blob: d6483423eb63f00a724d316876735ccddd70e351 [file] [log] [blame]
Chris Lattner17152292001-07-02 05:46:38 +00001//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
2//
3// This file provides a simple class to calculate the dominator set of a method.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/Analysis/Dominators.h"
8#include "llvm/CFG.h"
9#include "llvm/Tools/STLExtras.h"
10#include <algorithm>
11
12//===----------------------------------------------------------------------===//
13// Helper Template
14//===----------------------------------------------------------------------===//
15
16// set_intersect - Identical to set_intersection, except that it works on
17// set<>'s and is nicer to use. Functionally, this iterates through S1,
18// removing elements that are not contained in S2.
19//
20template <class Ty, class Ty2>
21void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
22 for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
23 const Ty &E = *I;
24 ++I;
25 if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
26 }
27}
28
29
30//===----------------------------------------------------------------------===//
31// DominatorSet Implementation
32//===----------------------------------------------------------------------===//
33
34// DominatorSet ctor - Build either the dominator set or the post-dominator
35// set for a method...
36//
37cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet)
38 : Root(M->front()) {
39 assert(Root && M && "Can't build dominator set of null method!");
40 bool Changed;
41 do {
42 Changed = false;
43
44 DomSetType WorkingSet;
45 df_const_iterator It = df_begin(M), End = df_end(M);
46 for ( ; It != End; ++It) {
47 const BasicBlock *BB = *It;
48 pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
49 if (PI != PEnd) { // Is there SOME predecessor?
50 // Loop until we get to a predecessor that has had it's dom set filled
51 // in at least once. We are guaranteed to have this because we are
52 // traversing the graph in DFO and have handled start nodes specially.
53 //
54 while (Doms[*PI].size() == 0) ++PI;
55 WorkingSet = Doms[*PI];
56
57 for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
58 DomSetType &PredSet = Doms[*PI];
59 if (PredSet.size())
60 set_intersect(WorkingSet, PredSet);
61 }
62 }
63
64 WorkingSet.insert(BB); // A block always dominates itself
65 DomSetType &BBSet = Doms[BB];
66 if (BBSet != WorkingSet) {
67 BBSet.swap(WorkingSet); // Constant time operation!
68 Changed = true; // The sets changed.
69 }
70 WorkingSet.clear(); // Clear out the set for next iteration
71 }
72 } while (Changed);
73
74}
75
76
77//===----------------------------------------------------------------------===//
78// ImmediateDominators Implementation
79//===----------------------------------------------------------------------===//
80
81// calcIDoms - Calculate the immediate dominator mapping, given a set of
82// dominators for every basic block.
83void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
84 // Loop over all of the nodes that have dominators... figuring out the IDOM
85 // for each node...
86 //
87 for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
88 DI != DEnd; ++DI) {
89 const BasicBlock *BB = DI->first;
90 const DominatorSet::DomSetType &Dominators = DI->second;
91 unsigned DomSetSize = Dominators.size();
92 if (DomSetSize == 1) continue; // Root node... IDom = null
93
94 // Loop over all dominators of this node. This corresponds to looping over
95 // nodes in the dominator chain, looking for a node whose dominator set is
96 // equal to the current nodes, except that the current node does not exist
97 // in it. This means that it is one level higher in the dom chain than the
98 // current node, and it is our idom!
99 //
100 DominatorSet::DomSetType::const_iterator I = Dominators.begin();
101 DominatorSet::DomSetType::const_iterator End = Dominators.end();
102 for (; I != End; ++I) { // Iterate over dominators...
103 // All of our dominators should form a chain, where the number of elements
104 // in the dominator set indicates what level the node is at in the chain.
105 // We want the node immediately above us, so it will have an identical
106 // dominator set, except that BB will not dominate it... therefore it's
107 // dominator set size will be one less than BB's...
108 //
109 if (DS.getDominators(*I).size() == DomSetSize - 1) {
110 IDoms[BB] = *I;
111 break;
112 }
113 }
114 }
115}
116
117
118//===----------------------------------------------------------------------===//
119// DominatorTree Implementation
120//===----------------------------------------------------------------------===//
121
122// DominatorTree dtor - Free all of the tree node memory.
123//
124cfg::DominatorTree::~DominatorTree() {
125 for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
126 delete I->second;
127}
128
129
130cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
131 : Root(IDoms.getRoot()) {
132 assert(Root && Root->getParent() && "No method for IDoms?");
133 const Method *M = Root->getParent();
134
135 Nodes[Root] = new Node(Root, 0); // Add a node for the root...
136
137 // Iterate over all nodes in depth first order...
138 for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
139 const BasicBlock *BB = *I, *IDom = IDoms[*I];
140
141 if (IDom != 0) { // Ignore the root node and other nasty nodes
142 // We know that the immediate dominator should already have a node,
143 // because we are traversing the CFG in depth first order!
144 //
145 assert(Nodes[IDom] && "No node for IDOM?");
146 Node *IDomNode = Nodes[IDom];
147
148 // Add a new tree node for this BasicBlock, and link it as a child of
149 // IDomNode
150 Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
151 }
152 }
153}
154
155void cfg::DominatorTree::calculate(const DominatorSet &DS) {
156 Root = DS.getRoot();
157 assert(Root && Root->getParent() && "No method for IDoms?");
158 const Method *M = Root->getParent();
159 Nodes[Root] = new Node(Root, 0); // Add a node for the root...
160
161 // Iterate over all nodes in depth first order...
162 for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
163 const BasicBlock *BB = *I;
164 const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
165 unsigned DomSetSize = Dominators.size();
166 if (DomSetSize == 1) continue; // Root node... IDom = null
167
168 // Loop over all dominators of this node. This corresponds to looping over
169 // nodes in the dominator chain, looking for a node whose dominator set is
170 // equal to the current nodes, except that the current node does not exist
171 // in it. This means that it is one level higher in the dom chain than the
172 // current node, and it is our idom! We know that we have already added
173 // a DominatorTree node for our idom, because the idom must be a
174 // predecessor in the depth first order that we are iterating through the
175 // method.
176 //
177 DominatorSet::DomSetType::const_iterator I = Dominators.begin();
178 DominatorSet::DomSetType::const_iterator End = Dominators.end();
179 for (; I != End; ++I) { // Iterate over dominators...
180 // All of our dominators should form a chain, where the number of elements
181 // in the dominator set indicates what level the node is at in the chain.
182 // We want the node immediately above us, so it will have an identical
183 // dominator set, except that BB will not dominate it... therefore it's
184 // dominator set size will be one less than BB's...
185 //
186 if (DS.getDominators(*I).size() == DomSetSize - 1) {
187 // We know that the immediate dominator should already have a node,
188 // because we are traversing the CFG in depth first order!
189 //
190 Node *IDomNode = Nodes[*I];
191 assert(Nodes[*I] && "No node for IDOM?");
192
193 // Add a new tree node for this BasicBlock, and link it as a child of
194 // IDomNode
195 Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
196 break;
197 }
198 }
199 }
200}
201
202
203
204//===----------------------------------------------------------------------===//
205// DominanceFrontier Implementation
206//===----------------------------------------------------------------------===//
207
208const cfg::DominanceFrontier::DomSetType &
209cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
210 const DominatorTree::Node *Node) {
211 // Loop over CFG successors to calculate DFlocal[Node]
212 const BasicBlock *BB = Node->getNode();
213 DomSetType &S = Frontiers[BB]; // The new set to fill in...
214
215 for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
216 SI != SE; ++SI) {
217 // Does Node immediately dominate this successor?
218 if (DT[*SI]->getIDom() != Node)
219 S.insert(*SI);
220 }
221
222 // At this point, S is DFlocal. Now we union in DFup's of our children...
223 // Loop through and visit the nodes that Node immediately dominates (Node's
224 // children in the IDomTree)
225 //
226 for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
227 NI != NE; ++NI) {
228 DominatorTree::Node *IDominee = *NI;
229 const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
230
231 DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
232 for (; CDFI != CDFE; ++CDFI) {
233 if (!Node->dominates(DT[*CDFI]))
234 S.insert(*CDFI);
235 }
236 }
237
238 return S;
239}