blob: 7958ab7b67fa9dbf76e2835bbcf0cb2cb1d7569f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
Evan Chengafc07f82007-08-16 07:24:22 +000039namespace {
40 // Hidden options for help debugging.
41 cl::opt<bool> DisableReMat("disable-rematerialization",
42 cl::init(false), cl::Hidden);
43}
44
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045STATISTIC(numIntervals, "Number of original intervals");
46STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
47STATISTIC(numFolded , "Number of loads/stores folded into instructions");
48
49char LiveIntervals::ID = 0;
50namespace {
51 RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55 AU.addPreserved<LiveVariables>();
56 AU.addRequired<LiveVariables>();
57 AU.addPreservedID(PHIEliminationID);
58 AU.addRequiredID(PHIEliminationID);
59 AU.addRequiredID(TwoAddressInstructionPassID);
60 AU.addRequired<LoopInfo>();
61 MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64void LiveIntervals::releaseMemory() {
65 mi2iMap_.clear();
66 i2miMap_.clear();
67 r2iMap_.clear();
Evan Cheng1204d172007-08-13 23:45:17 +000068 for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
69 delete ClonedMIs[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070}
71
72/// runOnMachineFunction - Register allocate the whole function
73///
74bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
75 mf_ = &fn;
76 tm_ = &fn.getTarget();
77 mri_ = tm_->getRegisterInfo();
78 tii_ = tm_->getInstrInfo();
79 lv_ = &getAnalysis<LiveVariables>();
80 allocatableRegs_ = mri_->getAllocatableSet(fn);
81
82 // Number MachineInstrs and MachineBasicBlocks.
83 // Initialize MBB indexes to a sentinal.
Evan Cheng1204d172007-08-13 23:45:17 +000084 MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085
86 unsigned MIIndex = 0;
87 for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
88 MBB != E; ++MBB) {
Evan Cheng1204d172007-08-13 23:45:17 +000089 unsigned StartIdx = MIIndex;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
92 I != E; ++I) {
93 bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
94 assert(inserted && "multiple MachineInstr -> index mappings");
95 i2miMap_.push_back(I);
96 MIIndex += InstrSlots::NUM;
97 }
Evan Cheng1204d172007-08-13 23:45:17 +000098
99 // Set the MBB2IdxMap entry for this MBB.
100 MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 }
102
103 computeIntervals();
104
105 numIntervals += getNumIntervals();
106
107 DOUT << "********** INTERVALS **********\n";
108 for (iterator I = begin(), E = end(); I != E; ++I) {
109 I->second.print(DOUT, mri_);
110 DOUT << "\n";
111 }
112
113 numIntervalsAfter += getNumIntervals();
114 DEBUG(dump());
115 return true;
116}
117
118/// print - Implement the dump method.
119void LiveIntervals::print(std::ostream &O, const Module* ) const {
120 O << "********** INTERVALS **********\n";
121 for (const_iterator I = begin(), E = end(); I != E; ++I) {
122 I->second.print(DOUT, mri_);
123 DOUT << "\n";
124 }
125
126 O << "********** MACHINEINSTRS **********\n";
127 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
128 mbbi != mbbe; ++mbbi) {
129 O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
130 for (MachineBasicBlock::iterator mii = mbbi->begin(),
131 mie = mbbi->end(); mii != mie; ++mii) {
132 O << getInstructionIndex(mii) << '\t' << *mii;
133 }
134 }
135}
136
137// Not called?
138/// CreateNewLiveInterval - Create a new live interval with the given live
139/// ranges. The new live interval will have an infinite spill weight.
140LiveInterval&
141LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
142 const std::vector<LiveRange> &LRs) {
143 const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
144
145 // Create a new virtual register for the spill interval.
146 unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
147
148 // Replace the old virtual registers in the machine operands with the shiny
149 // new one.
150 for (std::vector<LiveRange>::const_iterator
151 I = LRs.begin(), E = LRs.end(); I != E; ++I) {
152 unsigned Index = getBaseIndex(I->start);
153 unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
154
155 for (; Index != End; Index += InstrSlots::NUM) {
156 // Skip deleted instructions
157 while (Index != End && !getInstructionFromIndex(Index))
158 Index += InstrSlots::NUM;
159
160 if (Index == End) break;
161
162 MachineInstr *MI = getInstructionFromIndex(Index);
163
164 for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
165 MachineOperand &MOp = MI->getOperand(J);
166 if (MOp.isRegister() && MOp.getReg() == LI->reg)
167 MOp.setReg(NewVReg);
168 }
169 }
170 }
171
172 LiveInterval &NewLI = getOrCreateInterval(NewVReg);
173
174 // The spill weight is now infinity as it cannot be spilled again
175 NewLI.weight = float(HUGE_VAL);
176
177 for (std::vector<LiveRange>::const_iterator
178 I = LRs.begin(), E = LRs.end(); I != E; ++I) {
179 DOUT << " Adding live range " << *I << " to new interval\n";
180 NewLI.addRange(*I);
181 }
182
183 DOUT << "Created new live interval " << NewLI << "\n";
184 return NewLI;
185}
186
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
188/// two addr elimination.
189static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
190 const TargetInstrInfo *TII) {
191 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
192 MachineOperand &MO1 = MI->getOperand(i);
193 if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
194 for (unsigned j = i+1; j < e; ++j) {
195 MachineOperand &MO2 = MI->getOperand(j);
196 if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
197 MI->getInstrDescriptor()->
198 getOperandConstraint(j, TOI::TIED_TO) == (int)i)
199 return true;
200 }
201 }
202 }
203 return false;
204}
205
Evan Cheng1204d172007-08-13 23:45:17 +0000206/// isReMaterializable - Returns true if the definition MI of the specified
207/// val# of the specified interval is re-materializable.
Evan Cheng983b81d2007-08-29 20:45:00 +0000208bool LiveIntervals::isReMaterializable(const LiveInterval &li,
209 const VNInfo *ValNo, MachineInstr *MI) {
Evan Chengafc07f82007-08-16 07:24:22 +0000210 if (DisableReMat)
211 return false;
212
Evan Cheng1204d172007-08-13 23:45:17 +0000213 if (tii_->isTriviallyReMaterializable(MI))
214 return true;
215
216 int FrameIdx = 0;
217 if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
218 !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
219 return false;
220
221 // This is a load from fixed stack slot. It can be rematerialized unless it's
222 // re-defined by a two-address instruction.
Evan Cheng983b81d2007-08-29 20:45:00 +0000223 for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
224 i != e; ++i) {
225 const VNInfo *VNI = *i;
226 if (VNI == ValNo)
Evan Cheng1204d172007-08-13 23:45:17 +0000227 continue;
Evan Cheng983b81d2007-08-29 20:45:00 +0000228 unsigned DefIdx = VNI->def;
Evan Cheng1204d172007-08-13 23:45:17 +0000229 if (DefIdx == ~1U)
230 continue; // Dead val#.
231 MachineInstr *DefMI = (DefIdx == ~0u)
232 ? NULL : getInstructionFromIndex(DefIdx);
233 if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
234 return false;
235 }
236 return true;
237}
238
239bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
240 unsigned index, unsigned i,
241 int slot, unsigned reg) {
242 MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
243 if (fmi) {
244 // Attempt to fold the memory reference into the instruction. If
245 // we can do this, we don't need to insert spill code.
246 if (lv_)
247 lv_->instructionChanged(MI, fmi);
248 MachineBasicBlock &MBB = *MI->getParent();
249 vrm.virtFolded(reg, MI, i, fmi);
250 mi2iMap_.erase(MI);
251 i2miMap_[index/InstrSlots::NUM] = fmi;
252 mi2iMap_[fmi] = index;
253 MI = MBB.insert(MBB.erase(MI), fmi);
254 ++numFolded;
255 return true;
256 }
257 return false;
258}
259
260std::vector<LiveInterval*> LiveIntervals::
261addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
262 // since this is called after the analysis is done we don't know if
263 // LiveVariables is available
264 lv_ = getAnalysisToUpdate<LiveVariables>();
265
266 std::vector<LiveInterval*> added;
267
268 assert(li.weight != HUGE_VALF &&
269 "attempt to spill already spilled interval!");
270
271 DOUT << "\t\t\t\tadding intervals for spills for interval: ";
272 li.print(DOUT, mri_);
273 DOUT << '\n';
274
275 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
276
277 unsigned NumValNums = li.getNumValNums();
278 SmallVector<MachineInstr*, 4> ReMatDefs;
279 ReMatDefs.resize(NumValNums, NULL);
280 SmallVector<MachineInstr*, 4> ReMatOrigDefs;
281 ReMatOrigDefs.resize(NumValNums, NULL);
282 SmallVector<int, 4> ReMatIds;
283 ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
284 BitVector ReMatDelete(NumValNums);
285 unsigned slot = VirtRegMap::MAX_STACK_SLOT;
286
287 bool NeedStackSlot = false;
Evan Cheng983b81d2007-08-29 20:45:00 +0000288 for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
289 i != e; ++i) {
290 const VNInfo *VNI = *i;
291 unsigned VN = VNI->id;
292 unsigned DefIdx = VNI->def;
Evan Cheng1204d172007-08-13 23:45:17 +0000293 if (DefIdx == ~1U)
294 continue; // Dead val#.
295 // Is the def for the val# rematerializable?
296 MachineInstr *DefMI = (DefIdx == ~0u)
297 ? NULL : getInstructionFromIndex(DefIdx);
Evan Cheng983b81d2007-08-29 20:45:00 +0000298 if (DefMI && isReMaterializable(li, VNI, DefMI)) {
Evan Cheng1204d172007-08-13 23:45:17 +0000299 // Remember how to remat the def of this val#.
Evan Cheng983b81d2007-08-29 20:45:00 +0000300 ReMatOrigDefs[VN] = DefMI;
Evan Cheng1204d172007-08-13 23:45:17 +0000301 // Original def may be modified so we have to make a copy here. vrm must
302 // delete these!
Evan Cheng983b81d2007-08-29 20:45:00 +0000303 ReMatDefs[VN] = DefMI = DefMI->clone();
Evan Cheng1204d172007-08-13 23:45:17 +0000304 vrm.setVirtIsReMaterialized(reg, DefMI);
305
306 bool CanDelete = true;
Evan Cheng983b81d2007-08-29 20:45:00 +0000307 for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
308 unsigned KillIdx = VNI->kills[j];
Evan Cheng1204d172007-08-13 23:45:17 +0000309 MachineInstr *KillMI = (KillIdx & 1)
310 ? NULL : getInstructionFromIndex(KillIdx);
311 // Kill is a phi node, not all of its uses can be rematerialized.
312 // It must not be deleted.
313 if (!KillMI) {
314 CanDelete = false;
315 // Need a stack slot if there is any live range where uses cannot be
316 // rematerialized.
317 NeedStackSlot = true;
318 break;
319 }
320 }
321
322 if (CanDelete)
Evan Cheng983b81d2007-08-29 20:45:00 +0000323 ReMatDelete.set(VN);
Evan Cheng1204d172007-08-13 23:45:17 +0000324 } else {
325 // Need a stack slot if there is any live range where uses cannot be
326 // rematerialized.
327 NeedStackSlot = true;
328 }
329 }
330
331 // One stack slot per live interval.
332 if (NeedStackSlot)
333 slot = vrm.assignVirt2StackSlot(reg);
334
335 for (LiveInterval::Ranges::const_iterator
336 I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
Evan Cheng983b81d2007-08-29 20:45:00 +0000337 MachineInstr *DefMI = ReMatDefs[I->valno->id];
338 MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
Evan Cheng1204d172007-08-13 23:45:17 +0000339 bool DefIsReMat = DefMI != NULL;
Evan Cheng983b81d2007-08-29 20:45:00 +0000340 bool CanDelete = ReMatDelete[I->valno->id];
Evan Cheng1204d172007-08-13 23:45:17 +0000341 int LdSlot = 0;
342 bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
343 unsigned index = getBaseIndex(I->start);
344 unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
345 for (; index != end; index += InstrSlots::NUM) {
346 // skip deleted instructions
347 while (index != end && !getInstructionFromIndex(index))
348 index += InstrSlots::NUM;
349 if (index == end) break;
350
351 MachineInstr *MI = getInstructionFromIndex(index);
352
353 RestartInstruction:
354 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
355 MachineOperand& mop = MI->getOperand(i);
356 if (mop.isRegister() && mop.getReg() == li.reg) {
357 if (DefIsReMat) {
358 // If this is the rematerializable definition MI itself and
359 // all of its uses are rematerialized, simply delete it.
360 if (MI == OrigDefMI) {
361 if (CanDelete) {
362 RemoveMachineInstrFromMaps(MI);
363 MI->eraseFromParent();
364 break;
365 } else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
366 // Folding the load/store can completely change the instruction
367 // in unpredictable ways, rescan it from the beginning.
368 goto RestartInstruction;
369 } else if (isLoadSS &&
370 tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
371 // FIXME: Other rematerializable loads can be folded as well.
372 // Folding the load/store can completely change the
373 // instruction in unpredictable ways, rescan it from
374 // the beginning.
375 goto RestartInstruction;
376 }
377 } else {
378 if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
379 // Folding the load/store can completely change the instruction in
380 // unpredictable ways, rescan it from the beginning.
381 goto RestartInstruction;
382 }
383
384 // Create a new virtual register for the spill interval.
385 unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
386
387 // Scan all of the operands of this instruction rewriting operands
388 // to use NewVReg instead of li.reg as appropriate. We do this for
389 // two reasons:
390 //
391 // 1. If the instr reads the same spilled vreg multiple times, we
392 // want to reuse the NewVReg.
393 // 2. If the instr is a two-addr instruction, we are required to
394 // keep the src/dst regs pinned.
395 //
396 // Keep track of whether we replace a use and/or def so that we can
397 // create the spill interval with the appropriate range.
398 mop.setReg(NewVReg);
399
400 bool HasUse = mop.isUse();
401 bool HasDef = mop.isDef();
402 for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
403 if (MI->getOperand(j).isReg() &&
404 MI->getOperand(j).getReg() == li.reg) {
405 MI->getOperand(j).setReg(NewVReg);
406 HasUse |= MI->getOperand(j).isUse();
407 HasDef |= MI->getOperand(j).isDef();
408 }
409 }
410
411 vrm.grow();
412 if (DefIsReMat) {
413 vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
Evan Cheng983b81d2007-08-29 20:45:00 +0000414 if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
Evan Cheng1204d172007-08-13 23:45:17 +0000415 // Each valnum may have its own remat id.
Evan Cheng983b81d2007-08-29 20:45:00 +0000416 ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
Evan Cheng1204d172007-08-13 23:45:17 +0000417 } else {
Evan Cheng983b81d2007-08-29 20:45:00 +0000418 vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
Evan Cheng1204d172007-08-13 23:45:17 +0000419 }
420 if (!CanDelete || (HasUse && HasDef)) {
421 // If this is a two-addr instruction then its use operands are
422 // rematerializable but its def is not. It should be assigned a
423 // stack slot.
424 vrm.assignVirt2StackSlot(NewVReg, slot);
425 }
426 } else {
427 vrm.assignVirt2StackSlot(NewVReg, slot);
428 }
429
430 // create a new register interval for this spill / remat.
431 LiveInterval &nI = getOrCreateInterval(NewVReg);
432 assert(nI.empty());
433
434 // the spill weight is now infinity as it
435 // cannot be spilled again
436 nI.weight = HUGE_VALF;
437
438 if (HasUse) {
439 LiveRange LR(getLoadIndex(index), getUseIndex(index),
440 nI.getNextValue(~0U, 0));
441 DOUT << " +" << LR;
442 nI.addRange(LR);
443 }
444 if (HasDef) {
445 LiveRange LR(getDefIndex(index), getStoreIndex(index),
446 nI.getNextValue(~0U, 0));
447 DOUT << " +" << LR;
448 nI.addRange(LR);
449 }
450
451 added.push_back(&nI);
452
453 // update live variables if it is available
454 if (lv_)
455 lv_->addVirtualRegisterKilled(NewVReg, MI);
456
457 DOUT << "\t\t\t\tadded new interval: ";
458 nI.print(DOUT, mri_);
459 DOUT << '\n';
460 }
461 }
462 }
463 }
464
465 return added;
466}
467
468void LiveIntervals::printRegName(unsigned reg) const {
469 if (MRegisterInfo::isPhysicalRegister(reg))
470 cerr << mri_->getName(reg);
471 else
472 cerr << "%reg" << reg;
473}
474
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
476 MachineBasicBlock::iterator mi,
477 unsigned MIIdx,
478 LiveInterval &interval) {
479 DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
480 LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
481
482 // Virtual registers may be defined multiple times (due to phi
483 // elimination and 2-addr elimination). Much of what we do only has to be
484 // done once for the vreg. We use an empty interval to detect the first
485 // time we see a vreg.
486 if (interval.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 // Get the Idx of the defining instructions.
488 unsigned defIndex = getDefIndex(MIIdx);
Evan Cheng983b81d2007-08-29 20:45:00 +0000489 VNInfo *ValNo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 unsigned SrcReg, DstReg;
491 if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
Evan Cheng983b81d2007-08-29 20:45:00 +0000492 ValNo = interval.getNextValue(defIndex, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000493 else
Evan Cheng983b81d2007-08-29 20:45:00 +0000494 ValNo = interval.getNextValue(defIndex, SrcReg);
495
496 assert(ValNo->id == 0 && "First value in interval is not 0?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497
498 // Loop over all of the blocks that the vreg is defined in. There are
499 // two cases we have to handle here. The most common case is a vreg
500 // whose lifetime is contained within a basic block. In this case there
501 // will be a single kill, in MBB, which comes after the definition.
502 if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
503 // FIXME: what about dead vars?
504 unsigned killIdx;
505 if (vi.Kills[0] != mi)
506 killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
507 else
508 killIdx = defIndex+1;
509
510 // If the kill happens after the definition, we have an intra-block
511 // live range.
512 if (killIdx > defIndex) {
513 assert(vi.AliveBlocks.none() &&
514 "Shouldn't be alive across any blocks!");
Evan Cheng983b81d2007-08-29 20:45:00 +0000515 LiveRange LR(defIndex, killIdx, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000516 interval.addRange(LR);
517 DOUT << " +" << LR << "\n";
Evan Cheng983b81d2007-08-29 20:45:00 +0000518 interval.addKill(*ValNo, killIdx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000519 return;
520 }
521 }
522
523 // The other case we handle is when a virtual register lives to the end
524 // of the defining block, potentially live across some blocks, then is
525 // live into some number of blocks, but gets killed. Start by adding a
526 // range that goes from this definition to the end of the defining block.
527 LiveRange NewLR(defIndex,
528 getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
Evan Cheng983b81d2007-08-29 20:45:00 +0000529 ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000530 DOUT << " +" << NewLR;
531 interval.addRange(NewLR);
532
533 // Iterate over all of the blocks that the variable is completely
534 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
535 // live interval.
536 for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
537 if (vi.AliveBlocks[i]) {
538 MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
539 if (!MBB->empty()) {
540 LiveRange LR(getMBBStartIdx(i),
541 getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
Evan Cheng983b81d2007-08-29 20:45:00 +0000542 ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 interval.addRange(LR);
544 DOUT << " +" << LR;
545 }
546 }
547 }
548
549 // Finally, this virtual register is live from the start of any killing
550 // block to the 'use' slot of the killing instruction.
551 for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
552 MachineInstr *Kill = vi.Kills[i];
Evan Cheng58c2b762007-08-08 03:00:28 +0000553 unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000554 LiveRange LR(getMBBStartIdx(Kill->getParent()),
Evan Cheng983b81d2007-08-29 20:45:00 +0000555 killIdx, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000557 interval.addKill(*ValNo, killIdx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000558 DOUT << " +" << LR;
559 }
560
561 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000562 // If this is the second time we see a virtual register definition, it
563 // must be due to phi elimination or two addr elimination. If this is
564 // the result of two address elimination, then the vreg is one of the
565 // def-and-use register operand.
566 if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
567 // If this is a two-address definition, then we have already processed
568 // the live range. The only problem is that we didn't realize there
569 // are actually two values in the live interval. Because of this we
570 // need to take the LiveRegion that defines this register and split it
571 // into two values.
572 unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
573 unsigned RedefIndex = getDefIndex(MIIdx);
574
Evan Cheng816a7f32007-08-11 00:59:19 +0000575 const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
Evan Cheng983b81d2007-08-29 20:45:00 +0000576 VNInfo *OldValNo = OldLR->valno;
Evan Cheng816a7f32007-08-11 00:59:19 +0000577 unsigned OldEnd = OldLR->end;
578
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000579 // Delete the initial value, which should be short and continuous,
580 // because the 2-addr copy must be in the same MBB as the redef.
581 interval.removeRange(DefIndex, RedefIndex);
582
583 // Two-address vregs should always only be redefined once. This means
584 // that at this point, there should be exactly one value number in it.
585 assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
586
587 // The new value number (#1) is defined by the instruction we claimed
588 // defined value #0.
Evan Cheng983b81d2007-08-29 20:45:00 +0000589 VNInfo *ValNo = interval.getNextValue(0, 0);
590 interval.copyValNumInfo(*ValNo, *OldValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591
592 // Value#0 is now defined by the 2-addr instruction.
Evan Cheng983b81d2007-08-29 20:45:00 +0000593 OldValNo->def = RedefIndex;
594 OldValNo->reg = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000595
596 // Add the new live interval which replaces the range for the input copy.
597 LiveRange LR(DefIndex, RedefIndex, ValNo);
598 DOUT << " replace range with " << LR;
599 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000600 interval.addKill(*ValNo, RedefIndex);
601 interval.removeKills(*ValNo, RedefIndex, OldEnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602
603 // If this redefinition is dead, we need to add a dummy unit live
604 // range covering the def slot.
605 if (lv_->RegisterDefIsDead(mi, interval.reg))
Evan Cheng983b81d2007-08-29 20:45:00 +0000606 interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607
608 DOUT << " RESULT: ";
609 interval.print(DOUT, mri_);
610
611 } else {
612 // Otherwise, this must be because of phi elimination. If this is the
613 // first redefinition of the vreg that we have seen, go back and change
614 // the live range in the PHI block to be a different value number.
615 if (interval.containsOneValue()) {
616 assert(vi.Kills.size() == 1 &&
617 "PHI elimination vreg should have one kill, the PHI itself!");
618
619 // Remove the old range that we now know has an incorrect number.
Evan Cheng983b81d2007-08-29 20:45:00 +0000620 VNInfo *VNI = interval.getFirstValNumInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621 MachineInstr *Killer = vi.Kills[0];
622 unsigned Start = getMBBStartIdx(Killer->getParent());
623 unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
624 DOUT << " Removing [" << Start << "," << End << "] from: ";
625 interval.print(DOUT, mri_); DOUT << "\n";
626 interval.removeRange(Start, End);
Evan Cheng983b81d2007-08-29 20:45:00 +0000627 interval.addKill(*VNI, Start+1); // odd # means phi node
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 DOUT << " RESULT: "; interval.print(DOUT, mri_);
629
630 // Replace the interval with one of a NEW value number. Note that this
631 // value number isn't actually defined by an instruction, weird huh? :)
Evan Cheng4151fde2007-08-07 23:49:57 +0000632 LiveRange LR(Start, End, interval.getNextValue(~0, 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 DOUT << " replace range with " << LR;
634 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000635 interval.addKill(*LR.valno, End);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636 DOUT << " RESULT: "; interval.print(DOUT, mri_);
637 }
638
639 // In the case of PHI elimination, each variable definition is only
640 // live until the end of the block. We've already taken care of the
641 // rest of the live range.
642 unsigned defIndex = getDefIndex(MIIdx);
643
Evan Cheng983b81d2007-08-29 20:45:00 +0000644 VNInfo *ValNo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 unsigned SrcReg, DstReg;
646 if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
Evan Cheng983b81d2007-08-29 20:45:00 +0000647 ValNo = interval.getNextValue(defIndex, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648 else
Evan Cheng983b81d2007-08-29 20:45:00 +0000649 ValNo = interval.getNextValue(defIndex, SrcReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650
Evan Cheng0f727342007-08-08 07:03:29 +0000651 unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
Evan Cheng983b81d2007-08-29 20:45:00 +0000652 LiveRange LR(defIndex, killIndex, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000654 interval.addKill(*ValNo, killIndex-1); // odd # means phi node
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655 DOUT << " +" << LR;
656 }
657 }
658
659 DOUT << '\n';
660}
661
662void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
663 MachineBasicBlock::iterator mi,
664 unsigned MIIdx,
665 LiveInterval &interval,
666 unsigned SrcReg) {
667 // A physical register cannot be live across basic block, so its
668 // lifetime must end somewhere in its defining basic block.
669 DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
670
671 unsigned baseIndex = MIIdx;
672 unsigned start = getDefIndex(baseIndex);
673 unsigned end = start;
674
675 // If it is not used after definition, it is considered dead at
676 // the instruction defining it. Hence its interval is:
677 // [defSlot(def), defSlot(def)+1)
678 if (lv_->RegisterDefIsDead(mi, interval.reg)) {
679 DOUT << " dead";
680 end = getDefIndex(start) + 1;
681 goto exit;
682 }
683
684 // If it is not dead on definition, it must be killed by a
685 // subsequent instruction. Hence its interval is:
686 // [defSlot(def), useSlot(kill)+1)
687 while (++mi != MBB->end()) {
688 baseIndex += InstrSlots::NUM;
689 if (lv_->KillsRegister(mi, interval.reg)) {
690 DOUT << " killed";
691 end = getUseIndex(baseIndex) + 1;
692 goto exit;
693 } else if (lv_->ModifiesRegister(mi, interval.reg)) {
694 // Another instruction redefines the register before it is ever read.
695 // Then the register is essentially dead at the instruction that defines
696 // it. Hence its interval is:
697 // [defSlot(def), defSlot(def)+1)
698 DOUT << " dead";
699 end = getDefIndex(start) + 1;
700 goto exit;
701 }
702 }
703
704 // The only case we should have a dead physreg here without a killing or
705 // instruction where we know it's dead is if it is live-in to the function
706 // and never used.
707 assert(!SrcReg && "physreg was not killed in defining block!");
708 end = getDefIndex(start) + 1; // It's dead.
709
710exit:
711 assert(start < end && "did not find end of interval?");
712
713 // Already exists? Extend old live interval.
714 LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
Evan Cheng983b81d2007-08-29 20:45:00 +0000715 VNInfo *ValNo = (OldLR != interval.end())
716 ? OldLR->valno : interval.getNextValue(start, SrcReg);
717 LiveRange LR(start, end, ValNo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000719 interval.addKill(*LR.valno, end);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 DOUT << " +" << LR << '\n';
721}
722
723void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
724 MachineBasicBlock::iterator MI,
725 unsigned MIIdx,
726 unsigned reg) {
727 if (MRegisterInfo::isVirtualRegister(reg))
728 handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
729 else if (allocatableRegs_[reg]) {
730 unsigned SrcReg, DstReg;
731 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
732 SrcReg = 0;
733 handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
734 // Def of a register also defines its sub-registers.
735 for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
736 // Avoid processing some defs more than once.
737 if (!MI->findRegisterDefOperand(*AS))
738 handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
739 }
740}
741
742void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
743 unsigned MIIdx,
744 LiveInterval &interval, bool isAlias) {
745 DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
746
747 // Look for kills, if it reaches a def before it's killed, then it shouldn't
748 // be considered a livein.
749 MachineBasicBlock::iterator mi = MBB->begin();
750 unsigned baseIndex = MIIdx;
751 unsigned start = baseIndex;
752 unsigned end = start;
753 while (mi != MBB->end()) {
754 if (lv_->KillsRegister(mi, interval.reg)) {
755 DOUT << " killed";
756 end = getUseIndex(baseIndex) + 1;
757 goto exit;
758 } else if (lv_->ModifiesRegister(mi, interval.reg)) {
759 // Another instruction redefines the register before it is ever read.
760 // Then the register is essentially dead at the instruction that defines
761 // it. Hence its interval is:
762 // [defSlot(def), defSlot(def)+1)
763 DOUT << " dead";
764 end = getDefIndex(start) + 1;
765 goto exit;
766 }
767
768 baseIndex += InstrSlots::NUM;
769 ++mi;
770 }
771
772exit:
773 // Live-in register might not be used at all.
774 if (end == MIIdx) {
775 if (isAlias) {
776 DOUT << " dead";
777 end = getDefIndex(MIIdx) + 1;
778 } else {
779 DOUT << " live through";
780 end = baseIndex;
781 }
782 }
783
Evan Cheng4151fde2007-08-07 23:49:57 +0000784 LiveRange LR(start, end, interval.getNextValue(start, 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 interval.addRange(LR);
Evan Cheng983b81d2007-08-29 20:45:00 +0000786 interval.addKill(*LR.valno, end);
Evan Cheng0f727342007-08-08 07:03:29 +0000787 DOUT << " +" << LR << '\n';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788}
789
790/// computeIntervals - computes the live intervals for virtual
791/// registers. for some ordering of the machine instructions [1,N] a
792/// live interval is an interval [i, j) where 1 <= i <= j < N for
793/// which a variable is live
794void LiveIntervals::computeIntervals() {
795 DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
796 << "********** Function: "
797 << ((Value*)mf_->getFunction())->getName() << '\n';
798 // Track the index of the current machine instr.
799 unsigned MIIndex = 0;
800 for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
801 MBBI != E; ++MBBI) {
802 MachineBasicBlock *MBB = MBBI;
803 DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
804
805 MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
806
807 if (MBB->livein_begin() != MBB->livein_end()) {
808 // Create intervals for live-ins to this BB first.
809 for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
810 LE = MBB->livein_end(); LI != LE; ++LI) {
811 handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
812 // Multiple live-ins can alias the same register.
813 for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
814 if (!hasInterval(*AS))
815 handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
816 true);
817 }
818 }
819
820 for (; MI != miEnd; ++MI) {
821 DOUT << MIIndex << "\t" << *MI;
822
823 // Handle defs.
824 for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
825 MachineOperand &MO = MI->getOperand(i);
826 // handle register defs - build intervals
827 if (MO.isRegister() && MO.getReg() && MO.isDef())
828 handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
829 }
830
831 MIIndex += InstrSlots::NUM;
832 }
833 }
834}
835
836LiveInterval LiveIntervals::createInterval(unsigned reg) {
837 float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
838 HUGE_VALF : 0.0F;
839 return LiveInterval(reg, Weight);
840}