632 unsigned ShAmt = SA->getValue();
633
634 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000635 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
636
Chris Lattner1b737132006-05-08 17:22:53 +0000637 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
638
639 // If any of the demanded bits are produced by the sign extension, we also
640 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000641 uint64_t HighBits = (1ULL << ShAmt)-1;
642 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000643 if (HighBits & DemandedMask)
644 InDemandedMask |= MVT::getIntVTSignBit(VT);
645
646 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000647 KnownZero, KnownOne, TLO, Depth+1))
648 return true;
649 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
650 KnownZero &= TypeMask;
651 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000652 KnownZero >>= ShAmt;
653 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000654
655 // Handle the sign bits.
656 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000657 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000658
659 // If the input sign bit is known to be zero, or if none of the top bits
660 // are demanded, turn this into an unsigned shift right.
661 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
662 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
663 Op.getOperand(1)));
664 } else if (KnownOne & SignBit) { // New bits are known one.
665 KnownOne |= HighBits;
666 }
667 }
668 break;
669 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000670 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
671
Chris Lattnerec665152006-02-26 23:36:02 +0000672 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000673 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000674 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000675
Chris Lattnerec665152006-02-26 23:36:02 +0000676 // If none of the extended bits are demanded, eliminate the sextinreg.
677 if (NewBits == 0)
678 return TLO.CombineTo(Op, Op.getOperand(0));
679
Nate Begeman368e18d2006-02-16 21:11:51 +0000680 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
681 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
682
Chris Lattnerec665152006-02-26 23:36:02 +0000683 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000684 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000685 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000686
687 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
688 KnownZero, KnownOne, TLO, Depth+1))
689 return true;
690 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
691
692 // If the sign bit of the input is known set or clear, then we know the
693 // top bits of the result.
694
Chris Lattnerec665152006-02-26 23:36:02 +0000695 // If the input sign bit is known zero, convert this into a zero extension.
696 if (KnownZero & InSignBit)
697 return TLO.CombineTo(Op,
698 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
699
700 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000701 KnownOne |= NewBits;
702 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000703 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000704 KnownZero &= ~NewBits;
705 KnownOne &= ~NewBits;
706 }
707 break;
708 }
Chris Lattnerec665152006-02-26 23:36:02 +0000709 case ISD::CTTZ:
710 case ISD::CTLZ:
711 case ISD::CTPOP: {
712 MVT::ValueType VT = Op.getValueType();
713 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
714 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
715 KnownOne = 0;
716 break;
717 }
Evan Cheng466685d2006-10-09 20:57:25 +0000718 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000719 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000720 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000721 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000722 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
723 }
Chris Lattnerec665152006-02-26 23:36:02 +0000724 break;
725 }
726 case ISD::ZERO_EXTEND: {
727 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
728
729 // If none of the top bits are demanded, convert this into an any_extend.
730 uint64_t NewBits = (~InMask) & DemandedMask;
731 if (NewBits == 0)
732 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
733 Op.getValueType(),
734 Op.getOperand(0)));
735
736 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
737 KnownZero, KnownOne, TLO, Depth+1))
738 return true;
739 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
740 KnownZero |= NewBits;
741 break;
742 }
743 case ISD::SIGN_EXTEND: {
744 MVT::ValueType InVT = Op.getOperand(0).getValueType();
745 uint64_t InMask = MVT::getIntVTBitMask(InVT);
746 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
747 uint64_t NewBits = (~InMask) & DemandedMask;
748
749 // If none of the top bits are demanded, convert this into an any_extend.
750 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000751 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000752 Op.getOperand(0)));
753
754 // Since some of the sign extended bits are demanded, we know that the sign
755 // bit is demanded.
756 uint64_t InDemandedBits = DemandedMask & InMask;
757 InDemandedBits |= InSignBit;
758
759 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
760 KnownOne, TLO, Depth+1))
761 return true;
762
763 // If the sign bit is known zero, convert this to a zero extend.
764 if (KnownZero & InSignBit)
765 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
766 Op.getValueType(),
767 Op.getOperand(0)));
768
769 // If the sign bit is known one, the top bits match.
770 if (KnownOne & InSignBit) {
771 KnownOne |= NewBits;
772 KnownZero &= ~NewBits;
773 } else { // Otherwise, top bits aren't known.
774 KnownOne &= ~NewBits;
775 KnownZero &= ~NewBits;
776 }
777 break;
778 }
779 case ISD::ANY_EXTEND: {
780 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
781 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
782 KnownZero, KnownOne, TLO, Depth+1))
783 return true;
784 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
785 break;
786 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000787 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000788 // Simplify the input, using demanded bit information, and compute the known
789 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000790 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
791 KnownZero, KnownOne, TLO, Depth+1))
792 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000793
794 // If the input is only used by this truncate, see if we can shrink it based
795 // on the known demanded bits.
796 if (Op.getOperand(0).Val->hasOneUse()) {
797 SDOperand In = Op.getOperand(0);
798 switch (In.getOpcode()) {
799 default: break;
800 case ISD::SRL:
801 // Shrink SRL by a constant if none of the high bits shifted in are
802 // demanded.
803 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
804 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
805 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
806 HighBits >>= ShAmt->getValue();
807
808 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
809 (DemandedMask & HighBits) == 0) {
810 // None of the shifted in bits are needed. Add a truncate of the
811 // shift input, then shift it.
812 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
813 Op.getValueType(),
814 In.getOperand(0));
815 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
816 NewTrunc, In.getOperand(1)));
817 }
818 }
819 break;
820 }
821 }
822
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000823 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
824 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
825 KnownZero &= OutMask;
826 KnownOne &= OutMask;
827 break;
828 }
Chris Lattnerec665152006-02-26 23:36:02 +0000829 case ISD::AssertZext: {
830 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
831 uint64_t InMask = MVT::getIntVTBitMask(VT);
832 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
833 KnownZero, KnownOne, TLO, Depth+1))
834 return true;
835 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
836 KnownZero |= ~InMask & DemandedMask;
837 break;
838 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000839 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000840 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000841 case ISD::INTRINSIC_WO_CHAIN:
842 case ISD::INTRINSIC_W_CHAIN:
843 case ISD::INTRINSIC_VOID:
844 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000845 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000846 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000847 }
Chris Lattnerec665152006-02-26 23:36:02 +0000848
849 // If we know the value of all of the demanded bits, return this as a
850 // constant.
851 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
852 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
853
Nate Begeman368e18d2006-02-16 21:11:51 +0000854 return false;
855}
856
Nate Begeman368e18d2006-02-16 21:11:51 +0000857/// computeMaskedBitsForTargetNode - Determine which of the bits specified
858/// in Mask are known to be either zero or one and return them in the
859/// KnownZero/KnownOne bitsets.
860void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
861 uint64_t Mask,
862 uint64_t &KnownZero,
863 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000864 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000865 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000866 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
867 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
868 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
869 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000870 "Should use MaskedValueIsZero if you don't know whether Op"
871 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000872 KnownZero = 0;
873 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000874}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000875
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000876/// ComputeNumSignBitsForTargetNode - This method can be implemented by
877/// targets that want to expose additional information about sign bits to the
878/// DAG Combiner.
879unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
880 unsigned Depth) const {
881 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
882 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
883 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
884 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
885 "Should use ComputeNumSignBits if you don't know whether Op"
886 " is a target node!");
887 return 1;
888}
889
890
Evan Chengfa1eb272007-02-08 22:13:59 +0000891/// SimplifySetCC - Try to simplify a setcc built with the specified operands
892/// and cc. If it is unable to simplify it, return a null SDOperand.
893SDOperand
894TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
895 ISD::CondCode Cond, bool foldBooleans,
896 DAGCombinerInfo &DCI) const {
897 SelectionDAG &DAG = DCI.DAG;
898
899 // These setcc operations always fold.
900 switch (Cond) {
901 default: break;
902 case ISD::SETFALSE:
903 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
904 case ISD::SETTRUE:
905 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
906 }
907
908 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
909 uint64_t C1 = N1C->getValue();
910 if (isa<ConstantSDNode>(N0.Val)) {
911 return DAG.FoldSetCC(VT, N0, N1, Cond);
912 } else {
913 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
914 // equality comparison, then we're just comparing whether X itself is
915 // zero.
916 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
917 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
918 N0.getOperand(1).getOpcode() == ISD::Constant) {
919 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
920 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
921 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
922 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
923 // (srl (ctlz x), 5) == 0 -> X != 0
924 // (srl (ctlz x), 5) != 1 -> X != 0
925 Cond = ISD::SETNE;
926 } else {
927 // (srl (ctlz x), 5) != 0 -> X == 0
928 // (srl (ctlz x), 5) == 1 -> X == 0
929 Cond = ISD::SETEQ;
930 }
931 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
932 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
933 Zero, Cond);
934 }
935 }
936
937 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
938 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
939 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
940
941 // If the comparison constant has bits in the upper part, the
942 // zero-extended value could never match.
943 if (C1 & (~0ULL << InSize)) {
944 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
945 switch (Cond) {
946 case ISD::SETUGT:
947 case ISD::SETUGE:
948 case ISD::SETEQ: return DAG.getConstant(0, VT);
949 case ISD::SETULT:
950 case ISD::SETULE:
951 case ISD::SETNE: return DAG.getConstant(1, VT);
952 case ISD::SETGT:
953 case ISD::SETGE:
954 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000955 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000956 case ISD::SETLT:
957 case ISD::SETLE:
958 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000959 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000960 default:
961 break;
962 }
963 }
964
965 // Otherwise, we can perform the comparison with the low bits.
966 switch (Cond) {
967 case ISD::SETEQ:
968 case ISD::SETNE:
969 case ISD::SETUGT:
970 case ISD::SETUGE:
971 case ISD::SETULT:
972 case ISD::SETULE:
973 return DAG.getSetCC(VT, N0.getOperand(0),
974 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
975 Cond);
976 default:
977 break; // todo, be more careful with signed comparisons
978 }
979 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
980 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
981 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
982 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
983 MVT::ValueType ExtDstTy = N0.getValueType();
984 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
985
986 // If the extended part has any inconsistent bits, it cannot ever
987 // compare equal. In other words, they have to be all ones or all
988 // zeros.
989 uint64_t ExtBits =
990 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
991 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
992 return DAG.getConstant(Cond == ISD::SETNE, VT);
993
994 SDOperand ZextOp;
995 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
996 if (Op0Ty == ExtSrcTy) {
997 ZextOp = N0.getOperand(0);
998 } else {
999 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1000 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1001 DAG.getConstant(Imm, Op0Ty));
1002 }
1003 if (!DCI.isCalledByLegalizer())
1004 DCI.AddToWorklist(ZextOp.Val);
1005 // Otherwise, make this a use of a zext.
1006 return DAG.getSetCC(VT, ZextOp,
1007 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1008 ExtDstTy),
1009 Cond);
1010 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1011 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1012
1013 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1014 if (N0.getOpcode() == ISD::SETCC) {
1015 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1016 if (TrueWhenTrue)
1017 return N0;
1018
1019 // Invert the condition.
1020 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1021 CC = ISD::getSetCCInverse(CC,
1022 MVT::isInteger(N0.getOperand(0).getValueType()));
1023 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1024 }
1025
1026 if ((N0.getOpcode() == ISD::XOR ||
1027 (N0.getOpcode() == ISD::AND &&
1028 N0.getOperand(0).getOpcode() == ISD::XOR &&
1029 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1030 isa<ConstantSDNode>(N0.getOperand(1)) &&
1031 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1032 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1033 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001034 if (DAG.MaskedValueIsZero(N0,
1035 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001036 // Okay, get the un-inverted input value.
1037 SDOperand Val;
1038 if (N0.getOpcode() == ISD::XOR)
1039 Val = N0.getOperand(0);
1040 else {
1041 assert(N0.getOpcode() == ISD::AND &&
1042 N0.getOperand(0).getOpcode() == ISD::XOR);
1043 // ((X^1)&1)^1 -> X & 1
1044 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1045 N0.getOperand(0).getOperand(0),
1046 N0.getOperand(1));
1047 }
1048 return DAG.getSetCC(VT, Val, N1,
1049 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1050 }
1051 }
1052 }
1053
1054 uint64_t MinVal, MaxVal;
1055 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1056 if (ISD::isSignedIntSetCC(Cond)) {
1057 MinVal = 1ULL << (OperandBitSize-1);
1058 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1059 MaxVal = ~0ULL >> (65-OperandBitSize);
1060 else
1061 MaxVal = 0;
1062 } else {
1063 MinVal = 0;
1064 MaxVal = ~0ULL >> (64-OperandBitSize);
1065 }
1066
1067 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1068 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1069 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1070 --C1; // X >= C0 --> X > (C0-1)
1071 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1072 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1073 }
1074
1075 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1076 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1077 ++C1; // X <= C0 --> X < (C0+1)
1078 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1079 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1080 }
1081
1082 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1083 return DAG.getConstant(0, VT); // X < MIN --> false
1084 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1085 return DAG.getConstant(1, VT); // X >= MIN --> true
1086 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1087 return DAG.getConstant(0, VT); // X > MAX --> false
1088 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1089 return DAG.getConstant(1, VT); // X <= MAX --> true
1090
1091 // Canonicalize setgt X, Min --> setne X, Min
1092 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1093 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1094 // Canonicalize setlt X, Max --> setne X, Max
1095 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1096 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1097
1098 // If we have setult X, 1, turn it into seteq X, 0
1099 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1100 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1101 ISD::SETEQ);
1102 // If we have setugt X, Max-1, turn it into seteq X, Max
1103 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1104 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1105 ISD::SETEQ);
1106
1107 // If we have "setcc X, C0", check to see if we can shrink the immediate
1108 // by changing cc.
1109
1110 // SETUGT X, SINTMAX -> SETLT X, 0
1111 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1112 C1 == (~0ULL >> (65-OperandBitSize)))
1113 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1114 ISD::SETLT);
1115
1116 // FIXME: Implement the rest of these.
1117
1118 // Fold bit comparisons when we can.
1119 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1120 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1121 if (ConstantSDNode *AndRHS =
1122 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1123 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1124 // Perform the xform if the AND RHS is a single bit.
1125 if (isPowerOf2_64(AndRHS->getValue())) {
1126 return DAG.getNode(ISD::SRL, VT, N0,
1127 DAG.getConstant(Log2_64(AndRHS->getValue()),
1128 getShiftAmountTy()));
1129 }
1130 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1131 // (X & 8) == 8 --> (X & 8) >> 3
1132 // Perform the xform if C1 is a single bit.
1133 if (isPowerOf2_64(C1)) {
1134 return DAG.getNode(ISD::SRL, VT, N0,
1135 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1136 }
1137 }
1138 }
1139 }
1140 } else if (isa<ConstantSDNode>(N0.Val)) {
1141 // Ensure that the constant occurs on the RHS.
1142 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1143 }
1144
1145 if (isa<ConstantFPSDNode>(N0.Val)) {
1146 // Constant fold or commute setcc.
1147 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1148 if (O.Val) return O;
1149 }
1150
1151 if (N0 == N1) {
1152 // We can always fold X == X for integer setcc's.
1153 if (MVT::isInteger(N0.getValueType()))
1154 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1155 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1156 if (UOF == 2) // FP operators that are undefined on NaNs.
1157 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1158 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1159 return DAG.getConstant(UOF, VT);
1160 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1161 // if it is not already.
1162 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1163 if (NewCond != Cond)
1164 return DAG.getSetCC(VT, N0, N1, NewCond);
1165 }
1166
1167 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1168 MVT::isInteger(N0.getValueType())) {
1169 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1170 N0.getOpcode() == ISD::XOR) {
1171 // Simplify (X+Y) == (X+Z) --> Y == Z
1172 if (N0.getOpcode() == N1.getOpcode()) {
1173 if (N0.getOperand(0) == N1.getOperand(0))
1174 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1175 if (N0.getOperand(1) == N1.getOperand(1))
1176 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1177 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1178 // If X op Y == Y op X, try other combinations.
1179 if (N0.getOperand(0) == N1.getOperand(1))
1180 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1181 if (N0.getOperand(1) == N1.getOperand(0))
1182 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1183 }
1184 }
1185
1186 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1187 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1188 // Turn (X+C1) == C2 --> X == C2-C1
1189 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1190 return DAG.getSetCC(VT, N0.getOperand(0),
1191 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1192 N0.getValueType()), Cond);
1193 }
1194
1195 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1196 if (N0.getOpcode() == ISD::XOR)
1197 // If we know that all of the inverted bits are zero, don't bother
1198 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001199 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001200 return DAG.getSetCC(VT, N0.getOperand(0),
1201 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1202 N0.getValueType()), Cond);
1203 }
1204
1205 // Turn (C1-X) == C2 --> X == C1-C2
1206 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1207 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1208 return DAG.getSetCC(VT, N0.getOperand(1),
1209 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1210 N0.getValueType()), Cond);
1211 }
1212 }
1213 }
1214
1215 // Simplify (X+Z) == X --> Z == 0
1216 if (N0.getOperand(0) == N1)
1217 return DAG.getSetCC(VT, N0.getOperand(1),
1218 DAG.getConstant(0, N0.getValueType()), Cond);
1219 if (N0.getOperand(1) == N1) {
1220 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1221 return DAG.getSetCC(VT, N0.getOperand(0),
1222 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001223 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001224 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1225 // (Z-X) == X --> Z == X<<1
1226 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1227 N1,
1228 DAG.getConstant(1, getShiftAmountTy()));
1229 if (!DCI.isCalledByLegalizer())
1230 DCI.AddToWorklist(SH.Val);
1231 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1232 }
1233 }
1234 }
1235
1236 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1237 N1.getOpcode() == ISD::XOR) {
1238 // Simplify X == (X+Z) --> Z == 0
1239 if (N1.getOperand(0) == N0) {
1240 return DAG.getSetCC(VT, N1.getOperand(1),
1241 DAG.getConstant(0, N1.getValueType()), Cond);
1242 } else if (N1.getOperand(1) == N0) {
1243 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1244 return DAG.getSetCC(VT, N1.getOperand(0),
1245 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001246 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001247 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1248 // X == (Z-X) --> X<<1 == Z
1249 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1250 DAG.getConstant(1, getShiftAmountTy()));
1251 if (!DCI.isCalledByLegalizer())
1252 DCI.AddToWorklist(SH.Val);
1253 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1254 }
1255 }
1256 }
1257 }
1258
1259 // Fold away ALL boolean setcc's.
1260 SDOperand Temp;
1261 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1262 switch (Cond) {
1263 default: assert(0 && "Unknown integer setcc!");
1264 case ISD::SETEQ: // X == Y -> (X^Y)^1
1265 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1266 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1267 if (!DCI.isCalledByLegalizer())
1268 DCI.AddToWorklist(Temp.Val);
1269 break;
1270 case ISD::SETNE: // X != Y --> (X^Y)
1271 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1272 break;
1273 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1274 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1275 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1276 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1277 if (!DCI.isCalledByLegalizer())
1278 DCI.AddToWorklist(Temp.Val);
1279 break;
1280 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1281 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1282 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1283 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1284 if (!DCI.isCalledByLegalizer())
1285 DCI.AddToWorklist(Temp.Val);
1286 break;
1287 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1288 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1289 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1290 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1291 if (!DCI.isCalledByLegalizer())
1292 DCI.AddToWorklist(Temp.Val);
1293 break;
1294 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1295 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1296 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1297 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1298 break;
1299 }
1300 if (VT != MVT::i1) {
1301 if (!DCI.isCalledByLegalizer())
1302 DCI.AddToWorklist(N0.Val);
1303 // FIXME: If running after legalize, we probably can't do this.
1304 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1305 }
1306 return N0;
1307 }
1308
1309 // Could not fold it.
1310 return SDOperand();
1311}
1312
Chris Lattner00ffed02006-03-01 04:52:55 +00001313SDOperand TargetLowering::
1314PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1315 // Default implementation: no optimization.
1316 return SDOperand();
1317}
1318
Chris Lattnereb8146b2006-02-04 02:13:02 +00001319//===----------------------------------------------------------------------===//
1320// Inline Assembler Implementation Methods
1321//===----------------------------------------------------------------------===//
1322
1323TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001324TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001325 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001326 if (Constraint.size() == 1) {
1327 switch (Constraint[0]) {
1328 default: break;
1329 case 'r': return C_RegisterClass;
1330 case 'm': // memory
1331 case 'o': // offsetable
1332 case 'V': // not offsetable
1333 return C_Memory;
1334 case 'i': // Simple Integer or Relocatable Constant
1335 case 'n': // Simple Integer
1336 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001337 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001338 case 'I': // Target registers.
1339 case 'J':
1340 case 'K':
1341 case 'L':
1342 case 'M':
1343 case 'N':
1344 case 'O':
1345 case 'P':
1346 return C_Other;
1347 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001348 }
Chris Lattner065421f2007-03-25 02:18:14 +00001349
1350 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1351 Constraint[Constraint.size()-1] == '}')
1352 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001353 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001354}
1355
Chris Lattnerdba1aee2006-10-31 19:40:43 +00001356/// isOperandValidForConstraint - Return the specified operand (possibly
1357/// modified) if the specified SDOperand is valid for the specified target
1358/// constraint letter, otherwise return null.
1359SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
1360 char ConstraintLetter,
1361 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001362 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001363 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001364 case 'i': // Simple Integer or Relocatable Constant
1365 case 'n': // Simple Integer
1366 case 's': // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001367 case 'X': { // Allows any operand.
1368 // These operands are interested in values of the form (GV+C), where C may
1369 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1370 // is possible and fine if either GV or C are missing.
1371 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1372 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1373
1374 // If we have "(add GV, C)", pull out GV/C
1375 if (Op.getOpcode() == ISD::ADD) {
1376 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1377 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1378 if (C == 0 || GA == 0) {
1379 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1380 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1381 }
1382 if (C == 0 || GA == 0)
1383 C = 0, GA = 0;
1384 }
1385
1386 // If we find a valid operand, map to the TargetXXX version so that the
1387 // value itself doesn't get selected.
1388 if (GA) { // Either &GV or &GV+C
1389 if (ConstraintLetter != 'n') {
1390 int64_t Offs = GA->getOffset();
1391 if (C) Offs += C->getValue();
1392 return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
1393 Offs);
1394 }
1395 }
1396 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001397 // Simple constants are not allowed for 's'.
1398 if (ConstraintLetter != 's')
1399 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
1400 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001401 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001402 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001403 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001404 return SDOperand(0,0);
Chris Lattnereb8146b2006-02-04 02:13:02 +00001405}
1406
Chris Lattner4ccb0702006-01-26 20:37:03 +00001407std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001408getRegClassForInlineAsmConstraint(const std::string &Constraint,
1409 MVT::ValueType VT) const {
1410 return std::vector<unsigned>();
1411}
1412
1413
1414std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001415getRegForInlineAsmConstraint(const std::string &Constraint,
1416 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001417 if (Constraint[0] != '{')
1418 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001419 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1420
1421 // Remove the braces from around the name.
1422 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001423
1424 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001425 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001426 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1427 E = RI->regclass_end(); RCI != E; ++RCI) {
1428 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001429
1430 // If none of the the value types for this register class are valid, we
1431 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1432 bool isLegal = false;
1433 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1434 I != E; ++I) {
1435 if (isTypeLegal(*I)) {
1436 isLegal = true;
1437 break;
1438 }
1439 }
1440
1441 if (!isLegal) continue;
1442
Chris Lattner1efa40f2006-02-22 00:56:39 +00001443 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1444 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001445 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001446 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001447 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001448 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001449
Chris Lattner1efa40f2006-02-22 00:56:39 +00001450 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001451}
Evan Cheng30b37b52006-03-13 23:18:16 +00001452
1453//===----------------------------------------------------------------------===//
1454// Loop Strength Reduction hooks
1455//===----------------------------------------------------------------------===//
1456
Chris Lattner1436bb62007-03-30 23:14:50 +00001457/// isLegalAddressingMode - Return true if the addressing mode represented
1458/// by AM is legal for this target, for a load/store of the specified type.
1459bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1460 const Type *Ty) const {
1461 // The default implementation of this implements a conservative RISCy, r+r and
1462 // r+i addr mode.
1463
1464 // Allows a sign-extended 16-bit immediate field.
1465 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1466 return false;
1467
1468 // No global is ever allowed as a base.
1469 if (AM.BaseGV)
1470 return false;
1471
1472 // Only support r+r,
1473 switch (AM.Scale) {
1474 case 0: // "r+i" or just "i", depending on HasBaseReg.
1475 break;
1476 case 1:
1477 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1478 return false;
1479 // Otherwise we have r+r or r+i.
1480 break;
1481 case 2:
1482 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1483 return false;
1484 // Allow 2*r as r+r.
1485 break;
1486 }
1487
1488 return true;
1489}
1490
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001491// Magic for divide replacement
1492
1493struct ms {
1494 int64_t m; // magic number
1495 int64_t s; // shift amount
1496};
1497
1498struct mu {
1499 uint64_t m; // magic number
1500 int64_t a; // add indicator
1501 int64_t s; // shift amount
1502};
1503
1504/// magic - calculate the magic numbers required to codegen an integer sdiv as
1505/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1506/// or -1.
1507static ms magic32(int32_t d) {
1508 int32_t p;
1509 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1510 const uint32_t two31 = 0x80000000U;
1511 struct ms mag;
1512
1513 ad = abs(d);
1514 t = two31 + ((uint32_t)d >> 31);
1515 anc = t - 1 - t%ad; // absolute value of nc
1516 p = 31; // initialize p
1517 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1518 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1519 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1520 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1521 do {
1522 p = p + 1;
1523 q1 = 2*q1; // update q1 = 2p/abs(nc)
1524 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1525 if (r1 >= anc) { // must be unsigned comparison
1526 q1 = q1 + 1;
1527 r1 = r1 - anc;
1528 }
1529 q2 = 2*q2; // update q2 = 2p/abs(d)
1530 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1531 if (r2 >= ad) { // must be unsigned comparison
1532 q2 = q2 + 1;
1533 r2 = r2 - ad;
1534 }
1535 delta = ad - r2;
1536 } while (q1 < delta || (q1 == delta && r1 == 0));
1537
1538 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1539 if (d < 0) mag.m = -mag.m; // resulting magic number
1540 mag.s = p - 32; // resulting shift
1541 return mag;
1542}
1543
1544/// magicu - calculate the magic numbers required to codegen an integer udiv as
1545/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1546static mu magicu32(uint32_t d) {
1547 int32_t p;
1548 uint32_t nc, delta, q1, r1, q2, r2;
1549 struct mu magu;
1550 magu.a = 0; // initialize "add" indicator
1551 nc = - 1 - (-d)%d;
1552 p = 31; // initialize p
1553 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1554 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1555 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1556 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1557 do {
1558 p = p + 1;
1559 if (r1 >= nc - r1 ) {
1560 q1 = 2*q1 + 1; // update q1
1561 r1 = 2*r1 - nc; // update r1
1562 }
1563 else {
1564 q1 = 2*q1; // update q1
1565 r1 = 2*r1; // update r1
1566 }
1567 if (r2 + 1 >= d - r2) {
1568 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1569 q2 = 2*q2 + 1; // update q2
1570 r2 = 2*r2 + 1 - d; // update r2
1571 }
1572 else {
1573 if (q2 >= 0x80000000) magu.a = 1;
1574 q2 = 2*q2; // update q2
1575 r2 = 2*r2 + 1; // update r2
1576 }
1577 delta = d - 1 - r2;
1578 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1579 magu.m = q2 + 1; // resulting magic number
1580 magu.s = p - 32; // resulting shift
1581 return magu;
1582}
1583
1584/// magic - calculate the magic numbers required to codegen an integer sdiv as
1585/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1586/// or -1.
1587static ms magic64(int64_t d) {
1588 int64_t p;
1589 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1590 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1591 struct ms mag;
1592
1593 ad = d >= 0 ? d : -d;
1594 t = two63 + ((uint64_t)d >> 63);
1595 anc = t - 1 - t%ad; // absolute value of nc
1596 p = 63; // initialize p
1597 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1598 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1599 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1600 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1601 do {
1602 p = p + 1;
1603 q1 = 2*q1; // update q1 = 2p/abs(nc)
1604 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1605 if (r1 >= anc) { // must be unsigned comparison
1606 q1 = q1 + 1;
1607 r1 = r1 - anc;
1608 }
1609 q2 = 2*q2; // update q2 = 2p/abs(d)
1610 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1611 if (r2 >= ad) { // must be unsigned comparison
1612 q2 = q2 + 1;
1613 r2 = r2 - ad;
1614 }
1615 delta = ad - r2;
1616 } while (q1 < delta || (q1 == delta && r1 == 0));
1617
1618 mag.m = q2 + 1;
1619 if (d < 0) mag.m = -mag.m; // resulting magic number
1620 mag.s = p - 64; // resulting shift
1621 return mag;
1622}
1623
1624/// magicu - calculate the magic numbers required to codegen an integer udiv as
1625/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1626static mu magicu64(uint64_t d)
1627{
1628 int64_t p;
1629 uint64_t nc, delta, q1, r1, q2, r2;
1630 struct mu magu;
1631 magu.a = 0; // initialize "add" indicator
1632 nc = - 1 - (-d)%d;
1633 p = 63; // initialize p
1634 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1635 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1636 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1637 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1638 do {
1639 p = p + 1;
1640 if (r1 >= nc - r1 ) {
1641 q1 = 2*q1 + 1; // update q1
1642 r1 = 2*r1 - nc; // update r1
1643 }
1644 else {
1645 q1 = 2*q1; // update q1
1646 r1 = 2*r1; // update r1
1647 }
1648 if (r2 + 1 >= d - r2) {
1649 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1650 q2 = 2*q2 + 1; // update q2
1651 r2 = 2*r2 + 1 - d; // update r2
1652 }
1653 else {
1654 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1655 q2 = 2*q2; // update q2
1656 r2 = 2*r2 + 1; // update r2
1657 }
1658 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001659 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001660 magu.m = q2 + 1; // resulting magic number
1661 magu.s = p - 64; // resulting shift
1662 return magu;
1663}
1664
1665/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1666/// return a DAG expression to select that will generate the same value by
1667/// multiplying by a magic number. See:
1668/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1669SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001670 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001671 MVT::ValueType VT = N->getValueType(0);
1672
1673 // Check to see if we can do this.
1674 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1675 return SDOperand(); // BuildSDIV only operates on i32 or i64
1676 if (!isOperationLegal(ISD::MULHS, VT))
1677 return SDOperand(); // Make sure the target supports MULHS.
1678
1679 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1680 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1681
1682 // Multiply the numerator (operand 0) by the magic value
1683 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1684 DAG.getConstant(magics.m, VT));
1685 // If d > 0 and m < 0, add the numerator
1686 if (d > 0 && magics.m < 0) {
1687 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1688 if (Created)
1689 Created->push_back(Q.Val);
1690 }
1691 // If d < 0 and m > 0, subtract the numerator.
1692 if (d < 0 && magics.m > 0) {
1693 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1694 if (Created)
1695 Created->push_back(Q.Val);
1696 }
1697 // Shift right algebraic if shift value is nonzero
1698 if (magics.s > 0) {
1699 Q = DAG.getNode(ISD::SRA, VT, Q,
1700 DAG.getConstant(magics.s, getShiftAmountTy()));
1701 if (Created)
1702 Created->push_back(Q.Val);
1703 }
1704 // Extract the sign bit and add it to the quotient
1705 SDOperand T =
1706 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1707 getShiftAmountTy()));
1708 if (Created)
1709 Created->push_back(T.Val);
1710 return DAG.getNode(ISD::ADD, VT, Q, T);
1711}
1712
1713/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1714/// return a DAG expression to select that will generate the same value by
1715/// multiplying by a magic number. See:
1716/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1717SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001718 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001719 MVT::ValueType VT = N->getValueType(0);
1720
1721 // Check to see if we can do this.
1722 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1723 return SDOperand(); // BuildUDIV only operates on i32 or i64
1724 if (!isOperationLegal(ISD::MULHU, VT))
1725 return SDOperand(); // Make sure the target supports MULHU.
1726
1727 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1728 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1729
1730 // Multiply the numerator (operand 0) by the magic value
1731 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1732 DAG.getConstant(magics.m, VT));
1733 if (Created)
1734 Created->push_back(Q.Val);
1735
1736 if (magics.a == 0) {
1737 return DAG.getNode(ISD::SRL, VT, Q,
1738 DAG.getConstant(magics.s, getShiftAmountTy()));
1739 } else {
1740 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1741 if (Created)
1742 Created->push_back(NPQ.Val);
1743 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1744 DAG.getConstant(1, getShiftAmountTy()));
1745 if (Created)
1746 Created->push_back(NPQ.Val);
1747 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1748 if (Created)
1749 Created->push_back(NPQ.Val);
1750 return DAG.getNode(ISD::SRL, VT, NPQ,
1751 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1752 }
1753}