blob: 3be3d3b2a1a2b9e3b441c2d1d6600765889bcb9e [file] [log] [blame]
Chris Lattnercf3056d2003-10-13 03:32:08 +00001//===- Expressions.cpp - Expression Analysis Utilities --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner369bbeb2001-07-20 19:17:55 +00009//
10// This file defines a package of expression analysis utilties:
11//
12// ClassifyExpression: Analyze an expression to determine the complexity of the
13// expression, and which other variables it depends on.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/Expressions.h"
Chris Lattnere9028632004-01-12 18:02:15 +000018#include "llvm/Constants.h"
Chris Lattnere590ff22002-03-26 17:55:33 +000019#include "llvm/Function.h"
Chris Lattnere9028632004-01-12 18:02:15 +000020#include "llvm/Type.h"
Chris Lattner790462c2003-12-23 06:44:41 +000021using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000022
Chris Lattner69f8ce02001-09-11 04:27:34 +000023ExprType::ExprType(Value *Val) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000024 if (Val)
Chris Lattnere9bb2df2001-12-03 22:26:30 +000025 if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000026 Offset = CPI;
27 Var = 0;
28 ExprTy = Constant;
29 Scale = 0;
30 return;
31 }
32
33 Var = Val; Offset = 0;
34 ExprTy = Var ? Linear : Constant;
Chris Lattner69f8ce02001-09-11 04:27:34 +000035 Scale = 0;
36}
37
Chris Lattnere9bb2df2001-12-03 22:26:30 +000038ExprType::ExprType(const ConstantInt *scale, Value *var,
39 const ConstantInt *offset) {
Chris Lattner50020222001-11-26 18:53:07 +000040 Scale = var ? scale : 0; Var = var; Offset = offset;
Chris Lattner69f8ce02001-09-11 04:27:34 +000041 ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
Chris Lattnerce8a1492002-09-03 01:05:48 +000042 if (Scale && Scale->isNullValue()) { // Simplify 0*Var + const
Chris Lattner69f8ce02001-09-11 04:27:34 +000043 Scale = 0; Var = 0;
44 ExprTy = Constant;
45 }
46}
47
48
49const Type *ExprType::getExprType(const Type *Default) const {
50 if (Offset) return Offset->getType();
51 if (Scale) return Scale->getType();
52 return Var ? Var->getType() : Default;
53}
54
55
Chris Lattner790462c2003-12-23 06:44:41 +000056namespace {
57 class DefVal {
58 const ConstantInt * const Val;
59 const Type * const Ty;
60 protected:
61 inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {}
62 public:
63 inline const Type *getType() const { return Ty; }
64 inline const ConstantInt *getVal() const { return Val; }
65 inline operator const ConstantInt * () const { return Val; }
66 inline const ConstantInt *operator->() const { return Val; }
67 };
68
69 struct DefZero : public DefVal {
70 inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
71 inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {}
72 };
73
74 struct DefOne : public DefVal {
75 inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
76 };
77}
Chris Lattner19f31f22001-07-21 19:07:19 +000078
Chris Lattner369bbeb2001-07-20 19:17:55 +000079
Chris Lattner9b534262002-03-14 22:35:50 +000080// getUnsignedConstant - Return a constant value of the specified type. If the
81// constant value is not valid for the specified type, return null. This cannot
82// happen for values in the range of 0 to 127.
83//
Chris Lattnere9bb2df2001-12-03 22:26:30 +000084static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) {
Chris Lattner9b625032002-05-06 16:15:30 +000085 if (isa<PointerType>(Ty)) Ty = Type::ULongTy;
Chris Lattner9b534262002-03-14 22:35:50 +000086 if (Ty->isSigned()) {
87 // If this value is not a valid unsigned value for this type, return null!
88 if (V > 127 && ((int64_t)V < 0 ||
89 !ConstantSInt::isValueValidForType(Ty, (int64_t)V)))
90 return 0;
91 return ConstantSInt::get(Ty, V);
92 } else {
93 // If this value is not a valid unsigned value for this type, return null!
94 if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V))
95 return 0;
96 return ConstantUInt::get(Ty, V);
97 }
Chris Lattner369bbeb2001-07-20 19:17:55 +000098}
99
Chris Lattner369bbeb2001-07-20 19:17:55 +0000100// Add - Helper function to make later code simpler. Basically it just adds
101// the two constants together, inserts the result into the constant pool, and
102// returns it. Of course life is not simple, and this is no exception. Factors
103// that complicate matters:
104// 1. Either argument may be null. If this is the case, the null argument is
105// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
106// 2. Types get in the way. We want to do arithmetic operations without
107// regard for the underlying types. It is assumed that the constants are
108// integral constants. The new value takes the type of the left argument.
109// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
110// is false, a null return value indicates a value of 0.
111//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000112static const ConstantInt *Add(const ConstantInt *Arg1,
113 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000114 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000115 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000116
117 // Actually perform the computation now!
Chris Lattnere9028632004-01-12 18:02:15 +0000118 Constant *Result = ConstantExpr::get(Instruction::Add, (Constant*)Arg1,
119 (Constant*)Arg2);
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000120 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000121
122 // Check to see if the result is one of the special cases that we want to
123 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000124 if (ResultI->equalsInt(DefOne ? 1 : 0))
125 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000126
Chris Lattner369bbeb2001-07-20 19:17:55 +0000127 return ResultI;
128}
129
Chris Lattner790462c2003-12-23 06:44:41 +0000130static inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000131 if (L == 0) return R;
132 if (R == 0) return L;
Chris Lattner8e195e02001-09-07 16:31:04 +0000133 return Add(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000134}
Chris Lattner369bbeb2001-07-20 19:17:55 +0000135
Chris Lattner790462c2003-12-23 06:44:41 +0000136static inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000137 if (L == 0) {
138 if (R == 0)
Chris Lattner69f8ce02001-09-11 04:27:34 +0000139 return getUnsignedConstant(2, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000140 else
Chris Lattner69f8ce02001-09-11 04:27:34 +0000141 return Add(getUnsignedConstant(1, L.getType()), R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000142 } else if (R == 0) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000143 return Add(L, getUnsignedConstant(1, L.getType()), true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000144 }
Chris Lattner8e195e02001-09-07 16:31:04 +0000145 return Add(L, R, true);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000146}
147
148
Chris Lattner19f31f22001-07-21 19:07:19 +0000149// Mul - Helper function to make later code simpler. Basically it just
Chris Lattner369bbeb2001-07-20 19:17:55 +0000150// multiplies the two constants together, inserts the result into the constant
151// pool, and returns it. Of course life is not simple, and this is no
152// exception. Factors that complicate matters:
153// 1. Either argument may be null. If this is the case, the null argument is
154// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
155// 2. Types get in the way. We want to do arithmetic operations without
156// regard for the underlying types. It is assumed that the constants are
157// integral constants.
158// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
159// is false, a null return value indicates a value of 0.
160//
Chris Lattner790462c2003-12-23 06:44:41 +0000161static inline const ConstantInt *Mul(const ConstantInt *Arg1,
162 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000163 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000164 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000165
166 // Actually perform the computation now!
Chris Lattnere9028632004-01-12 18:02:15 +0000167 Constant *Result = ConstantExpr::get(Instruction::Mul, (Constant*)Arg1,
168 (Constant*)Arg2);
Chris Lattner19f31f22001-07-21 19:07:19 +0000169 assert(Result && Result->getType() == Arg1->getType() &&
Chris Lattner50020222001-11-26 18:53:07 +0000170 "Couldn't perform multiplication!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000171 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000172
173 // Check to see if the result is one of the special cases that we want to
174 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000175 if (ResultI->equalsInt(DefOne ? 1 : 0))
176 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000177
Chris Lattner369bbeb2001-07-20 19:17:55 +0000178 return ResultI;
179}
180
Chris Lattner790462c2003-12-23 06:44:41 +0000181namespace {
182 inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) {
183 if (L == 0 || R == 0) return 0;
184 return Mul(L, R, false);
185 }
186 inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) {
187 if (R == 0) return getUnsignedConstant(0, L.getType());
188 if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
189 return Mul(L, R, true);
190 }
191 inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) {
192 if (L == 0 || R == 0) return L.getVal();
193 return Mul(R, L, false);
194 }
Chris Lattner19f31f22001-07-21 19:07:19 +0000195}
196
Chris Lattner69f8ce02001-09-11 04:27:34 +0000197// handleAddition - Add two expressions together, creating a new expression that
198// represents the composite of the two...
199//
200static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) {
201 const Type *Ty = V->getType();
202 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000203 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner69f8ce02001-09-11 04:27:34 +0000204
205 switch (Left.ExprTy) {
206 case ExprType::Constant:
Chris Lattner50020222001-11-26 18:53:07 +0000207 return ExprType(Right.Scale, Right.Var,
208 DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000209 case ExprType::Linear: // RHS side must be linear or scaled
210 case ExprType::ScaledLinear: // RHS must be scaled
211 if (Left.Var != Right.Var) // Are they the same variables?
Chris Lattner50020222001-11-26 18:53:07 +0000212 return V; // if not, we don't know anything!
Chris Lattner69f8ce02001-09-11 04:27:34 +0000213
214 return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty),
Chris Lattner50020222001-11-26 18:53:07 +0000215 Right.Var,
Chris Lattner69f8ce02001-09-11 04:27:34 +0000216 DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty));
217 default:
218 assert(0 && "Dont' know how to handle this case!");
219 return ExprType();
220 }
221}
222
223// negate - Negate the value of the specified expression...
224//
225static inline ExprType negate(const ExprType &E, Value *V) {
226 const Type *Ty = V->getType();
Chris Lattnercb05e782002-03-11 20:50:24 +0000227 ConstantInt *Zero = getUnsignedConstant(0, Ty);
228 ConstantInt *One = getUnsignedConstant(1, Ty);
Chris Lattnere9028632004-01-12 18:02:15 +0000229 ConstantInt *NegOne = cast<ConstantInt>(ConstantExpr::get(Instruction::Sub,
230 Zero, One));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000231 if (NegOne == 0) return V; // Couldn't subtract values...
232
233 return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var,
234 DefZero(E.Offset, Ty) * NegOne);
235}
Chris Lattner19f31f22001-07-21 19:07:19 +0000236
Chris Lattner369bbeb2001-07-20 19:17:55 +0000237
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000238// ClassifyExpr: Analyze an expression to determine the complexity of the
239// expression, and which other values it depends on.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000240//
241// Note that this analysis cannot get into infinite loops because it treats PHI
242// nodes as being an unknown linear expression.
243//
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000244ExprType llvm::ClassifyExpr(Value *Expr) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000245 assert(Expr != 0 && "Can't classify a null expression!");
Chris Lattneraf754db2004-06-26 19:31:26 +0000246 if (Expr->getType()->isFloatingPoint())
Chris Lattner0da29c82001-12-05 19:38:29 +0000247 return Expr; // FIXME: Can't handle FP expressions
248
Chris Lattneraf754db2004-06-26 19:31:26 +0000249 if (Constant *C = dyn_cast<Constant>(Expr)) {
Chris Lattnerac7ad682003-04-16 22:50:19 +0000250 if (ConstantInt *CPI = dyn_cast<ConstantInt>(cast<Constant>(Expr)))
251 // It's an integral constant!
Chris Lattnerce8a1492002-09-03 01:05:48 +0000252 return ExprType(CPI->isNullValue() ? 0 : CPI);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000253 return Expr;
Chris Lattneraf754db2004-06-26 19:31:26 +0000254 } else if (!isa<Instruction>(Expr)) {
255 return Expr;
Chris Lattner369bbeb2001-07-20 19:17:55 +0000256 }
Chris Lattneraf754db2004-06-26 19:31:26 +0000257
Chris Lattner369bbeb2001-07-20 19:17:55 +0000258
Chris Lattner9636a912001-10-01 16:18:37 +0000259 Instruction *I = cast<Instruction>(Expr);
Chris Lattner19f31f22001-07-21 19:07:19 +0000260 const Type *Ty = I->getType();
Chris Lattner369bbeb2001-07-20 19:17:55 +0000261
Misha Brukman1ba31382003-07-14 17:26:34 +0000262 switch (I->getOpcode()) { // Handle each instruction type separately
Chris Lattner369bbeb2001-07-20 19:17:55 +0000263 case Instruction::Add: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000264 ExprType Left (ClassifyExpr(I->getOperand(0)));
265 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000266 return handleAddition(Left, Right, I);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000267 } // end case Instruction::Add
268
Chris Lattner69f8ce02001-09-11 04:27:34 +0000269 case Instruction::Sub: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000270 ExprType Left (ClassifyExpr(I->getOperand(0)));
271 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner50020222001-11-26 18:53:07 +0000272 ExprType RightNeg = negate(Right, I);
273 if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
274 return I; // Could not negate value...
275 return handleAddition(Left, RightNeg, I);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000276 } // end case Instruction::Sub
277
Chris Lattner369bbeb2001-07-20 19:17:55 +0000278 case Instruction::Shl: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000279 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000280 if (Right.ExprTy != ExprType::Constant) break;
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000281 ExprType Left(ClassifyExpr(I->getOperand(0)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000282 if (Right.Offset == 0) return Left; // shl x, 0 = x
283 assert(Right.Offset->getType() == Type::UByteTy &&
Chris Lattner369bbeb2001-07-20 19:17:55 +0000284 "Shift amount must always be a unsigned byte!");
Chris Lattner28a128e2003-07-23 15:16:40 +0000285 uint64_t ShiftAmount = cast<ConstantUInt>(Right.Offset)->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000286 ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty);
Chris Lattner9b534262002-03-14 22:35:50 +0000287
288 // We don't know how to classify it if they are shifting by more than what
289 // is reasonable. In most cases, the result will be zero, but there is one
290 // class of cases where it is not, so we cannot optimize without checking
291 // for it. The case is when you are shifting a signed value by 1 less than
292 // the number of bits in the value. For example:
293 // %X = shl sbyte %Y, ubyte 7
294 // will try to form an sbyte multiplier of 128, which will give a null
295 // multiplier, even though the result is not 0. Until we can check for this
296 // case, be conservative. TODO.
297 //
298 if (Multiplier == 0)
299 return Expr;
300
Chris Lattner8e195e02001-09-07 16:31:04 +0000301 return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var,
302 DefZero(Left.Offset, Ty) * Multiplier);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000303 } // end case Instruction::Shl
304
Chris Lattner19f31f22001-07-21 19:07:19 +0000305 case Instruction::Mul: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000306 ExprType Left (ClassifyExpr(I->getOperand(0)));
307 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000308 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000309 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner19f31f22001-07-21 19:07:19 +0000310
311 if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
312 return I; // Quadratic eqn! :(
313
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000314 const ConstantInt *Offs = Left.Offset;
Chris Lattner19f31f22001-07-21 19:07:19 +0000315 if (Offs == 0) return ExprType();
Chris Lattner8e195e02001-09-07 16:31:04 +0000316 return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var,
317 DefZero(Right.Offset, Ty) * Offs);
Chris Lattner19f31f22001-07-21 19:07:19 +0000318 } // end case Instruction::Mul
319
320 case Instruction::Cast: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000321 ExprType Src(ClassifyExpr(I->getOperand(0)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000322 const Type *DestTy = I->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000323 if (isa<PointerType>(DestTy))
Chris Lattner69f8ce02001-09-11 04:27:34 +0000324 DestTy = Type::ULongTy; // Pointer types are represented as ulong
Chris Lattner19f31f22001-07-21 19:07:19 +0000325
Chris Lattner5fd60912003-07-01 21:08:52 +0000326 const Type *SrcValTy = Src.getExprType(0);
327 if (!SrcValTy) return I;
328 if (!SrcValTy->isLosslesslyConvertibleTo(DestTy)) {
Chris Lattner882572a2001-11-26 16:53:50 +0000329 if (Src.ExprTy != ExprType::Constant)
330 return I; // Converting cast, and not a constant value...
331 }
Chris Lattner19f31f22001-07-21 19:07:19 +0000332
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000333 const ConstantInt *Offset = Src.Offset;
334 const ConstantInt *Scale = Src.Scale;
Chris Lattner882572a2001-11-26 16:53:50 +0000335 if (Offset) {
Chris Lattnere9028632004-01-12 18:02:15 +0000336 const Constant *CPV = ConstantExpr::getCast((Constant*)Offset, DestTy);
337 if (!isa<ConstantInt>(CPV)) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000338 Offset = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000339 }
340 if (Scale) {
Chris Lattnere9028632004-01-12 18:02:15 +0000341 const Constant *CPV = ConstantExpr::getCast((Constant*)Scale, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000342 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000343 Scale = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000344 }
345 return ExprType(Scale, Src.Var, Offset);
Chris Lattner19f31f22001-07-21 19:07:19 +0000346 } // end case Instruction::Cast
Chris Lattner793d6782001-07-25 22:47:32 +0000347 // TODO: Handle SUB, SHR?
Chris Lattner369bbeb2001-07-20 19:17:55 +0000348
349 } // end switch
350
351 // Otherwise, I don't know anything about this value!
Chris Lattner19f31f22001-07-21 19:07:19 +0000352 return I;
Chris Lattner369bbeb2001-07-20 19:17:55 +0000353}