blob: f74ea5c29b29646d8ec909531d7af831d3ebb9e5 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000015#include "llvm/Target/TargetSubtarget.h"
Owen Anderson07000c62006-05-12 06:33:49 +000016#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000017#include "llvm/Target/TargetMachine.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000018#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000019#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000020#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000021#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000023#include "llvm/Support/MathExtras.h"
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +000024#include "llvm/Target/TargetAsmInfo.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000025#include "llvm/CallingConv.h"
Chris Lattner310968c2005-01-07 07:44:53 +000026using namespace llvm;
27
Evan Cheng56966222007-01-12 02:11:51 +000028/// InitLibcallNames - Set default libcall names.
29///
Evan Cheng79cca502007-01-12 22:51:10 +000030static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000031 Names[RTLIB::SHL_I32] = "__ashlsi3";
32 Names[RTLIB::SHL_I64] = "__ashldi3";
33 Names[RTLIB::SRL_I32] = "__lshrsi3";
34 Names[RTLIB::SRL_I64] = "__lshrdi3";
35 Names[RTLIB::SRA_I32] = "__ashrsi3";
36 Names[RTLIB::SRA_I64] = "__ashrdi3";
37 Names[RTLIB::MUL_I32] = "__mulsi3";
38 Names[RTLIB::MUL_I64] = "__muldi3";
39 Names[RTLIB::SDIV_I32] = "__divsi3";
40 Names[RTLIB::SDIV_I64] = "__divdi3";
41 Names[RTLIB::UDIV_I32] = "__udivsi3";
42 Names[RTLIB::UDIV_I64] = "__udivdi3";
43 Names[RTLIB::SREM_I32] = "__modsi3";
44 Names[RTLIB::SREM_I64] = "__moddi3";
45 Names[RTLIB::UREM_I32] = "__umodsi3";
46 Names[RTLIB::UREM_I64] = "__umoddi3";
47 Names[RTLIB::NEG_I32] = "__negsi2";
48 Names[RTLIB::NEG_I64] = "__negdi2";
49 Names[RTLIB::ADD_F32] = "__addsf3";
50 Names[RTLIB::ADD_F64] = "__adddf3";
Duncan Sands007f9842008-01-10 10:28:30 +000051 Names[RTLIB::ADD_F80] = "__addxf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000052 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Evan Cheng56966222007-01-12 02:11:51 +000053 Names[RTLIB::SUB_F32] = "__subsf3";
54 Names[RTLIB::SUB_F64] = "__subdf3";
Duncan Sands007f9842008-01-10 10:28:30 +000055 Names[RTLIB::SUB_F80] = "__subxf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000056 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Evan Cheng56966222007-01-12 02:11:51 +000057 Names[RTLIB::MUL_F32] = "__mulsf3";
58 Names[RTLIB::MUL_F64] = "__muldf3";
Duncan Sands007f9842008-01-10 10:28:30 +000059 Names[RTLIB::MUL_F80] = "__mulxf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000060 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Evan Cheng56966222007-01-12 02:11:51 +000061 Names[RTLIB::DIV_F32] = "__divsf3";
62 Names[RTLIB::DIV_F64] = "__divdf3";
Duncan Sands007f9842008-01-10 10:28:30 +000063 Names[RTLIB::DIV_F80] = "__divxf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000064 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Evan Cheng56966222007-01-12 02:11:51 +000065 Names[RTLIB::REM_F32] = "fmodf";
66 Names[RTLIB::REM_F64] = "fmod";
Duncan Sands007f9842008-01-10 10:28:30 +000067 Names[RTLIB::REM_F80] = "fmodl";
Dale Johannesen161e8972007-10-05 20:04:43 +000068 Names[RTLIB::REM_PPCF128] = "fmodl";
Evan Cheng56966222007-01-12 02:11:51 +000069 Names[RTLIB::POWI_F32] = "__powisf2";
70 Names[RTLIB::POWI_F64] = "__powidf2";
Dale Johannesen161e8972007-10-05 20:04:43 +000071 Names[RTLIB::POWI_F80] = "__powixf2";
72 Names[RTLIB::POWI_PPCF128] = "__powitf2";
Evan Cheng56966222007-01-12 02:11:51 +000073 Names[RTLIB::SQRT_F32] = "sqrtf";
74 Names[RTLIB::SQRT_F64] = "sqrt";
Dale Johannesen161e8972007-10-05 20:04:43 +000075 Names[RTLIB::SQRT_F80] = "sqrtl";
76 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Evan Cheng56966222007-01-12 02:11:51 +000077 Names[RTLIB::SIN_F32] = "sinf";
78 Names[RTLIB::SIN_F64] = "sin";
Duncan Sands007f9842008-01-10 10:28:30 +000079 Names[RTLIB::SIN_F80] = "sinl";
80 Names[RTLIB::SIN_PPCF128] = "sinl";
Evan Cheng56966222007-01-12 02:11:51 +000081 Names[RTLIB::COS_F32] = "cosf";
82 Names[RTLIB::COS_F64] = "cos";
Duncan Sands007f9842008-01-10 10:28:30 +000083 Names[RTLIB::COS_F80] = "cosl";
84 Names[RTLIB::COS_PPCF128] = "cosl";
Dan Gohmane54be102007-10-11 23:09:10 +000085 Names[RTLIB::POW_F32] = "powf";
86 Names[RTLIB::POW_F64] = "pow";
87 Names[RTLIB::POW_F80] = "powl";
88 Names[RTLIB::POW_PPCF128] = "powl";
Evan Cheng56966222007-01-12 02:11:51 +000089 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
94 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000095 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
96 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Evan Cheng56966222007-01-12 02:11:51 +000097 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
98 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
99 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
100 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +0000101 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
102 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
103 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Evan Cheng56966222007-01-12 02:11:51 +0000104 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
105 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
106 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
107 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen161e8972007-10-05 20:04:43 +0000108 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
109 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Evan Cheng56966222007-01-12 02:11:51 +0000110 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
111 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
112 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
113 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
114 Names[RTLIB::OEQ_F32] = "__eqsf2";
115 Names[RTLIB::OEQ_F64] = "__eqdf2";
116 Names[RTLIB::UNE_F32] = "__nesf2";
117 Names[RTLIB::UNE_F64] = "__nedf2";
118 Names[RTLIB::OGE_F32] = "__gesf2";
119 Names[RTLIB::OGE_F64] = "__gedf2";
120 Names[RTLIB::OLT_F32] = "__ltsf2";
121 Names[RTLIB::OLT_F64] = "__ltdf2";
122 Names[RTLIB::OLE_F32] = "__lesf2";
123 Names[RTLIB::OLE_F64] = "__ledf2";
124 Names[RTLIB::OGT_F32] = "__gtsf2";
125 Names[RTLIB::OGT_F64] = "__gtdf2";
126 Names[RTLIB::UO_F32] = "__unordsf2";
127 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000128 Names[RTLIB::O_F32] = "__unordsf2";
129 Names[RTLIB::O_F64] = "__unorddf2";
130}
131
132/// InitCmpLibcallCCs - Set default comparison libcall CC.
133///
134static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
135 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
136 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
137 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
138 CCs[RTLIB::UNE_F32] = ISD::SETNE;
139 CCs[RTLIB::UNE_F64] = ISD::SETNE;
140 CCs[RTLIB::OGE_F32] = ISD::SETGE;
141 CCs[RTLIB::OGE_F64] = ISD::SETGE;
142 CCs[RTLIB::OLT_F32] = ISD::SETLT;
143 CCs[RTLIB::OLT_F64] = ISD::SETLT;
144 CCs[RTLIB::OLE_F32] = ISD::SETLE;
145 CCs[RTLIB::OLE_F64] = ISD::SETLE;
146 CCs[RTLIB::OGT_F32] = ISD::SETGT;
147 CCs[RTLIB::OGT_F64] = ISD::SETGT;
148 CCs[RTLIB::UO_F32] = ISD::SETNE;
149 CCs[RTLIB::UO_F64] = ISD::SETNE;
150 CCs[RTLIB::O_F32] = ISD::SETEQ;
151 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000152}
153
Chris Lattner310968c2005-01-07 07:44:53 +0000154TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000155 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000156 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000157 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000158 // All operations default to being supported.
159 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000160 memset(LoadXActions, 0, sizeof(LoadXActions));
Chris Lattnerddf89562008-01-17 19:59:44 +0000161 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
Chris Lattnerc9133f92008-01-18 19:36:20 +0000162 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
163 memset(ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000164
Chris Lattner1a3048b2007-12-22 20:47:56 +0000165 // Set default actions for various operations.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000166 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
Chris Lattner1a3048b2007-12-22 20:47:56 +0000167 // Default all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000168 for (unsigned IM = (unsigned)ISD::PRE_INC;
169 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
170 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
171 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
172 }
Chris Lattner1a3048b2007-12-22 20:47:56 +0000173
174 // These operations default to expand.
175 setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
Evan Cheng5ff839f2006-11-09 18:56:43 +0000176 }
Chris Lattner310968c2005-01-07 07:44:53 +0000177
Chris Lattner41bab0b2008-01-15 21:58:08 +0000178 // Default ISD::TRAP to expand (which turns it into abort).
179 setOperationAction(ISD::TRAP, MVT::Other, Expand);
180
Owen Andersona69571c2006-05-03 01:29:57 +0000181 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000182 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000183 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000184 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000185 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000186 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000187 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000188 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000189 UseUnderscoreSetJmp = false;
190 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000191 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000192 IntDivIsCheap = false;
193 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000194 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000195 ExceptionPointerRegister = 0;
196 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000197 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000198 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000199 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000200 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000201 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000202
203 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000204 InitCmpLibcallCCs(CmpLibcallCCs);
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +0000205
206 // Tell Legalize whether the assembler supports DEBUG_LOC.
207 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
208 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Chris Lattner310968c2005-01-07 07:44:53 +0000209}
210
Chris Lattnercba82f92005-01-16 07:28:11 +0000211TargetLowering::~TargetLowering() {}
212
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +0000213
214SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
215 assert(getSubtarget() && "Subtarget not defined");
216 SDOperand ChainOp = Op.getOperand(0);
217 SDOperand DestOp = Op.getOperand(1);
218 SDOperand SourceOp = Op.getOperand(2);
219 SDOperand CountOp = Op.getOperand(3);
220 SDOperand AlignOp = Op.getOperand(4);
221 SDOperand AlwaysInlineOp = Op.getOperand(5);
222
223 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
224 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
225 if (Align == 0) Align = 1;
226
227 // If size is unknown, call memcpy.
228 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
229 if (!I) {
230 assert(!AlwaysInline && "Cannot inline copy of unknown size");
231 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
232 }
233
234 // If not DWORD aligned or if size is more than threshold, then call memcpy.
235 // The libc version is likely to be faster for the following cases. It can
236 // use the address value and run time information about the CPU.
237 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
238 unsigned Size = I->getValue();
239 if (AlwaysInline ||
240 (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
241 (Align & 3) == 0))
242 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
243 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
244}
245
246
247SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
248 SDOperand Dest,
249 SDOperand Source,
250 SDOperand Count,
251 SelectionDAG &DAG) {
252 MVT::ValueType IntPtr = getPointerTy();
253 TargetLowering::ArgListTy Args;
254 TargetLowering::ArgListEntry Entry;
255 Entry.Ty = getTargetData()->getIntPtrType();
256 Entry.Node = Dest; Args.push_back(Entry);
257 Entry.Node = Source; Args.push_back(Entry);
258 Entry.Node = Count; Args.push_back(Entry);
259 std::pair<SDOperand,SDOperand> CallResult =
260 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
261 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
262 return CallResult.second;
263}
264
265
Chris Lattner310968c2005-01-07 07:44:53 +0000266/// computeRegisterProperties - Once all of the register classes are added,
267/// this allows us to compute derived properties we expose.
268void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000269 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000270 "Too many value types for ValueTypeActions to hold!");
271
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000272 // Everything defaults to needing one register.
273 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000274 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000275 RegisterTypeForVT[i] = TransformToType[i] = i;
276 }
277 // ...except isVoid, which doesn't need any registers.
278 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000279
Chris Lattner310968c2005-01-07 07:44:53 +0000280 // Find the largest integer register class.
281 unsigned LargestIntReg = MVT::i128;
282 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
283 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
284
285 // Every integer value type larger than this largest register takes twice as
286 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000287 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
288 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000289 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000290 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
291 TransformToType[ExpandedReg] = ExpandedReg - 1;
292 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000293 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000294
295 // Inspect all of the ValueType's smaller than the largest integer
296 // register to see which ones need promotion.
297 MVT::ValueType LegalIntReg = LargestIntReg;
298 for (MVT::ValueType IntReg = LargestIntReg - 1;
299 IntReg >= MVT::i1; --IntReg) {
300 if (isTypeLegal(IntReg)) {
301 LegalIntReg = IntReg;
302 } else {
303 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
304 ValueTypeActions.setTypeAction(IntReg, Promote);
305 }
306 }
307
Dale Johannesen161e8972007-10-05 20:04:43 +0000308 // ppcf128 type is really two f64's.
309 if (!isTypeLegal(MVT::ppcf128)) {
310 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
311 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
312 TransformToType[MVT::ppcf128] = MVT::f64;
313 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
314 }
315
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000316 // Decide how to handle f64. If the target does not have native f64 support,
317 // expand it to i64 and we will be generating soft float library calls.
318 if (!isTypeLegal(MVT::f64)) {
319 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
320 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
321 TransformToType[MVT::f64] = MVT::i64;
322 ValueTypeActions.setTypeAction(MVT::f64, Expand);
323 }
324
325 // Decide how to handle f32. If the target does not have native support for
326 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
327 if (!isTypeLegal(MVT::f32)) {
328 if (isTypeLegal(MVT::f64)) {
329 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
330 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
331 TransformToType[MVT::f32] = MVT::f64;
332 ValueTypeActions.setTypeAction(MVT::f32, Promote);
333 } else {
334 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
335 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
336 TransformToType[MVT::f32] = MVT::i32;
337 ValueTypeActions.setTypeAction(MVT::f32, Expand);
338 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000339 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000340
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000341 // Loop over all of the vector value types to see which need transformations.
342 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000343 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000344 if (!isTypeLegal(i)) {
345 MVT::ValueType IntermediateVT, RegisterVT;
346 unsigned NumIntermediates;
347 NumRegistersForVT[i] =
348 getVectorTypeBreakdown(i,
349 IntermediateVT, NumIntermediates,
350 RegisterVT);
351 RegisterTypeForVT[i] = RegisterVT;
352 TransformToType[i] = MVT::Other; // this isn't actually used
353 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000354 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000355 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000356}
Chris Lattnercba82f92005-01-16 07:28:11 +0000357
Evan Cheng72261582005-12-20 06:22:03 +0000358const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
359 return NULL;
360}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000361
Dan Gohman7f321562007-06-25 16:23:39 +0000362/// getVectorTypeBreakdown - Vector types are broken down into some number of
363/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000364/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000365/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000366///
Dan Gohman7f321562007-06-25 16:23:39 +0000367/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000368/// register. It also returns the VT and quantity of the intermediate values
369/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000370///
Dan Gohman7f321562007-06-25 16:23:39 +0000371unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000372 MVT::ValueType &IntermediateVT,
373 unsigned &NumIntermediates,
374 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000375 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000376 unsigned NumElts = MVT::getVectorNumElements(VT);
377 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000378
379 unsigned NumVectorRegs = 1;
380
Nate Begemand73ab882007-11-27 19:28:48 +0000381 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
382 // could break down into LHS/RHS like LegalizeDAG does.
383 if (!isPowerOf2_32(NumElts)) {
384 NumVectorRegs = NumElts;
385 NumElts = 1;
386 }
387
Chris Lattnerdc879292006-03-31 00:28:56 +0000388 // Divide the input until we get to a supported size. This will always
389 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000390 while (NumElts > 1 &&
391 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000392 NumElts >>= 1;
393 NumVectorRegs <<= 1;
394 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000395
396 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000397
Dan Gohman7f321562007-06-25 16:23:39 +0000398 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
399 if (!isTypeLegal(NewVT))
400 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000401 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000402
Dan Gohman7f321562007-06-25 16:23:39 +0000403 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000404 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000405 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000406 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000407 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000408 } else {
409 // Otherwise, promotion or legal types use the same number of registers as
410 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000411 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000412 }
413
Evan Chenge9b3da12006-05-17 18:10:06 +0000414 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000415}
416
Evan Cheng3ae05432008-01-24 00:22:01 +0000417/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
418/// function arguments in the caller parameter area.
419unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
420 return Log2_32(TD->getCallFrameTypeAlignment(Ty));
421}
422
Evan Chengcc415862007-11-09 01:32:10 +0000423SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
424 SelectionDAG &DAG) const {
425 if (usesGlobalOffsetTable())
426 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
427 return Table;
428}
429
Chris Lattnereb8146b2006-02-04 02:13:02 +0000430//===----------------------------------------------------------------------===//
431// Optimization Methods
432//===----------------------------------------------------------------------===//
433
Nate Begeman368e18d2006-02-16 21:11:51 +0000434/// ShrinkDemandedConstant - Check to see if the specified operand of the
435/// specified instruction is a constant integer. If so, check to see if there
436/// are any bits set in the constant that are not demanded. If so, shrink the
437/// constant and return true.
438bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
439 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000440 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000441 switch(Op.getOpcode()) {
442 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000443 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000444 case ISD::OR:
445 case ISD::XOR:
446 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
447 if ((~Demanded & C->getValue()) != 0) {
448 MVT::ValueType VT = Op.getValueType();
449 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
450 DAG.getConstant(Demanded & C->getValue(),
451 VT));
452 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000453 }
Nate Begemande996292006-02-03 22:24:05 +0000454 break;
455 }
456 return false;
457}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000458
Nate Begeman368e18d2006-02-16 21:11:51 +0000459/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
460/// DemandedMask bits of the result of Op are ever used downstream. If we can
461/// use this information to simplify Op, create a new simplified DAG node and
462/// return true, returning the original and new nodes in Old and New. Otherwise,
463/// analyze the expression and return a mask of KnownOne and KnownZero bits for
464/// the expression (used to simplify the caller). The KnownZero/One bits may
465/// only be accurate for those bits in the DemandedMask.
466bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
467 uint64_t &KnownZero,
468 uint64_t &KnownOne,
469 TargetLoweringOpt &TLO,
470 unsigned Depth) const {
471 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000472
473 // The masks are not wide enough to represent this type! Should use APInt.
474 if (Op.getValueType() == MVT::i128)
475 return false;
476
Nate Begeman368e18d2006-02-16 21:11:51 +0000477 // Other users may use these bits.
478 if (!Op.Val->hasOneUse()) {
479 if (Depth != 0) {
480 // If not at the root, Just compute the KnownZero/KnownOne bits to
481 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000482 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000483 return false;
484 }
485 // If this is the root being simplified, allow it to have multiple uses,
486 // just set the DemandedMask to all bits.
487 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
488 } else if (DemandedMask == 0) {
489 // Not demanding any bits from Op.
490 if (Op.getOpcode() != ISD::UNDEF)
491 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
492 return false;
493 } else if (Depth == 6) { // Limit search depth.
494 return false;
495 }
496
497 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000498 switch (Op.getOpcode()) {
499 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000500 // We know all of the bits for a constant!
501 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
502 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000503 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000504 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000505 // If the RHS is a constant, check to see if the LHS would be zero without
506 // using the bits from the RHS. Below, we use knowledge about the RHS to
507 // simplify the LHS, here we're using information from the LHS to simplify
508 // the RHS.
509 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
510 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000511 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
512 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000513 // If the LHS already has zeros where RHSC does, this and is dead.
514 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
515 return TLO.CombineTo(Op, Op.getOperand(0));
516 // If any of the set bits in the RHS are known zero on the LHS, shrink
517 // the constant.
518 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
519 return true;
520 }
521
Nate Begeman368e18d2006-02-16 21:11:51 +0000522 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
523 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000524 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000525 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000526 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
527 KnownZero2, KnownOne2, TLO, Depth+1))
528 return true;
529 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
530
531 // If all of the demanded bits are known one on one side, return the other.
532 // These bits cannot contribute to the result of the 'and'.
533 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
534 return TLO.CombineTo(Op, Op.getOperand(0));
535 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
536 return TLO.CombineTo(Op, Op.getOperand(1));
537 // If all of the demanded bits in the inputs are known zeros, return zero.
538 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
539 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
540 // If the RHS is a constant, see if we can simplify it.
541 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
542 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000543
Nate Begeman368e18d2006-02-16 21:11:51 +0000544 // Output known-1 bits are only known if set in both the LHS & RHS.
545 KnownOne &= KnownOne2;
546 // Output known-0 are known to be clear if zero in either the LHS | RHS.
547 KnownZero |= KnownZero2;
548 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000549 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000550 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
551 KnownOne, TLO, Depth+1))
552 return true;
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
555 KnownZero2, KnownOne2, TLO, Depth+1))
556 return true;
557 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
558
559 // If all of the demanded bits are known zero on one side, return the other.
560 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000561 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000562 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000563 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000564 return TLO.CombineTo(Op, Op.getOperand(1));
565 // If all of the potentially set bits on one side are known to be set on
566 // the other side, just use the 'other' side.
567 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
568 (DemandedMask & (~KnownZero)))
569 return TLO.CombineTo(Op, Op.getOperand(0));
570 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
571 (DemandedMask & (~KnownZero2)))
572 return TLO.CombineTo(Op, Op.getOperand(1));
573 // If the RHS is a constant, see if we can simplify it.
574 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
575 return true;
576
577 // Output known-0 bits are only known if clear in both the LHS & RHS.
578 KnownZero &= KnownZero2;
579 // Output known-1 are known to be set if set in either the LHS | RHS.
580 KnownOne |= KnownOne2;
581 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000582 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000583 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
584 KnownOne, TLO, Depth+1))
585 return true;
586 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
587 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
588 KnownOne2, TLO, Depth+1))
589 return true;
590 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
591
592 // If all of the demanded bits are known zero on one side, return the other.
593 // These bits cannot contribute to the result of the 'xor'.
594 if ((DemandedMask & KnownZero) == DemandedMask)
595 return TLO.CombineTo(Op, Op.getOperand(0));
596 if ((DemandedMask & KnownZero2) == DemandedMask)
597 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000598
599 // If all of the unknown bits are known to be zero on one side or the other
600 // (but not both) turn this into an *inclusive* or.
601 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
602 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
603 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
604 Op.getOperand(0),
605 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000606
607 // Output known-0 bits are known if clear or set in both the LHS & RHS.
608 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
609 // Output known-1 are known to be set if set in only one of the LHS, RHS.
610 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
611
Nate Begeman368e18d2006-02-16 21:11:51 +0000612 // If all of the demanded bits on one side are known, and all of the set
613 // bits on that side are also known to be set on the other side, turn this
614 // into an AND, as we know the bits will be cleared.
615 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
616 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
617 if ((KnownOne & KnownOne2) == KnownOne) {
618 MVT::ValueType VT = Op.getValueType();
619 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
620 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
621 ANDC));
622 }
623 }
624
625 // If the RHS is a constant, see if we can simplify it.
626 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
627 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
628 return true;
629
630 KnownZero = KnownZeroOut;
631 KnownOne = KnownOneOut;
632 break;
633 case ISD::SETCC:
634 // If we know the result of a setcc has the top bits zero, use this info.
635 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
636 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
637 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000638 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000639 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
640 KnownOne, TLO, Depth+1))
641 return true;
642 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
643 KnownOne2, TLO, Depth+1))
644 return true;
645 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
646 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
647
648 // If the operands are constants, see if we can simplify them.
649 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
650 return true;
651
652 // Only known if known in both the LHS and RHS.
653 KnownOne &= KnownOne2;
654 KnownZero &= KnownZero2;
655 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000656 case ISD::SELECT_CC:
657 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
658 KnownOne, TLO, Depth+1))
659 return true;
660 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
661 KnownOne2, TLO, Depth+1))
662 return true;
663 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
664 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
665
666 // If the operands are constants, see if we can simplify them.
667 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
668 return true;
669
670 // Only known if known in both the LHS and RHS.
671 KnownOne &= KnownOne2;
672 KnownZero &= KnownZero2;
673 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000674 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000675 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000676 unsigned ShAmt = SA->getValue();
677 SDOperand InOp = Op.getOperand(0);
678
679 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
680 // single shift. We can do this if the bottom bits (which are shifted
681 // out) are never demanded.
682 if (InOp.getOpcode() == ISD::SRL &&
683 isa<ConstantSDNode>(InOp.getOperand(1))) {
684 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
685 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
686 unsigned Opc = ISD::SHL;
687 int Diff = ShAmt-C1;
688 if (Diff < 0) {
689 Diff = -Diff;
690 Opc = ISD::SRL;
691 }
692
693 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000694 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000695 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000696 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000697 InOp.getOperand(0), NewSA));
698 }
699 }
700
701 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000702 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000703 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000704 KnownZero <<= SA->getValue();
705 KnownOne <<= SA->getValue();
706 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000707 }
708 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000709 case ISD::SRL:
710 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
711 MVT::ValueType VT = Op.getValueType();
712 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000713 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
714 unsigned VTSize = MVT::getSizeInBits(VT);
715 SDOperand InOp = Op.getOperand(0);
716
717 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
718 // single shift. We can do this if the top bits (which are shifted out)
719 // are never demanded.
720 if (InOp.getOpcode() == ISD::SHL &&
721 isa<ConstantSDNode>(InOp.getOperand(1))) {
722 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
723 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
724 unsigned Opc = ISD::SRL;
725 int Diff = ShAmt-C1;
726 if (Diff < 0) {
727 Diff = -Diff;
728 Opc = ISD::SHL;
729 }
730
731 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000732 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000733 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
734 InOp.getOperand(0), NewSA));
735 }
736 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000737
738 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000739 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000740 KnownZero, KnownOne, TLO, Depth+1))
741 return true;
742 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
743 KnownZero &= TypeMask;
744 KnownOne &= TypeMask;
745 KnownZero >>= ShAmt;
746 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000747
748 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000749 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000750 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000751 }
752 break;
753 case ISD::SRA:
754 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
755 MVT::ValueType VT = Op.getValueType();
756 unsigned ShAmt = SA->getValue();
757
758 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000759 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
760
Chris Lattner1b737132006-05-08 17:22:53 +0000761 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
762
763 // If any of the demanded bits are produced by the sign extension, we also
764 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000765 uint64_t HighBits = (1ULL << ShAmt)-1;
766 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000767 if (HighBits & DemandedMask)
768 InDemandedMask |= MVT::getIntVTSignBit(VT);
769
770 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000771 KnownZero, KnownOne, TLO, Depth+1))
772 return true;
773 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
774 KnownZero &= TypeMask;
775 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000776 KnownZero >>= ShAmt;
777 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000778
779 // Handle the sign bits.
780 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000781 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000782
783 // If the input sign bit is known to be zero, or if none of the top bits
784 // are demanded, turn this into an unsigned shift right.
785 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
786 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
787 Op.getOperand(1)));
788 } else if (KnownOne & SignBit) { // New bits are known one.
789 KnownOne |= HighBits;
790 }
791 }
792 break;
793 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000794 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
795
Chris Lattnerec665152006-02-26 23:36:02 +0000796 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000797 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000798 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000799
Chris Lattnerec665152006-02-26 23:36:02 +0000800 // If none of the extended bits are demanded, eliminate the sextinreg.
801 if (NewBits == 0)
802 return TLO.CombineTo(Op, Op.getOperand(0));
803
Nate Begeman368e18d2006-02-16 21:11:51 +0000804 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
805 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
806
Chris Lattnerec665152006-02-26 23:36:02 +0000807 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000808 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000809 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000810
811 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
812 KnownZero, KnownOne, TLO, Depth+1))
813 return true;
814 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
815
816 // If the sign bit of the input is known set or clear, then we know the
817 // top bits of the result.
818
Chris Lattnerec665152006-02-26 23:36:02 +0000819 // If the input sign bit is known zero, convert this into a zero extension.
820 if (KnownZero & InSignBit)
821 return TLO.CombineTo(Op,
822 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
823
824 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000825 KnownOne |= NewBits;
826 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000827 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000828 KnownZero &= ~NewBits;
829 KnownOne &= ~NewBits;
830 }
831 break;
832 }
Chris Lattnerec665152006-02-26 23:36:02 +0000833 case ISD::CTTZ:
834 case ISD::CTLZ:
835 case ISD::CTPOP: {
836 MVT::ValueType VT = Op.getValueType();
837 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
838 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
839 KnownOne = 0;
840 break;
841 }
Evan Cheng466685d2006-10-09 20:57:25 +0000842 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000843 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000844 LoadSDNode *LD = cast<LoadSDNode>(Op);
Dan Gohmanb625f2f2008-01-30 00:15:11 +0000845 MVT::ValueType VT = LD->getMemoryVT();
Evan Chengc5484282006-10-04 00:56:09 +0000846 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
847 }
Chris Lattnerec665152006-02-26 23:36:02 +0000848 break;
849 }
850 case ISD::ZERO_EXTEND: {
851 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
852
853 // If none of the top bits are demanded, convert this into an any_extend.
854 uint64_t NewBits = (~InMask) & DemandedMask;
855 if (NewBits == 0)
856 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
857 Op.getValueType(),
858 Op.getOperand(0)));
859
860 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
861 KnownZero, KnownOne, TLO, Depth+1))
862 return true;
863 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
864 KnownZero |= NewBits;
865 break;
866 }
867 case ISD::SIGN_EXTEND: {
868 MVT::ValueType InVT = Op.getOperand(0).getValueType();
869 uint64_t InMask = MVT::getIntVTBitMask(InVT);
870 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
871 uint64_t NewBits = (~InMask) & DemandedMask;
872
873 // If none of the top bits are demanded, convert this into an any_extend.
874 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000875 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000876 Op.getOperand(0)));
877
878 // Since some of the sign extended bits are demanded, we know that the sign
879 // bit is demanded.
880 uint64_t InDemandedBits = DemandedMask & InMask;
881 InDemandedBits |= InSignBit;
882
883 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
884 KnownOne, TLO, Depth+1))
885 return true;
886
887 // If the sign bit is known zero, convert this to a zero extend.
888 if (KnownZero & InSignBit)
889 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
890 Op.getValueType(),
891 Op.getOperand(0)));
892
893 // If the sign bit is known one, the top bits match.
894 if (KnownOne & InSignBit) {
895 KnownOne |= NewBits;
896 KnownZero &= ~NewBits;
897 } else { // Otherwise, top bits aren't known.
898 KnownOne &= ~NewBits;
899 KnownZero &= ~NewBits;
900 }
901 break;
902 }
903 case ISD::ANY_EXTEND: {
904 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
905 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
906 KnownZero, KnownOne, TLO, Depth+1))
907 return true;
908 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
909 break;
910 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000911 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000912 // Simplify the input, using demanded bit information, and compute the known
913 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000914 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
915 KnownZero, KnownOne, TLO, Depth+1))
916 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000917
918 // If the input is only used by this truncate, see if we can shrink it based
919 // on the known demanded bits.
920 if (Op.getOperand(0).Val->hasOneUse()) {
921 SDOperand In = Op.getOperand(0);
922 switch (In.getOpcode()) {
923 default: break;
924 case ISD::SRL:
925 // Shrink SRL by a constant if none of the high bits shifted in are
926 // demanded.
927 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
928 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
929 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
930 HighBits >>= ShAmt->getValue();
931
932 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
933 (DemandedMask & HighBits) == 0) {
934 // None of the shifted in bits are needed. Add a truncate of the
935 // shift input, then shift it.
936 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
937 Op.getValueType(),
938 In.getOperand(0));
939 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
940 NewTrunc, In.getOperand(1)));
941 }
942 }
943 break;
944 }
945 }
946
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000947 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
948 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
949 KnownZero &= OutMask;
950 KnownOne &= OutMask;
951 break;
952 }
Chris Lattnerec665152006-02-26 23:36:02 +0000953 case ISD::AssertZext: {
954 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
955 uint64_t InMask = MVT::getIntVTBitMask(VT);
956 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
957 KnownZero, KnownOne, TLO, Depth+1))
958 return true;
959 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
960 KnownZero |= ~InMask & DemandedMask;
961 break;
962 }
Chris Lattner2ceb2cf2007-12-22 21:35:38 +0000963 case ISD::FGETSIGN:
964 // All bits are zero except the low bit.
965 KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
966 break;
967 case ISD::BIT_CONVERT:
968#if 0
969 // If this is an FP->Int bitcast and if the sign bit is the only thing that
970 // is demanded, turn this into a FGETSIGN.
971 if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
972 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
973 !MVT::isVector(Op.getOperand(0).getValueType())) {
974 // Only do this xform if FGETSIGN is valid or if before legalize.
975 if (!TLO.AfterLegalize ||
976 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
977 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
978 // place. We expect the SHL to be eliminated by other optimizations.
979 SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
980 Op.getOperand(0));
981 unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
982 SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
983 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
984 Sign, ShAmt));
985 }
986 }
987#endif
988 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000989 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000990 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000991 case ISD::INTRINSIC_WO_CHAIN:
992 case ISD::INTRINSIC_W_CHAIN:
993 case ISD::INTRINSIC_VOID:
994 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000995 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000996 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000997 }
Chris Lattnerec665152006-02-26 23:36:02 +0000998
999 // If we know the value of all of the demanded bits, return this as a
1000 // constant.
1001 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1002 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1003
Nate Begeman368e18d2006-02-16 21:11:51 +00001004 return false;
1005}
1006
Nate Begeman368e18d2006-02-16 21:11:51 +00001007/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1008/// in Mask are known to be either zero or one and return them in the
1009/// KnownZero/KnownOne bitsets.
1010void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohman977a76f2008-02-13 22:28:48 +00001011 const APInt &Mask,
Dan Gohmanfd29e0e2008-02-13 00:35:47 +00001012 APInt &KnownZero,
1013 APInt &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +00001014 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +00001015 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +00001016 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1017 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1018 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1019 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001020 "Should use MaskedValueIsZero if you don't know whether Op"
1021 " is a target node!");
Dan Gohman977a76f2008-02-13 22:28:48 +00001022 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Evan Cheng3a03ebb2005-12-21 23:05:39 +00001023}
Chris Lattner4ccb0702006-01-26 20:37:03 +00001024
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001025/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1026/// targets that want to expose additional information about sign bits to the
1027/// DAG Combiner.
1028unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1029 unsigned Depth) const {
1030 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1031 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1032 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1033 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1034 "Should use ComputeNumSignBits if you don't know whether Op"
1035 " is a target node!");
1036 return 1;
1037}
1038
1039
Evan Chengfa1eb272007-02-08 22:13:59 +00001040/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1041/// and cc. If it is unable to simplify it, return a null SDOperand.
1042SDOperand
1043TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1044 ISD::CondCode Cond, bool foldBooleans,
1045 DAGCombinerInfo &DCI) const {
1046 SelectionDAG &DAG = DCI.DAG;
1047
1048 // These setcc operations always fold.
1049 switch (Cond) {
1050 default: break;
1051 case ISD::SETFALSE:
1052 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1053 case ISD::SETTRUE:
1054 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1055 }
1056
1057 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1058 uint64_t C1 = N1C->getValue();
1059 if (isa<ConstantSDNode>(N0.Val)) {
1060 return DAG.FoldSetCC(VT, N0, N1, Cond);
1061 } else {
1062 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1063 // equality comparison, then we're just comparing whether X itself is
1064 // zero.
1065 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1066 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1067 N0.getOperand(1).getOpcode() == ISD::Constant) {
1068 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1069 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1070 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1071 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1072 // (srl (ctlz x), 5) == 0 -> X != 0
1073 // (srl (ctlz x), 5) != 1 -> X != 0
1074 Cond = ISD::SETNE;
1075 } else {
1076 // (srl (ctlz x), 5) != 0 -> X == 0
1077 // (srl (ctlz x), 5) == 1 -> X == 0
1078 Cond = ISD::SETEQ;
1079 }
1080 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1081 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1082 Zero, Cond);
1083 }
1084 }
1085
1086 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1087 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1088 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1089
1090 // If the comparison constant has bits in the upper part, the
1091 // zero-extended value could never match.
1092 if (C1 & (~0ULL << InSize)) {
1093 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1094 switch (Cond) {
1095 case ISD::SETUGT:
1096 case ISD::SETUGE:
1097 case ISD::SETEQ: return DAG.getConstant(0, VT);
1098 case ISD::SETULT:
1099 case ISD::SETULE:
1100 case ISD::SETNE: return DAG.getConstant(1, VT);
1101 case ISD::SETGT:
1102 case ISD::SETGE:
1103 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001104 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001105 case ISD::SETLT:
1106 case ISD::SETLE:
1107 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001108 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001109 default:
1110 break;
1111 }
1112 }
1113
1114 // Otherwise, we can perform the comparison with the low bits.
1115 switch (Cond) {
1116 case ISD::SETEQ:
1117 case ISD::SETNE:
1118 case ISD::SETUGT:
1119 case ISD::SETUGE:
1120 case ISD::SETULT:
1121 case ISD::SETULE:
1122 return DAG.getSetCC(VT, N0.getOperand(0),
1123 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1124 Cond);
1125 default:
1126 break; // todo, be more careful with signed comparisons
1127 }
1128 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1129 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1130 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1131 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1132 MVT::ValueType ExtDstTy = N0.getValueType();
1133 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1134
1135 // If the extended part has any inconsistent bits, it cannot ever
1136 // compare equal. In other words, they have to be all ones or all
1137 // zeros.
1138 uint64_t ExtBits =
1139 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1140 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1141 return DAG.getConstant(Cond == ISD::SETNE, VT);
1142
1143 SDOperand ZextOp;
1144 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1145 if (Op0Ty == ExtSrcTy) {
1146 ZextOp = N0.getOperand(0);
1147 } else {
1148 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1149 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1150 DAG.getConstant(Imm, Op0Ty));
1151 }
1152 if (!DCI.isCalledByLegalizer())
1153 DCI.AddToWorklist(ZextOp.Val);
1154 // Otherwise, make this a use of a zext.
1155 return DAG.getSetCC(VT, ZextOp,
1156 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1157 ExtDstTy),
1158 Cond);
1159 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1160 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1161
1162 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1163 if (N0.getOpcode() == ISD::SETCC) {
1164 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1165 if (TrueWhenTrue)
1166 return N0;
1167
1168 // Invert the condition.
1169 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1170 CC = ISD::getSetCCInverse(CC,
1171 MVT::isInteger(N0.getOperand(0).getValueType()));
1172 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1173 }
1174
1175 if ((N0.getOpcode() == ISD::XOR ||
1176 (N0.getOpcode() == ISD::AND &&
1177 N0.getOperand(0).getOpcode() == ISD::XOR &&
1178 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1179 isa<ConstantSDNode>(N0.getOperand(1)) &&
1180 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1181 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1182 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001183 if (DAG.MaskedValueIsZero(N0,
1184 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001185 // Okay, get the un-inverted input value.
1186 SDOperand Val;
1187 if (N0.getOpcode() == ISD::XOR)
1188 Val = N0.getOperand(0);
1189 else {
1190 assert(N0.getOpcode() == ISD::AND &&
1191 N0.getOperand(0).getOpcode() == ISD::XOR);
1192 // ((X^1)&1)^1 -> X & 1
1193 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1194 N0.getOperand(0).getOperand(0),
1195 N0.getOperand(1));
1196 }
1197 return DAG.getSetCC(VT, Val, N1,
1198 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1199 }
1200 }
1201 }
1202
1203 uint64_t MinVal, MaxVal;
1204 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1205 if (ISD::isSignedIntSetCC(Cond)) {
1206 MinVal = 1ULL << (OperandBitSize-1);
1207 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1208 MaxVal = ~0ULL >> (65-OperandBitSize);
1209 else
1210 MaxVal = 0;
1211 } else {
1212 MinVal = 0;
1213 MaxVal = ~0ULL >> (64-OperandBitSize);
1214 }
1215
1216 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1217 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1218 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1219 --C1; // X >= C0 --> X > (C0-1)
1220 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1221 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1222 }
1223
1224 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1225 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1226 ++C1; // X <= C0 --> X < (C0+1)
1227 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1228 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1229 }
1230
1231 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1232 return DAG.getConstant(0, VT); // X < MIN --> false
1233 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1234 return DAG.getConstant(1, VT); // X >= MIN --> true
1235 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1236 return DAG.getConstant(0, VT); // X > MAX --> false
1237 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1238 return DAG.getConstant(1, VT); // X <= MAX --> true
1239
1240 // Canonicalize setgt X, Min --> setne X, Min
1241 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1242 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1243 // Canonicalize setlt X, Max --> setne X, Max
1244 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1245 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1246
1247 // If we have setult X, 1, turn it into seteq X, 0
1248 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1249 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1250 ISD::SETEQ);
1251 // If we have setugt X, Max-1, turn it into seteq X, Max
1252 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1253 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1254 ISD::SETEQ);
1255
1256 // If we have "setcc X, C0", check to see if we can shrink the immediate
1257 // by changing cc.
1258
1259 // SETUGT X, SINTMAX -> SETLT X, 0
1260 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1261 C1 == (~0ULL >> (65-OperandBitSize)))
1262 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1263 ISD::SETLT);
1264
1265 // FIXME: Implement the rest of these.
1266
1267 // Fold bit comparisons when we can.
1268 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1269 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1270 if (ConstantSDNode *AndRHS =
1271 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1272 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1273 // Perform the xform if the AND RHS is a single bit.
1274 if (isPowerOf2_64(AndRHS->getValue())) {
1275 return DAG.getNode(ISD::SRL, VT, N0,
1276 DAG.getConstant(Log2_64(AndRHS->getValue()),
1277 getShiftAmountTy()));
1278 }
1279 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1280 // (X & 8) == 8 --> (X & 8) >> 3
1281 // Perform the xform if C1 is a single bit.
1282 if (isPowerOf2_64(C1)) {
1283 return DAG.getNode(ISD::SRL, VT, N0,
1284 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1285 }
1286 }
1287 }
1288 }
1289 } else if (isa<ConstantSDNode>(N0.Val)) {
1290 // Ensure that the constant occurs on the RHS.
1291 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1292 }
1293
1294 if (isa<ConstantFPSDNode>(N0.Val)) {
1295 // Constant fold or commute setcc.
1296 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1297 if (O.Val) return O;
Chris Lattner63079f02007-12-29 08:37:08 +00001298 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1299 // If the RHS of an FP comparison is a constant, simplify it away in
1300 // some cases.
1301 if (CFP->getValueAPF().isNaN()) {
1302 // If an operand is known to be a nan, we can fold it.
1303 switch (ISD::getUnorderedFlavor(Cond)) {
1304 default: assert(0 && "Unknown flavor!");
1305 case 0: // Known false.
1306 return DAG.getConstant(0, VT);
1307 case 1: // Known true.
1308 return DAG.getConstant(1, VT);
Chris Lattner1c3e1e22007-12-30 21:21:10 +00001309 case 2: // Undefined.
Chris Lattner63079f02007-12-29 08:37:08 +00001310 return DAG.getNode(ISD::UNDEF, VT);
1311 }
1312 }
1313
1314 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1315 // constant if knowing that the operand is non-nan is enough. We prefer to
1316 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1317 // materialize 0.0.
1318 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1319 return DAG.getSetCC(VT, N0, N0, Cond);
Evan Chengfa1eb272007-02-08 22:13:59 +00001320 }
1321
1322 if (N0 == N1) {
1323 // We can always fold X == X for integer setcc's.
1324 if (MVT::isInteger(N0.getValueType()))
1325 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1326 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1327 if (UOF == 2) // FP operators that are undefined on NaNs.
1328 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1329 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1330 return DAG.getConstant(UOF, VT);
1331 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1332 // if it is not already.
1333 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1334 if (NewCond != Cond)
1335 return DAG.getSetCC(VT, N0, N1, NewCond);
1336 }
1337
1338 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1339 MVT::isInteger(N0.getValueType())) {
1340 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1341 N0.getOpcode() == ISD::XOR) {
1342 // Simplify (X+Y) == (X+Z) --> Y == Z
1343 if (N0.getOpcode() == N1.getOpcode()) {
1344 if (N0.getOperand(0) == N1.getOperand(0))
1345 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1346 if (N0.getOperand(1) == N1.getOperand(1))
1347 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1348 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1349 // If X op Y == Y op X, try other combinations.
1350 if (N0.getOperand(0) == N1.getOperand(1))
1351 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1352 if (N0.getOperand(1) == N1.getOperand(0))
1353 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1354 }
1355 }
1356
1357 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1358 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1359 // Turn (X+C1) == C2 --> X == C2-C1
1360 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1361 return DAG.getSetCC(VT, N0.getOperand(0),
1362 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1363 N0.getValueType()), Cond);
1364 }
1365
1366 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1367 if (N0.getOpcode() == ISD::XOR)
1368 // If we know that all of the inverted bits are zero, don't bother
1369 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001370 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001371 return DAG.getSetCC(VT, N0.getOperand(0),
1372 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1373 N0.getValueType()), Cond);
1374 }
1375
1376 // Turn (C1-X) == C2 --> X == C1-C2
1377 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1378 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1379 return DAG.getSetCC(VT, N0.getOperand(1),
1380 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1381 N0.getValueType()), Cond);
1382 }
1383 }
1384 }
1385
1386 // Simplify (X+Z) == X --> Z == 0
1387 if (N0.getOperand(0) == N1)
1388 return DAG.getSetCC(VT, N0.getOperand(1),
1389 DAG.getConstant(0, N0.getValueType()), Cond);
1390 if (N0.getOperand(1) == N1) {
1391 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1392 return DAG.getSetCC(VT, N0.getOperand(0),
1393 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001394 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001395 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1396 // (Z-X) == X --> Z == X<<1
1397 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1398 N1,
1399 DAG.getConstant(1, getShiftAmountTy()));
1400 if (!DCI.isCalledByLegalizer())
1401 DCI.AddToWorklist(SH.Val);
1402 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1403 }
1404 }
1405 }
1406
1407 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1408 N1.getOpcode() == ISD::XOR) {
1409 // Simplify X == (X+Z) --> Z == 0
1410 if (N1.getOperand(0) == N0) {
1411 return DAG.getSetCC(VT, N1.getOperand(1),
1412 DAG.getConstant(0, N1.getValueType()), Cond);
1413 } else if (N1.getOperand(1) == N0) {
1414 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1415 return DAG.getSetCC(VT, N1.getOperand(0),
1416 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001417 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001418 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1419 // X == (Z-X) --> X<<1 == Z
1420 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1421 DAG.getConstant(1, getShiftAmountTy()));
1422 if (!DCI.isCalledByLegalizer())
1423 DCI.AddToWorklist(SH.Val);
1424 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1425 }
1426 }
1427 }
1428 }
1429
1430 // Fold away ALL boolean setcc's.
1431 SDOperand Temp;
1432 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1433 switch (Cond) {
1434 default: assert(0 && "Unknown integer setcc!");
1435 case ISD::SETEQ: // X == Y -> (X^Y)^1
1436 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1437 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1438 if (!DCI.isCalledByLegalizer())
1439 DCI.AddToWorklist(Temp.Val);
1440 break;
1441 case ISD::SETNE: // X != Y --> (X^Y)
1442 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1443 break;
1444 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1445 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1446 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1447 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1448 if (!DCI.isCalledByLegalizer())
1449 DCI.AddToWorklist(Temp.Val);
1450 break;
1451 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1452 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1453 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1454 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1455 if (!DCI.isCalledByLegalizer())
1456 DCI.AddToWorklist(Temp.Val);
1457 break;
1458 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1459 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1460 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1461 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1462 if (!DCI.isCalledByLegalizer())
1463 DCI.AddToWorklist(Temp.Val);
1464 break;
1465 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1466 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1467 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1468 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1469 break;
1470 }
1471 if (VT != MVT::i1) {
1472 if (!DCI.isCalledByLegalizer())
1473 DCI.AddToWorklist(N0.Val);
1474 // FIXME: If running after legalize, we probably can't do this.
1475 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1476 }
1477 return N0;
1478 }
1479
1480 // Could not fold it.
1481 return SDOperand();
1482}
1483
Chris Lattner00ffed02006-03-01 04:52:55 +00001484SDOperand TargetLowering::
1485PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1486 // Default implementation: no optimization.
1487 return SDOperand();
1488}
1489
Chris Lattnereb8146b2006-02-04 02:13:02 +00001490//===----------------------------------------------------------------------===//
1491// Inline Assembler Implementation Methods
1492//===----------------------------------------------------------------------===//
1493
1494TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001495TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001496 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001497 if (Constraint.size() == 1) {
1498 switch (Constraint[0]) {
1499 default: break;
1500 case 'r': return C_RegisterClass;
1501 case 'm': // memory
1502 case 'o': // offsetable
1503 case 'V': // not offsetable
1504 return C_Memory;
1505 case 'i': // Simple Integer or Relocatable Constant
1506 case 'n': // Simple Integer
1507 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001508 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001509 case 'I': // Target registers.
1510 case 'J':
1511 case 'K':
1512 case 'L':
1513 case 'M':
1514 case 'N':
1515 case 'O':
1516 case 'P':
1517 return C_Other;
1518 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001519 }
Chris Lattner065421f2007-03-25 02:18:14 +00001520
1521 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1522 Constraint[Constraint.size()-1] == '}')
1523 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001524 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001525}
1526
Dale Johannesenba2a0b92008-01-29 02:21:21 +00001527/// LowerXConstraint - try to replace an X constraint, which matches anything,
1528/// with another that has more specific requirements based on the type of the
1529/// corresponding operand.
1530void TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
1531 std::string& s) const {
1532 if (MVT::isInteger(ConstraintVT))
1533 s = "r";
1534 else if (MVT::isFloatingPoint(ConstraintVT))
1535 s = "f"; // works for many targets
1536 else
1537 s = "";
1538}
1539
Chris Lattner48884cd2007-08-25 00:47:38 +00001540/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1541/// vector. If it is invalid, don't add anything to Ops.
1542void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1543 char ConstraintLetter,
1544 std::vector<SDOperand> &Ops,
1545 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001546 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001547 default: break;
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001548 case 'X': // Allows any operand; labels (basic block) use this.
1549 if (Op.getOpcode() == ISD::BasicBlock) {
1550 Ops.push_back(Op);
1551 return;
1552 }
1553 // fall through
Chris Lattnereb8146b2006-02-04 02:13:02 +00001554 case 'i': // Simple Integer or Relocatable Constant
1555 case 'n': // Simple Integer
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001556 case 's': { // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001557 // These operands are interested in values of the form (GV+C), where C may
1558 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1559 // is possible and fine if either GV or C are missing.
1560 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1561 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1562
1563 // If we have "(add GV, C)", pull out GV/C
1564 if (Op.getOpcode() == ISD::ADD) {
1565 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1566 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1567 if (C == 0 || GA == 0) {
1568 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1569 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1570 }
1571 if (C == 0 || GA == 0)
1572 C = 0, GA = 0;
1573 }
1574
1575 // If we find a valid operand, map to the TargetXXX version so that the
1576 // value itself doesn't get selected.
1577 if (GA) { // Either &GV or &GV+C
1578 if (ConstraintLetter != 'n') {
1579 int64_t Offs = GA->getOffset();
1580 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001581 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1582 Op.getValueType(), Offs));
1583 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001584 }
1585 }
1586 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001587 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001588 if (ConstraintLetter != 's') {
1589 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1590 return;
1591 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001592 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001593 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001594 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001595 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001596}
1597
Chris Lattner4ccb0702006-01-26 20:37:03 +00001598std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001599getRegClassForInlineAsmConstraint(const std::string &Constraint,
1600 MVT::ValueType VT) const {
1601 return std::vector<unsigned>();
1602}
1603
1604
1605std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001606getRegForInlineAsmConstraint(const std::string &Constraint,
1607 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001608 if (Constraint[0] != '{')
1609 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001610 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1611
1612 // Remove the braces from around the name.
1613 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001614
1615 // Figure out which register class contains this reg.
Dan Gohman6f0d0242008-02-10 18:45:23 +00001616 const TargetRegisterInfo *RI = TM.getRegisterInfo();
1617 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
Chris Lattner1efa40f2006-02-22 00:56:39 +00001618 E = RI->regclass_end(); RCI != E; ++RCI) {
1619 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001620
1621 // If none of the the value types for this register class are valid, we
1622 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1623 bool isLegal = false;
1624 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1625 I != E; ++I) {
1626 if (isTypeLegal(*I)) {
1627 isLegal = true;
1628 break;
1629 }
1630 }
1631
1632 if (!isLegal) continue;
1633
Chris Lattner1efa40f2006-02-22 00:56:39 +00001634 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1635 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001636 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001637 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001638 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001639 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001640
Chris Lattner1efa40f2006-02-22 00:56:39 +00001641 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001642}
Evan Cheng30b37b52006-03-13 23:18:16 +00001643
1644//===----------------------------------------------------------------------===//
1645// Loop Strength Reduction hooks
1646//===----------------------------------------------------------------------===//
1647
Chris Lattner1436bb62007-03-30 23:14:50 +00001648/// isLegalAddressingMode - Return true if the addressing mode represented
1649/// by AM is legal for this target, for a load/store of the specified type.
1650bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1651 const Type *Ty) const {
1652 // The default implementation of this implements a conservative RISCy, r+r and
1653 // r+i addr mode.
1654
1655 // Allows a sign-extended 16-bit immediate field.
1656 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1657 return false;
1658
1659 // No global is ever allowed as a base.
1660 if (AM.BaseGV)
1661 return false;
1662
1663 // Only support r+r,
1664 switch (AM.Scale) {
1665 case 0: // "r+i" or just "i", depending on HasBaseReg.
1666 break;
1667 case 1:
1668 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1669 return false;
1670 // Otherwise we have r+r or r+i.
1671 break;
1672 case 2:
1673 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1674 return false;
1675 // Allow 2*r as r+r.
1676 break;
1677 }
1678
1679 return true;
1680}
1681
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001682// Magic for divide replacement
1683
1684struct ms {
1685 int64_t m; // magic number
1686 int64_t s; // shift amount
1687};
1688
1689struct mu {
1690 uint64_t m; // magic number
1691 int64_t a; // add indicator
1692 int64_t s; // shift amount
1693};
1694
1695/// magic - calculate the magic numbers required to codegen an integer sdiv as
1696/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1697/// or -1.
1698static ms magic32(int32_t d) {
1699 int32_t p;
1700 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1701 const uint32_t two31 = 0x80000000U;
1702 struct ms mag;
1703
1704 ad = abs(d);
1705 t = two31 + ((uint32_t)d >> 31);
1706 anc = t - 1 - t%ad; // absolute value of nc
1707 p = 31; // initialize p
1708 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1709 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1710 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1711 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1712 do {
1713 p = p + 1;
1714 q1 = 2*q1; // update q1 = 2p/abs(nc)
1715 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1716 if (r1 >= anc) { // must be unsigned comparison
1717 q1 = q1 + 1;
1718 r1 = r1 - anc;
1719 }
1720 q2 = 2*q2; // update q2 = 2p/abs(d)
1721 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1722 if (r2 >= ad) { // must be unsigned comparison
1723 q2 = q2 + 1;
1724 r2 = r2 - ad;
1725 }
1726 delta = ad - r2;
1727 } while (q1 < delta || (q1 == delta && r1 == 0));
1728
1729 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1730 if (d < 0) mag.m = -mag.m; // resulting magic number
1731 mag.s = p - 32; // resulting shift
1732 return mag;
1733}
1734
1735/// magicu - calculate the magic numbers required to codegen an integer udiv as
1736/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1737static mu magicu32(uint32_t d) {
1738 int32_t p;
1739 uint32_t nc, delta, q1, r1, q2, r2;
1740 struct mu magu;
1741 magu.a = 0; // initialize "add" indicator
1742 nc = - 1 - (-d)%d;
1743 p = 31; // initialize p
1744 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1745 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1746 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1747 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1748 do {
1749 p = p + 1;
1750 if (r1 >= nc - r1 ) {
1751 q1 = 2*q1 + 1; // update q1
1752 r1 = 2*r1 - nc; // update r1
1753 }
1754 else {
1755 q1 = 2*q1; // update q1
1756 r1 = 2*r1; // update r1
1757 }
1758 if (r2 + 1 >= d - r2) {
1759 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1760 q2 = 2*q2 + 1; // update q2
1761 r2 = 2*r2 + 1 - d; // update r2
1762 }
1763 else {
1764 if (q2 >= 0x80000000) magu.a = 1;
1765 q2 = 2*q2; // update q2
1766 r2 = 2*r2 + 1; // update r2
1767 }
1768 delta = d - 1 - r2;
1769 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1770 magu.m = q2 + 1; // resulting magic number
1771 magu.s = p - 32; // resulting shift
1772 return magu;
1773}
1774
1775/// magic - calculate the magic numbers required to codegen an integer sdiv as
1776/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1777/// or -1.
1778static ms magic64(int64_t d) {
1779 int64_t p;
1780 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1781 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1782 struct ms mag;
1783
1784 ad = d >= 0 ? d : -d;
1785 t = two63 + ((uint64_t)d >> 63);
1786 anc = t - 1 - t%ad; // absolute value of nc
1787 p = 63; // initialize p
1788 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1789 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1790 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1791 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1792 do {
1793 p = p + 1;
1794 q1 = 2*q1; // update q1 = 2p/abs(nc)
1795 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1796 if (r1 >= anc) { // must be unsigned comparison
1797 q1 = q1 + 1;
1798 r1 = r1 - anc;
1799 }
1800 q2 = 2*q2; // update q2 = 2p/abs(d)
1801 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1802 if (r2 >= ad) { // must be unsigned comparison
1803 q2 = q2 + 1;
1804 r2 = r2 - ad;
1805 }
1806 delta = ad - r2;
1807 } while (q1 < delta || (q1 == delta && r1 == 0));
1808
1809 mag.m = q2 + 1;
1810 if (d < 0) mag.m = -mag.m; // resulting magic number
1811 mag.s = p - 64; // resulting shift
1812 return mag;
1813}
1814
1815/// magicu - calculate the magic numbers required to codegen an integer udiv as
1816/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1817static mu magicu64(uint64_t d)
1818{
1819 int64_t p;
1820 uint64_t nc, delta, q1, r1, q2, r2;
1821 struct mu magu;
1822 magu.a = 0; // initialize "add" indicator
1823 nc = - 1 - (-d)%d;
1824 p = 63; // initialize p
1825 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1826 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1827 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1828 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1829 do {
1830 p = p + 1;
1831 if (r1 >= nc - r1 ) {
1832 q1 = 2*q1 + 1; // update q1
1833 r1 = 2*r1 - nc; // update r1
1834 }
1835 else {
1836 q1 = 2*q1; // update q1
1837 r1 = 2*r1; // update r1
1838 }
1839 if (r2 + 1 >= d - r2) {
1840 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1841 q2 = 2*q2 + 1; // update q2
1842 r2 = 2*r2 + 1 - d; // update r2
1843 }
1844 else {
1845 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1846 q2 = 2*q2; // update q2
1847 r2 = 2*r2 + 1; // update r2
1848 }
1849 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001850 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001851 magu.m = q2 + 1; // resulting magic number
1852 magu.s = p - 64; // resulting shift
1853 return magu;
1854}
1855
1856/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1857/// return a DAG expression to select that will generate the same value by
1858/// multiplying by a magic number. See:
1859/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1860SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001861 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001862 MVT::ValueType VT = N->getValueType(0);
1863
1864 // Check to see if we can do this.
1865 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1866 return SDOperand(); // BuildSDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001867
1868 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1869 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1870
1871 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001872 SDOperand Q;
1873 if (isOperationLegal(ISD::MULHS, VT))
1874 Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1875 DAG.getConstant(magics.m, VT));
1876 else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1877 Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1878 N->getOperand(0),
1879 DAG.getConstant(magics.m, VT)).Val, 1);
1880 else
1881 return SDOperand(); // No mulhs or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001882 // If d > 0 and m < 0, add the numerator
1883 if (d > 0 && magics.m < 0) {
1884 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1885 if (Created)
1886 Created->push_back(Q.Val);
1887 }
1888 // If d < 0 and m > 0, subtract the numerator.
1889 if (d < 0 && magics.m > 0) {
1890 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1891 if (Created)
1892 Created->push_back(Q.Val);
1893 }
1894 // Shift right algebraic if shift value is nonzero
1895 if (magics.s > 0) {
1896 Q = DAG.getNode(ISD::SRA, VT, Q,
1897 DAG.getConstant(magics.s, getShiftAmountTy()));
1898 if (Created)
1899 Created->push_back(Q.Val);
1900 }
1901 // Extract the sign bit and add it to the quotient
1902 SDOperand T =
1903 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1904 getShiftAmountTy()));
1905 if (Created)
1906 Created->push_back(T.Val);
1907 return DAG.getNode(ISD::ADD, VT, Q, T);
1908}
1909
1910/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1911/// return a DAG expression to select that will generate the same value by
1912/// multiplying by a magic number. See:
1913/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1914SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001915 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001916 MVT::ValueType VT = N->getValueType(0);
1917
1918 // Check to see if we can do this.
1919 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1920 return SDOperand(); // BuildUDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001921
1922 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1923 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1924
1925 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001926 SDOperand Q;
1927 if (isOperationLegal(ISD::MULHU, VT))
1928 Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1929 DAG.getConstant(magics.m, VT));
1930 else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1931 Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1932 N->getOperand(0),
1933 DAG.getConstant(magics.m, VT)).Val, 1);
1934 else
1935 return SDOperand(); // No mulhu or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001936 if (Created)
1937 Created->push_back(Q.Val);
1938
1939 if (magics.a == 0) {
1940 return DAG.getNode(ISD::SRL, VT, Q,
1941 DAG.getConstant(magics.s, getShiftAmountTy()));
1942 } else {
1943 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1944 if (Created)
1945 Created->push_back(NPQ.Val);
1946 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1947 DAG.getConstant(1, getShiftAmountTy()));
1948 if (Created)
1949 Created->push_back(NPQ.Val);
1950 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1951 if (Created)
1952 Created->push_back(NPQ.Val);
1953 return DAG.getNode(ISD::SRL, VT, NPQ,
1954 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1955 }
1956}