blob: d3d65847cbca195c4f2cc5380e68166e1155504d [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Dan Gohman6864db62009-06-18 16:24:47 +0000822 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000824 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000825 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000826 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
827 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000828 }
829
Dan Gohmanf53462d2010-07-15 20:02:11 +0000830 // As a special case, fold trunc(undef) to undef. We don't want to
831 // know too much about SCEVUnknowns, but this special case is handy
832 // and harmless.
833 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
834 if (isa<UndefValue>(U->getValue()))
835 return getSCEV(UndefValue::get(Ty));
836
Dan Gohman420ab912010-06-25 18:47:08 +0000837 // The cast wasn't folded; create an explicit cast node. We can reuse
838 // the existing insert position since if we get here, we won't have
839 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000840 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
841 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000842 UniqueSCEVs.InsertNode(S, IP);
843 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000844}
845
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000847 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000848 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000849 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000850 assert(isSCEVable(Ty) &&
851 "This is not a conversion to a SCEVable type!");
852 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000853
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000854 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000855 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
856 return getConstant(
857 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
858 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000859
Dan Gohman20900ca2009-04-22 16:20:48 +0000860 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000861 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000862 return getZeroExtendExpr(SZ->getOperand(), Ty);
863
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000864 // Before doing any expensive analysis, check to see if we've already
865 // computed a SCEV for this Op and Ty.
866 FoldingSetNodeID ID;
867 ID.AddInteger(scZeroExtend);
868 ID.AddPointer(Op);
869 ID.AddPointer(Ty);
870 void *IP = 0;
871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
872
Dan Gohman01ecca22009-04-27 20:16:15 +0000873 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000874 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000875 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000877 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000878 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000879 const SCEV *Start = AR->getStart();
880 const SCEV *Step = AR->getStepRecurrence(*this);
881 unsigned BitWidth = getTypeSizeInBits(AR->getType());
882 const Loop *L = AR->getLoop();
883
Dan Gohmaneb490a72009-07-25 01:22:26 +0000884 // If we have special knowledge that this addrec won't overflow,
885 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000886 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000887 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
888 getZeroExtendExpr(Step, Ty),
889 L);
890
Dan Gohman01ecca22009-04-27 20:16:15 +0000891 // Check whether the backedge-taken count is SCEVCouldNotCompute.
892 // Note that this serves two purposes: It filters out loops that are
893 // simply not analyzable, and it covers the case where this code is
894 // being called from within backedge-taken count analysis, such that
895 // attempting to ask for the backedge-taken count would likely result
896 // in infinite recursion. In the later case, the analysis code will
897 // cope with a conservative value, and it will take care to purge
898 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000899 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000900 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000901 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000902 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000903
904 // Check whether the backedge-taken count can be losslessly casted to
905 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000906 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000907 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000908 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000909 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000911 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000913 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000914 const SCEV *Add = getAddExpr(Start, ZMul);
915 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000916 getAddExpr(getZeroExtendExpr(Start, WideTy),
917 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
918 getZeroExtendExpr(Step, WideTy)));
919 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000920 // Return the expression with the addrec on the outside.
921 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
922 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000923 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000924
925 // Similar to above, only this time treat the step value as signed.
926 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000927 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000928 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000929 OperandExtendedAdd =
930 getAddExpr(getZeroExtendExpr(Start, WideTy),
931 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932 getSignExtendExpr(Step, WideTy)));
933 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000934 // Return the expression with the addrec on the outside.
935 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 L);
938 }
939
940 // If the backedge is guarded by a comparison with the pre-inc value
941 // the addrec is safe. Also, if the entry is guarded by a comparison
942 // with the start value and the backedge is guarded by a comparison
943 // with the post-inc value, the addrec is safe.
944 if (isKnownPositive(Step)) {
945 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946 getUnsignedRange(Step).getUnsignedMax());
947 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000948 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950 AR->getPostIncExpr(*this), N)))
951 // Return the expression with the addrec on the outside.
952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
954 L);
955 } else if (isKnownNegative(Step)) {
956 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
965 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000966 }
967 }
968 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000969
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000970 // The cast wasn't folded; create an explicit cast node.
971 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000973 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
974 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000975 UniqueSCEVs.InsertNode(S, IP);
976 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000977}
978
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000980 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000981 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000982 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000983 assert(isSCEVable(Ty) &&
984 "This is not a conversion to a SCEVable type!");
985 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000986
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000987 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000988 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
989 return getConstant(
990 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
991 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +0000992
Dan Gohman20900ca2009-04-22 16:20:48 +0000993 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000994 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000995 return getSignExtendExpr(SS->getOperand(), Ty);
996
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000997 // Before doing any expensive analysis, check to see if we've already
998 // computed a SCEV for this Op and Ty.
999 FoldingSetNodeID ID;
1000 ID.AddInteger(scSignExtend);
1001 ID.AddPointer(Op);
1002 ID.AddPointer(Ty);
1003 void *IP = 0;
1004 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1005
Dan Gohman01ecca22009-04-27 20:16:15 +00001006 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001007 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001008 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001009 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001011 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 const SCEV *Start = AR->getStart();
1013 const SCEV *Step = AR->getStepRecurrence(*this);
1014 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1015 const Loop *L = AR->getLoop();
1016
Dan Gohmaneb490a72009-07-25 01:22:26 +00001017 // If we have special knowledge that this addrec won't overflow,
1018 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001019 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001020 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1021 getSignExtendExpr(Step, Ty),
1022 L);
1023
Dan Gohman01ecca22009-04-27 20:16:15 +00001024 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1025 // Note that this serves two purposes: It filters out loops that are
1026 // simply not analyzable, and it covers the case where this code is
1027 // being called from within backedge-taken count analysis, such that
1028 // attempting to ask for the backedge-taken count would likely result
1029 // in infinite recursion. In the later case, the analysis code will
1030 // cope with a conservative value, and it will take care to purge
1031 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001033 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001034 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001035 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001036
1037 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001038 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001039 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001040 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001041 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001042 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1043 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001044 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001046 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001047 const SCEV *Add = getAddExpr(Start, SMul);
1048 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001049 getAddExpr(getSignExtendExpr(Start, WideTy),
1050 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1051 getSignExtendExpr(Step, WideTy)));
1052 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001053 // Return the expression with the addrec on the outside.
1054 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1055 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001056 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001057
1058 // Similar to above, only this time treat the step value as unsigned.
1059 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001061 Add = getAddExpr(Start, UMul);
1062 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getZeroExtendExpr(Step, Ty),
1070 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001071 }
1072
1073 // If the backedge is guarded by a comparison with the pre-inc value
1074 // the addrec is safe. Also, if the entry is guarded by a comparison
1075 // with the start value and the backedge is guarded by a comparison
1076 // with the post-inc value, the addrec is safe.
1077 if (isKnownPositive(Step)) {
1078 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1079 getSignedRange(Step).getSignedMax());
1080 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001081 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1083 AR->getPostIncExpr(*this), N)))
1084 // Return the expression with the addrec on the outside.
1085 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1086 getSignExtendExpr(Step, Ty),
1087 L);
1088 } else if (isKnownNegative(Step)) {
1089 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1090 getSignedRange(Step).getSignedMin());
1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1094 AR->getPostIncExpr(*this), N)))
1095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getSignExtendExpr(Step, Ty),
1098 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001099 }
1100 }
1101 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001102
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001103 // The cast wasn't folded; create an explicit cast node.
1104 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1107 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001108 UniqueSCEVs.InsertNode(S, IP);
1109 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001110}
1111
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001112/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1113/// unspecified bits out to the given type.
1114///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001115const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001116 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1118 "This is not an extending conversion!");
1119 assert(isSCEVable(Ty) &&
1120 "This is not a conversion to a SCEVable type!");
1121 Ty = getEffectiveSCEVType(Ty);
1122
1123 // Sign-extend negative constants.
1124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1125 if (SC->getValue()->getValue().isNegative())
1126 return getSignExtendExpr(Op, Ty);
1127
1128 // Peel off a truncate cast.
1129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001130 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1132 return getAnyExtendExpr(NewOp, Ty);
1133 return getTruncateOrNoop(NewOp, Ty);
1134 }
1135
1136 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001138 if (!isa<SCEVZeroExtendExpr>(ZExt))
1139 return ZExt;
1140
1141 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (!isa<SCEVSignExtendExpr>(SExt))
1144 return SExt;
1145
Dan Gohmana10756e2010-01-21 02:09:26 +00001146 // Force the cast to be folded into the operands of an addrec.
1147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1148 SmallVector<const SCEV *, 4> Ops;
1149 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1150 I != E; ++I)
1151 Ops.push_back(getAnyExtendExpr(*I, Ty));
1152 return getAddRecExpr(Ops, AR->getLoop());
1153 }
1154
Dan Gohmanf53462d2010-07-15 20:02:11 +00001155 // As a special case, fold anyext(undef) to undef. We don't want to
1156 // know too much about SCEVUnknowns, but this special case is handy
1157 // and harmless.
1158 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1159 if (isa<UndefValue>(U->getValue()))
1160 return getSCEV(UndefValue::get(Ty));
1161
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001162 // If the expression is obviously signed, use the sext cast value.
1163 if (isa<SCEVSMaxExpr>(Op))
1164 return SExt;
1165
1166 // Absent any other information, use the zext cast value.
1167 return ZExt;
1168}
1169
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170/// CollectAddOperandsWithScales - Process the given Ops list, which is
1171/// a list of operands to be added under the given scale, update the given
1172/// map. This is a helper function for getAddRecExpr. As an example of
1173/// what it does, given a sequence of operands that would form an add
1174/// expression like this:
1175///
1176/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1177///
1178/// where A and B are constants, update the map with these values:
1179///
1180/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1181///
1182/// and add 13 + A*B*29 to AccumulatedConstant.
1183/// This will allow getAddRecExpr to produce this:
1184///
1185/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1186///
1187/// This form often exposes folding opportunities that are hidden in
1188/// the original operand list.
1189///
1190/// Return true iff it appears that any interesting folding opportunities
1191/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1192/// the common case where no interesting opportunities are present, and
1193/// is also used as a check to avoid infinite recursion.
1194///
1195static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001196CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1197 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001198 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001199 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001200 const APInt &Scale,
1201 ScalarEvolution &SE) {
1202 bool Interesting = false;
1203
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001204 // Iterate over the add operands. They are sorted, with constants first.
1205 unsigned i = 0;
1206 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1207 ++i;
1208 // Pull a buried constant out to the outside.
1209 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1210 Interesting = true;
1211 AccumulatedConstant += Scale * C->getValue()->getValue();
1212 }
1213
1214 // Next comes everything else. We're especially interested in multiplies
1215 // here, but they're in the middle, so just visit the rest with one loop.
1216 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001217 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1218 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1219 APInt NewScale =
1220 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1221 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1222 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001223 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001224 Interesting |=
1225 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001226 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001227 NewScale, SE);
1228 } else {
1229 // A multiplication of a constant with some other value. Update
1230 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001231 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1232 const SCEV *Key = SE.getMulExpr(MulOps);
1233 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001234 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001236 NewOps.push_back(Pair.first->first);
1237 } else {
1238 Pair.first->second += NewScale;
1239 // The map already had an entry for this value, which may indicate
1240 // a folding opportunity.
1241 Interesting = true;
1242 }
1243 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001244 } else {
1245 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001246 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001247 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 NewOps.push_back(Pair.first->first);
1250 } else {
1251 Pair.first->second += Scale;
1252 // The map already had an entry for this value, which may indicate
1253 // a folding opportunity.
1254 Interesting = true;
1255 }
1256 }
1257 }
1258
1259 return Interesting;
1260}
1261
1262namespace {
1263 struct APIntCompare {
1264 bool operator()(const APInt &LHS, const APInt &RHS) const {
1265 return LHS.ult(RHS);
1266 }
1267 };
1268}
1269
Dan Gohman6c0866c2009-05-24 23:45:28 +00001270/// getAddExpr - Get a canonical add expression, or something simpler if
1271/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001272const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1273 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001274 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001275 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001276#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001277 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001279 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001280 "SCEVAddExpr operand types don't match!");
1281#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001282
Dan Gohmana10756e2010-01-21 02:09:26 +00001283 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1284 if (!HasNUW && HasNSW) {
1285 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001286 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1287 E = Ops.end(); I != E; ++I)
1288 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Dan Gohman68ff7762010-08-27 21:39:59 +00001321 // Okay, check to see if the same value occurs in the operand list more than
1322 // once. If so, merge them together into an multiply expression. Since we
1323 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001325 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001326 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001328 // Scan ahead to count how many equal operands there are.
1329 unsigned Count = 2;
1330 while (i+Count != e && Ops[i+Count] == Ops[i])
1331 ++Count;
1332 // Merge the values into a multiply.
1333 const SCEV *Scale = getConstant(Ty, Count);
1334 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1335 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001337 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001338 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001339 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001340 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001341 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001342 if (FoundMatch)
1343 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001344
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 // Check for truncates. If all the operands are truncated from the same
1346 // type, see if factoring out the truncate would permit the result to be
1347 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1348 // if the contents of the resulting outer trunc fold to something simple.
1349 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1350 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1351 const Type *DstType = Trunc->getType();
1352 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001353 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001354 bool Ok = true;
1355 // Check all the operands to see if they can be represented in the
1356 // source type of the truncate.
1357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1359 if (T->getOperand()->getType() != SrcType) {
1360 Ok = false;
1361 break;
1362 }
1363 LargeOps.push_back(T->getOperand());
1364 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001365 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001366 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001367 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001368 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1369 if (const SCEVTruncateExpr *T =
1370 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1371 if (T->getOperand()->getType() != SrcType) {
1372 Ok = false;
1373 break;
1374 }
1375 LargeMulOps.push_back(T->getOperand());
1376 } else if (const SCEVConstant *C =
1377 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001378 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok)
1385 LargeOps.push_back(getMulExpr(LargeMulOps));
1386 } else {
1387 Ok = false;
1388 break;
1389 }
1390 }
1391 if (Ok) {
1392 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001393 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001394 // If it folds to something simple, use it. Otherwise, don't.
1395 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1396 return getTruncateExpr(Fold, DstType);
1397 }
1398 }
1399
1400 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001401 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1402 ++Idx;
1403
1404 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 if (Idx < Ops.size()) {
1406 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001407 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 // If we have an add, expand the add operands onto the end of the operands
1409 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001410 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001411 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001412 DeletedAdd = true;
1413 }
1414
1415 // If we deleted at least one add, we added operands to the end of the list,
1416 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001417 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001419 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 }
1421
1422 // Skip over the add expression until we get to a multiply.
1423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1424 ++Idx;
1425
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 // Check to see if there are any folding opportunities present with
1427 // operands multiplied by constant values.
1428 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1429 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001430 DenseMap<const SCEV *, APInt> M;
1431 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 APInt AccumulatedConstant(BitWidth, 0);
1433 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001434 Ops.data(), Ops.size(),
1435 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 // Some interesting folding opportunity is present, so its worthwhile to
1437 // re-generate the operands list. Group the operands by constant scale,
1438 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001439 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001440 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 E = NewOps.end(); I != E; ++I)
1442 MulOpLists[M.find(*I)->second].push_back(*I);
1443 // Re-generate the operands list.
1444 Ops.clear();
1445 if (AccumulatedConstant != 0)
1446 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001447 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1448 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001449 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001450 Ops.push_back(getMulExpr(getConstant(I->first),
1451 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001452 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001453 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001454 if (Ops.size() == 1)
1455 return Ops[0];
1456 return getAddExpr(Ops);
1457 }
1458 }
1459
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 // If we are adding something to a multiply expression, make sure the
1461 // something is not already an operand of the multiply. If so, merge it into
1462 // the multiply.
1463 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001464 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001466 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001467 if (isa<SCEVConstant>(MulOpSCEV))
1468 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001470 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001472 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 if (Mul->getNumOperands() != 2) {
1474 // If the multiply has more than two operands, we must get the
1475 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001476 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1477 Mul->op_begin()+MulOp);
1478 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001479 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001481 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001482 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001483 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 if (Ops.size() == 2) return OuterMul;
1485 if (AddOp < Idx) {
1486 Ops.erase(Ops.begin()+AddOp);
1487 Ops.erase(Ops.begin()+Idx-1);
1488 } else {
1489 Ops.erase(Ops.begin()+Idx);
1490 Ops.erase(Ops.begin()+AddOp-1);
1491 }
1492 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001493 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001495
Chris Lattner53e677a2004-04-02 20:23:17 +00001496 // Check this multiply against other multiplies being added together.
1497 for (unsigned OtherMulIdx = Idx+1;
1498 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1499 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001500 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 // If MulOp occurs in OtherMul, we can fold the two multiplies
1502 // together.
1503 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1504 OMulOp != e; ++OMulOp)
1505 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1506 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001507 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001510 Mul->op_begin()+MulOp);
1511 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001512 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001516 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001517 OtherMul->op_begin()+OMulOp);
1518 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001519 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001521 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1522 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001524 Ops.erase(Ops.begin()+Idx);
1525 Ops.erase(Ops.begin()+OtherMulIdx-1);
1526 Ops.push_back(OuterMul);
1527 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
1529 }
1530 }
1531 }
1532
1533 // If there are any add recurrences in the operands list, see if any other
1534 // added values are loop invariant. If so, we can fold them into the
1535 // recurrence.
1536 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1537 ++Idx;
1538
1539 // Scan over all recurrences, trying to fold loop invariants into them.
1540 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1541 // Scan all of the other operands to this add and add them to the vector if
1542 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001544 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001545 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001547 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001548 LIOps.push_back(Ops[i]);
1549 Ops.erase(Ops.begin()+i);
1550 --i; --e;
1551 }
1552
1553 // If we found some loop invariants, fold them into the recurrence.
1554 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001555 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 LIOps.push_back(AddRec->getStart());
1557
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001559 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001560 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001561
Dan Gohmanb9f96512010-06-30 07:16:37 +00001562 // Build the new addrec. Propagate the NUW and NSW flags if both the
1563 // outer add and the inner addrec are guaranteed to have no overflow.
1564 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1565 HasNUW && AddRec->hasNoUnsignedWrap(),
1566 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001567
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 // If all of the other operands were loop invariant, we are done.
1569 if (Ops.size() == 1) return NewRec;
1570
1571 // Otherwise, add the folded AddRec by the non-liv parts.
1572 for (unsigned i = 0;; ++i)
1573 if (Ops[i] == AddRec) {
1574 Ops[i] = NewRec;
1575 break;
1576 }
Dan Gohman246b2562007-10-22 18:31:58 +00001577 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 }
1579
1580 // Okay, if there weren't any loop invariants to be folded, check to see if
1581 // there are multiple AddRec's with the same loop induction variable being
1582 // added together. If so, we can fold them.
1583 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001584 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1585 ++OtherIdx)
1586 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1587 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1588 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1589 AddRec->op_end());
1590 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1591 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001592 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001593 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001594 if (OtherAddRec->getLoop() == AddRecLoop) {
1595 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1596 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001597 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001598 AddRecOps.append(OtherAddRec->op_begin()+i,
1599 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001600 break;
1601 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001602 AddRecOps[i] = getAddExpr(AddRecOps[i],
1603 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001604 }
1605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 }
Dan Gohman32527152010-08-27 20:45:56 +00001607 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1608 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 }
1610
1611 // Otherwise couldn't fold anything into this recurrence. Move onto the
1612 // next one.
1613 }
1614
1615 // Okay, it looks like we really DO need an add expr. Check to see if we
1616 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001617 FoldingSetNodeID ID;
1618 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001619 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1620 ID.AddPointer(Ops[i]);
1621 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001622 SCEVAddExpr *S =
1623 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1624 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1626 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001627 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1628 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 UniqueSCEVs.InsertNode(S, IP);
1630 }
Dan Gohman3645b012009-10-09 00:10:36 +00001631 if (HasNUW) S->setHasNoUnsignedWrap(true);
1632 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001633 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001634}
1635
Dan Gohman6c0866c2009-05-24 23:45:28 +00001636/// getMulExpr - Get a canonical multiply expression, or something simpler if
1637/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001638const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1639 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001641 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001642#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001643 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001644 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001645 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001646 "SCEVMulExpr operand types don't match!");
1647#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001648
Dan Gohmana10756e2010-01-21 02:09:26 +00001649 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1650 if (!HasNUW && HasNSW) {
1651 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001652 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1653 E = Ops.end(); I != E; ++I)
1654 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001655 All = false;
1656 break;
1657 }
1658 if (All) HasNUW = true;
1659 }
1660
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001662 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
1664 // If there are any constants, fold them together.
1665 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001667
1668 // C1*(C2+V) -> C1*C2 + C1*V
1669 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001670 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 if (Add->getNumOperands() == 2 &&
1672 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001673 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1674 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001675
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001677 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001679 ConstantInt *Fold = ConstantInt::get(getContext(),
1680 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001681 RHSC->getValue()->getValue());
1682 Ops[0] = getConstant(Fold);
1683 Ops.erase(Ops.begin()+1); // Erase the folded element
1684 if (Ops.size() == 1) return Ops[0];
1685 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 }
1687
1688 // If we are left with a constant one being multiplied, strip it off.
1689 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1690 Ops.erase(Ops.begin());
1691 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001692 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 // If we have a multiply of zero, it will always be zero.
1694 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001695 } else if (Ops[0]->isAllOnesValue()) {
1696 // If we have a mul by -1 of an add, try distributing the -1 among the
1697 // add operands.
1698 if (Ops.size() == 2)
1699 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1700 SmallVector<const SCEV *, 4> NewOps;
1701 bool AnyFolded = false;
1702 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1703 I != E; ++I) {
1704 const SCEV *Mul = getMulExpr(Ops[0], *I);
1705 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1706 NewOps.push_back(Mul);
1707 }
1708 if (AnyFolded)
1709 return getAddExpr(NewOps);
1710 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001712
1713 if (Ops.size() == 1)
1714 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 }
1716
1717 // Skip over the add expression until we get to a multiply.
1718 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1719 ++Idx;
1720
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 // If there are mul operands inline them all into this expression.
1722 if (Idx < Ops.size()) {
1723 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001724 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 // If we have an mul, expand the mul operands onto the end of the operands
1726 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001728 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 DeletedMul = true;
1730 }
1731
1732 // If we deleted at least one mul, we added operands to the end of the list,
1733 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001734 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001736 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 }
1738
1739 // If there are any add recurrences in the operands list, see if any other
1740 // added values are loop invariant. If so, we can fold them into the
1741 // recurrence.
1742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1743 ++Idx;
1744
1745 // Scan over all recurrences, trying to fold loop invariants into them.
1746 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1747 // Scan all of the other operands to this mul and add them to the vector if
1748 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001750 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001751 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001753 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 LIOps.push_back(Ops[i]);
1755 Ops.erase(Ops.begin()+i);
1756 --i; --e;
1757 }
1758
1759 // If we found some loop invariants, fold them into the recurrence.
1760 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001761 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001762 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001764 const SCEV *Scale = getMulExpr(LIOps);
1765 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1766 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
Dan Gohmanb9f96512010-06-30 07:16:37 +00001768 // Build the new addrec. Propagate the NUW and NSW flags if both the
1769 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001770 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001771 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001772 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001773
1774 // If all of the other operands were loop invariant, we are done.
1775 if (Ops.size() == 1) return NewRec;
1776
1777 // Otherwise, multiply the folded AddRec by the non-liv parts.
1778 for (unsigned i = 0;; ++i)
1779 if (Ops[i] == AddRec) {
1780 Ops[i] = NewRec;
1781 break;
1782 }
Dan Gohman246b2562007-10-22 18:31:58 +00001783 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 }
1785
1786 // Okay, if there weren't any loop invariants to be folded, check to see if
1787 // there are multiple AddRec's with the same loop induction variable being
1788 // multiplied together. If so, we can fold them.
1789 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001790 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1791 ++OtherIdx)
1792 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1793 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1794 // {A*C,+,F*D + G*B + B*D}<L>
1795 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1796 ++OtherIdx)
1797 if (const SCEVAddRecExpr *OtherAddRec =
1798 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1799 if (OtherAddRec->getLoop() == AddRecLoop) {
1800 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1801 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1802 const SCEV *B = F->getStepRecurrence(*this);
1803 const SCEV *D = G->getStepRecurrence(*this);
1804 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1805 getMulExpr(G, B),
1806 getMulExpr(B, D));
1807 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1808 F->getLoop());
1809 if (Ops.size() == 2) return NewAddRec;
1810 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1811 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1812 }
1813 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 }
1815
1816 // Otherwise couldn't fold anything into this recurrence. Move onto the
1817 // next one.
1818 }
1819
1820 // Okay, it looks like we really DO need an mul expr. Check to see if we
1821 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001822 FoldingSetNodeID ID;
1823 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001824 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1825 ID.AddPointer(Ops[i]);
1826 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 SCEVMulExpr *S =
1828 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1829 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001830 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1831 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001832 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1833 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001834 UniqueSCEVs.InsertNode(S, IP);
1835 }
Dan Gohman3645b012009-10-09 00:10:36 +00001836 if (HasNUW) S->setHasNoUnsignedWrap(true);
1837 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001838 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001839}
1840
Andreas Bolka8a11c982009-08-07 22:55:26 +00001841/// getUDivExpr - Get a canonical unsigned division expression, or something
1842/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001843const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1844 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001845 assert(getEffectiveSCEVType(LHS->getType()) ==
1846 getEffectiveSCEVType(RHS->getType()) &&
1847 "SCEVUDivExpr operand types don't match!");
1848
Dan Gohman622ed672009-05-04 22:02:23 +00001849 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001851 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001852 // If the denominator is zero, the result of the udiv is undefined. Don't
1853 // try to analyze it, because the resolution chosen here may differ from
1854 // the resolution chosen in other parts of the compiler.
1855 if (!RHSC->getValue()->isZero()) {
1856 // Determine if the division can be folded into the operands of
1857 // its operands.
1858 // TODO: Generalize this to non-constants by using known-bits information.
1859 const Type *Ty = LHS->getType();
1860 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001861 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001862 // For non-power-of-two values, effectively round the value up to the
1863 // nearest power of two.
1864 if (!RHSC->getValue()->getValue().isPowerOf2())
1865 ++MaxShiftAmt;
1866 const IntegerType *ExtTy =
1867 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1868 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1869 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1870 if (const SCEVConstant *Step =
1871 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1872 if (!Step->getValue()->getValue()
1873 .urem(RHSC->getValue()->getValue()) &&
1874 getZeroExtendExpr(AR, ExtTy) ==
1875 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1876 getZeroExtendExpr(Step, ExtTy),
1877 AR->getLoop())) {
1878 SmallVector<const SCEV *, 4> Operands;
1879 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1881 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001882 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001883 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1884 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1885 SmallVector<const SCEV *, 4> Operands;
1886 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1887 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1888 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1889 // Find an operand that's safely divisible.
1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1891 const SCEV *Op = M->getOperand(i);
1892 const SCEV *Div = getUDivExpr(Op, RHSC);
1893 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1894 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1895 M->op_end());
1896 Operands[i] = Div;
1897 return getMulExpr(Operands);
1898 }
1899 }
Dan Gohman185cf032009-05-08 20:18:49 +00001900 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001901 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1902 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1903 SmallVector<const SCEV *, 4> Operands;
1904 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1905 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1906 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1907 Operands.clear();
1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1909 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1910 if (isa<SCEVUDivExpr>(Op) ||
1911 getMulExpr(Op, RHS) != A->getOperand(i))
1912 break;
1913 Operands.push_back(Op);
1914 }
1915 if (Operands.size() == A->getNumOperands())
1916 return getAddExpr(Operands);
1917 }
1918 }
Dan Gohman185cf032009-05-08 20:18:49 +00001919
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001920 // Fold if both operands are constant.
1921 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1922 Constant *LHSCV = LHSC->getValue();
1923 Constant *RHSCV = RHSC->getValue();
1924 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1925 RHSCV)));
1926 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001927 }
1928 }
1929
Dan Gohman1c343752009-06-27 21:21:31 +00001930 FoldingSetNodeID ID;
1931 ID.AddInteger(scUDivExpr);
1932 ID.AddPointer(LHS);
1933 ID.AddPointer(RHS);
1934 void *IP = 0;
1935 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001936 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1937 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001938 UniqueSCEVs.InsertNode(S, IP);
1939 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001940}
1941
1942
Dan Gohman6c0866c2009-05-24 23:45:28 +00001943/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1944/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001945const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001946 const SCEV *Step, const Loop *L,
1947 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001948 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001950 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001951 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001952 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001953 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
1955
1956 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001957 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001958}
1959
Dan Gohman6c0866c2009-05-24 23:45:28 +00001960/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1961/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001962const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001963ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001964 const Loop *L,
1965 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001966 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001967#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001968 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001969 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001970 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001971 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00001972 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001973 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00001974 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001975#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001976
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001977 if (Operands.back()->isZero()) {
1978 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001979 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001980 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001981
Dan Gohmanbc028532010-02-19 18:49:22 +00001982 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1983 // use that information to infer NUW and NSW flags. However, computing a
1984 // BE count requires calling getAddRecExpr, so we may not yet have a
1985 // meaningful BE count at this point (and if we don't, we'd be stuck
1986 // with a SCEVCouldNotCompute as the cached BE count).
1987
Dan Gohmana10756e2010-01-21 02:09:26 +00001988 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1989 if (!HasNUW && HasNSW) {
1990 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001991 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
1992 E = Operands.end(); I != E; ++I)
1993 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001994 All = false;
1995 break;
1996 }
1997 if (All) HasNUW = true;
1998 }
1999
Dan Gohmand9cc7492008-08-08 18:33:12 +00002000 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002001 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002002 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002003 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002004 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002005 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002006 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002007 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002008 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002009 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002010 // AddRecs require their operands be loop-invariant with respect to their
2011 // loops. Don't perform this transformation if it would break this
2012 // requirement.
2013 bool AllInvariant = true;
2014 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002015 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002016 AllInvariant = false;
2017 break;
2018 }
2019 if (AllInvariant) {
2020 NestedOperands[0] = getAddRecExpr(Operands, L);
2021 AllInvariant = true;
2022 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002023 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002024 AllInvariant = false;
2025 break;
2026 }
2027 if (AllInvariant)
2028 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002029 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002030 }
2031 // Reset Operands to its original state.
2032 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002033 }
2034 }
2035
Dan Gohman67847532010-01-19 22:27:22 +00002036 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2037 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002038 FoldingSetNodeID ID;
2039 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002040 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2041 ID.AddPointer(Operands[i]);
2042 ID.AddPointer(L);
2043 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002044 SCEVAddRecExpr *S =
2045 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2046 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002047 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2048 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002049 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2050 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002051 UniqueSCEVs.InsertNode(S, IP);
2052 }
Dan Gohman3645b012009-10-09 00:10:36 +00002053 if (HasNUW) S->setHasNoUnsignedWrap(true);
2054 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002055 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002056}
2057
Dan Gohman9311ef62009-06-24 14:49:00 +00002058const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2059 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002060 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002061 Ops.push_back(LHS);
2062 Ops.push_back(RHS);
2063 return getSMaxExpr(Ops);
2064}
2065
Dan Gohman0bba49c2009-07-07 17:06:11 +00002066const SCEV *
2067ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002068 assert(!Ops.empty() && "Cannot get empty smax!");
2069 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002070#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002071 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002072 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002073 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002074 "SCEVSMaxExpr operand types don't match!");
2075#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002076
2077 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002078 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079
2080 // If there are any constants, fold them together.
2081 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002082 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002083 ++Idx;
2084 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002085 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002086 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002087 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002088 APIntOps::smax(LHSC->getValue()->getValue(),
2089 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002090 Ops[0] = getConstant(Fold);
2091 Ops.erase(Ops.begin()+1); // Erase the folded element
2092 if (Ops.size() == 1) return Ops[0];
2093 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002094 }
2095
Dan Gohmane5aceed2009-06-24 14:46:22 +00002096 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2098 Ops.erase(Ops.begin());
2099 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002100 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2101 // If we have an smax with a constant maximum-int, it will always be
2102 // maximum-int.
2103 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002104 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105
Dan Gohman3ab13122010-04-13 16:49:23 +00002106 if (Ops.size() == 1) return Ops[0];
2107 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002108
2109 // Find the first SMax
2110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2111 ++Idx;
2112
2113 // Check to see if one of the operands is an SMax. If so, expand its operands
2114 // onto our operand list, and recurse to simplify.
2115 if (Idx < Ops.size()) {
2116 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002117 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002118 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002119 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002120 DeletedSMax = true;
2121 }
2122
2123 if (DeletedSMax)
2124 return getSMaxExpr(Ops);
2125 }
2126
2127 // Okay, check to see if the same value occurs in the operand list twice. If
2128 // so, delete one. Since we sorted the list, these values are required to
2129 // be adjacent.
2130 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002131 // X smax Y smax Y --> X smax Y
2132 // X smax Y --> X, if X is always greater than Y
2133 if (Ops[i] == Ops[i+1] ||
2134 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2135 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2136 --i; --e;
2137 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2139 --i; --e;
2140 }
2141
2142 if (Ops.size() == 1) return Ops[0];
2143
2144 assert(!Ops.empty() && "Reduced smax down to nothing!");
2145
Nick Lewycky3e630762008-02-20 06:48:22 +00002146 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002147 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002148 FoldingSetNodeID ID;
2149 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002150 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2151 ID.AddPointer(Ops[i]);
2152 void *IP = 0;
2153 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002154 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2155 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002156 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2157 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002158 UniqueSCEVs.InsertNode(S, IP);
2159 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002160}
2161
Dan Gohman9311ef62009-06-24 14:49:00 +00002162const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2163 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002164 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002165 Ops.push_back(LHS);
2166 Ops.push_back(RHS);
2167 return getUMaxExpr(Ops);
2168}
2169
Dan Gohman0bba49c2009-07-07 17:06:11 +00002170const SCEV *
2171ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002172 assert(!Ops.empty() && "Cannot get empty umax!");
2173 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002174#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002175 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002176 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002177 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002178 "SCEVUMaxExpr operand types don't match!");
2179#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002180
2181 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002182 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002183
2184 // If there are any constants, fold them together.
2185 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002186 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002187 ++Idx;
2188 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002189 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002190 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002191 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002192 APIntOps::umax(LHSC->getValue()->getValue(),
2193 RHSC->getValue()->getValue()));
2194 Ops[0] = getConstant(Fold);
2195 Ops.erase(Ops.begin()+1); // Erase the folded element
2196 if (Ops.size() == 1) return Ops[0];
2197 LHSC = cast<SCEVConstant>(Ops[0]);
2198 }
2199
Dan Gohmane5aceed2009-06-24 14:46:22 +00002200 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002201 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2202 Ops.erase(Ops.begin());
2203 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002204 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2205 // If we have an umax with a constant maximum-int, it will always be
2206 // maximum-int.
2207 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002209
Dan Gohman3ab13122010-04-13 16:49:23 +00002210 if (Ops.size() == 1) return Ops[0];
2211 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002212
2213 // Find the first UMax
2214 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2215 ++Idx;
2216
2217 // Check to see if one of the operands is a UMax. If so, expand its operands
2218 // onto our operand list, and recurse to simplify.
2219 if (Idx < Ops.size()) {
2220 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002221 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002222 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002223 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002224 DeletedUMax = true;
2225 }
2226
2227 if (DeletedUMax)
2228 return getUMaxExpr(Ops);
2229 }
2230
2231 // Okay, check to see if the same value occurs in the operand list twice. If
2232 // so, delete one. Since we sorted the list, these values are required to
2233 // be adjacent.
2234 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002235 // X umax Y umax Y --> X umax Y
2236 // X umax Y --> X, if X is always greater than Y
2237 if (Ops[i] == Ops[i+1] ||
2238 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2239 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2240 --i; --e;
2241 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002242 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2243 --i; --e;
2244 }
2245
2246 if (Ops.size() == 1) return Ops[0];
2247
2248 assert(!Ops.empty() && "Reduced umax down to nothing!");
2249
2250 // Okay, it looks like we really DO need a umax expr. Check to see if we
2251 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002252 FoldingSetNodeID ID;
2253 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002254 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2255 ID.AddPointer(Ops[i]);
2256 void *IP = 0;
2257 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002258 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2259 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002260 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2261 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002262 UniqueSCEVs.InsertNode(S, IP);
2263 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002264}
2265
Dan Gohman9311ef62009-06-24 14:49:00 +00002266const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2267 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002268 // ~smax(~x, ~y) == smin(x, y).
2269 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2270}
2271
Dan Gohman9311ef62009-06-24 14:49:00 +00002272const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2273 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002274 // ~umax(~x, ~y) == umin(x, y)
2275 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2276}
2277
Dan Gohman4f8eea82010-02-01 18:27:38 +00002278const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002279 // If we have TargetData, we can bypass creating a target-independent
2280 // constant expression and then folding it back into a ConstantInt.
2281 // This is just a compile-time optimization.
2282 if (TD)
2283 return getConstant(TD->getIntPtrType(getContext()),
2284 TD->getTypeAllocSize(AllocTy));
2285
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2287 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002288 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2289 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002290 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2295 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2296 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002297 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2298 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002299 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2300 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2301}
2302
2303const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2304 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002305 // If we have TargetData, we can bypass creating a target-independent
2306 // constant expression and then folding it back into a ConstantInt.
2307 // This is just a compile-time optimization.
2308 if (TD)
2309 return getConstant(TD->getIntPtrType(getContext()),
2310 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2311
Dan Gohman0f5efe52010-01-28 02:15:55 +00002312 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2313 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002314 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2315 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002316 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002317 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002318}
2319
Dan Gohman4f8eea82010-02-01 18:27:38 +00002320const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2321 Constant *FieldNo) {
2322 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002324 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2325 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002326 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002327 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002328}
2329
Dan Gohman0bba49c2009-07-07 17:06:11 +00002330const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002331 // Don't attempt to do anything other than create a SCEVUnknown object
2332 // here. createSCEV only calls getUnknown after checking for all other
2333 // interesting possibilities, and any other code that calls getUnknown
2334 // is doing so in order to hide a value from SCEV canonicalization.
2335
Dan Gohman1c343752009-06-27 21:21:31 +00002336 FoldingSetNodeID ID;
2337 ID.AddInteger(scUnknown);
2338 ID.AddPointer(V);
2339 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002340 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2341 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2342 "Stale SCEVUnknown in uniquing map!");
2343 return S;
2344 }
2345 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2346 FirstUnknown);
2347 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002348 UniqueSCEVs.InsertNode(S, IP);
2349 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002350}
2351
Chris Lattner53e677a2004-04-02 20:23:17 +00002352//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002353// Basic SCEV Analysis and PHI Idiom Recognition Code
2354//
2355
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002356/// isSCEVable - Test if values of the given type are analyzable within
2357/// the SCEV framework. This primarily includes integer types, and it
2358/// can optionally include pointer types if the ScalarEvolution class
2359/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002360bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002361 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002362 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363}
2364
2365/// getTypeSizeInBits - Return the size in bits of the specified type,
2366/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002367uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002368 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2369
2370 // If we have a TargetData, use it!
2371 if (TD)
2372 return TD->getTypeSizeInBits(Ty);
2373
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002374 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002375 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002376 return Ty->getPrimitiveSizeInBits();
2377
2378 // The only other support type is pointer. Without TargetData, conservatively
2379 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002380 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002381 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002382}
2383
2384/// getEffectiveSCEVType - Return a type with the same bitwidth as
2385/// the given type and which represents how SCEV will treat the given
2386/// type, for which isSCEVable must return true. For pointer types,
2387/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002388const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002389 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2390
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002391 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002392 return Ty;
2393
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002394 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002395 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002396 if (TD) return TD->getIntPtrType(getContext());
2397
2398 // Without TargetData, conservatively assume pointers are 64-bit.
2399 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002400}
Chris Lattner53e677a2004-04-02 20:23:17 +00002401
Dan Gohman0bba49c2009-07-07 17:06:11 +00002402const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002403 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002404}
2405
Chris Lattner53e677a2004-04-02 20:23:17 +00002406/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2407/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002408const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002409 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002410
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002411 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2412 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002413 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002414
2415 // The process of creating a SCEV for V may have caused other SCEVs
2416 // to have been created, so it's necessary to insert the new entry
2417 // from scratch, rather than trying to remember the insert position
2418 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002419 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002420 return S;
2421}
2422
Dan Gohman2d1be872009-04-16 03:18:22 +00002423/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2424///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002425const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002426 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002427 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002428 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002429
2430 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002431 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002432 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002433 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002434}
2435
2436/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002437const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002438 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002439 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002440 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002441
2442 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002443 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002444 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002445 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002446 return getMinusSCEV(AllOnes, V);
2447}
2448
2449/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2450///
Chris Lattner992efb02011-01-09 22:26:35 +00002451const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2452 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002453 // Fast path: X - X --> 0.
2454 if (LHS == RHS)
2455 return getConstant(LHS->getType(), 0);
2456
Dan Gohman2d1be872009-04-16 03:18:22 +00002457 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002458 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002459}
2460
2461/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2462/// input value to the specified type. If the type must be extended, it is zero
2463/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002464const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002465ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002466 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002467 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2468 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002469 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002470 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002471 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002472 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002473 return getTruncateExpr(V, Ty);
2474 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002475}
2476
2477/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2478/// input value to the specified type. If the type must be extended, it is sign
2479/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002480const SCEV *
2481ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002482 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002483 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002484 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2485 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002486 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002487 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002488 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002489 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002490 return getTruncateExpr(V, Ty);
2491 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002492}
2493
Dan Gohman467c4302009-05-13 03:46:30 +00002494/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2495/// input value to the specified type. If the type must be extended, it is zero
2496/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002497const SCEV *
2498ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002499 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002500 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002502 "Cannot noop or zero extend with non-integer arguments!");
2503 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2504 "getNoopOrZeroExtend cannot truncate!");
2505 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2506 return V; // No conversion
2507 return getZeroExtendExpr(V, Ty);
2508}
2509
2510/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2511/// input value to the specified type. If the type must be extended, it is sign
2512/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002513const SCEV *
2514ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002515 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002516 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2517 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002518 "Cannot noop or sign extend with non-integer arguments!");
2519 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2520 "getNoopOrSignExtend cannot truncate!");
2521 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2522 return V; // No conversion
2523 return getSignExtendExpr(V, Ty);
2524}
2525
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002526/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2527/// the input value to the specified type. If the type must be extended,
2528/// it is extended with unspecified bits. The conversion must not be
2529/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002530const SCEV *
2531ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002532 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002533 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2534 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002535 "Cannot noop or any extend with non-integer arguments!");
2536 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2537 "getNoopOrAnyExtend cannot truncate!");
2538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2539 return V; // No conversion
2540 return getAnyExtendExpr(V, Ty);
2541}
2542
Dan Gohman467c4302009-05-13 03:46:30 +00002543/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2544/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002545const SCEV *
2546ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002547 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002548 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2549 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002550 "Cannot truncate or noop with non-integer arguments!");
2551 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2552 "getTruncateOrNoop cannot extend!");
2553 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2554 return V; // No conversion
2555 return getTruncateExpr(V, Ty);
2556}
2557
Dan Gohmana334aa72009-06-22 00:31:57 +00002558/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2559/// the types using zero-extension, and then perform a umax operation
2560/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002561const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2562 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002563 const SCEV *PromotedLHS = LHS;
2564 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002565
2566 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2567 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2568 else
2569 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2570
2571 return getUMaxExpr(PromotedLHS, PromotedRHS);
2572}
2573
Dan Gohmanc9759e82009-06-22 15:03:27 +00002574/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2575/// the types using zero-extension, and then perform a umin operation
2576/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002577const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2578 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002579 const SCEV *PromotedLHS = LHS;
2580 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002581
2582 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2583 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2584 else
2585 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2586
2587 return getUMinExpr(PromotedLHS, PromotedRHS);
2588}
2589
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002590/// PushDefUseChildren - Push users of the given Instruction
2591/// onto the given Worklist.
2592static void
2593PushDefUseChildren(Instruction *I,
2594 SmallVectorImpl<Instruction *> &Worklist) {
2595 // Push the def-use children onto the Worklist stack.
2596 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2597 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002598 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002599}
2600
2601/// ForgetSymbolicValue - This looks up computed SCEV values for all
2602/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002603/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002604/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002605void
Dan Gohman85669632010-02-25 06:57:05 +00002606ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002607 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002608 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002609
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002610 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002611 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002612 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002613 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002614 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002615
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002616 ValueExprMapType::iterator It =
2617 ValueExprMap.find(static_cast<Value *>(I));
2618 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002619 const SCEV *Old = It->second;
2620
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002621 // Short-circuit the def-use traversal if the symbolic name
2622 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002623 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002624 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002625
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002626 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002627 // structure, it's a PHI that's in the progress of being computed
2628 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2629 // additional loop trip count information isn't going to change anything.
2630 // In the second case, createNodeForPHI will perform the necessary
2631 // updates on its own when it gets to that point. In the third, we do
2632 // want to forget the SCEVUnknown.
2633 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002634 !isa<SCEVUnknown>(Old) ||
2635 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002636 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002637 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002638 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002639 }
2640
2641 PushDefUseChildren(I, Worklist);
2642 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002643}
Chris Lattner53e677a2004-04-02 20:23:17 +00002644
2645/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2646/// a loop header, making it a potential recurrence, or it doesn't.
2647///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002648const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002649 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2650 if (L->getHeader() == PN->getParent()) {
2651 // The loop may have multiple entrances or multiple exits; we can analyze
2652 // this phi as an addrec if it has a unique entry value and a unique
2653 // backedge value.
2654 Value *BEValueV = 0, *StartValueV = 0;
2655 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2656 Value *V = PN->getIncomingValue(i);
2657 if (L->contains(PN->getIncomingBlock(i))) {
2658 if (!BEValueV) {
2659 BEValueV = V;
2660 } else if (BEValueV != V) {
2661 BEValueV = 0;
2662 break;
2663 }
2664 } else if (!StartValueV) {
2665 StartValueV = V;
2666 } else if (StartValueV != V) {
2667 StartValueV = 0;
2668 break;
2669 }
2670 }
2671 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002672 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002673 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002674 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002675 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002676 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002677
2678 // Using this symbolic name for the PHI, analyze the value coming around
2679 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002680 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002681
2682 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2683 // has a special value for the first iteration of the loop.
2684
2685 // If the value coming around the backedge is an add with the symbolic
2686 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002687 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002688 // If there is a single occurrence of the symbolic value, replace it
2689 // with a recurrence.
2690 unsigned FoundIndex = Add->getNumOperands();
2691 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2692 if (Add->getOperand(i) == SymbolicName)
2693 if (FoundIndex == e) {
2694 FoundIndex = i;
2695 break;
2696 }
2697
2698 if (FoundIndex != Add->getNumOperands()) {
2699 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002700 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002701 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2702 if (i != FoundIndex)
2703 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002704 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002705
2706 // This is not a valid addrec if the step amount is varying each
2707 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002708 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002709 (isa<SCEVAddRecExpr>(Accum) &&
2710 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002711 bool HasNUW = false;
2712 bool HasNSW = false;
2713
2714 // If the increment doesn't overflow, then neither the addrec nor
2715 // the post-increment will overflow.
2716 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2717 if (OBO->hasNoUnsignedWrap())
2718 HasNUW = true;
2719 if (OBO->hasNoSignedWrap())
2720 HasNSW = true;
Chris Lattner6d5a2412011-01-09 02:28:48 +00002721 } else if (isa<GEPOperator>(BEValueV)) {
2722 // If the increment is a GEP, then we know it won't perform an
2723 // unsigned overflow, because the address space cannot be
2724 // wrapped around.
2725 HasNUW = true;
Dan Gohmana10756e2010-01-21 02:09:26 +00002726 }
2727
Dan Gohman27dead42010-04-12 07:49:36 +00002728 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002729 const SCEV *PHISCEV =
2730 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002731
Dan Gohmana10756e2010-01-21 02:09:26 +00002732 // Since the no-wrap flags are on the increment, they apply to the
2733 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002734 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002735 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2736 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002737
2738 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002739 // to be symbolic. We now need to go back and purge all of the
2740 // entries for the scalars that use the symbolic expression.
2741 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002742 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002743 return PHISCEV;
2744 }
2745 }
Dan Gohman622ed672009-05-04 22:02:23 +00002746 } else if (const SCEVAddRecExpr *AddRec =
2747 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002748 // Otherwise, this could be a loop like this:
2749 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2750 // In this case, j = {1,+,1} and BEValue is j.
2751 // Because the other in-value of i (0) fits the evolution of BEValue
2752 // i really is an addrec evolution.
2753 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002754 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002755
2756 // If StartVal = j.start - j.stride, we can use StartVal as the
2757 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002758 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002759 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002760 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002761 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002762
2763 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002764 // to be symbolic. We now need to go back and purge all of the
2765 // entries for the scalars that use the symbolic expression.
2766 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002767 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002768 return PHISCEV;
2769 }
2770 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002771 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002772 }
Dan Gohman27dead42010-04-12 07:49:36 +00002773 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002774
Dan Gohman85669632010-02-25 06:57:05 +00002775 // If the PHI has a single incoming value, follow that value, unless the
2776 // PHI's incoming blocks are in a different loop, in which case doing so
2777 // risks breaking LCSSA form. Instcombine would normally zap these, but
2778 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002779 if (Value *V = SimplifyInstruction(PN, TD, DT))
2780 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002781 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002782
Chris Lattner53e677a2004-04-02 20:23:17 +00002783 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002784 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002785}
2786
Dan Gohman26466c02009-05-08 20:26:55 +00002787/// createNodeForGEP - Expand GEP instructions into add and multiply
2788/// operations. This allows them to be analyzed by regular SCEV code.
2789///
Dan Gohmand281ed22009-12-18 02:09:29 +00002790const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002791
Dan Gohmanb9f96512010-06-30 07:16:37 +00002792 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2793 // Add expression, because the Instruction may be guarded by control flow
2794 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002795 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002796
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002797 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002798 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002799 // Don't attempt to analyze GEPs over unsized objects.
2800 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2801 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002802 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002803 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002804 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002805 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002806 I != E; ++I) {
2807 Value *Index = *I;
2808 // Compute the (potentially symbolic) offset in bytes for this index.
2809 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2810 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002811 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002812 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2813
Dan Gohmanb9f96512010-06-30 07:16:37 +00002814 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002815 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002816 } else {
2817 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002818 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2819 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002820 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002821 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2822
Dan Gohmanb9f96512010-06-30 07:16:37 +00002823 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002824 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002825
2826 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002827 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002828 }
2829 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002830
2831 // Get the SCEV for the GEP base.
2832 const SCEV *BaseS = getSCEV(Base);
2833
Dan Gohmanb9f96512010-06-30 07:16:37 +00002834 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002835 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002836}
2837
Nick Lewycky83bb0052007-11-22 07:59:40 +00002838/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2839/// guaranteed to end in (at every loop iteration). It is, at the same time,
2840/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2841/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002842uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002843ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002844 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002845 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002846
Dan Gohman622ed672009-05-04 22:02:23 +00002847 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002848 return std::min(GetMinTrailingZeros(T->getOperand()),
2849 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002850
Dan Gohman622ed672009-05-04 22:02:23 +00002851 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002852 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2853 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2854 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002855 }
2856
Dan Gohman622ed672009-05-04 22:02:23 +00002857 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002858 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2859 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2860 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002861 }
2862
Dan Gohman622ed672009-05-04 22:02:23 +00002863 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002864 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002865 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002866 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002867 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002868 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002869 }
2870
Dan Gohman622ed672009-05-04 22:02:23 +00002871 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002872 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002873 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2874 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002875 for (unsigned i = 1, e = M->getNumOperands();
2876 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002877 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002878 BitWidth);
2879 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002880 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002881
Dan Gohman622ed672009-05-04 22:02:23 +00002882 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002883 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002884 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002885 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002887 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002888 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002889
Dan Gohman622ed672009-05-04 22:02:23 +00002890 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002891 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002892 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002893 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002894 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002895 return MinOpRes;
2896 }
2897
Dan Gohman622ed672009-05-04 22:02:23 +00002898 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002899 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002900 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002901 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002902 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002903 return MinOpRes;
2904 }
2905
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2907 // For a SCEVUnknown, ask ValueTracking.
2908 unsigned BitWidth = getTypeSizeInBits(U->getType());
2909 APInt Mask = APInt::getAllOnesValue(BitWidth);
2910 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2911 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2912 return Zeros.countTrailingOnes();
2913 }
2914
2915 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002916 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002917}
Chris Lattner53e677a2004-04-02 20:23:17 +00002918
Dan Gohman85b05a22009-07-13 21:35:55 +00002919/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2920///
2921ConstantRange
2922ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002923 // See if we've computed this range already.
2924 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2925 if (I != UnsignedRanges.end())
2926 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002927
2928 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002929 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002931 unsigned BitWidth = getTypeSizeInBits(S->getType());
2932 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2933
2934 // If the value has known zeros, the maximum unsigned value will have those
2935 // known zeros as well.
2936 uint32_t TZ = GetMinTrailingZeros(S);
2937 if (TZ != 0)
2938 ConservativeResult =
2939 ConstantRange(APInt::getMinValue(BitWidth),
2940 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2941
Dan Gohman85b05a22009-07-13 21:35:55 +00002942 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2943 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2944 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2945 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002946 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002947 }
2948
2949 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2950 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2951 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2952 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002953 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002954 }
2955
2956 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2957 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2958 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2959 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002960 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002961 }
2962
2963 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2964 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2965 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2966 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002967 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002968 }
2969
2970 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2971 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2972 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002973 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002974 }
2975
2976 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002978 return setUnsignedRange(ZExt,
2979 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002980 }
2981
2982 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2983 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002984 return setUnsignedRange(SExt,
2985 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002986 }
2987
2988 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2989 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002990 return setUnsignedRange(Trunc,
2991 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002992 }
2993
Dan Gohman85b05a22009-07-13 21:35:55 +00002994 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002995 // If there's no unsigned wrap, the value will never be less than its
2996 // initial value.
2997 if (AddRec->hasNoUnsignedWrap())
2998 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002999 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003000 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003001 ConservativeResult.intersectWith(
3002 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003003
3004 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003005 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003006 const Type *Ty = AddRec->getType();
3007 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003008 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3009 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003010 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3011
3012 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003013 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003014
3015 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003016 ConstantRange StepRange = getSignedRange(Step);
3017 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3018 ConstantRange EndRange =
3019 StartRange.add(MaxBECountRange.multiply(StepRange));
3020
3021 // Check for overflow. This must be done with ConstantRange arithmetic
3022 // because we could be called from within the ScalarEvolution overflow
3023 // checking code.
3024 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3025 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3026 ConstantRange ExtMaxBECountRange =
3027 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3028 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3029 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3030 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003031 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003032
Dan Gohman85b05a22009-07-13 21:35:55 +00003033 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3034 EndRange.getUnsignedMin());
3035 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3036 EndRange.getUnsignedMax());
3037 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003038 return setUnsignedRange(AddRec, ConservativeResult);
3039 return setUnsignedRange(AddRec,
3040 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 }
3042 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003043
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003044 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003045 }
3046
3047 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3048 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003049 APInt Mask = APInt::getAllOnesValue(BitWidth);
3050 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3051 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003052 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003053 return setUnsignedRange(U, ConservativeResult);
3054 return setUnsignedRange(U,
3055 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003056 }
3057
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003058 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003059}
3060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061/// getSignedRange - Determine the signed range for a particular SCEV.
3062///
3063ConstantRange
3064ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003065 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3066 if (I != SignedRanges.end())
3067 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003068
Dan Gohman85b05a22009-07-13 21:35:55 +00003069 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003070 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003071
Dan Gohman52fddd32010-01-26 04:40:18 +00003072 unsigned BitWidth = getTypeSizeInBits(S->getType());
3073 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3074
3075 // If the value has known zeros, the maximum signed value will have those
3076 // known zeros as well.
3077 uint32_t TZ = GetMinTrailingZeros(S);
3078 if (TZ != 0)
3079 ConservativeResult =
3080 ConstantRange(APInt::getSignedMinValue(BitWidth),
3081 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3082
Dan Gohman85b05a22009-07-13 21:35:55 +00003083 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3084 ConstantRange X = getSignedRange(Add->getOperand(0));
3085 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3086 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003087 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003088 }
3089
Dan Gohman85b05a22009-07-13 21:35:55 +00003090 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3091 ConstantRange X = getSignedRange(Mul->getOperand(0));
3092 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3093 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003094 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003095 }
3096
Dan Gohman85b05a22009-07-13 21:35:55 +00003097 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3098 ConstantRange X = getSignedRange(SMax->getOperand(0));
3099 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3100 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003101 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003102 }
Dan Gohman62849c02009-06-24 01:05:09 +00003103
Dan Gohman85b05a22009-07-13 21:35:55 +00003104 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3105 ConstantRange X = getSignedRange(UMax->getOperand(0));
3106 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3107 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003108 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003109 }
Dan Gohman62849c02009-06-24 01:05:09 +00003110
Dan Gohman85b05a22009-07-13 21:35:55 +00003111 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3112 ConstantRange X = getSignedRange(UDiv->getLHS());
3113 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003114 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003115 }
Dan Gohman62849c02009-06-24 01:05:09 +00003116
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3118 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003119 return setSignedRange(ZExt,
3120 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 }
3122
3123 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3124 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003125 return setSignedRange(SExt,
3126 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003127 }
3128
3129 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3130 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003131 return setSignedRange(Trunc,
3132 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003133 }
3134
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003136 // If there's no signed wrap, and all the operands have the same sign or
3137 // zero, the value won't ever change sign.
3138 if (AddRec->hasNoSignedWrap()) {
3139 bool AllNonNeg = true;
3140 bool AllNonPos = true;
3141 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3142 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3143 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3144 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003145 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003146 ConservativeResult = ConservativeResult.intersectWith(
3147 ConstantRange(APInt(BitWidth, 0),
3148 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003149 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 ConservativeResult = ConservativeResult.intersectWith(
3151 ConstantRange(APInt::getSignedMinValue(BitWidth),
3152 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003153 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003154
3155 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003156 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003157 const Type *Ty = AddRec->getType();
3158 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003159 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3160 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3162
3163 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003164 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003165
3166 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003167 ConstantRange StepRange = getSignedRange(Step);
3168 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3169 ConstantRange EndRange =
3170 StartRange.add(MaxBECountRange.multiply(StepRange));
3171
3172 // Check for overflow. This must be done with ConstantRange arithmetic
3173 // because we could be called from within the ScalarEvolution overflow
3174 // checking code.
3175 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3176 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3177 ConstantRange ExtMaxBECountRange =
3178 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3179 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3180 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3181 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003182 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003183
Dan Gohman85b05a22009-07-13 21:35:55 +00003184 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3185 EndRange.getSignedMin());
3186 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3187 EndRange.getSignedMax());
3188 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003189 return setSignedRange(AddRec, ConservativeResult);
3190 return setSignedRange(AddRec,
3191 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003192 }
Dan Gohman62849c02009-06-24 01:05:09 +00003193 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003194
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003195 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003196 }
3197
Dan Gohman2c364ad2009-06-19 23:29:04 +00003198 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3199 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003200 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003201 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003202 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3203 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003204 return setSignedRange(U, ConservativeResult);
3205 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003206 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003207 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003208 }
3209
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003210 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211}
3212
Chris Lattner53e677a2004-04-02 20:23:17 +00003213/// createSCEV - We know that there is no SCEV for the specified value.
3214/// Analyze the expression.
3215///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003216const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003217 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003218 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003219
Dan Gohman6c459a22008-06-22 19:56:46 +00003220 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003221 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003222 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003223
3224 // Don't attempt to analyze instructions in blocks that aren't
3225 // reachable. Such instructions don't matter, and they aren't required
3226 // to obey basic rules for definitions dominating uses which this
3227 // analysis depends on.
3228 if (!DT->isReachableFromEntry(I->getParent()))
3229 return getUnknown(V);
3230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003231 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003232 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3233 return getConstant(CI);
3234 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003235 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003236 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3237 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003238 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003239 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003240
Dan Gohmanca178902009-07-17 20:47:02 +00003241 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003242 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003243 case Instruction::Add: {
3244 // The simple thing to do would be to just call getSCEV on both operands
3245 // and call getAddExpr with the result. However if we're looking at a
3246 // bunch of things all added together, this can be quite inefficient,
3247 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3248 // Instead, gather up all the operands and make a single getAddExpr call.
3249 // LLVM IR canonical form means we need only traverse the left operands.
3250 SmallVector<const SCEV *, 4> AddOps;
3251 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003252 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3253 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3254 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3255 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003256 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003257 const SCEV *Op1 = getSCEV(U->getOperand(1));
3258 if (Opcode == Instruction::Sub)
3259 AddOps.push_back(getNegativeSCEV(Op1));
3260 else
3261 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003262 }
3263 AddOps.push_back(getSCEV(U->getOperand(0)));
3264 return getAddExpr(AddOps);
3265 }
3266 case Instruction::Mul: {
3267 // See the Add code above.
3268 SmallVector<const SCEV *, 4> MulOps;
3269 MulOps.push_back(getSCEV(U->getOperand(1)));
3270 for (Value *Op = U->getOperand(0);
3271 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3272 Op = U->getOperand(0)) {
3273 U = cast<Operator>(Op);
3274 MulOps.push_back(getSCEV(U->getOperand(1)));
3275 }
3276 MulOps.push_back(getSCEV(U->getOperand(0)));
3277 return getMulExpr(MulOps);
3278 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003279 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003280 return getUDivExpr(getSCEV(U->getOperand(0)),
3281 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003282 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003283 return getMinusSCEV(getSCEV(U->getOperand(0)),
3284 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003285 case Instruction::And:
3286 // For an expression like x&255 that merely masks off the high bits,
3287 // use zext(trunc(x)) as the SCEV expression.
3288 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003289 if (CI->isNullValue())
3290 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003291 if (CI->isAllOnesValue())
3292 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003293 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003294
3295 // Instcombine's ShrinkDemandedConstant may strip bits out of
3296 // constants, obscuring what would otherwise be a low-bits mask.
3297 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3298 // knew about to reconstruct a low-bits mask value.
3299 unsigned LZ = A.countLeadingZeros();
3300 unsigned BitWidth = A.getBitWidth();
3301 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3302 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3303 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3304
3305 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3306
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003307 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003308 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003309 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003310 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003311 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003312 }
3313 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003314
Dan Gohman6c459a22008-06-22 19:56:46 +00003315 case Instruction::Or:
3316 // If the RHS of the Or is a constant, we may have something like:
3317 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3318 // optimizations will transparently handle this case.
3319 //
3320 // In order for this transformation to be safe, the LHS must be of the
3321 // form X*(2^n) and the Or constant must be less than 2^n.
3322 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003323 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003324 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003325 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003326 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3327 // Build a plain add SCEV.
3328 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3329 // If the LHS of the add was an addrec and it has no-wrap flags,
3330 // transfer the no-wrap flags, since an or won't introduce a wrap.
3331 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3332 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3333 if (OldAR->hasNoUnsignedWrap())
3334 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3335 if (OldAR->hasNoSignedWrap())
3336 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3337 }
3338 return S;
3339 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003340 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003341 break;
3342 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003343 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003344 // If the RHS of the xor is a signbit, then this is just an add.
3345 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003346 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003347 return getAddExpr(getSCEV(U->getOperand(0)),
3348 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003349
3350 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003351 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003352 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003353
3354 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3355 // This is a variant of the check for xor with -1, and it handles
3356 // the case where instcombine has trimmed non-demanded bits out
3357 // of an xor with -1.
3358 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3359 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3360 if (BO->getOpcode() == Instruction::And &&
3361 LCI->getValue() == CI->getValue())
3362 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003363 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003364 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003365 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003366 const Type *Z0Ty = Z0->getType();
3367 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3368
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003369 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003370 // mask off the high bits. Complement the operand and
3371 // re-apply the zext.
3372 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3373 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3374
3375 // If C is a single bit, it may be in the sign-bit position
3376 // before the zero-extend. In this case, represent the xor
3377 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003378 APInt Trunc = CI->getValue().trunc(Z0TySize);
3379 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003380 Trunc.isSignBit())
3381 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3382 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003383 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003384 }
3385 break;
3386
3387 case Instruction::Shl:
3388 // Turn shift left of a constant amount into a multiply.
3389 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003390 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003391
3392 // If the shift count is not less than the bitwidth, the result of
3393 // the shift is undefined. Don't try to analyze it, because the
3394 // resolution chosen here may differ from the resolution chosen in
3395 // other parts of the compiler.
3396 if (SA->getValue().uge(BitWidth))
3397 break;
3398
Owen Andersoneed707b2009-07-24 23:12:02 +00003399 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003400 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003401 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003402 }
3403 break;
3404
Nick Lewycky01eaf802008-07-07 06:15:49 +00003405 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003406 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003407 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003408 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003409
3410 // If the shift count is not less than the bitwidth, the result of
3411 // the shift is undefined. Don't try to analyze it, because the
3412 // resolution chosen here may differ from the resolution chosen in
3413 // other parts of the compiler.
3414 if (SA->getValue().uge(BitWidth))
3415 break;
3416
Owen Andersoneed707b2009-07-24 23:12:02 +00003417 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003418 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003419 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003420 }
3421 break;
3422
Dan Gohman4ee29af2009-04-21 02:26:00 +00003423 case Instruction::AShr:
3424 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3425 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003426 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003427 if (L->getOpcode() == Instruction::Shl &&
3428 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003429 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3430
3431 // If the shift count is not less than the bitwidth, the result of
3432 // the shift is undefined. Don't try to analyze it, because the
3433 // resolution chosen here may differ from the resolution chosen in
3434 // other parts of the compiler.
3435 if (CI->getValue().uge(BitWidth))
3436 break;
3437
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003438 uint64_t Amt = BitWidth - CI->getZExtValue();
3439 if (Amt == BitWidth)
3440 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003441 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003442 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003443 IntegerType::get(getContext(),
3444 Amt)),
3445 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003446 }
3447 break;
3448
Dan Gohman6c459a22008-06-22 19:56:46 +00003449 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003450 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003451
3452 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003453 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003454
3455 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003456 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003457
3458 case Instruction::BitCast:
3459 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003460 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003461 return getSCEV(U->getOperand(0));
3462 break;
3463
Dan Gohman4f8eea82010-02-01 18:27:38 +00003464 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3465 // lead to pointer expressions which cannot safely be expanded to GEPs,
3466 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3467 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003468
Dan Gohman26466c02009-05-08 20:26:55 +00003469 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003470 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003471
Dan Gohman6c459a22008-06-22 19:56:46 +00003472 case Instruction::PHI:
3473 return createNodeForPHI(cast<PHINode>(U));
3474
3475 case Instruction::Select:
3476 // This could be a smax or umax that was lowered earlier.
3477 // Try to recover it.
3478 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3479 Value *LHS = ICI->getOperand(0);
3480 Value *RHS = ICI->getOperand(1);
3481 switch (ICI->getPredicate()) {
3482 case ICmpInst::ICMP_SLT:
3483 case ICmpInst::ICMP_SLE:
3484 std::swap(LHS, RHS);
3485 // fall through
3486 case ICmpInst::ICMP_SGT:
3487 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003488 // a >s b ? a+x : b+x -> smax(a, b)+x
3489 // a >s b ? b+x : a+x -> smin(a, b)+x
3490 if (LHS->getType() == U->getType()) {
3491 const SCEV *LS = getSCEV(LHS);
3492 const SCEV *RS = getSCEV(RHS);
3493 const SCEV *LA = getSCEV(U->getOperand(1));
3494 const SCEV *RA = getSCEV(U->getOperand(2));
3495 const SCEV *LDiff = getMinusSCEV(LA, LS);
3496 const SCEV *RDiff = getMinusSCEV(RA, RS);
3497 if (LDiff == RDiff)
3498 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3499 LDiff = getMinusSCEV(LA, RS);
3500 RDiff = getMinusSCEV(RA, LS);
3501 if (LDiff == RDiff)
3502 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3503 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003504 break;
3505 case ICmpInst::ICMP_ULT:
3506 case ICmpInst::ICMP_ULE:
3507 std::swap(LHS, RHS);
3508 // fall through
3509 case ICmpInst::ICMP_UGT:
3510 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003511 // a >u b ? a+x : b+x -> umax(a, b)+x
3512 // a >u b ? b+x : a+x -> umin(a, b)+x
3513 if (LHS->getType() == U->getType()) {
3514 const SCEV *LS = getSCEV(LHS);
3515 const SCEV *RS = getSCEV(RHS);
3516 const SCEV *LA = getSCEV(U->getOperand(1));
3517 const SCEV *RA = getSCEV(U->getOperand(2));
3518 const SCEV *LDiff = getMinusSCEV(LA, LS);
3519 const SCEV *RDiff = getMinusSCEV(RA, RS);
3520 if (LDiff == RDiff)
3521 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3522 LDiff = getMinusSCEV(LA, RS);
3523 RDiff = getMinusSCEV(RA, LS);
3524 if (LDiff == RDiff)
3525 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3526 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003527 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003528 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003529 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3530 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003531 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003532 cast<ConstantInt>(RHS)->isZero()) {
3533 const SCEV *One = getConstant(LHS->getType(), 1);
3534 const SCEV *LS = getSCEV(LHS);
3535 const SCEV *LA = getSCEV(U->getOperand(1));
3536 const SCEV *RA = getSCEV(U->getOperand(2));
3537 const SCEV *LDiff = getMinusSCEV(LA, LS);
3538 const SCEV *RDiff = getMinusSCEV(RA, One);
3539 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003540 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003541 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003542 break;
3543 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003544 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3545 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003546 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003547 cast<ConstantInt>(RHS)->isZero()) {
3548 const SCEV *One = getConstant(LHS->getType(), 1);
3549 const SCEV *LS = getSCEV(LHS);
3550 const SCEV *LA = getSCEV(U->getOperand(1));
3551 const SCEV *RA = getSCEV(U->getOperand(2));
3552 const SCEV *LDiff = getMinusSCEV(LA, One);
3553 const SCEV *RDiff = getMinusSCEV(RA, LS);
3554 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003555 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003556 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003557 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003558 default:
3559 break;
3560 }
3561 }
3562
3563 default: // We cannot analyze this expression.
3564 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003565 }
3566
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003567 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003568}
3569
3570
3571
3572//===----------------------------------------------------------------------===//
3573// Iteration Count Computation Code
3574//
3575
Dan Gohman46bdfb02009-02-24 18:55:53 +00003576/// getBackedgeTakenCount - If the specified loop has a predictable
3577/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3578/// object. The backedge-taken count is the number of times the loop header
3579/// will be branched to from within the loop. This is one less than the
3580/// trip count of the loop, since it doesn't count the first iteration,
3581/// when the header is branched to from outside the loop.
3582///
3583/// Note that it is not valid to call this method on a loop without a
3584/// loop-invariant backedge-taken count (see
3585/// hasLoopInvariantBackedgeTakenCount).
3586///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003587const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003588 return getBackedgeTakenInfo(L).Exact;
3589}
3590
3591/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3592/// return the least SCEV value that is known never to be less than the
3593/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003594const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003595 return getBackedgeTakenInfo(L).Max;
3596}
3597
Dan Gohman59ae6b92009-07-08 19:23:34 +00003598/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3599/// onto the given Worklist.
3600static void
3601PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3602 BasicBlock *Header = L->getHeader();
3603
3604 // Push all Loop-header PHIs onto the Worklist stack.
3605 for (BasicBlock::iterator I = Header->begin();
3606 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3607 Worklist.push_back(PN);
3608}
3609
Dan Gohmana1af7572009-04-30 20:47:05 +00003610const ScalarEvolution::BackedgeTakenInfo &
3611ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003612 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003613 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003614 // update the value. The temporary CouldNotCompute value tells SCEV
3615 // code elsewhere that it shouldn't attempt to request a new
3616 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003617 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003618 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003619 if (!Pair.second)
3620 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003621
Chris Lattnerf1859892011-01-09 02:16:18 +00003622 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3623 if (BECount.Exact != getCouldNotCompute()) {
3624 assert(isLoopInvariant(BECount.Exact, L) &&
3625 isLoopInvariant(BECount.Max, L) &&
3626 "Computed backedge-taken count isn't loop invariant for loop!");
3627 ++NumTripCountsComputed;
3628
3629 // Update the value in the map.
3630 Pair.first->second = BECount;
3631 } else {
3632 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003633 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003634 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003635 if (isa<PHINode>(L->getHeader()->begin()))
3636 // Only count loops that have phi nodes as not being computable.
3637 ++NumTripCountsNotComputed;
3638 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003639
Chris Lattnerf1859892011-01-09 02:16:18 +00003640 // Now that we know more about the trip count for this loop, forget any
3641 // existing SCEV values for PHI nodes in this loop since they are only
3642 // conservative estimates made without the benefit of trip count
3643 // information. This is similar to the code in forgetLoop, except that
3644 // it handles SCEVUnknown PHI nodes specially.
3645 if (BECount.hasAnyInfo()) {
3646 SmallVector<Instruction *, 16> Worklist;
3647 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003648
Chris Lattnerf1859892011-01-09 02:16:18 +00003649 SmallPtrSet<Instruction *, 8> Visited;
3650 while (!Worklist.empty()) {
3651 Instruction *I = Worklist.pop_back_val();
3652 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003653
Chris Lattnerf1859892011-01-09 02:16:18 +00003654 ValueExprMapType::iterator It =
3655 ValueExprMap.find(static_cast<Value *>(I));
3656 if (It != ValueExprMap.end()) {
3657 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003658
Chris Lattnerf1859892011-01-09 02:16:18 +00003659 // SCEVUnknown for a PHI either means that it has an unrecognized
3660 // structure, or it's a PHI that's in the progress of being computed
3661 // by createNodeForPHI. In the former case, additional loop trip
3662 // count information isn't going to change anything. In the later
3663 // case, createNodeForPHI will perform the necessary updates on its
3664 // own when it gets to that point.
3665 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3666 forgetMemoizedResults(Old);
3667 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003668 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003669 if (PHINode *PN = dyn_cast<PHINode>(I))
3670 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003671 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003672
3673 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003674 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003675 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003676 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003677}
3678
Dan Gohman4c7279a2009-10-31 15:04:55 +00003679/// forgetLoop - This method should be called by the client when it has
3680/// changed a loop in a way that may effect ScalarEvolution's ability to
3681/// compute a trip count, or if the loop is deleted.
3682void ScalarEvolution::forgetLoop(const Loop *L) {
3683 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003684 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003685
Dan Gohman4c7279a2009-10-31 15:04:55 +00003686 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003687 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003688 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003689
Dan Gohman59ae6b92009-07-08 19:23:34 +00003690 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003691 while (!Worklist.empty()) {
3692 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003693 if (!Visited.insert(I)) continue;
3694
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003695 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3696 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003697 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003698 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003699 if (PHINode *PN = dyn_cast<PHINode>(I))
3700 ConstantEvolutionLoopExitValue.erase(PN);
3701 }
3702
3703 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003704 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003705
3706 // Forget all contained loops too, to avoid dangling entries in the
3707 // ValuesAtScopes map.
3708 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3709 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003710}
3711
Eric Christophere6cbfa62010-07-29 01:25:38 +00003712/// forgetValue - This method should be called by the client when it has
3713/// changed a value in a way that may effect its value, or which may
3714/// disconnect it from a def-use chain linking it to a loop.
3715void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003716 Instruction *I = dyn_cast<Instruction>(V);
3717 if (!I) return;
3718
3719 // Drop information about expressions based on loop-header PHIs.
3720 SmallVector<Instruction *, 16> Worklist;
3721 Worklist.push_back(I);
3722
3723 SmallPtrSet<Instruction *, 8> Visited;
3724 while (!Worklist.empty()) {
3725 I = Worklist.pop_back_val();
3726 if (!Visited.insert(I)) continue;
3727
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003728 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3729 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003730 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003731 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003732 if (PHINode *PN = dyn_cast<PHINode>(I))
3733 ConstantEvolutionLoopExitValue.erase(PN);
3734 }
3735
3736 PushDefUseChildren(I, Worklist);
3737 }
3738}
3739
Dan Gohman46bdfb02009-02-24 18:55:53 +00003740/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3741/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003742ScalarEvolution::BackedgeTakenInfo
3743ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003744 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003746
Dan Gohmana334aa72009-06-22 00:31:57 +00003747 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003748 const SCEV *BECount = getCouldNotCompute();
3749 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003750 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3752 BackedgeTakenInfo NewBTI =
3753 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003754
Dan Gohman1c343752009-06-27 21:21:31 +00003755 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003756 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003757 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003758 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003759 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003761 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003762 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003763 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003764 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 }
Dan Gohman1c343752009-06-27 21:21:31 +00003766 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003767 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003768 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003769 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003770 }
3771
3772 return BackedgeTakenInfo(BECount, MaxBECount);
3773}
3774
3775/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3776/// of the specified loop will execute if it exits via the specified block.
3777ScalarEvolution::BackedgeTakenInfo
3778ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3779 BasicBlock *ExitingBlock) {
3780
3781 // Okay, we've chosen an exiting block. See what condition causes us to
3782 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003783 //
3784 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003785 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003786 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003787 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003788
Chris Lattner8b0e3602007-01-07 02:24:26 +00003789 // At this point, we know we have a conditional branch that determines whether
3790 // the loop is exited. However, we don't know if the branch is executed each
3791 // time through the loop. If not, then the execution count of the branch will
3792 // not be equal to the trip count of the loop.
3793 //
3794 // Currently we check for this by checking to see if the Exit branch goes to
3795 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003796 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003797 // loop header. This is common for un-rotated loops.
3798 //
3799 // If both of those tests fail, walk up the unique predecessor chain to the
3800 // header, stopping if there is an edge that doesn't exit the loop. If the
3801 // header is reached, the execution count of the branch will be equal to the
3802 // trip count of the loop.
3803 //
3804 // More extensive analysis could be done to handle more cases here.
3805 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003806 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003807 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003808 ExitBr->getParent() != L->getHeader()) {
3809 // The simple checks failed, try climbing the unique predecessor chain
3810 // up to the header.
3811 bool Ok = false;
3812 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3813 BasicBlock *Pred = BB->getUniquePredecessor();
3814 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003815 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003816 TerminatorInst *PredTerm = Pred->getTerminator();
3817 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3818 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3819 if (PredSucc == BB)
3820 continue;
3821 // If the predecessor has a successor that isn't BB and isn't
3822 // outside the loop, assume the worst.
3823 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003824 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 }
3826 if (Pred == L->getHeader()) {
3827 Ok = true;
3828 break;
3829 }
3830 BB = Pred;
3831 }
3832 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003833 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 }
3835
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003836 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3838 ExitBr->getSuccessor(0),
3839 ExitBr->getSuccessor(1));
3840}
3841
3842/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3843/// backedge of the specified loop will execute if its exit condition
3844/// were a conditional branch of ExitCond, TBB, and FBB.
3845ScalarEvolution::BackedgeTakenInfo
3846ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3847 Value *ExitCond,
3848 BasicBlock *TBB,
3849 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003850 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003851 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3852 if (BO->getOpcode() == Instruction::And) {
3853 // Recurse on the operands of the and.
3854 BackedgeTakenInfo BTI0 =
3855 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3856 BackedgeTakenInfo BTI1 =
3857 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003858 const SCEV *BECount = getCouldNotCompute();
3859 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003860 if (L->contains(TBB)) {
3861 // Both conditions must be true for the loop to continue executing.
3862 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003863 if (BTI0.Exact == getCouldNotCompute() ||
3864 BTI1.Exact == getCouldNotCompute())
3865 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003866 else
3867 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003868 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003869 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003870 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003872 else
3873 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003874 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003875 // Both conditions must be true at the same time for the loop to exit.
3876 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003878 if (BTI0.Max == BTI1.Max)
3879 MaxBECount = BTI0.Max;
3880 if (BTI0.Exact == BTI1.Exact)
3881 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003882 }
3883
3884 return BackedgeTakenInfo(BECount, MaxBECount);
3885 }
3886 if (BO->getOpcode() == Instruction::Or) {
3887 // Recurse on the operands of the or.
3888 BackedgeTakenInfo BTI0 =
3889 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3890 BackedgeTakenInfo BTI1 =
3891 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003892 const SCEV *BECount = getCouldNotCompute();
3893 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 if (L->contains(FBB)) {
3895 // Both conditions must be false for the loop to continue executing.
3896 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003897 if (BTI0.Exact == getCouldNotCompute() ||
3898 BTI1.Exact == getCouldNotCompute())
3899 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003900 else
3901 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003902 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003903 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003904 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003905 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003906 else
3907 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003908 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003909 // Both conditions must be false at the same time for the loop to exit.
3910 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003911 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003912 if (BTI0.Max == BTI1.Max)
3913 MaxBECount = BTI0.Max;
3914 if (BTI0.Exact == BTI1.Exact)
3915 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003916 }
3917
3918 return BackedgeTakenInfo(BECount, MaxBECount);
3919 }
3920 }
3921
3922 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003923 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003924 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3925 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003926
Dan Gohman00cb5b72010-02-19 18:12:07 +00003927 // Check for a constant condition. These are normally stripped out by
3928 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3929 // preserve the CFG and is temporarily leaving constant conditions
3930 // in place.
3931 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3932 if (L->contains(FBB) == !CI->getZExtValue())
3933 // The backedge is always taken.
3934 return getCouldNotCompute();
3935 else
3936 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003937 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003938 }
3939
Eli Friedman361e54d2009-05-09 12:32:42 +00003940 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3942}
3943
Chris Lattner992efb02011-01-09 22:26:35 +00003944static const SCEVAddRecExpr *
3945isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3946 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3947
3948 // The SCEV must be an addrec of this loop.
3949 if (!SA || SA->getLoop() != L || !SA->isAffine())
3950 return 0;
3951
3952 // The SCEV must be known to not wrap in some way to be interesting.
3953 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3954 return 0;
3955
3956 // The stride must be a constant so that we know if it is striding up or down.
3957 if (!isa<SCEVConstant>(SA->getOperand(1)))
3958 return 0;
3959 return SA;
3960}
3961
3962/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3963/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3964/// and this function returns the expression to use for x-y. We know and take
3965/// advantage of the fact that this subtraction is only being used in a
3966/// comparison by zero context.
3967///
3968static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
3969 const Loop *L, ScalarEvolution &SE) {
3970 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
3971 // wrap (either NSW or NUW), then we know that the value will either become
3972 // the other one (and thus the loop terminates), that the loop will terminate
3973 // through some other exit condition first, or that the loop has undefined
3974 // behavior. This information is useful when the addrec has a stride that is
3975 // != 1 or -1, because it means we can't "miss" the exit value.
3976 //
3977 // In any of these three cases, it is safe to turn the exit condition into a
3978 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
3979 // but since we know that the "end cannot be missed" we can force the
3980 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
3981 // that the AddRec *cannot* pass zero.
3982
3983 // See if LHS and RHS are addrec's we can handle.
3984 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
3985 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
3986
3987 // If neither addrec is interesting, just return a minus.
3988 if (RHSA == 0 && LHSA == 0)
3989 return SE.getMinusSCEV(LHS, RHS);
3990
3991 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
3992 if (RHSA && LHSA == 0) {
3993 // Safe because a-b === b-a for comparisons against zero.
3994 std::swap(LHS, RHS);
3995 std::swap(LHSA, RHSA);
3996 }
3997
3998 // Handle the case when only one is advancing in a non-overflowing way.
3999 if (RHSA == 0) {
4000 // If RHS is loop varying, then we can't predict when LHS will cross it.
4001 if (!SE.isLoopInvariant(RHS, L))
4002 return SE.getMinusSCEV(LHS, RHS);
4003
4004 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4005 // is counting up until it crosses RHS (which must be larger than LHS). If
4006 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4007 const ConstantInt *Stride =
4008 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4009 if (Stride->getValue().isNegative())
4010 std::swap(LHS, RHS);
4011
4012 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4013 }
4014
4015 // If both LHS and RHS are interesting, we have something like:
4016 // a+i*4 != b+i*8.
4017 const ConstantInt *LHSStride =
4018 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4019 const ConstantInt *RHSStride =
4020 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4021
4022 // If the strides are equal, then this is just a (complex) loop invariant
4023 // comparison of a/b.
4024 if (LHSStride == RHSStride)
4025 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4026
4027 // If the signs of the strides differ, then the negative stride is counting
4028 // down to the positive stride.
4029 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4030 if (RHSStride->getValue().isNegative())
4031 std::swap(LHS, RHS);
4032 } else {
4033 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4034 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4035 // whether the strides are positive or negative.
4036 if (RHSStride->getValue().slt(LHSStride->getValue()))
4037 std::swap(LHS, RHS);
4038 }
4039
4040 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4041}
4042
Dan Gohmana334aa72009-06-22 00:31:57 +00004043/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4044/// backedge of the specified loop will execute if its exit condition
4045/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4046ScalarEvolution::BackedgeTakenInfo
4047ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4048 ICmpInst *ExitCond,
4049 BasicBlock *TBB,
4050 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004051
Reid Spencere4d87aa2006-12-23 06:05:41 +00004052 // If the condition was exit on true, convert the condition to exit on false
4053 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004054 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004055 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004056 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004057 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004058
4059 // Handle common loops like: for (X = "string"; *X; ++X)
4060 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4061 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004062 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004063 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004064 if (ItCnt.hasAnyInfo())
4065 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004066 }
4067
Dan Gohman0bba49c2009-07-07 17:06:11 +00004068 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4069 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004070
4071 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004072 LHS = getSCEVAtScope(LHS, L);
4073 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004074
Dan Gohman64a845e2009-06-24 04:48:43 +00004075 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004076 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004077 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004078 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004079 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004080 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004081 }
4082
Dan Gohman03557dc2010-05-03 16:35:17 +00004083 // Simplify the operands before analyzing them.
4084 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4085
Chris Lattner53e677a2004-04-02 20:23:17 +00004086 // If we have a comparison of a chrec against a constant, try to use value
4087 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004088 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4089 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004090 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004091 // Form the constant range.
4092 ConstantRange CompRange(
4093 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004094
Dan Gohman0bba49c2009-07-07 17:06:11 +00004095 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004096 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004097 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004098
Chris Lattner53e677a2004-04-02 20:23:17 +00004099 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004100 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004102 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4103 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004104 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004105 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004106 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004107 case ICmpInst::ICMP_EQ: { // while (X == Y)
4108 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004109 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4110 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004111 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004112 }
4113 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004114 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4115 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004116 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004117 }
4118 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004119 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4120 getNotSCEV(RHS), L, true);
4121 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004122 break;
4123 }
4124 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004125 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4126 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004127 break;
4128 }
4129 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004130 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4131 getNotSCEV(RHS), L, false);
4132 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004133 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004134 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004135 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004136#if 0
David Greene25e0e872009-12-23 22:18:14 +00004137 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004138 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004139 dbgs() << "[unsigned] ";
4140 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004141 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004142 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004143#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004144 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004145 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004146 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004147 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004148}
4149
Chris Lattner673e02b2004-10-12 01:49:27 +00004150static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004151EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4152 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004153 const SCEV *InVal = SE.getConstant(C);
4154 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004155 assert(isa<SCEVConstant>(Val) &&
4156 "Evaluation of SCEV at constant didn't fold correctly?");
4157 return cast<SCEVConstant>(Val)->getValue();
4158}
4159
4160/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4161/// and a GEP expression (missing the pointer index) indexing into it, return
4162/// the addressed element of the initializer or null if the index expression is
4163/// invalid.
4164static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004165GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004166 const std::vector<ConstantInt*> &Indices) {
4167 Constant *Init = GV->getInitializer();
4168 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004169 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004170 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4171 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4172 Init = cast<Constant>(CS->getOperand(Idx));
4173 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4174 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4175 Init = cast<Constant>(CA->getOperand(Idx));
4176 } else if (isa<ConstantAggregateZero>(Init)) {
4177 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4178 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004179 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004180 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4181 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004182 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004183 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004184 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004185 }
4186 return 0;
4187 } else {
4188 return 0; // Unknown initializer type
4189 }
4190 }
4191 return Init;
4192}
4193
Dan Gohman46bdfb02009-02-24 18:55:53 +00004194/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4195/// 'icmp op load X, cst', try to see if we can compute the backedge
4196/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004197ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004198ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4199 LoadInst *LI,
4200 Constant *RHS,
4201 const Loop *L,
4202 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004203 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004204
4205 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004206 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004207 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004208 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004209
4210 // Make sure that it is really a constant global we are gepping, with an
4211 // initializer, and make sure the first IDX is really 0.
4212 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004213 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004214 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4215 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004216 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004217
4218 // Okay, we allow one non-constant index into the GEP instruction.
4219 Value *VarIdx = 0;
4220 std::vector<ConstantInt*> Indexes;
4221 unsigned VarIdxNum = 0;
4222 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4223 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4224 Indexes.push_back(CI);
4225 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004226 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004227 VarIdx = GEP->getOperand(i);
4228 VarIdxNum = i-2;
4229 Indexes.push_back(0);
4230 }
4231
4232 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4233 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004234 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004235 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004236
4237 // We can only recognize very limited forms of loop index expressions, in
4238 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004239 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004240 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004241 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4242 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004243 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004244
4245 unsigned MaxSteps = MaxBruteForceIterations;
4246 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004247 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004248 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004249 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004250
4251 // Form the GEP offset.
4252 Indexes[VarIdxNum] = Val;
4253
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004254 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004255 if (Result == 0) break; // Cannot compute!
4256
4257 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004258 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004259 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004260 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004261#if 0
David Greene25e0e872009-12-23 22:18:14 +00004262 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004263 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4264 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004265#endif
4266 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004267 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004268 }
4269 }
Dan Gohman1c343752009-06-27 21:21:31 +00004270 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004271}
4272
4273
Chris Lattner3221ad02004-04-17 22:58:41 +00004274/// CanConstantFold - Return true if we can constant fold an instruction of the
4275/// specified type, assuming that all operands were constants.
4276static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004277 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004278 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4279 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004280
Chris Lattner3221ad02004-04-17 22:58:41 +00004281 if (const CallInst *CI = dyn_cast<CallInst>(I))
4282 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004283 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004284 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004285}
4286
Chris Lattner3221ad02004-04-17 22:58:41 +00004287/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4288/// in the loop that V is derived from. We allow arbitrary operations along the
4289/// way, but the operands of an operation must either be constants or a value
4290/// derived from a constant PHI. If this expression does not fit with these
4291/// constraints, return null.
4292static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4293 // If this is not an instruction, or if this is an instruction outside of the
4294 // loop, it can't be derived from a loop PHI.
4295 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004296 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004297
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004298 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004299 if (L->getHeader() == I->getParent())
4300 return PN;
4301 else
4302 // We don't currently keep track of the control flow needed to evaluate
4303 // PHIs, so we cannot handle PHIs inside of loops.
4304 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004305 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004306
4307 // If we won't be able to constant fold this expression even if the operands
4308 // are constants, return early.
4309 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004310
Chris Lattner3221ad02004-04-17 22:58:41 +00004311 // Otherwise, we can evaluate this instruction if all of its operands are
4312 // constant or derived from a PHI node themselves.
4313 PHINode *PHI = 0;
4314 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004315 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004316 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4317 if (P == 0) return 0; // Not evolving from PHI
4318 if (PHI == 0)
4319 PHI = P;
4320 else if (PHI != P)
4321 return 0; // Evolving from multiple different PHIs.
4322 }
4323
4324 // This is a expression evolving from a constant PHI!
4325 return PHI;
4326}
4327
4328/// EvaluateExpression - Given an expression that passes the
4329/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4330/// in the loop has the value PHIVal. If we can't fold this expression for some
4331/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004332static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4333 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004334 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004335 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 Instruction *I = cast<Instruction>(V);
4337
Dan Gohman9d4588f2010-06-22 13:15:46 +00004338 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004339
4340 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004341 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004342 if (Operands[i] == 0) return 0;
4343 }
4344
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004345 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004346 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004347 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004348 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004349 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004350}
4351
4352/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4353/// in the header of its containing loop, we know the loop executes a
4354/// constant number of times, and the PHI node is just a recurrence
4355/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004356Constant *
4357ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004358 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004359 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004360 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004361 ConstantEvolutionLoopExitValue.find(PN);
4362 if (I != ConstantEvolutionLoopExitValue.end())
4363 return I->second;
4364
Dan Gohmane0567812010-04-08 23:03:40 +00004365 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004366 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4367
4368 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4369
4370 // Since the loop is canonicalized, the PHI node must have two entries. One
4371 // entry must be a constant (coming in from outside of the loop), and the
4372 // second must be derived from the same PHI.
4373 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4374 Constant *StartCST =
4375 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4376 if (StartCST == 0)
4377 return RetVal = 0; // Must be a constant.
4378
4379 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004380 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4381 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004382 return RetVal = 0; // Not derived from same PHI.
4383
4384 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004385 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004386 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004387
Dan Gohman46bdfb02009-02-24 18:55:53 +00004388 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004389 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004390 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4391 if (IterationNum == NumIterations)
4392 return RetVal = PHIVal; // Got exit value!
4393
4394 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004395 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004396 if (NextPHI == PHIVal)
4397 return RetVal = NextPHI; // Stopped evolving!
4398 if (NextPHI == 0)
4399 return 0; // Couldn't evaluate!
4400 PHIVal = NextPHI;
4401 }
4402}
4403
Dan Gohman07ad19b2009-07-27 16:09:48 +00004404/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004405/// constant number of times (the condition evolves only from constants),
4406/// try to evaluate a few iterations of the loop until we get the exit
4407/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004408/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004409const SCEV *
4410ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4411 Value *Cond,
4412 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004413 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004414 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004415
Dan Gohmanb92654d2010-06-19 14:17:24 +00004416 // If the loop is canonicalized, the PHI will have exactly two entries.
4417 // That's the only form we support here.
4418 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4419
4420 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004421 // second must be derived from the same PHI.
4422 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4423 Constant *StartCST =
4424 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004425 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004426
4427 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004428 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4429 !isa<Constant>(BEValue))
4430 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004431
4432 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4433 // the loop symbolically to determine when the condition gets a value of
4434 // "ExitWhen".
4435 unsigned IterationNum = 0;
4436 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4437 for (Constant *PHIVal = StartCST;
4438 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004439 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004440 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004441
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004442 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004443 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004444
Reid Spencere8019bb2007-03-01 07:25:48 +00004445 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004446 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004447 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004448 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004449
Chris Lattner3221ad02004-04-17 22:58:41 +00004450 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004451 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004452 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004453 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004455 }
4456
4457 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004458 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004459}
4460
Dan Gohmane7125f42009-09-03 15:00:26 +00004461/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004462/// at the specified scope in the program. The L value specifies a loop
4463/// nest to evaluate the expression at, where null is the top-level or a
4464/// specified loop is immediately inside of the loop.
4465///
4466/// This method can be used to compute the exit value for a variable defined
4467/// in a loop by querying what the value will hold in the parent loop.
4468///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004469/// In the case that a relevant loop exit value cannot be computed, the
4470/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004471const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004472 // Check to see if we've folded this expression at this loop before.
4473 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4474 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4475 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4476 if (!Pair.second)
4477 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004478
Dan Gohman42214892009-08-31 21:15:23 +00004479 // Otherwise compute it.
4480 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004481 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004482 return C;
4483}
4484
4485const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004486 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004487
Nick Lewycky3e630762008-02-20 06:48:22 +00004488 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004489 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004490 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004491 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004492 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004493 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4494 if (PHINode *PN = dyn_cast<PHINode>(I))
4495 if (PN->getParent() == LI->getHeader()) {
4496 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004497 // to see if the loop that contains it has a known backedge-taken
4498 // count. If so, we may be able to force computation of the exit
4499 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004500 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004501 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004502 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004503 // Okay, we know how many times the containing loop executes. If
4504 // this is a constant evolving PHI node, get the final value at
4505 // the specified iteration number.
4506 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004507 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004508 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004509 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004510 }
4511 }
4512
Reid Spencer09906f32006-12-04 21:33:23 +00004513 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004514 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004515 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004516 // result. This is particularly useful for computing loop exit values.
4517 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004518 SmallVector<Constant *, 4> Operands;
4519 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004520 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4521 Value *Op = I->getOperand(i);
4522 if (Constant *C = dyn_cast<Constant>(Op)) {
4523 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004524 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004525 }
Dan Gohman11046452010-06-29 23:43:06 +00004526
4527 // If any of the operands is non-constant and if they are
4528 // non-integer and non-pointer, don't even try to analyze them
4529 // with scev techniques.
4530 if (!isSCEVable(Op->getType()))
4531 return V;
4532
4533 const SCEV *OrigV = getSCEV(Op);
4534 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4535 MadeImprovement |= OrigV != OpV;
4536
4537 Constant *C = 0;
4538 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4539 C = SC->getValue();
4540 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4541 C = dyn_cast<Constant>(SU->getValue());
4542 if (!C) return V;
4543 if (C->getType() != Op->getType())
4544 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4545 Op->getType(),
4546 false),
4547 C, Op->getType());
4548 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004549 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004550
Dan Gohman11046452010-06-29 23:43:06 +00004551 // Check to see if getSCEVAtScope actually made an improvement.
4552 if (MadeImprovement) {
4553 Constant *C = 0;
4554 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4555 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4556 Operands[0], Operands[1], TD);
4557 else
4558 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4559 &Operands[0], Operands.size(), TD);
4560 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004561 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004562 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004563 }
4564 }
4565
4566 // This is some other type of SCEVUnknown, just return it.
4567 return V;
4568 }
4569
Dan Gohman622ed672009-05-04 22:02:23 +00004570 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004571 // Avoid performing the look-up in the common case where the specified
4572 // expression has no loop-variant portions.
4573 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004574 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004575 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004576 // Okay, at least one of these operands is loop variant but might be
4577 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004578 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4579 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004580 NewOps.push_back(OpAtScope);
4581
4582 for (++i; i != e; ++i) {
4583 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004584 NewOps.push_back(OpAtScope);
4585 }
4586 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004587 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004588 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004589 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004590 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004591 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004592 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004593 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004594 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 }
4596 }
4597 // If we got here, all operands are loop invariant.
4598 return Comm;
4599 }
4600
Dan Gohman622ed672009-05-04 22:02:23 +00004601 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004602 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4603 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004604 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4605 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004606 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004607 }
4608
4609 // If this is a loop recurrence for a loop that does not contain L, then we
4610 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004611 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004612 // First, attempt to evaluate each operand.
4613 // Avoid performing the look-up in the common case where the specified
4614 // expression has no loop-variant portions.
4615 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4616 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4617 if (OpAtScope == AddRec->getOperand(i))
4618 continue;
4619
4620 // Okay, at least one of these operands is loop variant but might be
4621 // foldable. Build a new instance of the folded commutative expression.
4622 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4623 AddRec->op_begin()+i);
4624 NewOps.push_back(OpAtScope);
4625 for (++i; i != e; ++i)
4626 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4627
4628 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4629 break;
4630 }
4631
4632 // If the scope is outside the addrec's loop, evaluate it by using the
4633 // loop exit value of the addrec.
4634 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004635 // To evaluate this recurrence, we need to know how many times the AddRec
4636 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004637 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004638 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004639
Eli Friedmanb42a6262008-08-04 23:49:06 +00004640 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004641 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004642 }
Dan Gohman11046452010-06-29 23:43:06 +00004643
Dan Gohmand594e6f2009-05-24 23:25:42 +00004644 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004645 }
4646
Dan Gohman622ed672009-05-04 22:02:23 +00004647 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004648 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004649 if (Op == Cast->getOperand())
4650 return Cast; // must be loop invariant
4651 return getZeroExtendExpr(Op, Cast->getType());
4652 }
4653
Dan Gohman622ed672009-05-04 22:02:23 +00004654 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004655 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004656 if (Op == Cast->getOperand())
4657 return Cast; // must be loop invariant
4658 return getSignExtendExpr(Op, Cast->getType());
4659 }
4660
Dan Gohman622ed672009-05-04 22:02:23 +00004661 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004662 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004663 if (Op == Cast->getOperand())
4664 return Cast; // must be loop invariant
4665 return getTruncateExpr(Op, Cast->getType());
4666 }
4667
Torok Edwinc23197a2009-07-14 16:55:14 +00004668 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004669 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004670}
4671
Dan Gohman66a7e852009-05-08 20:38:54 +00004672/// getSCEVAtScope - This is a convenience function which does
4673/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004674const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004675 return getSCEVAtScope(getSCEV(V), L);
4676}
4677
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004678/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4679/// following equation:
4680///
4681/// A * X = B (mod N)
4682///
4683/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4684/// A and B isn't important.
4685///
4686/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004687static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004688 ScalarEvolution &SE) {
4689 uint32_t BW = A.getBitWidth();
4690 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4691 assert(A != 0 && "A must be non-zero.");
4692
4693 // 1. D = gcd(A, N)
4694 //
4695 // The gcd of A and N may have only one prime factor: 2. The number of
4696 // trailing zeros in A is its multiplicity
4697 uint32_t Mult2 = A.countTrailingZeros();
4698 // D = 2^Mult2
4699
4700 // 2. Check if B is divisible by D.
4701 //
4702 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4703 // is not less than multiplicity of this prime factor for D.
4704 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004705 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004706
4707 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4708 // modulo (N / D).
4709 //
4710 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4711 // bit width during computations.
4712 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4713 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004714 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004715 APInt I = AD.multiplicativeInverse(Mod);
4716
4717 // 4. Compute the minimum unsigned root of the equation:
4718 // I * (B / D) mod (N / D)
4719 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4720
4721 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4722 // bits.
4723 return SE.getConstant(Result.trunc(BW));
4724}
Chris Lattner53e677a2004-04-02 20:23:17 +00004725
4726/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4727/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4728/// might be the same) or two SCEVCouldNotCompute objects.
4729///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004730static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004731SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004732 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004733 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4734 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4735 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004736
Chris Lattner53e677a2004-04-02 20:23:17 +00004737 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004738 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004739 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004740 return std::make_pair(CNC, CNC);
4741 }
4742
Reid Spencere8019bb2007-03-01 07:25:48 +00004743 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004744 const APInt &L = LC->getValue()->getValue();
4745 const APInt &M = MC->getValue()->getValue();
4746 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004747 APInt Two(BitWidth, 2);
4748 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004749
Dan Gohman64a845e2009-06-24 04:48:43 +00004750 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004751 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004752 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004753 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4754 // The B coefficient is M-N/2
4755 APInt B(M);
4756 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004757
Reid Spencere8019bb2007-03-01 07:25:48 +00004758 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004759 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004760
Reid Spencere8019bb2007-03-01 07:25:48 +00004761 // Compute the B^2-4ac term.
4762 APInt SqrtTerm(B);
4763 SqrtTerm *= B;
4764 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004765
Reid Spencere8019bb2007-03-01 07:25:48 +00004766 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4767 // integer value or else APInt::sqrt() will assert.
4768 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004769
Dan Gohman64a845e2009-06-24 04:48:43 +00004770 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004771 // The divisions must be performed as signed divisions.
4772 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004773 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004774 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004775 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004776 return std::make_pair(CNC, CNC);
4777 }
4778
Owen Andersone922c022009-07-22 00:24:57 +00004779 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004780
4781 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004782 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004783 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004784 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004785
Dan Gohman64a845e2009-06-24 04:48:43 +00004786 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004787 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004788 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004789}
4790
4791/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004792/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004793ScalarEvolution::BackedgeTakenInfo
4794ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004795 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004796 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004798 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004799 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004800 }
4801
Dan Gohman35738ac2009-05-04 22:30:44 +00004802 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004803 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004804 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004805
4806 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004807 // If this is an affine expression, the execution count of this branch is
4808 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004809 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004810 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004811 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004812 // equivalent to:
4813 //
4814 // Step*N = -Start (mod 2^BW)
4815 //
4816 // where BW is the common bit width of Start and Step.
4817
Chris Lattner53e677a2004-04-02 20:23:17 +00004818 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004819 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4820 L->getParentLoop());
4821 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4822 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004823
Dan Gohman622ed672009-05-04 22:02:23 +00004824 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004825 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004826
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004827 // First, handle unitary steps.
4828 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004829 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004830 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4831 return Start; // N = Start (as unsigned)
4832
4833 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004834 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004835 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004836 -StartC->getValue()->getValue(),
4837 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004838 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004839 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004840 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4841 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004842 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004843 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004844 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4845 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004846 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004847#if 0
David Greene25e0e872009-12-23 22:18:14 +00004848 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004849 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004850#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004851 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004852 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004853 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004854 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004855 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004856 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004857
Chris Lattner53e677a2004-04-02 20:23:17 +00004858 // We can only use this value if the chrec ends up with an exact zero
4859 // value at this index. When solving for "X*X != 5", for example, we
4860 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004861 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004862 if (Val->isZero())
4863 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004864 }
4865 }
4866 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004867
Dan Gohman1c343752009-06-27 21:21:31 +00004868 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004869}
4870
4871/// HowFarToNonZero - Return the number of times a backedge checking the
4872/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004873/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004874ScalarEvolution::BackedgeTakenInfo
4875ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004876 // Loops that look like: while (X == 0) are very strange indeed. We don't
4877 // handle them yet except for the trivial case. This could be expanded in the
4878 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004879
Chris Lattner53e677a2004-04-02 20:23:17 +00004880 // If the value is a constant, check to see if it is known to be non-zero
4881 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004882 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004883 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004884 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004885 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004886 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004887
Chris Lattner53e677a2004-04-02 20:23:17 +00004888 // We could implement others, but I really doubt anyone writes loops like
4889 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004890 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004891}
4892
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004893/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4894/// (which may not be an immediate predecessor) which has exactly one
4895/// successor from which BB is reachable, or null if no such block is
4896/// found.
4897///
Dan Gohman005752b2010-04-15 16:19:08 +00004898std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004899ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004900 // If the block has a unique predecessor, then there is no path from the
4901 // predecessor to the block that does not go through the direct edge
4902 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004903 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004904 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004905
4906 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004907 // If the header has a unique predecessor outside the loop, it must be
4908 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004909 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004910 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004911
Dan Gohman005752b2010-04-15 16:19:08 +00004912 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004913}
4914
Dan Gohman763bad12009-06-20 00:35:32 +00004915/// HasSameValue - SCEV structural equivalence is usually sufficient for
4916/// testing whether two expressions are equal, however for the purposes of
4917/// looking for a condition guarding a loop, it can be useful to be a little
4918/// more general, since a front-end may have replicated the controlling
4919/// expression.
4920///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004921static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004922 // Quick check to see if they are the same SCEV.
4923 if (A == B) return true;
4924
4925 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4926 // two different instructions with the same value. Check for this case.
4927 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4928 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4929 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4930 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004931 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004932 return true;
4933
4934 // Otherwise assume they may have a different value.
4935 return false;
4936}
4937
Dan Gohmane9796502010-04-24 01:28:42 +00004938/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4939/// predicate Pred. Return true iff any changes were made.
4940///
4941bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4942 const SCEV *&LHS, const SCEV *&RHS) {
4943 bool Changed = false;
4944
4945 // Canonicalize a constant to the right side.
4946 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4947 // Check for both operands constant.
4948 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4949 if (ConstantExpr::getICmp(Pred,
4950 LHSC->getValue(),
4951 RHSC->getValue())->isNullValue())
4952 goto trivially_false;
4953 else
4954 goto trivially_true;
4955 }
4956 // Otherwise swap the operands to put the constant on the right.
4957 std::swap(LHS, RHS);
4958 Pred = ICmpInst::getSwappedPredicate(Pred);
4959 Changed = true;
4960 }
4961
4962 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004963 // addrec's loop, put the addrec on the left. Also make a dominance check,
4964 // as both operands could be addrecs loop-invariant in each other's loop.
4965 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4966 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00004967 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00004968 std::swap(LHS, RHS);
4969 Pred = ICmpInst::getSwappedPredicate(Pred);
4970 Changed = true;
4971 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004972 }
Dan Gohmane9796502010-04-24 01:28:42 +00004973
4974 // If there's a constant operand, canonicalize comparisons with boundary
4975 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4976 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4977 const APInt &RA = RC->getValue()->getValue();
4978 switch (Pred) {
4979 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4980 case ICmpInst::ICMP_EQ:
4981 case ICmpInst::ICMP_NE:
4982 break;
4983 case ICmpInst::ICMP_UGE:
4984 if ((RA - 1).isMinValue()) {
4985 Pred = ICmpInst::ICMP_NE;
4986 RHS = getConstant(RA - 1);
4987 Changed = true;
4988 break;
4989 }
4990 if (RA.isMaxValue()) {
4991 Pred = ICmpInst::ICMP_EQ;
4992 Changed = true;
4993 break;
4994 }
4995 if (RA.isMinValue()) goto trivially_true;
4996
4997 Pred = ICmpInst::ICMP_UGT;
4998 RHS = getConstant(RA - 1);
4999 Changed = true;
5000 break;
5001 case ICmpInst::ICMP_ULE:
5002 if ((RA + 1).isMaxValue()) {
5003 Pred = ICmpInst::ICMP_NE;
5004 RHS = getConstant(RA + 1);
5005 Changed = true;
5006 break;
5007 }
5008 if (RA.isMinValue()) {
5009 Pred = ICmpInst::ICMP_EQ;
5010 Changed = true;
5011 break;
5012 }
5013 if (RA.isMaxValue()) goto trivially_true;
5014
5015 Pred = ICmpInst::ICMP_ULT;
5016 RHS = getConstant(RA + 1);
5017 Changed = true;
5018 break;
5019 case ICmpInst::ICMP_SGE:
5020 if ((RA - 1).isMinSignedValue()) {
5021 Pred = ICmpInst::ICMP_NE;
5022 RHS = getConstant(RA - 1);
5023 Changed = true;
5024 break;
5025 }
5026 if (RA.isMaxSignedValue()) {
5027 Pred = ICmpInst::ICMP_EQ;
5028 Changed = true;
5029 break;
5030 }
5031 if (RA.isMinSignedValue()) goto trivially_true;
5032
5033 Pred = ICmpInst::ICMP_SGT;
5034 RHS = getConstant(RA - 1);
5035 Changed = true;
5036 break;
5037 case ICmpInst::ICMP_SLE:
5038 if ((RA + 1).isMaxSignedValue()) {
5039 Pred = ICmpInst::ICMP_NE;
5040 RHS = getConstant(RA + 1);
5041 Changed = true;
5042 break;
5043 }
5044 if (RA.isMinSignedValue()) {
5045 Pred = ICmpInst::ICMP_EQ;
5046 Changed = true;
5047 break;
5048 }
5049 if (RA.isMaxSignedValue()) goto trivially_true;
5050
5051 Pred = ICmpInst::ICMP_SLT;
5052 RHS = getConstant(RA + 1);
5053 Changed = true;
5054 break;
5055 case ICmpInst::ICMP_UGT:
5056 if (RA.isMinValue()) {
5057 Pred = ICmpInst::ICMP_NE;
5058 Changed = true;
5059 break;
5060 }
5061 if ((RA + 1).isMaxValue()) {
5062 Pred = ICmpInst::ICMP_EQ;
5063 RHS = getConstant(RA + 1);
5064 Changed = true;
5065 break;
5066 }
5067 if (RA.isMaxValue()) goto trivially_false;
5068 break;
5069 case ICmpInst::ICMP_ULT:
5070 if (RA.isMaxValue()) {
5071 Pred = ICmpInst::ICMP_NE;
5072 Changed = true;
5073 break;
5074 }
5075 if ((RA - 1).isMinValue()) {
5076 Pred = ICmpInst::ICMP_EQ;
5077 RHS = getConstant(RA - 1);
5078 Changed = true;
5079 break;
5080 }
5081 if (RA.isMinValue()) goto trivially_false;
5082 break;
5083 case ICmpInst::ICMP_SGT:
5084 if (RA.isMinSignedValue()) {
5085 Pred = ICmpInst::ICMP_NE;
5086 Changed = true;
5087 break;
5088 }
5089 if ((RA + 1).isMaxSignedValue()) {
5090 Pred = ICmpInst::ICMP_EQ;
5091 RHS = getConstant(RA + 1);
5092 Changed = true;
5093 break;
5094 }
5095 if (RA.isMaxSignedValue()) goto trivially_false;
5096 break;
5097 case ICmpInst::ICMP_SLT:
5098 if (RA.isMaxSignedValue()) {
5099 Pred = ICmpInst::ICMP_NE;
5100 Changed = true;
5101 break;
5102 }
5103 if ((RA - 1).isMinSignedValue()) {
5104 Pred = ICmpInst::ICMP_EQ;
5105 RHS = getConstant(RA - 1);
5106 Changed = true;
5107 break;
5108 }
5109 if (RA.isMinSignedValue()) goto trivially_false;
5110 break;
5111 }
5112 }
5113
5114 // Check for obvious equality.
5115 if (HasSameValue(LHS, RHS)) {
5116 if (ICmpInst::isTrueWhenEqual(Pred))
5117 goto trivially_true;
5118 if (ICmpInst::isFalseWhenEqual(Pred))
5119 goto trivially_false;
5120 }
5121
Dan Gohman03557dc2010-05-03 16:35:17 +00005122 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5123 // adding or subtracting 1 from one of the operands.
5124 switch (Pred) {
5125 case ICmpInst::ICMP_SLE:
5126 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5127 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5128 /*HasNUW=*/false, /*HasNSW=*/true);
5129 Pred = ICmpInst::ICMP_SLT;
5130 Changed = true;
5131 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005132 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005133 /*HasNUW=*/false, /*HasNSW=*/true);
5134 Pred = ICmpInst::ICMP_SLT;
5135 Changed = true;
5136 }
5137 break;
5138 case ICmpInst::ICMP_SGE:
5139 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005140 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005141 /*HasNUW=*/false, /*HasNSW=*/true);
5142 Pred = ICmpInst::ICMP_SGT;
5143 Changed = true;
5144 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5145 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5146 /*HasNUW=*/false, /*HasNSW=*/true);
5147 Pred = ICmpInst::ICMP_SGT;
5148 Changed = true;
5149 }
5150 break;
5151 case ICmpInst::ICMP_ULE:
5152 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005153 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005154 /*HasNUW=*/true, /*HasNSW=*/false);
5155 Pred = ICmpInst::ICMP_ULT;
5156 Changed = true;
5157 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005158 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005159 /*HasNUW=*/true, /*HasNSW=*/false);
5160 Pred = ICmpInst::ICMP_ULT;
5161 Changed = true;
5162 }
5163 break;
5164 case ICmpInst::ICMP_UGE:
5165 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005166 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005167 /*HasNUW=*/true, /*HasNSW=*/false);
5168 Pred = ICmpInst::ICMP_UGT;
5169 Changed = true;
5170 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005171 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005172 /*HasNUW=*/true, /*HasNSW=*/false);
5173 Pred = ICmpInst::ICMP_UGT;
5174 Changed = true;
5175 }
5176 break;
5177 default:
5178 break;
5179 }
5180
Dan Gohmane9796502010-04-24 01:28:42 +00005181 // TODO: More simplifications are possible here.
5182
5183 return Changed;
5184
5185trivially_true:
5186 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005187 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005188 Pred = ICmpInst::ICMP_EQ;
5189 return true;
5190
5191trivially_false:
5192 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005193 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005194 Pred = ICmpInst::ICMP_NE;
5195 return true;
5196}
5197
Dan Gohman85b05a22009-07-13 21:35:55 +00005198bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5199 return getSignedRange(S).getSignedMax().isNegative();
5200}
5201
5202bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5203 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5204}
5205
5206bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5207 return !getSignedRange(S).getSignedMin().isNegative();
5208}
5209
5210bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5211 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5212}
5213
5214bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5215 return isKnownNegative(S) || isKnownPositive(S);
5216}
5217
5218bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5219 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005220 // Canonicalize the inputs first.
5221 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5222
Dan Gohman53c66ea2010-04-11 22:16:48 +00005223 // If LHS or RHS is an addrec, check to see if the condition is true in
5224 // every iteration of the loop.
5225 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5226 if (isLoopEntryGuardedByCond(
5227 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5228 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005229 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005230 return true;
5231 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5232 if (isLoopEntryGuardedByCond(
5233 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5234 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005235 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005236 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005237
Dan Gohman53c66ea2010-04-11 22:16:48 +00005238 // Otherwise see what can be done with known constant ranges.
5239 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5240}
5241
5242bool
5243ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5244 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005245 if (HasSameValue(LHS, RHS))
5246 return ICmpInst::isTrueWhenEqual(Pred);
5247
Dan Gohman53c66ea2010-04-11 22:16:48 +00005248 // This code is split out from isKnownPredicate because it is called from
5249 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005250 switch (Pred) {
5251 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005252 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005253 break;
5254 case ICmpInst::ICMP_SGT:
5255 Pred = ICmpInst::ICMP_SLT;
5256 std::swap(LHS, RHS);
5257 case ICmpInst::ICMP_SLT: {
5258 ConstantRange LHSRange = getSignedRange(LHS);
5259 ConstantRange RHSRange = getSignedRange(RHS);
5260 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5261 return true;
5262 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5263 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005264 break;
5265 }
5266 case ICmpInst::ICMP_SGE:
5267 Pred = ICmpInst::ICMP_SLE;
5268 std::swap(LHS, RHS);
5269 case ICmpInst::ICMP_SLE: {
5270 ConstantRange LHSRange = getSignedRange(LHS);
5271 ConstantRange RHSRange = getSignedRange(RHS);
5272 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5273 return true;
5274 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5275 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005276 break;
5277 }
5278 case ICmpInst::ICMP_UGT:
5279 Pred = ICmpInst::ICMP_ULT;
5280 std::swap(LHS, RHS);
5281 case ICmpInst::ICMP_ULT: {
5282 ConstantRange LHSRange = getUnsignedRange(LHS);
5283 ConstantRange RHSRange = getUnsignedRange(RHS);
5284 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5285 return true;
5286 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5287 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005288 break;
5289 }
5290 case ICmpInst::ICMP_UGE:
5291 Pred = ICmpInst::ICMP_ULE;
5292 std::swap(LHS, RHS);
5293 case ICmpInst::ICMP_ULE: {
5294 ConstantRange LHSRange = getUnsignedRange(LHS);
5295 ConstantRange RHSRange = getUnsignedRange(RHS);
5296 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5297 return true;
5298 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5299 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005300 break;
5301 }
5302 case ICmpInst::ICMP_NE: {
5303 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5304 return true;
5305 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5306 return true;
5307
5308 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5309 if (isKnownNonZero(Diff))
5310 return true;
5311 break;
5312 }
5313 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005314 // The check at the top of the function catches the case where
5315 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005316 break;
5317 }
5318 return false;
5319}
5320
5321/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5322/// protected by a conditional between LHS and RHS. This is used to
5323/// to eliminate casts.
5324bool
5325ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5326 ICmpInst::Predicate Pred,
5327 const SCEV *LHS, const SCEV *RHS) {
5328 // Interpret a null as meaning no loop, where there is obviously no guard
5329 // (interprocedural conditions notwithstanding).
5330 if (!L) return true;
5331
5332 BasicBlock *Latch = L->getLoopLatch();
5333 if (!Latch)
5334 return false;
5335
5336 BranchInst *LoopContinuePredicate =
5337 dyn_cast<BranchInst>(Latch->getTerminator());
5338 if (!LoopContinuePredicate ||
5339 LoopContinuePredicate->isUnconditional())
5340 return false;
5341
Dan Gohmanaf08a362010-08-10 23:46:30 +00005342 return isImpliedCond(Pred, LHS, RHS,
5343 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005344 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005345}
5346
Dan Gohman3948d0b2010-04-11 19:27:13 +00005347/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005348/// by a conditional between LHS and RHS. This is used to help avoid max
5349/// expressions in loop trip counts, and to eliminate casts.
5350bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005351ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5352 ICmpInst::Predicate Pred,
5353 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005354 // Interpret a null as meaning no loop, where there is obviously no guard
5355 // (interprocedural conditions notwithstanding).
5356 if (!L) return false;
5357
Dan Gohman859b4822009-05-18 15:36:09 +00005358 // Starting at the loop predecessor, climb up the predecessor chain, as long
5359 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005360 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005361 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005362 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005363 Pair.first;
5364 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005365
5366 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005367 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005368 if (!LoopEntryPredicate ||
5369 LoopEntryPredicate->isUnconditional())
5370 continue;
5371
Dan Gohmanaf08a362010-08-10 23:46:30 +00005372 if (isImpliedCond(Pred, LHS, RHS,
5373 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005374 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005375 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005376 }
5377
Dan Gohman38372182008-08-12 20:17:31 +00005378 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005379}
5380
Dan Gohman0f4b2852009-07-21 23:03:19 +00005381/// isImpliedCond - Test whether the condition described by Pred, LHS,
5382/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005383bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005384 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005385 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005386 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005387 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005388 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005389 if (BO->getOpcode() == Instruction::And) {
5390 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005391 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5392 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005393 } else if (BO->getOpcode() == Instruction::Or) {
5394 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005395 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5396 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005397 }
5398 }
5399
Dan Gohmanaf08a362010-08-10 23:46:30 +00005400 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005401 if (!ICI) return false;
5402
Dan Gohman85b05a22009-07-13 21:35:55 +00005403 // Bail if the ICmp's operands' types are wider than the needed type
5404 // before attempting to call getSCEV on them. This avoids infinite
5405 // recursion, since the analysis of widening casts can require loop
5406 // exit condition information for overflow checking, which would
5407 // lead back here.
5408 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005409 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005410 return false;
5411
Dan Gohman0f4b2852009-07-21 23:03:19 +00005412 // Now that we found a conditional branch that dominates the loop, check to
5413 // see if it is the comparison we are looking for.
5414 ICmpInst::Predicate FoundPred;
5415 if (Inverse)
5416 FoundPred = ICI->getInversePredicate();
5417 else
5418 FoundPred = ICI->getPredicate();
5419
5420 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5421 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005422
5423 // Balance the types. The case where FoundLHS' type is wider than
5424 // LHS' type is checked for above.
5425 if (getTypeSizeInBits(LHS->getType()) >
5426 getTypeSizeInBits(FoundLHS->getType())) {
5427 if (CmpInst::isSigned(Pred)) {
5428 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5429 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5430 } else {
5431 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5432 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5433 }
5434 }
5435
Dan Gohman0f4b2852009-07-21 23:03:19 +00005436 // Canonicalize the query to match the way instcombine will have
5437 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005438 if (SimplifyICmpOperands(Pred, LHS, RHS))
5439 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005440 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005441 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5442 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005443 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005444
5445 // Check to see if we can make the LHS or RHS match.
5446 if (LHS == FoundRHS || RHS == FoundLHS) {
5447 if (isa<SCEVConstant>(RHS)) {
5448 std::swap(FoundLHS, FoundRHS);
5449 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5450 } else {
5451 std::swap(LHS, RHS);
5452 Pred = ICmpInst::getSwappedPredicate(Pred);
5453 }
5454 }
5455
5456 // Check whether the found predicate is the same as the desired predicate.
5457 if (FoundPred == Pred)
5458 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5459
5460 // Check whether swapping the found predicate makes it the same as the
5461 // desired predicate.
5462 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5463 if (isa<SCEVConstant>(RHS))
5464 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5465 else
5466 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5467 RHS, LHS, FoundLHS, FoundRHS);
5468 }
5469
5470 // Check whether the actual condition is beyond sufficient.
5471 if (FoundPred == ICmpInst::ICMP_EQ)
5472 if (ICmpInst::isTrueWhenEqual(Pred))
5473 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5474 return true;
5475 if (Pred == ICmpInst::ICMP_NE)
5476 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5477 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5478 return true;
5479
5480 // Otherwise assume the worst.
5481 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005482}
5483
Dan Gohman0f4b2852009-07-21 23:03:19 +00005484/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005485/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005486/// and FoundRHS is true.
5487bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5488 const SCEV *LHS, const SCEV *RHS,
5489 const SCEV *FoundLHS,
5490 const SCEV *FoundRHS) {
5491 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5492 FoundLHS, FoundRHS) ||
5493 // ~x < ~y --> x > y
5494 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5495 getNotSCEV(FoundRHS),
5496 getNotSCEV(FoundLHS));
5497}
5498
5499/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005500/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005501/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005502bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005503ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5504 const SCEV *LHS, const SCEV *RHS,
5505 const SCEV *FoundLHS,
5506 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005507 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005508 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5509 case ICmpInst::ICMP_EQ:
5510 case ICmpInst::ICMP_NE:
5511 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5512 return true;
5513 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005514 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005515 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005516 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5517 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005518 return true;
5519 break;
5520 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005521 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005522 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5523 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005524 return true;
5525 break;
5526 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005527 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005528 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5529 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005530 return true;
5531 break;
5532 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005533 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005534 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5535 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005536 return true;
5537 break;
5538 }
5539
5540 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005541}
5542
Dan Gohman51f53b72009-06-21 23:46:38 +00005543/// getBECount - Subtract the end and start values and divide by the step,
5544/// rounding up, to get the number of times the backedge is executed. Return
5545/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005546const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005547 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005548 const SCEV *Step,
5549 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005550 assert(!isKnownNegative(Step) &&
5551 "This code doesn't handle negative strides yet!");
5552
Dan Gohman51f53b72009-06-21 23:46:38 +00005553 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005554 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005555 const SCEV *Diff = getMinusSCEV(End, Start);
5556 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005557
5558 // Add an adjustment to the difference between End and Start so that
5559 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005560 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005561
Dan Gohman1f96e672009-09-17 18:05:20 +00005562 if (!NoWrap) {
5563 // Check Add for unsigned overflow.
5564 // TODO: More sophisticated things could be done here.
5565 const Type *WideTy = IntegerType::get(getContext(),
5566 getTypeSizeInBits(Ty) + 1);
5567 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5568 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5569 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5570 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5571 return getCouldNotCompute();
5572 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005573
5574 return getUDivExpr(Add, Step);
5575}
5576
Chris Lattnerdb25de42005-08-15 23:33:51 +00005577/// HowManyLessThans - Return the number of times a backedge containing the
5578/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005579/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005580ScalarEvolution::BackedgeTakenInfo
5581ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5582 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005583 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005584 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005585
Dan Gohman35738ac2009-05-04 22:30:44 +00005586 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005587 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005588 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005589
Dan Gohman1f96e672009-09-17 18:05:20 +00005590 // Check to see if we have a flag which makes analysis easy.
5591 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5592 AddRec->hasNoUnsignedWrap();
5593
Chris Lattnerdb25de42005-08-15 23:33:51 +00005594 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005595 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005596 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005597
Dan Gohman52fddd32010-01-26 04:40:18 +00005598 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005599 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005600 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005601 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005602 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005603 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005604 // value and past the maximum value for its type in a single step.
5605 // Note that it's not sufficient to check NoWrap here, because even
5606 // though the value after a wrap is undefined, it's not undefined
5607 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005608 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005609 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005610 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005611 if (isSigned) {
5612 APInt Max = APInt::getSignedMaxValue(BitWidth);
5613 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5614 .slt(getSignedRange(RHS).getSignedMax()))
5615 return getCouldNotCompute();
5616 } else {
5617 APInt Max = APInt::getMaxValue(BitWidth);
5618 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5619 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5620 return getCouldNotCompute();
5621 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005622 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005623 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005624 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005625
Dan Gohmana1af7572009-04-30 20:47:05 +00005626 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5627 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5628 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005629 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005630
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005631 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005632 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005633
Dan Gohmana1af7572009-04-30 20:47:05 +00005634 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005635 const SCEV *MinStart = getConstant(isSigned ?
5636 getSignedRange(Start).getSignedMin() :
5637 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005638
Dan Gohmana1af7572009-04-30 20:47:05 +00005639 // If we know that the condition is true in order to enter the loop,
5640 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005641 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5642 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005643 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005644 if (!isLoopEntryGuardedByCond(L,
5645 isSigned ? ICmpInst::ICMP_SLT :
5646 ICmpInst::ICMP_ULT,
5647 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005648 End = isSigned ? getSMaxExpr(RHS, Start)
5649 : getUMaxExpr(RHS, Start);
5650
5651 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005652 const SCEV *MaxEnd = getConstant(isSigned ?
5653 getSignedRange(End).getSignedMax() :
5654 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005655
Dan Gohman52fddd32010-01-26 04:40:18 +00005656 // If MaxEnd is within a step of the maximum integer value in its type,
5657 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005658 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005659 // compute the correct value.
5660 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005661 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005662 MaxEnd = isSigned ?
5663 getSMinExpr(MaxEnd,
5664 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5665 StepMinusOne)) :
5666 getUMinExpr(MaxEnd,
5667 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5668 StepMinusOne));
5669
Dan Gohmana1af7572009-04-30 20:47:05 +00005670 // Finally, we subtract these two values and divide, rounding up, to get
5671 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005672 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005673
5674 // The maximum backedge count is similar, except using the minimum start
5675 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005676 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005677
5678 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005679 }
5680
Dan Gohman1c343752009-06-27 21:21:31 +00005681 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005682}
5683
Chris Lattner53e677a2004-04-02 20:23:17 +00005684/// getNumIterationsInRange - Return the number of iterations of this loop that
5685/// produce values in the specified constant range. Another way of looking at
5686/// this is that it returns the first iteration number where the value is not in
5687/// the condition, thus computing the exit count. If the iteration count can't
5688/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005689const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005690 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005691 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005692 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005693
5694 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005695 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005696 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005697 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005698 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005699 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005700 if (const SCEVAddRecExpr *ShiftedAddRec =
5701 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005702 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005703 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005704 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005705 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005706 }
5707
5708 // The only time we can solve this is when we have all constant indices.
5709 // Otherwise, we cannot determine the overflow conditions.
5710 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5711 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005712 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005713
5714
5715 // Okay at this point we know that all elements of the chrec are constants and
5716 // that the start element is zero.
5717
5718 // First check to see if the range contains zero. If not, the first
5719 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005720 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005721 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005722 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005723
Chris Lattner53e677a2004-04-02 20:23:17 +00005724 if (isAffine()) {
5725 // If this is an affine expression then we have this situation:
5726 // Solve {0,+,A} in Range === Ax in Range
5727
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005728 // We know that zero is in the range. If A is positive then we know that
5729 // the upper value of the range must be the first possible exit value.
5730 // If A is negative then the lower of the range is the last possible loop
5731 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005732 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005733 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5734 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005735
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005736 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005737 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005738 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005739
5740 // Evaluate at the exit value. If we really did fall out of the valid
5741 // range, then we computed our trip count, otherwise wrap around or other
5742 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005743 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005744 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005745 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005746
5747 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005748 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005749 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005750 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005751 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005752 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005753 } else if (isQuadratic()) {
5754 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5755 // quadratic equation to solve it. To do this, we must frame our problem in
5756 // terms of figuring out when zero is crossed, instead of when
5757 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005758 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005759 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005760 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005761
5762 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005763 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005764 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005765 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5766 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 if (R1) {
5768 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005769 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005770 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005771 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005772 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005773 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005774
Chris Lattner53e677a2004-04-02 20:23:17 +00005775 // Make sure the root is not off by one. The returned iteration should
5776 // not be in the range, but the previous one should be. When solving
5777 // for "X*X < 5", for example, we should not return a root of 2.
5778 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005779 R1->getValue(),
5780 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005781 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005782 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005783 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005784 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005785
Dan Gohman246b2562007-10-22 18:31:58 +00005786 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005787 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005788 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005789 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005790 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005791
Chris Lattner53e677a2004-04-02 20:23:17 +00005792 // If R1 was not in the range, then it is a good return value. Make
5793 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005794 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005795 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005796 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005797 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005798 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005799 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005800 }
5801 }
5802 }
5803
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005804 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005805}
5806
5807
5808
5809//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005810// SCEVCallbackVH Class Implementation
5811//===----------------------------------------------------------------------===//
5812
Dan Gohman1959b752009-05-19 19:22:47 +00005813void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005814 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005815 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5816 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005817 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005818 // this now dangles!
5819}
5820
Dan Gohman81f91212010-07-28 01:09:07 +00005821void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005822 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005823
Dan Gohman35738ac2009-05-04 22:30:44 +00005824 // Forget all the expressions associated with users of the old value,
5825 // so that future queries will recompute the expressions using the new
5826 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005827 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005828 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005829 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005830 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5831 UI != UE; ++UI)
5832 Worklist.push_back(*UI);
5833 while (!Worklist.empty()) {
5834 User *U = Worklist.pop_back_val();
5835 // Deleting the Old value will cause this to dangle. Postpone
5836 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005837 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005838 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005839 if (!Visited.insert(U))
5840 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005841 if (PHINode *PN = dyn_cast<PHINode>(U))
5842 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005843 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005844 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5845 UI != UE; ++UI)
5846 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005847 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005848 // Delete the Old value.
5849 if (PHINode *PN = dyn_cast<PHINode>(Old))
5850 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005851 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005852 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005853}
5854
Dan Gohman1959b752009-05-19 19:22:47 +00005855ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005856 : CallbackVH(V), SE(se) {}
5857
5858//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005859// ScalarEvolution Class Implementation
5860//===----------------------------------------------------------------------===//
5861
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005862ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005863 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005864 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005865}
5866
Chris Lattner53e677a2004-04-02 20:23:17 +00005867bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005868 this->F = &F;
5869 LI = &getAnalysis<LoopInfo>();
5870 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005871 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005872 return false;
5873}
5874
5875void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005876 // Iterate through all the SCEVUnknown instances and call their
5877 // destructors, so that they release their references to their values.
5878 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5879 U->~SCEVUnknown();
5880 FirstUnknown = 0;
5881
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005882 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005883 BackedgeTakenCounts.clear();
5884 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005885 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005886 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005887 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005888 UnsignedRanges.clear();
5889 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005890 UniqueSCEVs.clear();
5891 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005892}
5893
5894void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5895 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005896 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005897 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005898}
5899
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005900bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005901 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005902}
5903
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005904static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005905 const Loop *L) {
5906 // Print all inner loops first
5907 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5908 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005909
Dan Gohman30733292010-01-09 18:17:45 +00005910 OS << "Loop ";
5911 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5912 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005913
Dan Gohman5d984912009-12-18 01:14:11 +00005914 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005915 L->getExitBlocks(ExitBlocks);
5916 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005917 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005918
Dan Gohman46bdfb02009-02-24 18:55:53 +00005919 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5920 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005921 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005922 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005923 }
5924
Dan Gohman30733292010-01-09 18:17:45 +00005925 OS << "\n"
5926 "Loop ";
5927 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5928 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005929
5930 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5931 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5932 } else {
5933 OS << "Unpredictable max backedge-taken count. ";
5934 }
5935
5936 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005937}
5938
Dan Gohman5d984912009-12-18 01:14:11 +00005939void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005940 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005941 // out SCEV values of all instructions that are interesting. Doing
5942 // this potentially causes it to create new SCEV objects though,
5943 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005944 // observable from outside the class though, so casting away the
5945 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005946 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005947
Dan Gohman30733292010-01-09 18:17:45 +00005948 OS << "Classifying expressions for: ";
5949 WriteAsOperand(OS, F, /*PrintType=*/false);
5950 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005951 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005952 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005953 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005954 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005955 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005956 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005957
Dan Gohman0c689c52009-06-19 17:49:54 +00005958 const Loop *L = LI->getLoopFor((*I).getParent());
5959
Dan Gohman0bba49c2009-07-07 17:06:11 +00005960 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005961 if (AtUse != SV) {
5962 OS << " --> ";
5963 AtUse->print(OS);
5964 }
5965
5966 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005967 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005968 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00005969 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005970 OS << "<<Unknown>>";
5971 } else {
5972 OS << *ExitValue;
5973 }
5974 }
5975
Chris Lattner53e677a2004-04-02 20:23:17 +00005976 OS << "\n";
5977 }
5978
Dan Gohman30733292010-01-09 18:17:45 +00005979 OS << "Determining loop execution counts for: ";
5980 WriteAsOperand(OS, F, /*PrintType=*/false);
5981 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005982 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5983 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005984}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005985
Dan Gohman714b5292010-11-17 23:21:44 +00005986ScalarEvolution::LoopDisposition
5987ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
5988 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
5989 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
5990 Values.insert(std::make_pair(L, LoopVariant));
5991 if (!Pair.second)
5992 return Pair.first->second;
5993
5994 LoopDisposition D = computeLoopDisposition(S, L);
5995 return LoopDispositions[S][L] = D;
5996}
5997
5998ScalarEvolution::LoopDisposition
5999ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006000 switch (S->getSCEVType()) {
6001 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006002 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006003 case scTruncate:
6004 case scZeroExtend:
6005 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006006 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006007 case scAddRecExpr: {
6008 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6009
Dan Gohman714b5292010-11-17 23:21:44 +00006010 // If L is the addrec's loop, it's computable.
6011 if (AR->getLoop() == L)
6012 return LoopComputable;
6013
Dan Gohman17ead4f2010-11-17 21:23:15 +00006014 // Add recurrences are never invariant in the function-body (null loop).
6015 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006016 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006017
6018 // This recurrence is variant w.r.t. L if L contains AR's loop.
6019 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006020 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006021
6022 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6023 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006024 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006025
6026 // This recurrence is variant w.r.t. L if any of its operands
6027 // are variant.
6028 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6029 I != E; ++I)
6030 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006031 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006032
6033 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006034 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006035 }
6036 case scAddExpr:
6037 case scMulExpr:
6038 case scUMaxExpr:
6039 case scSMaxExpr: {
6040 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006041 bool HasVarying = false;
6042 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6043 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006044 LoopDisposition D = getLoopDisposition(*I, L);
6045 if (D == LoopVariant)
6046 return LoopVariant;
6047 if (D == LoopComputable)
6048 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006049 }
Dan Gohman714b5292010-11-17 23:21:44 +00006050 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006051 }
6052 case scUDivExpr: {
6053 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006054 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6055 if (LD == LoopVariant)
6056 return LoopVariant;
6057 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6058 if (RD == LoopVariant)
6059 return LoopVariant;
6060 return (LD == LoopInvariant && RD == LoopInvariant) ?
6061 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006062 }
6063 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006064 // All non-instruction values are loop invariant. All instructions are loop
6065 // invariant if they are not contained in the specified loop.
6066 // Instructions are never considered invariant in the function body
6067 // (null loop) because they are defined within the "loop".
6068 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6069 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6070 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006071 case scCouldNotCompute:
6072 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006073 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006074 default: break;
6075 }
6076 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006077 return LoopVariant;
6078}
6079
6080bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6081 return getLoopDisposition(S, L) == LoopInvariant;
6082}
6083
6084bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6085 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006086}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006087
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006088ScalarEvolution::BlockDisposition
6089ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6090 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6091 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6092 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6093 if (!Pair.second)
6094 return Pair.first->second;
6095
6096 BlockDisposition D = computeBlockDisposition(S, BB);
6097 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006098}
6099
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006100ScalarEvolution::BlockDisposition
6101ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006102 switch (S->getSCEVType()) {
6103 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006104 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006105 case scTruncate:
6106 case scZeroExtend:
6107 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006108 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006109 case scAddRecExpr: {
6110 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006111 // to test for proper dominance too, because the instruction which
6112 // produces the addrec's value is a PHI, and a PHI effectively properly
6113 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006114 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6115 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006116 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006117 }
6118 // FALL THROUGH into SCEVNAryExpr handling.
6119 case scAddExpr:
6120 case scMulExpr:
6121 case scUMaxExpr:
6122 case scSMaxExpr: {
6123 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006124 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006125 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006126 I != E; ++I) {
6127 BlockDisposition D = getBlockDisposition(*I, BB);
6128 if (D == DoesNotDominateBlock)
6129 return DoesNotDominateBlock;
6130 if (D == DominatesBlock)
6131 Proper = false;
6132 }
6133 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006134 }
6135 case scUDivExpr: {
6136 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006137 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6138 BlockDisposition LD = getBlockDisposition(LHS, BB);
6139 if (LD == DoesNotDominateBlock)
6140 return DoesNotDominateBlock;
6141 BlockDisposition RD = getBlockDisposition(RHS, BB);
6142 if (RD == DoesNotDominateBlock)
6143 return DoesNotDominateBlock;
6144 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6145 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006146 }
6147 case scUnknown:
6148 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006149 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6150 if (I->getParent() == BB)
6151 return DominatesBlock;
6152 if (DT->properlyDominates(I->getParent(), BB))
6153 return ProperlyDominatesBlock;
6154 return DoesNotDominateBlock;
6155 }
6156 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006157 case scCouldNotCompute:
6158 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006159 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006160 default: break;
6161 }
6162 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006163 return DoesNotDominateBlock;
6164}
6165
6166bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6167 return getBlockDisposition(S, BB) >= DominatesBlock;
6168}
6169
6170bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6171 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006172}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006173
6174bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6175 switch (S->getSCEVType()) {
6176 case scConstant:
6177 return false;
6178 case scTruncate:
6179 case scZeroExtend:
6180 case scSignExtend: {
6181 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6182 const SCEV *CastOp = Cast->getOperand();
6183 return Op == CastOp || hasOperand(CastOp, Op);
6184 }
6185 case scAddRecExpr:
6186 case scAddExpr:
6187 case scMulExpr:
6188 case scUMaxExpr:
6189 case scSMaxExpr: {
6190 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6191 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6192 I != E; ++I) {
6193 const SCEV *NAryOp = *I;
6194 if (NAryOp == Op || hasOperand(NAryOp, Op))
6195 return true;
6196 }
6197 return false;
6198 }
6199 case scUDivExpr: {
6200 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6201 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6202 return LHS == Op || hasOperand(LHS, Op) ||
6203 RHS == Op || hasOperand(RHS, Op);
6204 }
6205 case scUnknown:
6206 return false;
6207 case scCouldNotCompute:
6208 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6209 return false;
6210 default: break;
6211 }
6212 llvm_unreachable("Unknown SCEV kind!");
6213 return false;
6214}
Dan Gohman56a75682010-11-17 23:28:48 +00006215
6216void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6217 ValuesAtScopes.erase(S);
6218 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006219 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006220 UnsignedRanges.erase(S);
6221 SignedRanges.erase(S);
6222}