blob: 486de6f631c7c6bcd6c929983ceea9059a0e92c6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>Writing an LLVM Pass</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 Writing an LLVM Pass
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction - What is a pass?</a></li>
17 <li><a href="#quickstart">Quick Start - Writing hello world</a>
18 <ul>
19 <li><a href="#makefile">Setting up the build environment</a></li>
20 <li><a href="#basiccode">Basic code required</a></li>
21 <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22 </ul></li>
23 <li><a href="#passtype">Pass classes and requirements</a>
24 <ul>
25 <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26 <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27 <ul>
28 <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29 </ul></li>
30 <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31 <ul>
32 <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33 &amp;)</tt> method</a></li>
34 <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35 <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36 &amp;)</tt> method</a></li>
37 </ul></li>
38 <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39 <ul>
40 <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41 &amp;)</tt> method</a></li>
42 <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43 <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44 &amp;)</tt> method</a></li>
45 </ul></li>
46 <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47 <ul>
48 <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49 LPPassManager &amp;)</tt> method</a></li>
50 <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51 <li><a href="#doFinalization_loop">The <tt>doFinalization()
52 </tt> method</a></li>
53 </ul></li>
54 <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
55 <ul>
56 <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
57 &amp;)</tt> method</a></li>
58 <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
59 method</a></li>
60 <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
61 &amp;)</tt> method</a></li>
62 </ul></li>
63 <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
64 class</a>
65 <ul>
66 <li><a href="#runOnMachineFunction">The
67 <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
68 </ul></li>
69 </ul>
70 <li><a href="#registration">Pass Registration</a>
71 <ul>
72 <li><a href="#print">The <tt>print</tt> method</a></li>
73 </ul></li>
74 <li><a href="#interaction">Specifying interactions between passes</a>
75 <ul>
76 <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt>
77 method</a></li>
78 <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
79 <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
80 <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
81 <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and <tt>getAnalysisToUpdate&lt;&gt;</tt> methods</a></li>
82 </ul></li>
83 <li><a href="#analysisgroup">Implementing Analysis Groups</a>
84 <ul>
85 <li><a href="#agconcepts">Analysis Group Concepts</a></li>
86 <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
87 </ul></li>
88 <li><a href="#passStatistics">Pass Statistics</a>
89 <li><a href="#passmanager">What PassManager does</a>
90 <ul>
91 <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
92 </ul></li>
93 <li><a href="#registering">Registering dynamically loaded passes</a>
94 <ul>
95 <li><a href="#registering_existing">Using existing registries</a></li>
96 <li><a href="#registering_new">Creating new registries</a></li>
97 </ul></li>
98 <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
99 <ul>
100 <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
101 <li><a href="#debugmisc">Miscellaneous Problems</a></li>
102 </ul></li>
103 <li><a href="#future">Future extensions planned</a>
104 <ul>
105 <li><a href="#SMP">Multithreaded LLVM</a></li>
106 </ul></li>
107</ol>
108
109<div class="doc_author">
110 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
111 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
112</div>
113
114<!-- *********************************************************************** -->
115<div class="doc_section">
116 <a name="introduction">Introduction - What is a pass?</a>
117</div>
118<!-- *********************************************************************** -->
119
120<div class="doc_text">
121
122<p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
123passes are where most of the interesting parts of the compiler exist. Passes
124perform the transformations and optimizations that make up the compiler, they
125build the analysis results that are used by these transformations, and they are,
126above all, a structuring technique for compiler code.</p>
127
128<p>All LLVM passes are subclasses of the <tt><a
129href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
130class, which implement functionality by overriding virtual methods inherited
131from <tt>Pass</tt>. Depending on how your pass works, you should inherit from
132the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
133href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
134href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
135href="#LoopPass">LoopPass</a></tt>, or <tt><a
136href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
137more information about what your pass does, and how it can be combined with
138other passes. One of the main features of the LLVM Pass Framework is that it
139schedules passes to run in an efficient way based on the constraints that your
140pass meets (which are indicated by which class they derive from).</p>
141
142<p>We start by showing you how to construct a pass, everything from setting up
143the code, to compiling, loading, and executing it. After the basics are down,
144more advanced features are discussed.</p>
145
146</div>
147
148<!-- *********************************************************************** -->
149<div class="doc_section">
150 <a name="quickstart">Quick Start - Writing hello world</a>
151</div>
152<!-- *********************************************************************** -->
153
154<div class="doc_text">
155
156<p>Here we describe how to write the "hello world" of passes. The "Hello" pass
157is designed to simply print out the name of non-external functions that exist in
158the program being compiled. It does not modify the program at all, it just
159inspects it. The source code and files for this pass are available in the LLVM
160source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
161
162</div>
163
164<!-- ======================================================================= -->
165<div class="doc_subsection">
166 <a name="makefile">Setting up the build environment</a>
167</div>
168
169<div class="doc_text">
170
171 <p>First, you need to create a new directory somewhere in the LLVM source
172 base. For this example, we'll assume that you made
173 <tt>lib/Transforms/Hello</tt>. Next, you must set up a build script
174 (Makefile) that will compile the source code for the new pass. To do this,
175 copy the following into <tt>Makefile</tt>:</p>
176 <hr/>
177
178<div class="doc_code"><pre>
179# Makefile for hello pass
180
181# Path to top level of LLVM heirarchy
182LEVEL = ../../..
183
184# Name of the library to build
185LIBRARYNAME = Hello
186
187# Make the shared library become a loadable module so the tools can
188# dlopen/dlsym on the resulting library.
189LOADABLE_MODULE = 1
190
191# Tell the build system which LLVM libraries your pass needs. You'll probably
192# need at least LLVMSystem.a, LLVMSupport.a, LLVMCore.a but possibly several
193# others too.
194LLVMLIBS = LLVMCore.a LLVMSupport.a LLVMSystem.a
195
196# Include the makefile implementation stuff
197include $(LEVEL)/Makefile.common
198</pre></div>
199
200<p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
201directory are to be compiled and linked together into a
202<tt>Debug/lib/Hello.so</tt> shared object that can be dynamically loaded by
203the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.
204If your operating system uses a suffix other than .so (such as windows or
205Mac OS/X), the appropriate extension will be used.</p>
206
207<p>Now that we have the build scripts set up, we just need to write the code for
208the pass itself.</p>
209
210</div>
211
212<!-- ======================================================================= -->
213<div class="doc_subsection">
214 <a name="basiccode">Basic code required</a>
215</div>
216
217<div class="doc_text">
218
219<p>Now that we have a way to compile our new pass, we just have to write it.
220Start out with:</p>
221
222<div class="doc_code"><pre>
223<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
224<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
225</pre></div>
226
227<p>Which are needed because we are writing a <tt><a
228href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>, and
229we are operating on <tt><a
230href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s.</p>
231
232<p>Next we have:</p>
233<div class="doc_code"><pre>
234<b>using namespace llvm;</b>
235</pre></div>
236<p>... which is required because the functions from the include files
237live in the llvm namespace.
238</p>
239
240<p>Next we have:</p>
241
242<div class="doc_code"><pre>
243<b>namespace</b> {
244</pre></div>
245
246<p>... which starts out an anonymous namespace. Anonymous namespaces are to C++
247what the "<tt>static</tt>" keyword is to C (at global scope). It makes the
248things declared inside of the anonymous namespace only visible to the current
249file. If you're not familiar with them, consult a decent C++ book for more
250information.</p>
251
252<p>Next, we declare our pass itself:</p>
253
254<div class="doc_code"><pre>
255 <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
256</pre></div><p>
257
258<p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
259href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
260The different builtin pass subclasses are described in detail <a
261href="#passtype">later</a>, but for now, know that <a
262href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
263time.</p>
264
265<div class="doc_code"><pre>
266 static char ID;
267 Hello() : FunctionPass((intptr_t)&amp;ID) {}
268</pre></div><p>
269
270<p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
271avoid using expensive C++ runtime information.</p>
272
273<div class="doc_code"><pre>
274 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
275 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
276 <b>return false</b>;
277 }
278 }; <i>// end of struct Hello</i>
279</pre></div>
280
281<p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
282which overloads an abstract virtual method inherited from <a
283href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed
284to do our thing, so we just print out our message with the name of each
285function.</p>
286
287<div class="doc_code"><pre>
288 char Hello::ID = 0;
289</pre></div>
290
291<p> We initialize pass ID here. LLVM uses ID's address to identify pass so
292initialization value is not important.</p>
293
294<div class="doc_code"><pre>
Devang Patel3aab76e2008-03-19 21:56:59 +0000295 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
296 false /* Only looks at CFG */,
297 false /* Analysis Pass */);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298} <i>// end of anonymous namespace</i>
299</pre></div>
300
301<p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
302giving it a command line
Devang Patel3aab76e2008-03-19 21:56:59 +0000303argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
304Last two RegisterPass arguments are optional. Their default value is false.
305If a pass walks CFG without modifying it then third argument is set to true.
306If a pass is an analysis pass, for example dominator tree pass, then true
307is supplied as fourth argument. </p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309<p>As a whole, the <tt>.cpp</tt> file looks like:</p>
310
311<div class="doc_code"><pre>
312<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
313<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
314
315<b>using namespace llvm;</b>
316
317<b>namespace</b> {
318 <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
319
320 static char ID;
321 Hello() : FunctionPass((intptr_t)&amp;ID) {}
322
323 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
324 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
325 <b>return false</b>;
326 }
327 };
328
Devang Patel8e46f052007-07-25 21:05:39 +0000329 char Hello::ID = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>");
331}
332</pre></div>
333
334<p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
335command in the local directory and you should get a new
336"<tt>Debug/lib/Hello.so</tt> file. Note that everything in this file is
337contained in an anonymous namespace: this reflects the fact that passes are self
338contained units that do not need external interfaces (although they can have
339them) to be useful.</p>
340
341</div>
342
343<!-- ======================================================================= -->
344<div class="doc_subsection">
345 <a name="running">Running a pass with <tt>opt</tt></a>
346</div>
347
348<div class="doc_text">
349
350<p>Now that you have a brand new shiny shared object file, we can use the
351<tt>opt</tt> command to run an LLVM program through your pass. Because you
352registered your pass with the <tt>RegisterPass</tt> template, you will be able to
353use the <tt>opt</tt> tool to access it, once loaded.</p>
354
355<p>To test it, follow the example at the end of the <a
356href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
357LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program
358through our transformation like this (or course, any bitcode file will
359work):</p>
360
361<div class="doc_code"><pre>
362$ opt -load ../../../Debug/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
363Hello: __main
364Hello: puts
365Hello: main
366</pre></div>
367
368<p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
369pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
370argument (which is one reason you need to <a href="#registration">register your
371pass</a>). Because the hello pass does not modify the program in any
372interesting way, we just throw away the result of <tt>opt</tt> (sending it to
373<tt>/dev/null</tt>).</p>
374
375<p>To see what happened to the other string you registered, try running
376<tt>opt</tt> with the <tt>--help</tt> option:</p>
377
378<div class="doc_code"><pre>
379$ opt -load ../../../Debug/lib/Hello.so --help
380OVERVIEW: llvm .bc -&gt; .bc modular optimizer
381
382USAGE: opt [options] &lt;input bitcode&gt;
383
384OPTIONS:
385 Optimizations available:
386...
387 -funcresolve - Resolve Functions
388 -gcse - Global Common Subexpression Elimination
389 -globaldce - Dead Global Elimination
390 <b>-hello - Hello World Pass</b>
391 -indvars - Canonicalize Induction Variables
392 -inline - Function Integration/Inlining
393 -instcombine - Combine redundant instructions
394...
395</pre></div>
396
397<p>The pass name get added as the information string for your pass, giving some
398documentation to users of <tt>opt</tt>. Now that you have a working pass, you
399would go ahead and make it do the cool transformations you want. Once you get
400it all working and tested, it may become useful to find out how fast your pass
401is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
402line option (<tt>--time-passes</tt>) that allows you to get information about
403the execution time of your pass along with the other passes you queue up. For
404example:</p>
405
406<div class="doc_code"><pre>
407$ opt -load ../../../Debug/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
408Hello: __main
409Hello: puts
410Hello: main
411===============================================================================
412 ... Pass execution timing report ...
413===============================================================================
414 Total Execution Time: 0.02 seconds (0.0479059 wall clock)
415
416 ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
417 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
418 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
419 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
420 <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b>
421 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
422</pre></div>
423
424<p>As you can see, our implementation above is pretty fast :). The additional
425passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
426that the LLVM emitted by your pass is still valid and well formed LLVM, which
427hasn't been broken somehow.</p>
428
429<p>Now that you have seen the basics of the mechanics behind passes, we can talk
430about some more details of how they work and how to use them.</p>
431
432</div>
433
434<!-- *********************************************************************** -->
435<div class="doc_section">
436 <a name="passtype">Pass classes and requirements</a>
437</div>
438<!-- *********************************************************************** -->
439
440<div class="doc_text">
441
442<p>One of the first things that you should do when designing a new pass is to
443decide what class you should subclass for your pass. The <a
444href="#basiccode">Hello World</a> example uses the <tt><a
445href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
446did not discuss why or when this should occur. Here we talk about the classes
447available, from the most general to the most specific.</p>
448
449<p>When choosing a superclass for your Pass, you should choose the <b>most
450specific</b> class possible, while still being able to meet the requirements
451listed. This gives the LLVM Pass Infrastructure information necessary to
452optimize how passes are run, so that the resultant compiler isn't unneccesarily
453slow.</p>
454
455</div>
456
457<!-- ======================================================================= -->
458<div class="doc_subsection">
459 <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
460</div>
461
462<div class="doc_text">
463
464<p>The most plain and boring type of pass is the "<tt><a
465href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
466class. This pass type is used for passes that do not have to be run, do not
467change state, and never need to be updated. This is not a normal type of
468transformation or analysis, but can provide information about the current
469compiler configuration.</p>
470
471<p>Although this pass class is very infrequently used, it is important for
472providing information about the current target machine being compiled for, and
473other static information that can affect the various transformations.</p>
474
475<p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
476invalidated, and are never "run".</p>
477
478</div>
479
480<!-- ======================================================================= -->
481<div class="doc_subsection">
482 <a name="ModulePass">The <tt>ModulePass</tt> class</a>
483</div>
484
485<div class="doc_text">
486
487<p>The "<tt><a
488href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
489class is the most general of all superclasses that you can use. Deriving from
490<tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
491refering to function bodies in no predictable order, or adding and removing
492functions. Because nothing is known about the behavior of <tt>ModulePass</tt>
493subclasses, no optimization can be done for their execution. A module pass
494can use function level passes (e.g. dominators) using getAnalysis interface
Devang Patel7a9a48f2008-11-06 19:47:49 +0000495<tt> getAnalysis&lt;DominatorTree&gt;(Function)</tt>, if the function pass
496does not require any module passes. </p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497
498<p>To write a correct <tt>ModulePass</tt> subclass, derive from
499<tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
500following signature:</p>
501
502</div>
503
504<!-- _______________________________________________________________________ -->
505<div class="doc_subsubsection">
506 <a name="runOnModule">The <tt>runOnModule</tt> method</a>
507</div>
508
509<div class="doc_text">
510
511<div class="doc_code"><pre>
512 <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
513</pre></div>
514
515<p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
516It should return true if the module was modified by the transformation and
517false otherwise.</p>
518
519</div>
520
521<!-- ======================================================================= -->
522<div class="doc_subsection">
523 <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
524</div>
525
526<div class="doc_text">
527
528<p>The "<tt><a
529href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
530is used by passes that need to traverse the program bottom-up on the call graph
531(callees before callers). Deriving from CallGraphSCCPass provides some
532mechanics for building and traversing the CallGraph, but also allows the system
533to optimize execution of CallGraphSCCPass's. If your pass meets the
534requirements outlined below, and doesn't meet the requirements of a <tt><a
535href="#FunctionPass">FunctionPass</a></tt> or <tt><a
536href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
537<tt>CallGraphSCCPass</tt>.</p>
538
539<p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
540
541<p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
542
543<ol>
544
545<li>... <em>not allowed</em> to modify any <tt>Function</tt>s that are not in
546the current SCC.</li>
547
548<li>... <em>not allowed</em> to inspect any Function's other than those in the
549current SCC and the direct callees of the SCC.</li>
550
551<li>... <em>required</em> to preserve the current CallGraph object, updating it
552to reflect any changes made to the program.</li>
553
554<li>... <em>not allowed</em> to add or remove SCC's from the current Module,
555though they may change the contents of an SCC.</li>
556
557<li>... <em>allowed</em> to add or remove global variables from the current
558Module.</li>
559
560<li>... <em>allowed</em> to maintain state across invocations of
561 <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
562</ol>
563
564<p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
565because it has to handle SCCs with more than one node in it. All of the virtual
566methods described below should return true if they modified the program, or
567false if they didn't.</p>
568
569</div>
570
571<!-- _______________________________________________________________________ -->
572<div class="doc_subsubsection">
573 <a name="doInitialization_scc">The <tt>doInitialization(CallGraph &amp;)</tt>
574 method</a>
575</div>
576
577<div class="doc_text">
578
579<div class="doc_code"><pre>
580 <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
581</pre></div>
582
583<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
584<tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove
585functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
586is designed to do simple initialization type of stuff that does not depend on
587the SCCs being processed. The <tt>doInitialization</tt> method call is not
588scheduled to overlap with any other pass executions (thus it should be very
589fast).</p>
590
591</div>
592
593<!-- _______________________________________________________________________ -->
594<div class="doc_subsubsection">
595 <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
596</div>
597
598<div class="doc_text">
599
600<div class="doc_code"><pre>
601 <b>virtual bool</b> runOnSCC(const std::vector&lt;CallGraphNode *&gt; &amp;SCCM) = 0;
602</pre></div>
603
604<p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
605should return true if the module was modified by the transformation, false
606otherwise.</p>
607
608</div>
609
610<!-- _______________________________________________________________________ -->
611<div class="doc_subsubsection">
612 <a name="doFinalization_scc">The <tt>doFinalization(CallGraph
613 &amp;)</tt> method</a>
614</div>
615
616<div class="doc_text">
617
618<div class="doc_code"><pre>
619 <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
620</pre></div>
621
622<p>The <tt>doFinalization</tt> method is an infrequently used method that is
623called when the pass framework has finished calling <a
624href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
625program being compiled.</p>
626
627</div>
628
629<!-- ======================================================================= -->
630<div class="doc_subsection">
631 <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
632</div>
633
634<div class="doc_text">
635
636<p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
637href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
638subclasses do have a predictable, local behavior that can be expected by the
639system. All <tt>FunctionPass</tt> execute on each function in the program
640independent of all of the other functions in the program.
641<tt>FunctionPass</tt>'s do not require that they are executed in a particular
642order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
643
644<p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
645
646<ol>
647<li>Modify a Function other than the one currently being processed.</li>
648<li>Add or remove Function's from the current Module.</li>
649<li>Add or remove global variables from the current Module.</li>
650<li>Maintain state across invocations of
651 <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
652</ol>
653
654<p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
655href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s
656may overload three virtual methods to do their work. All of these methods
657should return true if they modified the program, or false if they didn't.</p>
658
659</div>
660
661<!-- _______________________________________________________________________ -->
662<div class="doc_subsubsection">
663 <a name="doInitialization_mod">The <tt>doInitialization(Module &amp;)</tt>
664 method</a>
665</div>
666
667<div class="doc_text">
668
669<div class="doc_code"><pre>
670 <b>virtual bool</b> doInitialization(Module &amp;M);
671</pre></div>
672
673<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
674<tt>FunctionPass</tt>'s are not allowed to do. They can add and remove
675functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
676is designed to do simple initialization type of stuff that does not depend on
677the functions being processed. The <tt>doInitialization</tt> method call is not
678scheduled to overlap with any other pass executions (thus it should be very
679fast).</p>
680
681<p>A good example of how this method should be used is the <a
682href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
683pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
684platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It
685uses the <tt>doInitialization</tt> method to get a reference to the malloc and
686free functions that it needs, adding prototypes to the module if necessary.</p>
687
688</div>
689
690<!-- _______________________________________________________________________ -->
691<div class="doc_subsubsection">
692 <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
693</div>
694
695<div class="doc_text">
696
697<div class="doc_code"><pre>
698 <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
699</pre></div><p>
700
701<p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
702the transformation or analysis work of your pass. As usual, a true value should
703be returned if the function is modified.</p>
704
705</div>
706
707<!-- _______________________________________________________________________ -->
708<div class="doc_subsubsection">
709 <a name="doFinalization_mod">The <tt>doFinalization(Module
710 &amp;)</tt> method</a>
711</div>
712
713<div class="doc_text">
714
715<div class="doc_code"><pre>
716 <b>virtual bool</b> doFinalization(Module &amp;M);
717</pre></div>
718
719<p>The <tt>doFinalization</tt> method is an infrequently used method that is
720called when the pass framework has finished calling <a
721href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
722program being compiled.</p>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
728 <a name="LoopPass">The <tt>LoopPass</tt> class </a>
729</div>
730
731<div class="doc_text">
732
733<p> All <tt>LoopPass</tt> execute on each loop in the function independent of
734all of the other loops in the function. <tt>LoopPass</tt> processes loops in
735loop nest order such that outer most loop is processed last. </p>
736
737<p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
738<tt>LPPassManager</tt> interface. Implementing a loop pass is usually
739straightforward. <tt>Looppass</tt>'s may overload three virtual methods to
740do their work. All these methods should return true if they modified the
741program, or false if they didn't. </p>
742</div>
743
744<!-- _______________________________________________________________________ -->
745<div class="doc_subsubsection">
746 <a name="doInitialization_loop">The <tt>doInitialization(Loop *,
747 LPPassManager &amp;)</tt>
748 method</a>
749</div>
750
751<div class="doc_text">
752
753<div class="doc_code"><pre>
754 <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
755</pre></div>
756
757<p>The <tt>doInitialization</tt> method is designed to do simple initialization
758type of stuff that does not depend on the functions being processed. The
759<tt>doInitialization</tt> method call is not scheduled to overlap with any
760other pass executions (thus it should be very fast). LPPassManager
761interface should be used to access Function or Module level analysis
762information.</p>
763
764</div>
765
766
767<!-- _______________________________________________________________________ -->
768<div class="doc_subsubsection">
769 <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
770</div>
771
772<div class="doc_text">
773
774<div class="doc_code"><pre>
775 <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
776</pre></div><p>
777
778<p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
779the transformation or analysis work of your pass. As usual, a true value should
780be returned if the function is modified. <tt>LPPassManager</tt> interface
781should be used to update loop nest.</p>
782
783</div>
784
785<!-- _______________________________________________________________________ -->
786<div class="doc_subsubsection">
787 <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
788</div>
789
790<div class="doc_text">
791
792<div class="doc_code"><pre>
793 <b>virtual bool</b> doFinalization();
794</pre></div>
795
796<p>The <tt>doFinalization</tt> method is an infrequently used method that is
797called when the pass framework has finished calling <a
798href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
799program being compiled. </p>
800
801</div>
802
803
804
805<!-- ======================================================================= -->
806<div class="doc_subsection">
807 <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
808</div>
809
810<div class="doc_text">
811
812<p><tt>BasicBlockPass</tt>'s are just like <a
813href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
814their scope of inspection and modification to a single basic block at a time.
815As such, they are <b>not</b> allowed to do any of the following:</p>
816
817<ol>
818<li>Modify or inspect any basic blocks outside of the current one</li>
819<li>Maintain state across invocations of
820 <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
821<li>Modify the control flow graph (by altering terminator instructions)</li>
822<li>Any of the things forbidden for
823 <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
824</ol>
825
826<p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
827optimizations. They may override the same <a
828href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
829href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
830href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
831
832</div>
833
834<!-- _______________________________________________________________________ -->
835<div class="doc_subsubsection">
836 <a name="doInitialization_fn">The <tt>doInitialization(Function
837 &amp;)</tt> method</a>
838</div>
839
840<div class="doc_text">
841
842<div class="doc_code"><pre>
843 <b>virtual bool</b> doInitialization(Function &amp;F);
844</pre></div>
845
846<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
847<tt>BasicBlockPass</tt>'s are not allowed to do, but that
848<tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed
849to do simple initialization that does not depend on the
850BasicBlocks being processed. The <tt>doInitialization</tt> method call is not
851scheduled to overlap with any other pass executions (thus it should be very
852fast).</p>
853
854</div>
855
856<!-- _______________________________________________________________________ -->
857<div class="doc_subsubsection">
858 <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
859</div>
860
861<div class="doc_text">
862
863<div class="doc_code"><pre>
864 <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
865</pre></div>
866
867<p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This
868function is not allowed to inspect or modify basic blocks other than the
869parameter, and are not allowed to modify the CFG. A true value must be returned
870if the basic block is modified.</p>
871
872</div>
873
874<!-- _______________________________________________________________________ -->
875<div class="doc_subsubsection">
876 <a name="doFinalization_fn">The <tt>doFinalization(Function &amp;)</tt>
877 method</a>
878</div>
879
880<div class="doc_text">
881
882<div class="doc_code"><pre>
883 <b>virtual bool</b> doFinalization(Function &amp;F);
884</pre></div>
885
886<p>The <tt>doFinalization</tt> method is an infrequently used method that is
887called when the pass framework has finished calling <a
888href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
889program being compiled. This can be used to perform per-function
890finalization.</p>
891
892</div>
893
894<!-- ======================================================================= -->
895<div class="doc_subsection">
896 <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
897</div>
898
899<div class="doc_text">
900
901<p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
902executes on the machine-dependent representation of each LLVM function in the
903program. A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
904the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
905<tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
906<tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
907
908<ol>
909<li>Modify any LLVM Instructions, BasicBlocks or Functions.</li>
910<li>Modify a MachineFunction other than the one currently being processed.</li>
911<li>Add or remove MachineFunctions from the current Module.</li>
912<li>Add or remove global variables from the current Module.</li>
913<li>Maintain state across invocations of <a
914href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
915data)</li>
916</ol>
917
918</div>
919
920<!-- _______________________________________________________________________ -->
921<div class="doc_subsubsection">
922 <a name="runOnMachineFunction">The <tt>runOnMachineFunction(MachineFunction
923 &amp;MF)</tt> method</a>
924</div>
925
926<div class="doc_text">
927
928<div class="doc_code"><pre>
929 <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
930</pre></div>
931
932<p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
933<tt>MachineFunctionPass</tt>; that is, you should override this method to do the
934work of your <tt>MachineFunctionPass</tt>.</p>
935
936<p>The <tt>runOnMachineFunction</tt> method is called on every
937<tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
938<tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
939representation of the function. If you want to get at the LLVM <tt>Function</tt>
940for the <tt>MachineFunction</tt> you're working on, use
941<tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
942remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
943<tt>MachineFunctionPass</tt>.</p>
944
945</div>
946
947<!-- *********************************************************************** -->
948<div class="doc_section">
949 <a name="registration">Pass registration</a>
950</div>
951<!-- *********************************************************************** -->
952
953<div class="doc_text">
954
955<p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
956pass registration works, and discussed some of the reasons that it is used and
957what it does. Here we discuss how and why passes are registered.</p>
958
959<p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
960template, which requires you to pass at least two
961parameters. The first parameter is the name of the pass that is to be used on
962the command line to specify that the pass should be added to a program (for
963example, with <tt>opt</tt> or <tt>bugpoint</tt>). The second argument is the
964name of the pass, which is to be used for the <tt>--help</tt> output of
965programs, as
966well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
967
968<p>If you want your pass to be easily dumpable, you should
969implement the virtual <tt>print</tt> method:</p>
970
971</div>
972
973<!-- _______________________________________________________________________ -->
974<div class="doc_subsubsection">
975 <a name="print">The <tt>print</tt> method</a>
976</div>
977
978<div class="doc_text">
979
980<div class="doc_code"><pre>
Edwin Török72a8fd22008-10-28 17:29:23 +0000981 <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982</pre></div>
983
984<p>The <tt>print</tt> method must be implemented by "analyses" in order to print
985a human readable version of the analysis results. This is useful for debugging
986an analysis itself, as well as for other people to figure out how an analysis
987works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
988
989<p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
990and the <tt>Module</tt> parameter gives a pointer to the top level module of the
991program that has been analyzed. Note however that this pointer may be null in
992certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
993debugger), so it should only be used to enhance debug output, it should not be
994depended on.</p>
995
996</div>
997
998<!-- *********************************************************************** -->
999<div class="doc_section">
1000 <a name="interaction">Specifying interactions between passes</a>
1001</div>
1002<!-- *********************************************************************** -->
1003
1004<div class="doc_text">
1005
John Criswella99e43f2007-12-03 19:34:25 +00001006<p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007that passes interact with each other correctly. Because <tt>PassManager</tt>
1008tries to <a href="#passmanager">optimize the execution of passes</a> it must
1009know how the passes interact with each other and what dependencies exist between
1010the various passes. To track this, each pass can declare the set of passes that
1011are required to be executed before the current pass, and the passes which are
1012invalidated by the current pass.</p>
1013
1014<p>Typically this functionality is used to require that analysis results are
1015computed before your pass is run. Running arbitrary transformation passes can
1016invalidate the computed analysis results, which is what the invalidation set
1017specifies. If a pass does not implement the <tt><a
1018href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1019having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1020
1021</div>
1022
1023<!-- _______________________________________________________________________ -->
1024<div class="doc_subsubsection">
1025 <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1026</div>
1027
1028<div class="doc_text">
1029
1030<div class="doc_code"><pre>
1031 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1032</pre></div>
1033
1034<p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1035invalidated sets may be specified for your transformation. The implementation
1036should fill in the <tt><a
1037href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1038object with information about which passes are required and not invalidated. To
1039do this, a pass may call any of the following methods on the AnalysisUsage
1040object:</p>
1041</div>
1042
1043<!-- _______________________________________________________________________ -->
1044<div class="doc_subsubsection">
1045 <a name="AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a>
1046</div>
1047
1048<div class="doc_text">
1049<p>
1050If your pass requires a previous pass to be executed (an analysis for example),
1051it can use one of these methods to arrange for it to be run before your pass.
1052LLVM has many different types of analyses and passes that can be required,
1053spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1054Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1055be no critical edges in the CFG when your pass has been run.
1056</p>
1057
1058<p>
1059Some analyses chain to other analyses to do their job. For example, an <a
1060href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1061href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In
1062cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1063used instead of the <tt>addRequired</tt> method. This informs the PassManager
1064that the transitively required pass should be alive as long as the requiring
1065pass is.
1066</p>
1067</div>
1068
1069<!-- _______________________________________________________________________ -->
1070<div class="doc_subsubsection">
1071 <a name="AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a>
1072</div>
1073
1074<div class="doc_text">
1075<p>
1076One of the jobs of the PassManager is to optimize how and when analyses are run.
1077In particular, it attempts to avoid recomputing data unless it needs to. For
1078this reason, passes are allowed to declare that they preserve (i.e., they don't
1079invalidate) an existing analysis if it's available. For example, a simple
1080constant folding pass would not modify the CFG, so it can't possibly affect the
1081results of dominator analysis. By default, all passes are assumed to invalidate
1082all others.
1083</p>
1084
1085<p>
1086The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1087certain circumstances that are related to <tt>addPreserved</tt>. In particular,
1088the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1089not modify the LLVM program at all (which is true for analyses), and the
1090<tt>setPreservesCFG</tt> method can be used by transformations that change
1091instructions in the program but do not modify the CFG or terminator instructions
1092(note that this property is implicitly set for <a
1093href="#BasicBlockPass">BasicBlockPass</a>'s).
1094</p>
1095
1096<p>
1097<tt>addPreserved</tt> is particularly useful for transformations like
1098<tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop
1099and dominator related analyses if they exist, so it can preserve them, despite
1100the fact that it hacks on the CFG.
1101</p>
1102</div>
1103
1104<!-- _______________________________________________________________________ -->
1105<div class="doc_subsubsection">
1106 <a name="AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a>
1107</div>
1108
1109<div class="doc_text">
1110
1111<div class="doc_code"><pre>
1112 <i>// This is an example implementation from an analysis, which does not modify
1113 // the program at all, yet has a prerequisite.</i>
1114 <b>void</b> <a href="http://llvm.org/doxygen/classllvm_1_1PostDominanceFrontier.html">PostDominanceFrontier</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1115 AU.setPreservesAll();
1116 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html">PostDominatorTree</a>&gt;();
1117 }
1118</pre></div>
1119
1120<p>and:</p>
1121
1122<div class="doc_code"><pre>
1123 <i>// This example modifies the program, but does not modify the CFG</i>
1124 <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1125 AU.setPreservesCFG();
1126 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1127 }
1128</pre></div>
1129
1130</div>
1131
1132<!-- _______________________________________________________________________ -->
1133<div class="doc_subsubsection">
1134 <a name="getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and <tt>getAnalysisToUpdate&lt;&gt;</tt> methods</a>
1135</div>
1136
1137<div class="doc_text">
1138
1139<p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1140your class, providing you with access to the passes that you declared that you
1141required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1142method. It takes a single template argument that specifies which pass class you
1143want, and returns a reference to that pass. For example:</p>
1144
1145<div class="doc_code"><pre>
1146 bool LICM::runOnFunction(Function &amp;F) {
1147 LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1148 ...
1149 }
1150</pre></div>
1151
1152<p>This method call returns a reference to the pass desired. You may get a
1153runtime assertion failure if you attempt to get an analysis that you did not
1154declare as required in your <a
1155href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This
1156method can be called by your <tt>run*</tt> method implementation, or by any
1157other local method invoked by your <tt>run*</tt> method.
1158
1159A module level pass can use function level analysis info using this interface.
1160For example:</p>
1161
1162<div class="doc_code"><pre>
1163 bool ModuleLevelPass::runOnModule(Module &amp;M) {
1164 ...
1165 DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1166 ...
1167 }
1168</pre></div>
1169
1170<p>In above example, runOnFunction for DominatorTree is called by pass manager
1171before returning a reference to the desired pass.</p>
1172
1173<p>
1174If your pass is capable of updating analyses if they exist (e.g.,
1175<tt>BreakCriticalEdges</tt>, as described above), you can use the
1176<tt>getAnalysisToUpdate</tt> method, which returns a pointer to the analysis if
1177it is active. For example:</p>
1178
1179<div class="doc_code"><pre>
1180 ...
1181 if (DominatorSet *DS = getAnalysisToUpdate&lt;DominatorSet&gt;()) {
1182 <i>// A DominatorSet is active. This code will update it.</i>
1183 }
1184 ...
1185</pre></div>
1186
1187</div>
1188
1189<!-- *********************************************************************** -->
1190<div class="doc_section">
1191 <a name="analysisgroup">Implementing Analysis Groups</a>
1192</div>
1193<!-- *********************************************************************** -->
1194
1195<div class="doc_text">
1196
Chris Lattner942c3952007-11-16 05:32:05 +00001197<p>Now that we understand the basics of how passes are defined, how they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001198used, and how they are required from other passes, it's time to get a little bit
1199fancier. All of the pass relationships that we have seen so far are very
1200simple: one pass depends on one other specific pass to be run before it can run.
1201For many applications, this is great, for others, more flexibility is
1202required.</p>
1203
1204<p>In particular, some analyses are defined such that there is a single simple
1205interface to the analysis results, but multiple ways of calculating them.
1206Consider alias analysis for example. The most trivial alias analysis returns
1207"may alias" for any alias query. The most sophisticated analysis a
1208flow-sensitive, context-sensitive interprocedural analysis that can take a
1209significant amount of time to execute (and obviously, there is a lot of room
1210between these two extremes for other implementations). To cleanly support
1211situations like this, the LLVM Pass Infrastructure supports the notion of
1212Analysis Groups.</p>
1213
1214</div>
1215
1216<!-- _______________________________________________________________________ -->
1217<div class="doc_subsubsection">
1218 <a name="agconcepts">Analysis Group Concepts</a>
1219</div>
1220
1221<div class="doc_text">
1222
1223<p>An Analysis Group is a single simple interface that may be implemented by
1224multiple different passes. Analysis Groups can be given human readable names
1225just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1226class. An analysis group may have one or more implementations, one of which is
1227the "default" implementation.</p>
1228
1229<p>Analysis groups are used by client passes just like other passes are: the
1230<tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1231In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1232scans the available passes to see if any implementations of the analysis group
1233are available. If none is available, the default implementation is created for
1234the pass to use. All standard rules for <A href="#interaction">interaction
1235between passes</a> still apply.</p>
1236
1237<p>Although <a href="#registration">Pass Registration</a> is optional for normal
1238passes, all analysis group implementations must be registered, and must use the
1239<A href="#registerag"><tt>RegisterAnalysisGroup</tt></a> template to join the
1240implementation pool. Also, a default implementation of the interface
1241<b>must</b> be registered with <A
1242href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1243
1244<p>As a concrete example of an Analysis Group in action, consider the <a
1245href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1246analysis group. The default implementation of the alias analysis interface (the
1247<tt><a
1248href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1249pass) just does a few simple checks that don't require significant analysis to
1250compute (such as: two different globals can never alias each other, etc).
1251Passes that use the <tt><a
1252href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1253interface (for example the <tt><a
1254href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1255not care which implementation of alias analysis is actually provided, they just
1256use the designated interface.</p>
1257
1258<p>From the user's perspective, commands work just like normal. Issuing the
1259command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1260instantiated and added to the pass sequence. Issuing the command '<tt>opt
1261-somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1262<tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1263hypothetical example) instead.</p>
1264
1265</div>
1266
1267<!-- _______________________________________________________________________ -->
1268<div class="doc_subsubsection">
1269 <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1270</div>
1271
1272<div class="doc_text">
1273
1274<p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1275group itself as well as add pass implementations to the analysis group. First,
1276an analysis should be registered, with a human readable name provided for it.
1277Unlike registration of passes, there is no command line argument to be specified
1278for the Analysis Group Interface itself, because it is "abstract":</p>
1279
1280<div class="doc_code"><pre>
1281 <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1282</pre></div>
1283
1284<p>Once the analysis is registered, passes can declare that they are valid
1285implementations of the interface by using the following code:</p>
1286
1287<div class="doc_code"><pre>
1288<b>namespace</b> {
1289 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1290 RegisterPass&lt;FancyAA&gt;
1291 B("<i>somefancyaa</i>", "<i>A more complex alias analysis implementation</i>");
1292
1293 //<i> Declare that we implement the AliasAnalysis interface</i>
1294 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; C(B);
1295}
1296</pre></div>
1297
1298<p>This just shows a class <tt>FancyAA</tt> that is registered normally, then
1299uses the <tt>RegisterAnalysisGroup</tt> template to "join" the <tt><a
1300href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1301analysis group. Every implementation of an analysis group should join using
1302this template. A single pass may join multiple different analysis groups with
1303no problem.</p>
1304
1305<div class="doc_code"><pre>
1306<b>namespace</b> {
1307 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1308 RegisterPass&lt;<a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a>&gt;
1309 D("<i>basicaa</i>", "<i>Basic Alias Analysis (default AA impl)</i>");
1310
1311 //<i> Declare that we implement the AliasAnalysis interface</i>
1312 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, <b>true</b>&gt; E(D);
1313}
1314</pre></div>
1315
1316<p>Here we show how the default implementation is specified (using the extra
1317argument to the <tt>RegisterAnalysisGroup</tt> template). There must be exactly
1318one default implementation available at all times for an Analysis Group to be
1319used. Only default implementation can derive from <tt>ImmutablePass</tt>.
1320Here we declare that the
1321 <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1322pass is the default implementation for the interface.</p>
1323
1324</div>
1325
1326<!-- *********************************************************************** -->
1327<div class="doc_section">
1328 <a name="passStatistics">Pass Statistics</a>
1329</div>
1330<!-- *********************************************************************** -->
1331
1332<div class="doc_text">
1333<p>The <a
1334href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1335class is designed to be an easy way to expose various success
1336metrics from passes. These statistics are printed at the end of a
1337run, when the -stats command line option is enabled on the command
1338line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details.
1339
1340</div>
1341
1342
1343<!-- *********************************************************************** -->
1344<div class="doc_section">
1345 <a name="passmanager">What PassManager does</a>
1346</div>
1347<!-- *********************************************************************** -->
1348
1349<div class="doc_text">
1350
1351<p>The <a
1352href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1353<a
1354href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1355takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1356are set up correctly, and then schedules passes to run efficiently. All of the
1357LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1358passes.</p>
1359
1360<p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1361time of a series of passes:</p>
1362
1363<ol>
1364<li><b>Share analysis results</b> - The PassManager attempts to avoid
1365recomputing analysis results as much as possible. This means keeping track of
1366which analyses are available already, which analyses get invalidated, and which
1367analyses are needed to be run for a pass. An important part of work is that the
1368<tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1369it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1370results as soon as they are no longer needed.</li>
1371
1372<li><b>Pipeline the execution of passes on the program</b> - The
1373<tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1374of a series of passes by pipelining the passes together. This means that, given
1375a series of consequtive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1376will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1377the first function, then all of the <a
1378href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1379etc... until the entire program has been run through the passes.
1380
1381<p>This improves the cache behavior of the compiler, because it is only touching
1382the LLVM program representation for a single function at a time, instead of
1383traversing the entire program. It reduces the memory consumption of compiler,
1384because, for example, only one <a
1385href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
John Criswell8a726152007-12-10 20:26:29 +00001386needs to be calculated at a time. This also makes it possible to implement
1387some <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001388href="#SMP">interesting enhancements</a> in the future.</p></li>
1389
1390</ol>
1391
1392<p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1393much information it has about the behaviors of the passes it is scheduling. For
1394example, the "preserved" set is intentionally conservative in the face of an
1395unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1396Not implementing when it should be implemented will have the effect of not
1397allowing any analysis results to live across the execution of your pass.</p>
1398
1399<p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1400options that is useful for debugging pass execution, seeing how things work, and
1401diagnosing when you should be preserving more analyses than you currently are
1402(To get information about all of the variants of the <tt>--debug-pass</tt>
1403option, just type '<tt>opt --help-hidden</tt>').</p>
1404
1405<p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1406how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1407Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1408
1409<div class="doc_code"><pre>
1410$ opt -load ../../../Debug/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1411Module Pass Manager
1412 Function Pass Manager
1413 Dominator Set Construction
1414 Immediate Dominators Construction
1415 Global Common Subexpression Elimination
1416-- Immediate Dominators Construction
1417-- Global Common Subexpression Elimination
1418 Natural Loop Construction
1419 Loop Invariant Code Motion
1420-- Natural Loop Construction
1421-- Loop Invariant Code Motion
1422 Module Verifier
1423-- Dominator Set Construction
1424-- Module Verifier
1425 Bitcode Writer
1426--Bitcode Writer
1427</pre></div>
1428
1429<p>This output shows us when passes are constructed and when the analysis
1430results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that
1431GCSE uses dominator and immediate dominator information to do its job. The LICM
1432pass uses natural loop information, which uses dominator sets, but not immediate
1433dominators. Because immediate dominators are no longer useful after the GCSE
1434pass, it is immediately destroyed. The dominator sets are then reused to
1435compute natural loop information, which is then used by the LICM pass.</p>
1436
1437<p>After the LICM pass, the module verifier runs (which is automatically added
1438by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1439resultant LLVM code is well formed. After it finishes, the dominator set
1440information is destroyed, after being computed once, and shared by three
1441passes.</p>
1442
1443<p>Lets see how this changes when we run the <a href="#basiccode">Hello
1444World</a> pass in between the two passes:</p>
1445
1446<div class="doc_code"><pre>
1447$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1448Module Pass Manager
1449 Function Pass Manager
1450 Dominator Set Construction
1451 Immediate Dominators Construction
1452 Global Common Subexpression Elimination
1453<b>-- Dominator Set Construction</b>
1454-- Immediate Dominators Construction
1455-- Global Common Subexpression Elimination
1456<b> Hello World Pass
1457-- Hello World Pass
1458 Dominator Set Construction</b>
1459 Natural Loop Construction
1460 Loop Invariant Code Motion
1461-- Natural Loop Construction
1462-- Loop Invariant Code Motion
1463 Module Verifier
1464-- Dominator Set Construction
1465-- Module Verifier
1466 Bitcode Writer
1467--Bitcode Writer
1468Hello: __main
1469Hello: puts
1470Hello: main
1471</pre></div>
1472
1473<p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1474Dominator Set pass, even though it doesn't modify the code at all! To fix this,
1475we need to add the following <a
1476href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1477
1478<div class="doc_code"><pre>
1479 <i>// We don't modify the program, so we preserve all analyses</i>
1480 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1481 AU.setPreservesAll();
1482 }
1483</pre></div>
1484
1485<p>Now when we run our pass, we get this output:</p>
1486
1487<div class="doc_code"><pre>
1488$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1489Pass Arguments: -gcse -hello -licm
1490Module Pass Manager
1491 Function Pass Manager
1492 Dominator Set Construction
1493 Immediate Dominators Construction
1494 Global Common Subexpression Elimination
1495-- Immediate Dominators Construction
1496-- Global Common Subexpression Elimination
1497 Hello World Pass
1498-- Hello World Pass
1499 Natural Loop Construction
1500 Loop Invariant Code Motion
1501-- Loop Invariant Code Motion
1502-- Natural Loop Construction
1503 Module Verifier
1504-- Dominator Set Construction
1505-- Module Verifier
1506 Bitcode Writer
1507--Bitcode Writer
1508Hello: __main
1509Hello: puts
1510Hello: main
1511</pre></div>
1512
1513<p>Which shows that we don't accidentally invalidate dominator information
1514anymore, and therefore do not have to compute it twice.</p>
1515
1516</div>
1517
1518<!-- _______________________________________________________________________ -->
1519<div class="doc_subsubsection">
1520 <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1521</div>
1522
1523<div class="doc_text">
1524
1525<div class="doc_code"><pre>
1526 <b>virtual void</b> releaseMemory();
1527</pre></div>
1528
1529<p>The <tt>PassManager</tt> automatically determines when to compute analysis
1530results, and how long to keep them around for. Because the lifetime of the pass
1531object itself is effectively the entire duration of the compilation process, we
1532need some way to free analysis results when they are no longer useful. The
1533<tt>releaseMemory</tt> virtual method is the way to do this.</p>
1534
1535<p>If you are writing an analysis or any other pass that retains a significant
1536amount of state (for use by another pass which "requires" your pass and uses the
1537<a href="#getAnalysis">getAnalysis</a> method) you should implement
1538<tt>releaseMEmory</tt> to, well, release the memory allocated to maintain this
1539internal state. This method is called after the <tt>run*</tt> method for the
1540class, before the next call of <tt>run*</tt> in your pass.</p>
1541
1542</div>
1543
1544<!-- *********************************************************************** -->
1545<div class="doc_section">
1546 <a name="registering">Registering dynamically loaded passes</a>
1547</div>
1548<!-- *********************************************************************** -->
1549
1550<div class="doc_text">
1551
1552<p><i>Size matters</i> when constructing production quality tools using llvm,
1553both for the purposes of distribution, and for regulating the resident code size
1554when running on the target system. Therefore, it becomes desirable to
1555selectively use some passes, while omitting others and maintain the flexibility
1556to change configurations later on. You want to be able to do all this, and,
1557provide feedback to the user. This is where pass registration comes into
1558play.</p>
1559
1560<p>The fundamental mechanisms for pass registration are the
1561<tt>MachinePassRegistry</tt> class and subclasses of
1562<tt>MachinePassRegistryNode</tt>.</p>
1563
1564<p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1565<tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and
1566communicates additions and deletions to the command line interface.</p>
1567
1568<p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1569information provided about a particular pass. This information includes the
1570command line name, the command help string and the address of the function used
1571to create an instance of the pass. A global static constructor of one of these
1572instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1573the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1574in the tool will be registered at start up. A dynamically loaded pass will
1575register on load and unregister at unload.</p>
1576
1577</div>
1578
1579<!-- _______________________________________________________________________ -->
1580<div class="doc_subsection">
1581 <a name="registering_existing">Using existing registries</a>
1582</div>
1583
1584<div class="doc_text">
1585
1586<p>There are predefined registries to track instruction scheduling
1587(<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1588machine passes. Here we will describe how to <i>register</i> a register
1589allocator machine pass.</p>
1590
1591<p>Implement your register allocator machine pass. In your register allocator
1592.cpp file add the following include;</p>
1593
1594<div class="doc_code"><pre>
1595 #include "llvm/CodeGen/RegAllocRegistry.h"
1596</pre></div>
1597
1598<p>Also in your register allocator .cpp file, define a creator function in the
1599form; </p>
1600
1601<div class="doc_code"><pre>
1602 FunctionPass *createMyRegisterAllocator() {
1603 return new MyRegisterAllocator();
1604 }
1605</pre></div>
1606
1607<p>Note that the signature of this function should match the type of
1608<tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the
1609"installing" declaration, in the form;</p>
1610
1611<div class="doc_code"><pre>
1612 static RegisterRegAlloc myRegAlloc("myregalloc",
1613 " my register allocator help string",
1614 createMyRegisterAllocator);
1615</pre></div>
1616
1617<p>Note the two spaces prior to the help string produces a tidy result on the
1618--help query.</p>
1619
1620<div class="doc_code"><pre>
1621$ llc --help
1622 ...
1623 -regalloc - Register allocator to use: (default = linearscan)
1624 =linearscan - linear scan register allocator
1625 =local - local register allocator
1626 =simple - simple register allocator
1627 =myregalloc - my register allocator help string
1628 ...
1629</pre></div>
1630
1631<p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as
1632an option. Registering instruction schedulers is similar except use the
1633<tt>RegisterScheduler</tt> class. Note that the
1634<tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1635<tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1636
1637<p>To force the load/linking of your register allocator into the llc/lli tools,
1638add your creator function's global declaration to "Passes.h" and add a "pseudo"
1639call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1640
1641</div>
1642
1643
1644<!-- _______________________________________________________________________ -->
1645<div class="doc_subsection">
1646 <a name="registering_new">Creating new registries</a>
1647</div>
1648
1649<div class="doc_text">
1650
1651<p>The easiest way to get started is to clone one of the existing registries; we
1652recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify
1653are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1654
1655<p>Then you need to declare the registry. Example: if your pass registry is
1656<tt>RegisterMyPasses</tt> then define;</p>
1657
1658<div class="doc_code"><pre>
1659MachinePassRegistry RegisterMyPasses::Registry;
1660</pre></div>
1661
1662<p>And finally, declare the command line option for your passes. Example:</p>
1663
1664<div class="doc_code"><pre>
1665 cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
Dan Gohman8e58bc52008-10-14 17:00:38 +00001666 RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001667 MyPassOpt("mypass",
1668 cl::init(&amp;createDefaultMyPass),
1669 cl::desc("my pass option help"));
1670</pre></div>
1671
1672<p>Here the command option is "mypass", with createDefaultMyPass as the default
1673creator.</p>
1674
1675</div>
1676
1677<!-- *********************************************************************** -->
1678<div class="doc_section">
1679 <a name="debughints">Using GDB with dynamically loaded passes</a>
1680</div>
1681<!-- *********************************************************************** -->
1682
1683<div class="doc_text">
1684
1685<p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1686should be. First of all, you can't set a breakpoint in a shared object that has
1687not been loaded yet, and second of all there are problems with inlined functions
1688in shared objects. Here are some suggestions to debugging your pass with
1689GDB.</p>
1690
1691<p>For sake of discussion, I'm going to assume that you are debugging a
1692transformation invoked by <tt>opt</tt>, although nothing described here depends
1693on that.</p>
1694
1695</div>
1696
1697<!-- _______________________________________________________________________ -->
1698<div class="doc_subsubsection">
1699 <a name="breakpoint">Setting a breakpoint in your pass</a>
1700</div>
1701
1702<div class="doc_text">
1703
1704<p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1705
1706<div class="doc_code"><pre>
1707$ <b>gdb opt</b>
1708GNU gdb 5.0
1709Copyright 2000 Free Software Foundation, Inc.
1710GDB is free software, covered by the GNU General Public License, and you are
1711welcome to change it and/or distribute copies of it under certain conditions.
1712Type "show copying" to see the conditions.
1713There is absolutely no warranty for GDB. Type "show warranty" for details.
1714This GDB was configured as "sparc-sun-solaris2.6"...
1715(gdb)
1716</pre></div>
1717
1718<p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1719time to load. Be patient. Since we cannot set a breakpoint in our pass yet
1720(the shared object isn't loaded until runtime), we must execute the process, and
1721have it stop before it invokes our pass, but after it has loaded the shared
1722object. The most foolproof way of doing this is to set a breakpoint in
1723<tt>PassManager::run</tt> and then run the process with the arguments you
1724want:</p>
1725
1726<div class="doc_code"><pre>
1727(gdb) <b>break llvm::PassManager::run</b>
1728Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1729(gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]</b>
1730Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]
1731Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
173270 bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1733(gdb)
1734</pre></div>
1735
1736<p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1737now free to set breakpoints in your pass so that you can trace through execution
1738or do other standard debugging stuff.</p>
1739
1740</div>
1741
1742<!-- _______________________________________________________________________ -->
1743<div class="doc_subsubsection">
1744 <a name="debugmisc">Miscellaneous Problems</a>
1745</div>
1746
1747<div class="doc_text">
1748
1749<p>Once you have the basics down, there are a couple of problems that GDB has,
1750some with solutions, some without.</p>
1751
1752<ul>
1753<li>Inline functions have bogus stack information. In general, GDB does a
1754pretty good job getting stack traces and stepping through inline functions.
1755When a pass is dynamically loaded however, it somehow completely loses this
1756capability. The only solution I know of is to de-inline a function (move it
1757from the body of a class to a .cpp file).</li>
1758
1759<li>Restarting the program breaks breakpoints. After following the information
1760above, you have succeeded in getting some breakpoints planted in your pass. Nex
1761thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1762and you start getting errors about breakpoints being unsettable. The only way I
1763have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1764already set in your pass, run the program, and re-set the breakpoints once
1765execution stops in <tt>PassManager::run</tt>.</li>
1766
1767</ul>
1768
1769<p>Hopefully these tips will help with common case debugging situations. If
1770you'd like to contribute some tips of your own, just contact <a
1771href="mailto:sabre@nondot.org">Chris</a>.</p>
1772
1773</div>
1774
1775<!-- *********************************************************************** -->
1776<div class="doc_section">
1777 <a name="future">Future extensions planned</a>
1778</div>
1779<!-- *********************************************************************** -->
1780
1781<div class="doc_text">
1782
1783<p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1784some nifty stuff, there are things we'd like to add in the future. Here is
1785where we are going:</p>
1786
1787</div>
1788
1789<!-- _______________________________________________________________________ -->
1790<div class="doc_subsubsection">
1791 <a name="SMP">Multithreaded LLVM</a>
1792</div>
1793
1794<div class="doc_text">
1795
1796<p>Multiple CPU machines are becoming more common and compilation can never be
1797fast enough: obviously we should allow for a multithreaded compiler. Because of
1798the semantics defined for passes above (specifically they cannot maintain state
1799across invocations of their <tt>run*</tt> methods), a nice clean way to
1800implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1801to create multiple instances of each pass object, and allow the separate
1802instances to be hacking on different parts of the program at the same time.</p>
1803
1804<p>This implementation would prevent each of the passes from having to implement
1805multithreaded constructs, requiring only the LLVM core to have locking in a few
1806places (for global resources). Although this is a simple extension, we simply
1807haven't had time (or multiprocessor machines, thus a reason) to implement this.
1808Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1809
1810</div>
1811
1812<!-- *********************************************************************** -->
1813<hr>
1814<address>
1815 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1816 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1817 <a href="http://validator.w3.org/check/referer"><img
1818 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
1819
1820 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1821 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1822 Last modified: $Date$
1823</address>
1824
1825</body>
1826</html>