blob: 4e34d4ef6a8ec07fba5e225e0908934e0420c85a [file] [log] [blame]
Chris Lattnerb22a04d2006-03-25 07:51:43 +00001//===- PPCInstrAltivec.td - The PowerPC Altivec Extension --*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Altivec extension to the PowerPC instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Altivec transformation functions and pattern fragments.
16//
17
18// VSPLT_get_imm xform function: convert vector_shuffle mask to VSPLT* imm.
19def VSPLT_get_imm : SDNodeXForm<build_vector, [{
20 return getI32Imm(PPC::getVSPLTImmediate(N));
21}]>;
22
23def VSPLT_shuffle_mask : PatLeaf<(build_vector), [{
24 return PPC::isSplatShuffleMask(N);
25}], VSPLT_get_imm>;
26
27def vecimm0 : PatLeaf<(build_vector), [{
28 return PPC::isZeroVector(N);
29}]>;
30
31
32// VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm.
33def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{
34 char Val;
35 PPC::isVecSplatImm(N, 1, &Val);
36 return getI32Imm(Val);
37}]>;
38def vecspltisb : PatLeaf<(build_vector), [{
39 return PPC::isVecSplatImm(N, 1);
40}], VSPLTISB_get_imm>;
41
42// VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm.
43def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{
44 char Val;
45 PPC::isVecSplatImm(N, 2, &Val);
46 return getI32Imm(Val);
47}]>;
48def vecspltish : PatLeaf<(build_vector), [{
49 return PPC::isVecSplatImm(N, 2);
50}], VSPLTISH_get_imm>;
51
52// VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm.
53def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{
54 char Val;
55 PPC::isVecSplatImm(N, 4, &Val);
56 return getI32Imm(Val);
57}]>;
58def vecspltisw : PatLeaf<(build_vector), [{
59 return PPC::isVecSplatImm(N, 4);
60}], VSPLTISW_get_imm>;
61
62
63
64//===----------------------------------------------------------------------===//
65// Instruction Definitions.
66
67def IMPLICIT_DEF_VRRC : Pseudo<(ops VRRC:$rD), "; $rD = IMPLICIT_DEF_VRRC",
68 [(set VRRC:$rD, (v4f32 (undef)))]>;
69
70let isLoad = 1, PPC970_Unit = 2 in { // Loads.
71def LVEBX: XForm_1<31, 7, (ops VRRC:$vD, memrr:$src),
72 "lvebx $vD, $src", LdStGeneral,
73 [(set VRRC:$vD, (v16i8 (PPClve_x xoaddr:$src)))]>;
74def LVEHX: XForm_1<31, 39, (ops VRRC:$vD, memrr:$src),
75 "lvehx $vD, $src", LdStGeneral,
76 [(set VRRC:$vD, (v8i16 (PPClve_x xoaddr:$src)))]>;
77def LVEWX: XForm_1<31, 71, (ops VRRC:$vD, memrr:$src),
78 "lvewx $vD, $src", LdStGeneral,
79 [(set VRRC:$vD, (v4f32 (PPClve_x xoaddr:$src)))]>;
80def LVX : XForm_1<31, 103, (ops VRRC:$vD, memrr:$src),
81 "lvx $vD, $src", LdStGeneral,
82 [(set VRRC:$vD, (v4f32 (load xoaddr:$src)))]>;
83}
84
85def LVSL : XForm_1<31, 6, (ops VRRC:$vD, GPRC:$base, GPRC:$rA),
86 "lvsl $vD, $base, $rA", LdStGeneral,
87 []>, PPC970_Unit_LSU;
88def LVSR : XForm_1<31, 38, (ops VRRC:$vD, GPRC:$base, GPRC:$rA),
89 "lvsl $vD, $base, $rA", LdStGeneral,
90 []>, PPC970_Unit_LSU;
91
92let isStore = 1, noResults = 1, PPC970_Unit = 2 in { // Stores.
93def STVEBX: XForm_8<31, 135, (ops VRRC:$rS, GPRC:$rA, GPRC:$rB),
94 "stvebx $rS, $rA, $rB", LdStGeneral,
95 []>;
96def STVEHX: XForm_8<31, 167, (ops VRRC:$rS, GPRC:$rA, GPRC:$rB),
97 "stvehx $rS, $rA, $rB", LdStGeneral,
98 []>;
99def STVEWX: XForm_8<31, 199, (ops VRRC:$rS, GPRC:$rA, GPRC:$rB),
100 "stvewx $rS, $rA, $rB", LdStGeneral,
101 []>;
102def STVX : XForm_8<31, 231, (ops VRRC:$rS, memrr:$dst),
103 "stvx $rS, $dst", LdStGeneral,
104 [(store (v4f32 VRRC:$rS), xoaddr:$dst)]>;
105}
106
107let PPC970_Unit = 5 in { // VALU Operations.
108// VA-Form instructions. 3-input AltiVec ops.
109def VMADDFP : VAForm_1<46, (ops VRRC:$vD, VRRC:$vA, VRRC:$vC, VRRC:$vB),
110 "vmaddfp $vD, $vA, $vC, $vB", VecFP,
111 [(set VRRC:$vD, (fadd (fmul VRRC:$vA, VRRC:$vC),
112 VRRC:$vB))]>,
113 Requires<[FPContractions]>;
114def VNMSUBFP: VAForm_1<47, (ops VRRC:$vD, VRRC:$vA, VRRC:$vC, VRRC:$vB),
115 "vnmsubfp $vD, $vA, $vC, $vB", VecFP,
116 [(set VRRC:$vD, (fneg (fsub (fmul VRRC:$vA, VRRC:$vC),
117 VRRC:$vB)))]>,
118 Requires<[FPContractions]>;
119
120def VPERM : VAForm_1<43, (ops VRRC:$vD, VRRC:$vA, VRRC:$vC, VRRC:$vB),
121 "vperm $vD, $vA, $vB, $vC", VecPerm,
122 [(set VRRC:$vD,
123 (PPCvperm (v4f32 VRRC:$vA), VRRC:$vB, VRRC:$vC))]>;
124
125
126// VX-Form instructions. AltiVec arithmetic ops.
127def VADDFP : VXForm_1<10, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
128 "vaddfp $vD, $vA, $vB", VecFP,
129 [(set VRRC:$vD, (fadd VRRC:$vA, VRRC:$vB))]>;
130def VADDUWM : VXForm_1<128, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
131 "vadduwm $vD, $vA, $vB", VecGeneral,
132 [(set VRRC:$vD, (add (v4i32 VRRC:$vA), VRRC:$vB))]>;
133def VCFSX : VXForm_1<842, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
134 "vcfsx $vD, $vB, $UIMM", VecFP,
135 []>;
136def VCFUX : VXForm_1<778, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
137 "vcfux $vD, $vB, $UIMM", VecFP,
138 []>;
139def VCTSXS : VXForm_1<970, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
140 "vctsxs $vD, $vB, $UIMM", VecFP,
141 []>;
142def VCTUXS : VXForm_1<906, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
143 "vctuxs $vD, $vB, $UIMM", VecFP,
144 []>;
145def VEXPTEFP : VXForm_2<394, (ops VRRC:$vD, VRRC:$vB),
146 "vexptefp $vD, $vB", VecFP,
147 []>;
148def VLOGEFP : VXForm_2<458, (ops VRRC:$vD, VRRC:$vB),
149 "vlogefp $vD, $vB", VecFP,
150 []>;
151def VMAXFP : VXForm_1<1034, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
152 "vmaxfp $vD, $vA, $vB", VecFP,
153 []>;
154def VMINFP : VXForm_1<1098, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
155 "vminfp $vD, $vA, $vB", VecFP,
156 []>;
157def VREFP : VXForm_2<266, (ops VRRC:$vD, VRRC:$vB),
158 "vrefp $vD, $vB", VecFP,
159 []>;
160def VRFIM : VXForm_2<714, (ops VRRC:$vD, VRRC:$vB),
161 "vrfim $vD, $vB", VecFP,
162 []>;
163def VRFIN : VXForm_2<522, (ops VRRC:$vD, VRRC:$vB),
164 "vrfin $vD, $vB", VecFP,
165 []>;
166def VRFIP : VXForm_2<650, (ops VRRC:$vD, VRRC:$vB),
167 "vrfip $vD, $vB", VecFP,
168 []>;
169def VRFIZ : VXForm_2<586, (ops VRRC:$vD, VRRC:$vB),
170 "vrfiz $vD, $vB", VecFP,
171 []>;
172def VRSQRTEFP : VXForm_2<330, (ops VRRC:$vD, VRRC:$vB),
173 "vrsqrtefp $vD, $vB", VecFP,
174 []>;
175def VSUBFP : VXForm_1<74, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
176 "vsubfp $vD, $vA, $vB", VecFP,
177 [(set VRRC:$vD, (fsub VRRC:$vA, VRRC:$vB))]>;
178def VOR : VXForm_1<1156, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
179 "vor $vD, $vA, $vB", VecFP,
180 []>;
181def VXOR : VXForm_1<1220, (ops VRRC:$vD, VRRC:$vA, VRRC:$vB),
182 "vxor $vD, $vA, $vB", VecFP,
183 []>;
184
185def VSPLTB : VXForm_1<524, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
186 "vspltb $vD, $vB, $UIMM", VecPerm,
187 []>;
188def VSPLTH : VXForm_1<588, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
189 "vsplth $vD, $vB, $UIMM", VecPerm,
190 []>;
191def VSPLTW : VXForm_1<652, (ops VRRC:$vD, u5imm:$UIMM, VRRC:$vB),
192 "vspltw $vD, $vB, $UIMM", VecPerm,
193 [(set VRRC:$vD, (vector_shuffle (v4f32 VRRC:$vB), (undef),
194 VSPLT_shuffle_mask:$UIMM))]>;
195
196def VSPLTISB : VXForm_1<780, (ops VRRC:$vD, s5imm:$SIMM),
197 "vspltisb $vD, $SIMM", VecPerm,
198 [(set VRRC:$vD, (v4f32 vecspltisb:$SIMM))]>;
199def VSPLTISH : VXForm_1<844, (ops VRRC:$vD, s5imm:$SIMM),
200 "vspltish $vD, $SIMM", VecPerm,
201 [(set VRRC:$vD, (v4f32 vecspltish:$SIMM))]>;
202def VSPLTISW : VXForm_1<908, (ops VRRC:$vD, s5imm:$SIMM),
203 "vspltisw $vD, $SIMM", VecPerm,
204 [(set VRRC:$vD, (v4f32 vecspltisw:$SIMM))]>;
205
206
207// VX-Form Pseudo Instructions
208
209def V_SET0 : VXForm_setzero<1220, (ops VRRC:$vD),
210 "vxor $vD, $vD, $vD", VecFP,
211 [(set VRRC:$vD, (v4f32 vecimm0))]>;
212}
213
214//===----------------------------------------------------------------------===//
215// Additional Altivec Patterns
216//
217
218// Undef/Zero.
219def : Pat<(v16i8 (undef)), (v16i8 (IMPLICIT_DEF_VRRC))>;
220def : Pat<(v8i16 (undef)), (v8i16 (IMPLICIT_DEF_VRRC))>;
221def : Pat<(v4i32 (undef)), (v4i32 (IMPLICIT_DEF_VRRC))>;
222def : Pat<(v16i8 vecimm0), (v16i8 (V_SET0))>;
223def : Pat<(v8i16 vecimm0), (v8i16 (V_SET0))>;
224def : Pat<(v4i32 vecimm0), (v4i32 (V_SET0))>;
225
226// Loads.
227def : Pat<(v16i8 (load xoaddr:$src)), (v16i8 (LVX xoaddr:$src))>;
228def : Pat<(v8i16 (load xoaddr:$src)), (v8i16 (LVX xoaddr:$src))>;
229def : Pat<(v4i32 (load xoaddr:$src)), (v4i32 (LVX xoaddr:$src))>;
230
231// Stores.
232def : Pat<(store (v16i8 VRRC:$rS), xoaddr:$dst),
233 (STVX (v16i8 VRRC:$rS), xoaddr:$dst)>;
234def : Pat<(store (v8i16 VRRC:$rS), xoaddr:$dst),
235 (STVX (v8i16 VRRC:$rS), xoaddr:$dst)>;
236def : Pat<(store (v4i32 VRRC:$rS), xoaddr:$dst),
237 (STVX (v4i32 VRRC:$rS), xoaddr:$dst)>;
238
239// Bit conversions.
240def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>;
241def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>;
242def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>;
243
244def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>;
245def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>;
246def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>;
247
248def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>;
249def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>;
250def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>;
251
252def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>;
253def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>;
254def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>;
255
256// Immediate vector formation with vsplti*.
257def : Pat<(v16i8 vecspltisb:$invec), (v16i8 (VSPLTISB vecspltisb:$invec))>;
258def : Pat<(v16i8 vecspltish:$invec), (v16i8 (VSPLTISH vecspltish:$invec))>;
259def : Pat<(v16i8 vecspltisw:$invec), (v16i8 (VSPLTISW vecspltisw:$invec))>;
260
261def : Pat<(v8i16 vecspltisb:$invec), (v8i16 (VSPLTISB vecspltisb:$invec))>;
262def : Pat<(v8i16 vecspltish:$invec), (v8i16 (VSPLTISH vecspltish:$invec))>;
263def : Pat<(v8i16 vecspltisw:$invec), (v8i16 (VSPLTISW vecspltisw:$invec))>;
264
265def : Pat<(v4i32 vecspltisb:$invec), (v4i32 (VSPLTISB vecspltisb:$invec))>;
266def : Pat<(v4i32 vecspltish:$invec), (v4i32 (VSPLTISH vecspltish:$invec))>;
267def : Pat<(v4i32 vecspltisw:$invec), (v4i32 (VSPLTISW vecspltisw:$invec))>;
268
269
270
271def : Pat<(fmul VRRC:$vA, VRRC:$vB),
272 (VMADDFP VRRC:$vA, VRRC:$vB, (V_SET0))>;
273
274// Fused multiply add and multiply sub for packed float. These are represented
275// separately from the real instructions above, for operations that must have
276// the additional precision, such as Newton-Rhapson (used by divide, sqrt)
277def : Pat<(PPCvmaddfp VRRC:$A, VRRC:$B, VRRC:$C),
278 (VMADDFP VRRC:$A, VRRC:$B, VRRC:$C)>;
279def : Pat<(PPCvnmsubfp VRRC:$A, VRRC:$B, VRRC:$C),
280 (VNMSUBFP VRRC:$A, VRRC:$B, VRRC:$C)>;
281
282def : Pat<(int_ppc_altivec_vmaddfp VRRC:$A, VRRC:$B, VRRC:$C),
283 (VMADDFP VRRC:$A, VRRC:$B, VRRC:$C)>;
284def : Pat<(int_ppc_altivec_vnmsubfp VRRC:$A, VRRC:$B, VRRC:$C),
285 (VNMSUBFP VRRC:$A, VRRC:$B, VRRC:$C)>;
286
287def : Pat<(vector_shuffle (v4i32 VRRC:$vB), (undef), VSPLT_shuffle_mask:$UIMM),
288 (v4i32 (VSPLTW VSPLT_shuffle_mask:$UIMM, VRRC:$vB))>;
289
290def : Pat<(PPCvperm (v4i32 VRRC:$vA), VRRC:$vB, VRRC:$vC),
291 (v4i32 (VPERM VRRC:$vA, VRRC:$vB, VRRC:$vC))>;
292
293def : Pat<(v4i32 (PPClve_x xoaddr:$src)),
294 (v4i32 (LVEWX xoaddr:$src))>;
295
296