Chris Lattner | 1715229 | 2001-07-02 05:46:38 +0000 | [diff] [blame] | 1 | //===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// |
| 2 | // |
| 3 | // This file provides a simple class to calculate the dominator set of a method. |
| 4 | // |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | |
| 7 | #include "llvm/Analysis/Dominators.h" |
| 8 | #include "llvm/CFG.h" |
| 9 | #include "llvm/Tools/STLExtras.h" |
| 10 | #include <algorithm> |
| 11 | |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | // Helper Template |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | // set_intersect - Identical to set_intersection, except that it works on |
| 17 | // set<>'s and is nicer to use. Functionally, this iterates through S1, |
| 18 | // removing elements that are not contained in S2. |
| 19 | // |
| 20 | template <class Ty, class Ty2> |
| 21 | void set_intersect(set<Ty> &S1, const set<Ty2> &S2) { |
| 22 | for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) { |
| 23 | const Ty &E = *I; |
| 24 | ++I; |
| 25 | if (!S2.count(E)) S1.erase(E); // Erase element if not in S2 |
| 26 | } |
| 27 | } |
| 28 | |
| 29 | |
| 30 | //===----------------------------------------------------------------------===// |
| 31 | // DominatorSet Implementation |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | // DominatorSet ctor - Build either the dominator set or the post-dominator |
| 35 | // set for a method... |
| 36 | // |
| 37 | cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet) |
| 38 | : Root(M->front()) { |
| 39 | assert(Root && M && "Can't build dominator set of null method!"); |
| 40 | bool Changed; |
| 41 | do { |
| 42 | Changed = false; |
| 43 | |
| 44 | DomSetType WorkingSet; |
| 45 | df_const_iterator It = df_begin(M), End = df_end(M); |
| 46 | for ( ; It != End; ++It) { |
| 47 | const BasicBlock *BB = *It; |
| 48 | pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB); |
| 49 | if (PI != PEnd) { // Is there SOME predecessor? |
| 50 | // Loop until we get to a predecessor that has had it's dom set filled |
| 51 | // in at least once. We are guaranteed to have this because we are |
| 52 | // traversing the graph in DFO and have handled start nodes specially. |
| 53 | // |
| 54 | while (Doms[*PI].size() == 0) ++PI; |
| 55 | WorkingSet = Doms[*PI]; |
| 56 | |
| 57 | for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets |
| 58 | DomSetType &PredSet = Doms[*PI]; |
| 59 | if (PredSet.size()) |
| 60 | set_intersect(WorkingSet, PredSet); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | WorkingSet.insert(BB); // A block always dominates itself |
| 65 | DomSetType &BBSet = Doms[BB]; |
| 66 | if (BBSet != WorkingSet) { |
| 67 | BBSet.swap(WorkingSet); // Constant time operation! |
| 68 | Changed = true; // The sets changed. |
| 69 | } |
| 70 | WorkingSet.clear(); // Clear out the set for next iteration |
| 71 | } |
| 72 | } while (Changed); |
| 73 | |
| 74 | } |
| 75 | |
| 76 | |
| 77 | //===----------------------------------------------------------------------===// |
| 78 | // ImmediateDominators Implementation |
| 79 | //===----------------------------------------------------------------------===// |
| 80 | |
| 81 | // calcIDoms - Calculate the immediate dominator mapping, given a set of |
| 82 | // dominators for every basic block. |
| 83 | void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { |
| 84 | // Loop over all of the nodes that have dominators... figuring out the IDOM |
| 85 | // for each node... |
| 86 | // |
| 87 | for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); |
| 88 | DI != DEnd; ++DI) { |
| 89 | const BasicBlock *BB = DI->first; |
| 90 | const DominatorSet::DomSetType &Dominators = DI->second; |
| 91 | unsigned DomSetSize = Dominators.size(); |
| 92 | if (DomSetSize == 1) continue; // Root node... IDom = null |
| 93 | |
| 94 | // Loop over all dominators of this node. This corresponds to looping over |
| 95 | // nodes in the dominator chain, looking for a node whose dominator set is |
| 96 | // equal to the current nodes, except that the current node does not exist |
| 97 | // in it. This means that it is one level higher in the dom chain than the |
| 98 | // current node, and it is our idom! |
| 99 | // |
| 100 | DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| 101 | DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| 102 | for (; I != End; ++I) { // Iterate over dominators... |
| 103 | // All of our dominators should form a chain, where the number of elements |
| 104 | // in the dominator set indicates what level the node is at in the chain. |
| 105 | // We want the node immediately above us, so it will have an identical |
| 106 | // dominator set, except that BB will not dominate it... therefore it's |
| 107 | // dominator set size will be one less than BB's... |
| 108 | // |
| 109 | if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| 110 | IDoms[BB] = *I; |
| 111 | break; |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | |
| 118 | //===----------------------------------------------------------------------===// |
| 119 | // DominatorTree Implementation |
| 120 | //===----------------------------------------------------------------------===// |
| 121 | |
| 122 | // DominatorTree dtor - Free all of the tree node memory. |
| 123 | // |
| 124 | cfg::DominatorTree::~DominatorTree() { |
| 125 | for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) |
| 126 | delete I->second; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) |
| 131 | : Root(IDoms.getRoot()) { |
| 132 | assert(Root && Root->getParent() && "No method for IDoms?"); |
| 133 | const Method *M = Root->getParent(); |
| 134 | |
| 135 | Nodes[Root] = new Node(Root, 0); // Add a node for the root... |
| 136 | |
| 137 | // Iterate over all nodes in depth first order... |
| 138 | for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) { |
| 139 | const BasicBlock *BB = *I, *IDom = IDoms[*I]; |
| 140 | |
| 141 | if (IDom != 0) { // Ignore the root node and other nasty nodes |
| 142 | // We know that the immediate dominator should already have a node, |
| 143 | // because we are traversing the CFG in depth first order! |
| 144 | // |
| 145 | assert(Nodes[IDom] && "No node for IDOM?"); |
| 146 | Node *IDomNode = Nodes[IDom]; |
| 147 | |
| 148 | // Add a new tree node for this BasicBlock, and link it as a child of |
| 149 | // IDomNode |
| 150 | Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | void cfg::DominatorTree::calculate(const DominatorSet &DS) { |
| 156 | Root = DS.getRoot(); |
| 157 | assert(Root && Root->getParent() && "No method for IDoms?"); |
| 158 | const Method *M = Root->getParent(); |
| 159 | Nodes[Root] = new Node(Root, 0); // Add a node for the root... |
| 160 | |
| 161 | // Iterate over all nodes in depth first order... |
| 162 | for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) { |
| 163 | const BasicBlock *BB = *I; |
| 164 | const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); |
| 165 | unsigned DomSetSize = Dominators.size(); |
| 166 | if (DomSetSize == 1) continue; // Root node... IDom = null |
| 167 | |
| 168 | // Loop over all dominators of this node. This corresponds to looping over |
| 169 | // nodes in the dominator chain, looking for a node whose dominator set is |
| 170 | // equal to the current nodes, except that the current node does not exist |
| 171 | // in it. This means that it is one level higher in the dom chain than the |
| 172 | // current node, and it is our idom! We know that we have already added |
| 173 | // a DominatorTree node for our idom, because the idom must be a |
| 174 | // predecessor in the depth first order that we are iterating through the |
| 175 | // method. |
| 176 | // |
| 177 | DominatorSet::DomSetType::const_iterator I = Dominators.begin(); |
| 178 | DominatorSet::DomSetType::const_iterator End = Dominators.end(); |
| 179 | for (; I != End; ++I) { // Iterate over dominators... |
| 180 | // All of our dominators should form a chain, where the number of elements |
| 181 | // in the dominator set indicates what level the node is at in the chain. |
| 182 | // We want the node immediately above us, so it will have an identical |
| 183 | // dominator set, except that BB will not dominate it... therefore it's |
| 184 | // dominator set size will be one less than BB's... |
| 185 | // |
| 186 | if (DS.getDominators(*I).size() == DomSetSize - 1) { |
| 187 | // We know that the immediate dominator should already have a node, |
| 188 | // because we are traversing the CFG in depth first order! |
| 189 | // |
| 190 | Node *IDomNode = Nodes[*I]; |
| 191 | assert(Nodes[*I] && "No node for IDOM?"); |
| 192 | |
| 193 | // Add a new tree node for this BasicBlock, and link it as a child of |
| 194 | // IDomNode |
| 195 | Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); |
| 196 | break; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | |
| 203 | |
| 204 | //===----------------------------------------------------------------------===// |
| 205 | // DominanceFrontier Implementation |
| 206 | //===----------------------------------------------------------------------===// |
| 207 | |
| 208 | const cfg::DominanceFrontier::DomSetType & |
| 209 | cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, |
| 210 | const DominatorTree::Node *Node) { |
| 211 | // Loop over CFG successors to calculate DFlocal[Node] |
| 212 | const BasicBlock *BB = Node->getNode(); |
| 213 | DomSetType &S = Frontiers[BB]; // The new set to fill in... |
| 214 | |
| 215 | for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| 216 | SI != SE; ++SI) { |
| 217 | // Does Node immediately dominate this successor? |
| 218 | if (DT[*SI]->getIDom() != Node) |
| 219 | S.insert(*SI); |
| 220 | } |
| 221 | |
| 222 | // At this point, S is DFlocal. Now we union in DFup's of our children... |
| 223 | // Loop through and visit the nodes that Node immediately dominates (Node's |
| 224 | // children in the IDomTree) |
| 225 | // |
| 226 | for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); |
| 227 | NI != NE; ++NI) { |
| 228 | DominatorTree::Node *IDominee = *NI; |
| 229 | const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); |
| 230 | |
| 231 | DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); |
| 232 | for (; CDFI != CDFE; ++CDFI) { |
| 233 | if (!Node->dominates(DT[*CDFI])) |
| 234 | S.insert(*CDFI); |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | return S; |
| 239 | } |