blob: 09d0e40d80fa41387370a51142986d44d4e85c09 [file] [log] [blame]
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001// $Id$
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00002//***************************************************************************
3// File:
4// InstrScheduling.cpp
5//
6// Purpose:
7//
8// History:
9// 7/23/01 - Vikram Adve - Created
Vikram S. Advef0ba2802001-09-18 12:51:38 +000010//**************************************************************************/
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000011
Vikram S. Advec5b46322001-09-30 23:43:34 +000012
Chris Lattner1ff63a12001-09-07 21:19:42 +000013#include "llvm/CodeGen/InstrScheduling.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000014#include "llvm/CodeGen/MachineInstr.h"
Chris Lattner3462cae2002-02-03 07:28:30 +000015#include "llvm/CodeGen/MachineCodeForInstruction.h"
16#include "llvm/CodeGen/MachineCodeForMethod.h"
17#include "llvm/Target/TargetMachine.h"
Chris Lattnerf35f2fb2002-02-04 16:35:45 +000018#include "llvm/BasicBlock.h"
Chris Lattnercee8f9a2001-11-27 00:03:19 +000019#include "SchedPriorities.h"
Chris Lattner3462cae2002-02-03 07:28:30 +000020#include <ext/hash_set>
Chris Lattner1ff63a12001-09-07 21:19:42 +000021#include <algorithm>
22#include <iterator>
Chris Lattner697954c2002-01-20 22:54:45 +000023#include <iostream>
24using std::cerr;
25using std::vector;
Vikram S. Advec5b46322001-09-30 23:43:34 +000026
27//************************* External Data Types *****************************/
28
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000029cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
30 "enable instruction scheduling debugging information",
31 clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
32 clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
33 clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
34 clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
35
36
Vikram S. Advec5b46322001-09-30 23:43:34 +000037//************************* Internal Data Types *****************************/
38
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000039class InstrSchedule;
40class SchedulingManager;
41class DelaySlotInfo;
42
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000043
44//----------------------------------------------------------------------
45// class InstrGroup:
46//
47// Represents a group of instructions scheduled to be issued
48// in a single cycle.
49//----------------------------------------------------------------------
50
51class InstrGroup: public NonCopyable {
52public:
53 inline const SchedGraphNode* operator[](unsigned int slotNum) const {
54 assert(slotNum < group.size());
55 return group[slotNum];
56 }
57
58private:
59 friend class InstrSchedule;
60
61 inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
62 assert(slotNum < group.size());
63 group[slotNum] = node;
64 }
65
66 /*ctor*/ InstrGroup(unsigned int nslots)
67 : group(nslots, NULL) {}
68
69 /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
70
71private:
72 vector<const SchedGraphNode*> group;
73};
74
75
76//----------------------------------------------------------------------
77// class ScheduleIterator:
78//
79// Iterates over the machine instructions in the for a single basic block.
80// The schedule is represented by an InstrSchedule object.
81//----------------------------------------------------------------------
82
83template<class _NodeType>
84class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
85private:
86 unsigned cycleNum;
87 unsigned slotNum;
88 const InstrSchedule& S;
89public:
90 typedef ScheduleIterator<_NodeType> _Self;
91
92 /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
93 unsigned _cycleNum,
94 unsigned _slotNum)
95 : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
96 skipToNextInstr();
97 }
98
99 /*ctor*/ inline ScheduleIterator(const _Self& x)
100 : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
101
102 inline bool operator==(const _Self& x) const {
103 return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
104 }
105
106 inline bool operator!=(const _Self& x) const { return !operator==(x); }
107
108 inline _NodeType* operator*() const {
109 assert(cycleNum < S.groups.size());
110 return (*S.groups[cycleNum])[slotNum];
111 }
112 inline _NodeType* operator->() const { return operator*(); }
113
114 _Self& operator++(); // Preincrement
115 inline _Self operator++(int) { // Postincrement
116 _Self tmp(*this); ++*this; return tmp;
117 }
118
119 static _Self begin(const InstrSchedule& _schedule);
120 static _Self end( const InstrSchedule& _schedule);
121
122private:
123 inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
124 void skipToNextInstr();
125};
126
127
128//----------------------------------------------------------------------
129// class InstrSchedule:
130//
131// Represents the schedule of machine instructions for a single basic block.
132//----------------------------------------------------------------------
133
134class InstrSchedule: public NonCopyable {
135private:
136 const unsigned int nslots;
137 unsigned int numInstr;
138 vector<InstrGroup*> groups; // indexed by cycle number
139 vector<cycles_t> startTime; // indexed by node id
140
141public: // iterators
142 typedef ScheduleIterator<SchedGraphNode> iterator;
143 typedef ScheduleIterator<const SchedGraphNode> const_iterator;
144
145 iterator begin();
146 const_iterator begin() const;
147 iterator end();
148 const_iterator end() const;
149
150public: // constructors and destructor
151 /*ctor*/ InstrSchedule (unsigned int _nslots,
152 unsigned int _numNodes);
153 /*dtor*/ ~InstrSchedule ();
154
155public: // accessor functions to query chosen schedule
156 const SchedGraphNode* getInstr (unsigned int slotNum,
157 cycles_t c) const {
158 const InstrGroup* igroup = this->getIGroup(c);
159 return (igroup == NULL)? NULL : (*igroup)[slotNum];
160 }
161
162 inline InstrGroup* getIGroup (cycles_t c) {
163 if (c >= groups.size())
164 groups.resize(c+1);
165 if (groups[c] == NULL)
166 groups[c] = new InstrGroup(nslots);
167 return groups[c];
168 }
169
170 inline const InstrGroup* getIGroup (cycles_t c) const {
171 assert(c < groups.size());
172 return groups[c];
173 }
174
175 inline cycles_t getStartTime (unsigned int nodeId) const {
176 assert(nodeId < startTime.size());
177 return startTime[nodeId];
178 }
179
180 unsigned int getNumInstructions() const {
181 return numInstr;
182 }
183
184 inline void scheduleInstr (const SchedGraphNode* node,
185 unsigned int slotNum,
186 cycles_t cycle) {
187 InstrGroup* igroup = this->getIGroup(cycle);
188 assert((*igroup)[slotNum] == NULL && "Slot already filled?");
189 igroup->addInstr(node, slotNum);
190 assert(node->getNodeId() < startTime.size());
191 startTime[node->getNodeId()] = cycle;
192 ++numInstr;
193 }
194
195private:
196 friend class iterator;
197 friend class const_iterator;
198 /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
199};
200
201
202/*ctor*/
203InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
204 : nslots(_nslots),
205 numInstr(0),
206 groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
207 startTime(_numNodes, (cycles_t) -1) // set all to -1
208{
209}
210
211
212/*dtor*/
213InstrSchedule::~InstrSchedule()
214{
215 for (unsigned c=0, NC=groups.size(); c < NC; c++)
216 if (groups[c] != NULL)
217 delete groups[c]; // delete InstrGroup objects
218}
219
220
221template<class _NodeType>
222inline
223void
224ScheduleIterator<_NodeType>::skipToNextInstr()
225{
226 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
227 ++cycleNum; // skip cycles with no instructions
228
229 while (cycleNum < S.groups.size() &&
230 (*S.groups[cycleNum])[slotNum] == NULL)
231 {
232 ++slotNum;
233 if (slotNum == S.nslots)
234 {
235 ++cycleNum;
236 slotNum = 0;
237 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
238 ++cycleNum; // skip cycles with no instructions
239 }
240 }
241}
242
243template<class _NodeType>
244inline
245ScheduleIterator<_NodeType>&
246ScheduleIterator<_NodeType>::operator++() // Preincrement
247{
248 ++slotNum;
249 if (slotNum == S.nslots)
250 {
251 ++cycleNum;
252 slotNum = 0;
253 }
254 skipToNextInstr();
255 return *this;
256}
257
258template<class _NodeType>
259ScheduleIterator<_NodeType>
260ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
261{
262 return _Self(_schedule, 0, 0);
263}
264
265template<class _NodeType>
266ScheduleIterator<_NodeType>
267ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
268{
269 return _Self(_schedule, _schedule.groups.size(), 0);
270}
271
272InstrSchedule::iterator
273InstrSchedule::begin()
274{
275 return iterator::begin(*this);
276}
277
278InstrSchedule::const_iterator
279InstrSchedule::begin() const
280{
281 return const_iterator::begin(*this);
282}
283
284InstrSchedule::iterator
285InstrSchedule::end()
286{
287 return iterator::end(*this);
288}
289
290InstrSchedule::const_iterator
291InstrSchedule::end() const
292{
293 return const_iterator::end( *this);
294}
295
296
297//----------------------------------------------------------------------
298// class DelaySlotInfo:
299//
300// Record information about delay slots for a single branch instruction.
301// Delay slots are simply indexed by slot number 1 ... numDelaySlots
302//----------------------------------------------------------------------
303
304class DelaySlotInfo: public NonCopyable {
305private:
306 const SchedGraphNode* brNode;
307 unsigned int ndelays;
308 vector<const SchedGraphNode*> delayNodeVec;
309 cycles_t delayedNodeCycle;
310 unsigned int delayedNodeSlotNum;
311
312public:
313 /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
314 unsigned _ndelays)
315 : brNode(_brNode), ndelays(_ndelays),
316 delayedNodeCycle(0), delayedNodeSlotNum(0) {}
317
318 inline unsigned getNumDelays () {
319 return ndelays;
320 }
321
322 inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
323 return delayNodeVec;
324 }
325
326 inline void addDelayNode (const SchedGraphNode* node) {
327 delayNodeVec.push_back(node);
328 assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
329 }
330
331 inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
332 delayedNodeCycle = cycle;
333 delayedNodeSlotNum = slotNum;
334 }
335
Vikram S. Advec5b46322001-09-30 23:43:34 +0000336 unsigned scheduleDelayedNode (SchedulingManager& S);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000337};
338
339
340//----------------------------------------------------------------------
341// class SchedulingManager:
342//
343// Represents the schedule of machine instructions for a single basic block.
344//----------------------------------------------------------------------
345
346class SchedulingManager: public NonCopyable {
347public: // publicly accessible data members
348 const unsigned int nslots;
349 const MachineSchedInfo& schedInfo;
350 SchedPriorities& schedPrio;
351 InstrSchedule isched;
352
353private:
354 unsigned int totalInstrCount;
355 cycles_t curTime;
356 cycles_t nextEarliestIssueTime; // next cycle we can issue
Chris Lattner697954c2002-01-20 22:54:45 +0000357 vector<std::hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000358 vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
359 vector<int> numInClass; // indexed by sched class
360 vector<cycles_t> nextEarliestStartTime; // indexed by opCode
Chris Lattner697954c2002-01-20 22:54:45 +0000361 std::hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000362 // indexed by branch node ptr
363
364public:
365 /*ctor*/ SchedulingManager (const TargetMachine& _target,
366 const SchedGraph* graph,
367 SchedPriorities& schedPrio);
368 /*dtor*/ ~SchedulingManager () {}
369
370 //----------------------------------------------------------------------
371 // Simplify access to the machine instruction info
372 //----------------------------------------------------------------------
373
374 inline const MachineInstrInfo& getInstrInfo () const {
375 return schedInfo.getInstrInfo();
376 }
377
378 //----------------------------------------------------------------------
379 // Interface for checking and updating the current time
380 //----------------------------------------------------------------------
381
382 inline cycles_t getTime () const {
383 return curTime;
384 }
385
386 inline cycles_t getEarliestIssueTime() const {
387 return nextEarliestIssueTime;
388 }
389
390 inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
391 assert(opCode < (int) nextEarliestStartTime.size());
392 return nextEarliestStartTime[opCode];
393 }
394
395 // Update current time to specified cycle
396 inline void updateTime (cycles_t c) {
397 curTime = c;
398 schedPrio.updateTime(c);
399 }
400
401 //----------------------------------------------------------------------
402 // Functions to manage the choices for the current cycle including:
403 // -- a vector of choices by priority (choiceVec)
404 // -- vectors of the choices for each instruction slot (choicesForSlot[])
405 // -- number of choices in each sched class, used to check issue conflicts
406 // between choices for a single cycle
407 //----------------------------------------------------------------------
408
409 inline unsigned int getNumChoices () const {
410 return choiceVec.size();
411 }
412
413 inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
414 assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
415 return numInClass[sc];
416 }
417
418 inline const SchedGraphNode* getChoice(unsigned int i) const {
419 // assert(i < choiceVec.size()); don't check here.
420 return choiceVec[i];
421 }
422
Chris Lattner697954c2002-01-20 22:54:45 +0000423 inline std::hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000424 assert(slotNum < nslots);
425 return choicesForSlot[slotNum];
426 }
427
428 inline void addChoice (const SchedGraphNode* node) {
429 // Append the instruction to the vector of choices for current cycle.
430 // Increment numInClass[c] for the sched class to which the instr belongs.
431 choiceVec.push_back(node);
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000432 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000433 assert(sc < (int) numInClass.size());
434 numInClass[sc]++;
435 }
436
437 inline void addChoiceToSlot (unsigned int slotNum,
438 const SchedGraphNode* node) {
439 // Add the instruction to the choice set for the specified slot
440 assert(slotNum < nslots);
441 choicesForSlot[slotNum].insert(node);
442 }
443
444 inline void resetChoices () {
445 choiceVec.clear();
446 for (unsigned int s=0; s < nslots; s++)
447 choicesForSlot[s].clear();
448 for (unsigned int c=0; c < numInClass.size(); c++)
449 numInClass[c] = 0;
450 }
451
452 //----------------------------------------------------------------------
453 // Code to query and manage the partial instruction schedule so far
454 //----------------------------------------------------------------------
455
456 inline unsigned int getNumScheduled () const {
457 return isched.getNumInstructions();
458 }
459
460 inline unsigned int getNumUnscheduled() const {
461 return totalInstrCount - isched.getNumInstructions();
462 }
463
464 inline bool isScheduled (const SchedGraphNode* node) const {
465 return (isched.getStartTime(node->getNodeId()) >= 0);
466 }
467
468 inline void scheduleInstr (const SchedGraphNode* node,
469 unsigned int slotNum,
470 cycles_t cycle)
471 {
472 assert(! isScheduled(node) && "Instruction already scheduled?");
473
474 // add the instruction to the schedule
475 isched.scheduleInstr(node, slotNum, cycle);
476
477 // update the earliest start times of all nodes that conflict with `node'
478 // and the next-earliest time anything can issue if `node' causes bubbles
479 updateEarliestStartTimes(node, cycle);
480
481 // remove the instruction from the choice sets for all slots
482 for (unsigned s=0; s < nslots; s++)
483 choicesForSlot[s].erase(node);
484
485 // and decrement the instr count for the sched class to which it belongs
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000486 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000487 assert(sc < (int) numInClass.size());
488 numInClass[sc]--;
489 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000490
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000491 //----------------------------------------------------------------------
492 // Create and retrieve delay slot info for delayed instructions
493 //----------------------------------------------------------------------
494
495 inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
496 bool createIfMissing=false)
497 {
498 DelaySlotInfo* dinfo;
Chris Lattner697954c2002-01-20 22:54:45 +0000499 std::hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000500 I = delaySlotInfoForBranches.find(bn);
501 if (I == delaySlotInfoForBranches.end())
502 {
503 if (createIfMissing)
504 {
505 dinfo = new DelaySlotInfo(bn,
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000506 getInstrInfo().getNumDelaySlots(bn->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000507 delaySlotInfoForBranches[bn] = dinfo;
508 }
509 else
510 dinfo = NULL;
511 }
512 else
513 dinfo = (*I).second;
514
515 return dinfo;
516 }
517
518private:
519 /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT.
520 void updateEarliestStartTimes(const SchedGraphNode* node,
521 cycles_t schedTime);
522};
523
524
525/*ctor*/
526SchedulingManager::SchedulingManager(const TargetMachine& target,
527 const SchedGraph* graph,
528 SchedPriorities& _schedPrio)
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000529 : nslots(target.getSchedInfo().getMaxNumIssueTotal()),
530 schedInfo(target.getSchedInfo()),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000531 schedPrio(_schedPrio),
532 isched(nslots, graph->getNumNodes()),
533 totalInstrCount(graph->getNumNodes() - 2),
534 nextEarliestIssueTime(0),
535 choicesForSlot(nslots),
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000536 numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000537 nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
538 (cycles_t) 0) // set all to 0
539{
540 updateTime(0);
541
542 // Note that an upper bound on #choices for each slot is = nslots since
543 // we use this vector to hold a feasible set of instructions, and more
544 // would be infeasible. Reserve that much memory since it is probably small.
545 for (unsigned int i=0; i < nslots; i++)
546 choicesForSlot[i].resize(nslots);
547}
548
549
550void
551SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
552 cycles_t schedTime)
553{
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000554 if (schedInfo.numBubblesAfter(node->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000555 { // Update next earliest time before which *nothing* can issue.
Chris Lattner697954c2002-01-20 22:54:45 +0000556 nextEarliestIssueTime = std::max(nextEarliestIssueTime,
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000557 curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000558 }
559
560 const vector<MachineOpCode>*
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000561 conflictVec = schedInfo.getConflictList(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000562
563 if (conflictVec != NULL)
564 for (unsigned i=0; i < conflictVec->size(); i++)
565 {
566 MachineOpCode toOp = (*conflictVec)[i];
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000567 cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000568 toOp);
569 assert(toOp < (int) nextEarliestStartTime.size());
570 if (nextEarliestStartTime[toOp] < est)
571 nextEarliestStartTime[toOp] = est;
572 }
573}
574
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000575//************************* Internal Functions *****************************/
576
577
578static void
Vikram S. Advec5b46322001-09-30 23:43:34 +0000579AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000580{
Vikram S. Advec5b46322001-09-30 23:43:34 +0000581 // find the slot to start from, in the current cycle
582 unsigned int startSlot = 0;
583 cycles_t curTime = S.getTime();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000584
Vikram S. Advec5b46322001-09-30 23:43:34 +0000585 assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000586
Vikram S. Advec5b46322001-09-30 23:43:34 +0000587 // If only one instruction can be issued, do so.
588 if (maxIssue == 1)
589 for (unsigned s=startSlot; s < S.nslots; s++)
590 if (S.getChoicesForSlot(s).size() > 0)
591 {// found the one instruction
592 S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
593 return;
594 }
595
596 // Otherwise, choose from the choices for each slot
597 //
598 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
599 assert(igroup != NULL && "Group creation failed?");
600
601 // Find a slot that has only a single choice, and take it.
602 // If all slots have 0 or multiple choices, pick the first slot with
603 // choices and use its last instruction (just to avoid shifting the vector).
604 unsigned numIssued;
605 for (numIssued = 0; numIssued < maxIssue; numIssued++)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000606 {
Chris Lattner697954c2002-01-20 22:54:45 +0000607 int chosenSlot = -1;
Vikram S. Advec5b46322001-09-30 23:43:34 +0000608 for (unsigned s=startSlot; s < S.nslots; s++)
609 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000610 {
Vikram S. Advec5b46322001-09-30 23:43:34 +0000611 chosenSlot = (int) s;
612 break;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000613 }
614
Vikram S. Advec5b46322001-09-30 23:43:34 +0000615 if (chosenSlot == -1)
616 for (unsigned s=startSlot; s < S.nslots; s++)
617 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
618 {
619 chosenSlot = (int) s;
620 break;
621 }
622
623 if (chosenSlot != -1)
624 { // Insert the chosen instr in the chosen slot and
625 // erase it from all slots.
626 const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
627 S.scheduleInstr(node, chosenSlot, curTime);
628 }
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000629 }
Vikram S. Advec5b46322001-09-30 23:43:34 +0000630
631 assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000632}
633
634
635//
636// For now, just assume we are scheduling within a single basic block.
637// Get the machine instruction vector for the basic block and clear it,
638// then append instructions in scheduled order.
639// Also, re-insert the dummy PHI instructions that were at the beginning
640// of the basic block, since they are not part of the schedule.
641//
642static void
643RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
644{
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000645 MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
646 const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
647
648#ifndef NDEBUG
649 // Lets make sure we didn't lose any instructions, except possibly
650 // some NOPs from delay slots. Also, PHIs are not included in the schedule.
651 unsigned numInstr = 0;
652 for (MachineCodeForBasicBlock::iterator I=mvec.begin(); I != mvec.end(); ++I)
653 if (! mii.isNop((*I)->getOpCode()) &&
654 ! mii.isDummyPhiInstr((*I)->getOpCode()))
655 ++numInstr;
656 assert(S.isched.getNumInstructions() >= numInstr &&
657 "Lost some non-NOP instructions during scheduling!");
658#endif
659
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000660 if (S.isched.getNumInstructions() == 0)
661 return; // empty basic block!
662
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000663 // First find the dummy instructions at the start of the basic block
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000664 MachineCodeForBasicBlock::iterator I = mvec.begin();
665 for ( ; I != mvec.end(); ++I)
666 if (! mii.isDummyPhiInstr((*I)->getOpCode()))
667 break;
668
669 // Erase all except the dummy PHI instructions from mvec, and
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000670 // pre-allocate create space for the ones we will put back in.
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000671 mvec.erase(I, mvec.end());
672 mvec.reserve(mvec.size() + S.isched.getNumInstructions());
673
674 InstrSchedule::const_iterator NIend = S.isched.end();
675 for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
Chris Lattner2e530932001-09-09 19:41:52 +0000676 mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000677}
678
679
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000680
681static void
682MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
683{
684 // Check if any successors are now ready that were not already marked
685 // ready before, and that have not yet been scheduled.
686 //
687 for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
688 if (! (*SI)->isDummyNode()
689 && ! S.isScheduled(*SI)
690 && ! S.schedPrio.nodeIsReady(*SI))
691 {// successor not scheduled and not marked ready; check *its* preds.
692
693 bool succIsReady = true;
694 for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
695 if (! (*P)->isDummyNode()
696 && ! S.isScheduled(*P))
697 {
698 succIsReady = false;
699 break;
700 }
701
702 if (succIsReady) // add the successor to the ready list
703 S.schedPrio.insertReady(*SI);
704 }
705}
706
707
708// Choose up to `nslots' FEASIBLE instructions and assign each
709// instruction to all possible slots that do not violate feasibility.
710// FEASIBLE means it should be guaranteed that the set
711// of chosen instructions can be issued in a single group.
712//
713// Return value:
714// maxIssue : total number of feasible instructions
715// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
716//
717static unsigned
718FindSlotChoices(SchedulingManager& S,
719 DelaySlotInfo*& getDelaySlotInfo)
720{
721 // initialize result vectors to empty
722 S.resetChoices();
723
724 // find the slot to start from, in the current cycle
725 unsigned int startSlot = 0;
726 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
727 for (int s = S.nslots - 1; s >= 0; s--)
728 if ((*igroup)[s] != NULL)
729 {
730 startSlot = s+1;
731 break;
732 }
733
734 // Make sure we pick at most one instruction that would break the group.
735 // Also, if we do pick one, remember which it was.
736 unsigned int indexForBreakingNode = S.nslots;
737 unsigned int indexForDelayedInstr = S.nslots;
738 DelaySlotInfo* delaySlotInfo = NULL;
739
740 getDelaySlotInfo = NULL;
741
742 // Choose instructions in order of priority.
743 // Add choices to the choice vector in the SchedulingManager class as
744 // we choose them so that subsequent choices will be correctly tested
745 // for feasibility, w.r.t. higher priority choices for the same cycle.
746 //
747 while (S.getNumChoices() < S.nslots - startSlot)
748 {
749 const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
750 if (nextNode == NULL)
751 break; // no more instructions for this cycle
752
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000753 if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000754 {
755 delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
756 if (delaySlotInfo != NULL)
757 {
758 if (indexForBreakingNode < S.nslots)
759 // cannot issue a delayed instr in the same cycle as one
760 // that breaks the issue group or as another delayed instr
761 nextNode = NULL;
762 else
763 indexForDelayedInstr = S.getNumChoices();
764 }
765 }
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000766 else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000767 {
768 if (indexForBreakingNode < S.nslots)
769 // have a breaking instruction already so throw this one away
770 nextNode = NULL;
771 else
772 indexForBreakingNode = S.getNumChoices();
773 }
774
775 if (nextNode != NULL)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000776 {
777 S.addChoice(nextNode);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000778
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000779 if (S.schedInfo.isSingleIssue(nextNode->getOpCode()))
780 {
781 assert(S.getNumChoices() == 1 &&
782 "Prioritizer returned invalid instr for this cycle!");
783 break;
784 }
785 }
786
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000787 if (indexForDelayedInstr < S.nslots)
788 break; // leave the rest for delay slots
789 }
790
791 assert(S.getNumChoices() <= S.nslots);
792 assert(! (indexForDelayedInstr < S.nslots &&
793 indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
794
795 // Assign each chosen instruction to all possible slots for that instr.
796 // But if only one instruction was chosen, put it only in the first
797 // feasible slot; no more analysis will be needed.
798 //
799 if (indexForDelayedInstr >= S.nslots &&
800 indexForBreakingNode >= S.nslots)
801 { // No instructions that break the issue group or that have delay slots.
802 // This is the common case, so handle it separately for efficiency.
803
804 if (S.getNumChoices() == 1)
805 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000806 MachineOpCode opCode = S.getChoice(0)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000807 unsigned int s;
808 for (s=startSlot; s < S.nslots; s++)
809 if (S.schedInfo.instrCanUseSlot(opCode, s))
810 break;
811 assert(s < S.nslots && "No feasible slot for this opCode?");
812 S.addChoiceToSlot(s, S.getChoice(0));
813 }
814 else
815 {
816 for (unsigned i=0; i < S.getNumChoices(); i++)
817 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000818 MachineOpCode opCode = S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000819 for (unsigned int s=startSlot; s < S.nslots; s++)
820 if (S.schedInfo.instrCanUseSlot(opCode, s))
821 S.addChoiceToSlot(s, S.getChoice(i));
822 }
823 }
824 }
825 else if (indexForDelayedInstr < S.nslots)
826 {
827 // There is an instruction that needs delay slots.
828 // Try to assign that instruction to a higher slot than any other
829 // instructions in the group, so that its delay slots can go
830 // right after it.
831 //
832
833 assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
834 "Instruction with delay slots should be last choice!");
835 assert(delaySlotInfo != NULL && "No delay slot info for instr?");
836
837 const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000838 MachineOpCode delayOpCode = delayedNode->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000839 unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
840
841 unsigned delayedNodeSlot = S.nslots;
842 int highestSlotUsed;
843
844 // Find the last possible slot for the delayed instruction that leaves
845 // at least `d' slots vacant after it (d = #delay slots)
846 for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
847 if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
848 {
849 delayedNodeSlot = s;
850 break;
851 }
852
853 highestSlotUsed = -1;
854 for (unsigned i=0; i < S.getNumChoices() - 1; i++)
855 {
856 // Try to assign every other instruction to a lower numbered
857 // slot than delayedNodeSlot.
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000858 MachineOpCode opCode =S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000859 bool noSlotFound = true;
860 unsigned int s;
861 for (s=startSlot; s < delayedNodeSlot; s++)
862 if (S.schedInfo.instrCanUseSlot(opCode, s))
863 {
864 S.addChoiceToSlot(s, S.getChoice(i));
865 noSlotFound = false;
866 }
867
868 // No slot before `delayedNodeSlot' was found for this opCode
869 // Use a later slot, and allow some delay slots to fall in
870 // the next cycle.
871 if (noSlotFound)
872 for ( ; s < S.nslots; s++)
873 if (S.schedInfo.instrCanUseSlot(opCode, s))
874 {
875 S.addChoiceToSlot(s, S.getChoice(i));
876 break;
877 }
878
879 assert(s < S.nslots && "No feasible slot for instruction?");
880
Chris Lattner697954c2002-01-20 22:54:45 +0000881 highestSlotUsed = std::max(highestSlotUsed, (int) s);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000882 }
883
884 assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
885
886 // We will put the delayed node in the first slot after the
887 // highest slot used. But we just mark that for now, and
888 // schedule it separately because we want to schedule the delay
889 // slots for the node at the same time.
890 cycles_t dcycle = S.getTime();
891 unsigned int dslot = highestSlotUsed + 1;
892 if (dslot == S.nslots)
893 {
894 dslot = 0;
895 ++dcycle;
896 }
897 delaySlotInfo->recordChosenSlot(dcycle, dslot);
898 getDelaySlotInfo = delaySlotInfo;
899 }
900 else
901 { // There is an instruction that breaks the issue group.
902 // For such an instruction, assign to the last possible slot in
903 // the current group, and then don't assign any other instructions
904 // to later slots.
905 assert(indexForBreakingNode < S.nslots);
906 const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
907 unsigned breakingSlot = INT_MAX;
908 unsigned int nslotsToUse = S.nslots;
909
910 // Find the last possible slot for this instruction.
911 for (int s = S.nslots-1; s >= (int) startSlot; s--)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000912 if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000913 {
914 breakingSlot = s;
915 break;
916 }
917 assert(breakingSlot < S.nslots &&
918 "No feasible slot for `breakingNode'?");
919
920 // Higher priority instructions than the one that breaks the group:
921 // These can be assigned to all slots, but will be assigned only
922 // to earlier slots if possible.
923 for (unsigned i=0;
924 i < S.getNumChoices() && i < indexForBreakingNode; i++)
925 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000926 MachineOpCode opCode =S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000927
928 // If a higher priority instruction cannot be assigned to
929 // any earlier slots, don't schedule the breaking instruction.
930 //
931 bool foundLowerSlot = false;
932 nslotsToUse = S.nslots; // May be modified in the loop
933 for (unsigned int s=startSlot; s < nslotsToUse; s++)
934 if (S.schedInfo.instrCanUseSlot(opCode, s))
935 {
936 if (breakingSlot < S.nslots && s < breakingSlot)
937 {
938 foundLowerSlot = true;
939 nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
940 }
941
942 S.addChoiceToSlot(s, S.getChoice(i));
943 }
944
945 if (!foundLowerSlot)
946 breakingSlot = INT_MAX; // disable breaking instr
947 }
948
949 // Assign the breaking instruction (if any) to a single slot
950 // Otherwise, just ignore the instruction. It will simply be
951 // scheduled in a later cycle.
952 if (breakingSlot < S.nslots)
953 {
954 S.addChoiceToSlot(breakingSlot, breakingNode);
955 nslotsToUse = breakingSlot;
956 }
957 else
958 nslotsToUse = S.nslots;
959
960 // For lower priority instructions than the one that breaks the
961 // group, only assign them to slots lower than the breaking slot.
962 // Otherwise, just ignore the instruction.
963 for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
964 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000965 MachineOpCode opCode = S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000966 for (unsigned int s=startSlot; s < nslotsToUse; s++)
967 if (S.schedInfo.instrCanUseSlot(opCode, s))
968 S.addChoiceToSlot(s, S.getChoice(i));
969 }
970 } // endif (no delay slots and no breaking slots)
971
972 return S.getNumChoices();
973}
974
975
Vikram S. Advec5b46322001-09-30 23:43:34 +0000976static unsigned
977ChooseOneGroup(SchedulingManager& S)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000978{
Vikram S. Advec5b46322001-09-30 23:43:34 +0000979 assert(S.schedPrio.getNumReady() > 0
980 && "Don't get here without ready instructions.");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000981
Vikram S. Advec5b46322001-09-30 23:43:34 +0000982 cycles_t firstCycle = S.getTime();
983 DelaySlotInfo* getDelaySlotInfo = NULL;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000984
Vikram S. Advec5b46322001-09-30 23:43:34 +0000985 // Choose up to `nslots' feasible instructions and their possible slots.
986 unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000987
Vikram S. Advec5b46322001-09-30 23:43:34 +0000988 while (numIssued == 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000989 {
Vikram S. Advec5b46322001-09-30 23:43:34 +0000990 S.updateTime(S.getTime()+1);
991 numIssued = FindSlotChoices(S, getDelaySlotInfo);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000992 }
993
Vikram S. Advec5b46322001-09-30 23:43:34 +0000994 AssignInstructionsToSlots(S, numIssued);
995
996 if (getDelaySlotInfo != NULL)
997 numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
998
999 // Print trace of scheduled instructions before newly ready ones
1000 if (SchedDebugLevel >= Sched_PrintSchedTrace)
1001 {
1002 for (cycles_t c = firstCycle; c <= S.getTime(); c++)
1003 {
Chris Lattner697954c2002-01-20 22:54:45 +00001004 cerr << " Cycle " << (long)c << " : Scheduled instructions:\n";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001005 const InstrGroup* igroup = S.isched.getIGroup(c);
1006 for (unsigned int s=0; s < S.nslots; s++)
1007 {
Chris Lattner697954c2002-01-20 22:54:45 +00001008 cerr << " ";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001009 if ((*igroup)[s] != NULL)
Chris Lattner697954c2002-01-20 22:54:45 +00001010 cerr << * ((*igroup)[s])->getMachineInstr() << "\n";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001011 else
Chris Lattner697954c2002-01-20 22:54:45 +00001012 cerr << "<none>\n";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001013 }
1014 }
1015 }
1016
1017 return numIssued;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001018}
1019
1020
Vikram S. Advec5b46322001-09-30 23:43:34 +00001021static void
1022ForwardListSchedule(SchedulingManager& S)
1023{
1024 unsigned N;
1025 const SchedGraphNode* node;
1026
1027 S.schedPrio.initialize();
1028
1029 while ((N = S.schedPrio.getNumReady()) > 0)
1030 {
1031 cycles_t nextCycle = S.getTime();
1032
1033 // Choose one group of instructions for a cycle, plus any delay slot
1034 // instructions (which may overflow into successive cycles).
1035 // This will advance S.getTime() to the last cycle in which
1036 // instructions are actually issued.
1037 //
1038 unsigned numIssued = ChooseOneGroup(S);
1039 assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
1040
1041 // Notify the priority manager of scheduled instructions and mark
1042 // any successors that may now be ready
1043 //
1044 for (cycles_t c = nextCycle; c <= S.getTime(); c++)
1045 {
1046 const InstrGroup* igroup = S.isched.getIGroup(c);
1047 for (unsigned int s=0; s < S.nslots; s++)
1048 if ((node = (*igroup)[s]) != NULL)
1049 {
1050 S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
1051 MarkSuccessorsReady(S, node);
1052 }
1053 }
1054
1055 // Move to the next the next earliest cycle for which
1056 // an instruction can be issued, or the next earliest in which
1057 // one will be ready, or to the next cycle, whichever is latest.
1058 //
Chris Lattner697954c2002-01-20 22:54:45 +00001059 S.updateTime(std::max(S.getTime() + 1,
1060 std::max(S.getEarliestIssueTime(),
1061 S.schedPrio.getEarliestReadyTime())));
Vikram S. Advec5b46322001-09-30 23:43:34 +00001062 }
1063}
1064
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001065
1066//---------------------------------------------------------------------
1067// Code for filling delay slots for delayed terminator instructions
1068// (e.g., BRANCH and RETURN). Delay slots for non-terminator
1069// instructions (e.g., CALL) are not handled here because they almost
1070// always can be filled with instructions from the call sequence code
1071// before a call. That's preferable because we incur many tradeoffs here
1072// when we cannot find single-cycle instructions that can be reordered.
1073//----------------------------------------------------------------------
1074
Vikram S. Advec5b46322001-09-30 23:43:34 +00001075static bool
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001076NodeCanFillDelaySlot(const SchedulingManager& S,
1077 const SchedGraphNode* node,
1078 const SchedGraphNode* brNode,
1079 bool nodeIsPredecessor)
1080{
1081 assert(! node->isDummyNode());
1082
1083 // don't put a branch in the delay slot of another branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001084 if (S.getInstrInfo().isBranch(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001085 return false;
1086
1087 // don't put a single-issue instruction in the delay slot of a branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001088 if (S.schedInfo.isSingleIssue(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001089 return false;
1090
1091 // don't put a load-use dependence in the delay slot of a branch
1092 const MachineInstrInfo& mii = S.getInstrInfo();
1093
1094 for (SchedGraphNode::const_iterator EI = node->beginInEdges();
1095 EI != node->endInEdges(); ++EI)
1096 if (! (*EI)->getSrc()->isDummyNode()
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001097 && mii.isLoad((*EI)->getSrc()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001098 && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
1099 return false;
1100
1101 // for now, don't put an instruction that does not have operand
1102 // interlocks in the delay slot of a branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001103 if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001104 return false;
1105
1106 // Finally, if the instruction preceeds the branch, we make sure the
1107 // instruction can be reordered relative to the branch. We simply check
1108 // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
1109 //
1110 if (nodeIsPredecessor)
1111 {
1112 bool onlyCDEdgeToBranch = true;
1113 for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
1114 OEI != node->endOutEdges(); ++OEI)
1115 if (! (*OEI)->getSink()->isDummyNode()
1116 && ((*OEI)->getSink() != brNode
1117 || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
1118 {
1119 onlyCDEdgeToBranch = false;
1120 break;
1121 }
1122
1123 if (!onlyCDEdgeToBranch)
1124 return false;
1125 }
1126
1127 return true;
1128}
1129
1130
Vikram S. Advec5b46322001-09-30 23:43:34 +00001131static void
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001132MarkNodeForDelaySlot(SchedulingManager& S,
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001133 SchedGraph* graph,
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001134 SchedGraphNode* node,
1135 const SchedGraphNode* brNode,
1136 bool nodeIsPredecessor)
1137{
1138 if (nodeIsPredecessor)
1139 { // If node is in the same basic block (i.e., preceeds brNode),
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001140 // remove it and all its incident edges from the graph. Make sure we
1141 // add dummy edges for pred/succ nodes that become entry/exit nodes.
1142 graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001143 }
1144 else
1145 { // If the node was from a target block, add the node to the graph
1146 // and add a CD edge from brNode to node.
1147 assert(0 && "NOT IMPLEMENTED YET");
1148 }
1149
1150 DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
1151 dinfo->addDelayNode(node);
1152}
1153
1154
Vikram S. Advec5b46322001-09-30 23:43:34 +00001155void
1156FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
1157 SchedGraphNode* brNode,
1158 vector<SchedGraphNode*>& sdelayNodeVec)
1159{
1160 const MachineInstrInfo& mii = S.getInstrInfo();
1161 unsigned ndelays =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001162 mii.getNumDelaySlots(brNode->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001163
1164 if (ndelays == 0)
1165 return;
1166
1167 sdelayNodeVec.reserve(ndelays);
1168
1169 // Use a separate vector to hold the feasible multi-cycle nodes.
1170 // These will be used if not enough single-cycle nodes are found.
1171 //
1172 vector<SchedGraphNode*> mdelayNodeVec;
1173
1174 for (sg_pred_iterator P = pred_begin(brNode);
1175 P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
1176 if (! (*P)->isDummyNode() &&
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001177 ! mii.isNop((*P)->getOpCode()) &&
Vikram S. Advec5b46322001-09-30 23:43:34 +00001178 NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
1179 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001180 if (mii.maxLatency((*P)->getOpCode()) > 1)
Vikram S. Advec5b46322001-09-30 23:43:34 +00001181 mdelayNodeVec.push_back(*P);
1182 else
1183 sdelayNodeVec.push_back(*P);
1184 }
1185
1186 // If not enough single-cycle instructions were found, select the
1187 // lowest-latency multi-cycle instructions and use them.
1188 // Note that this is the most efficient code when only 1 (or even 2)
1189 // values need to be selected.
1190 //
1191 while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
1192 {
1193 unsigned lmin =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001194 mii.maxLatency(mdelayNodeVec[0]->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001195 unsigned minIndex = 0;
1196 for (unsigned i=1; i < mdelayNodeVec.size(); i++)
1197 {
1198 unsigned li =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001199 mii.maxLatency(mdelayNodeVec[i]->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001200 if (lmin >= li)
1201 {
1202 lmin = li;
1203 minIndex = i;
1204 }
1205 }
1206 sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
1207 if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
1208 mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
1209 }
1210}
1211
1212
1213// Remove the NOPs currently in delay slots from the graph.
1214// Mark instructions specified in sdelayNodeVec to replace them.
1215// If not enough useful instructions were found, mark the NOPs to be used
1216// for filling delay slots, otherwise, otherwise just discard them.
1217//
1218void
1219ReplaceNopsWithUsefulInstr(SchedulingManager& S,
1220 SchedGraphNode* node,
1221 vector<SchedGraphNode*> sdelayNodeVec,
1222 SchedGraph* graph)
1223{
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001224 vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs
Vikram S. Advec5b46322001-09-30 23:43:34 +00001225 const MachineInstrInfo& mii = S.getInstrInfo();
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001226 const MachineInstr* brInstr = node->getMachineInstr();
1227 unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001228 assert(ndelays > 0 && "Unnecessary call to replace NOPs");
1229
1230 // Remove the NOPs currently in delay slots from the graph.
1231 // If not enough useful instructions were found, use the NOPs to
1232 // fill delay slots, otherwise, just discard them.
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001233 //
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001234 unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
1235 MachineCodeForBasicBlock& bbMvec = node->getBB()->getMachineInstrVec();
1236 assert(bbMvec[firstDelaySlotIdx - 1] == brInstr &&
1237 "Incorrect instr. index in basic block for brInstr");
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001238
1239 // First find all useful instructions already in the delay slots
1240 // and USE THEM. We'll throw away the unused alternatives below
1241 //
1242 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001243 if (! mii.isNop(bbMvec[i]->getOpCode()))
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001244 sdelayNodeVec.insert(sdelayNodeVec.begin(),
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001245 graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001246
1247 // Then find the NOPs and keep only as many as are needed.
1248 // Put the rest in nopNodeVec to be deleted.
1249 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001250 if (mii.isNop(bbMvec[i]->getOpCode()))
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001251 if (sdelayNodeVec.size() < ndelays)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001252 sdelayNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001253 else
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001254 nopNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001255
1256 assert(sdelayNodeVec.size() >= ndelays);
1257
1258 // If some delay slots were already filled, throw away that many new choices
1259 if (sdelayNodeVec.size() > ndelays)
1260 sdelayNodeVec.resize(ndelays);
Vikram S. Advec5b46322001-09-30 23:43:34 +00001261
1262 // Mark the nodes chosen for delay slots. This removes them from the graph.
1263 for (unsigned i=0; i < sdelayNodeVec.size(); i++)
1264 MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
1265
1266 // And remove the unused NOPs from the graph.
1267 for (unsigned i=0; i < nopNodeVec.size(); i++)
1268 graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
1269}
1270
1271
1272// For all delayed instructions, choose instructions to put in the delay
1273// slots and pull those out of the graph. Mark them for the delay slots
1274// in the DelaySlotInfo object for that graph node. If no useful work
1275// is found for a delay slot, use the NOP that is currently in that slot.
1276//
1277// We try to fill the delay slots with useful work for all instructions
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001278// EXCEPT CALLS AND RETURNS.
1279// For CALLs and RETURNs, it is nearly always possible to use one of the
Vikram S. Advec5b46322001-09-30 23:43:34 +00001280// call sequence instrs and putting anything else in the delay slot could be
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001281// suboptimal. Also, it complicates generating the calling sequence code in
1282// regalloc.
Vikram S. Advec5b46322001-09-30 23:43:34 +00001283//
1284static void
1285ChooseInstructionsForDelaySlots(SchedulingManager& S,
Chris Lattner3462cae2002-02-03 07:28:30 +00001286 const BasicBlock *bb,
1287 SchedGraph *graph)
Vikram S. Advec5b46322001-09-30 23:43:34 +00001288{
1289 const MachineInstrInfo& mii = S.getInstrInfo();
Chris Lattner3462cae2002-02-03 07:28:30 +00001290 const TerminatorInst *termInstr = bb->getTerminator();
1291 MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr);
Vikram S. Advec5b46322001-09-30 23:43:34 +00001292 vector<SchedGraphNode*> delayNodeVec;
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001293 const MachineInstr* brInstr = NULL;
Vikram S. Advec5b46322001-09-30 23:43:34 +00001294
1295 assert(termInstr->getOpcode() != Instruction::Call
1296 && "Call used as terminator?");
1297
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001298 if (termInstr->getOpcode() != Instruction::Ret)
Vikram S. Advec5b46322001-09-30 23:43:34 +00001299 {
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001300 // To find instructions that need delay slots without searching the full
1301 // machine code, we assume that the only delayed instructions are CALLs
1302 // or instructions generated for the terminator inst.
1303 // Find the first branch instr in the sequence of machine instrs for term
1304 //
1305 unsigned first = 0;
1306 while (first < termMvec.size() &&
1307 ! mii.isBranch(termMvec[first]->getOpCode()))
1308 {
1309 ++first;
1310 }
1311 assert(first < termMvec.size() &&
1312 "No branch instructions for BR? Ok, but weird! Delete assertion.");
1313
1314 brInstr = (first < termMvec.size())? termMvec[first] : NULL;
1315
1316 // Compute a vector of the nodes chosen for delay slots and then
1317 // mark delay slots to replace NOPs with these useful instructions.
1318 //
1319 if (brInstr != NULL)
1320 {
1321 SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
1322 FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
1323 ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
1324 }
Vikram S. Advec5b46322001-09-30 23:43:34 +00001325 }
1326
1327 // Also mark delay slots for other delayed instructions to hold NOPs.
1328 // Simply passing in an empty delayNodeVec will have this effect.
1329 //
1330 delayNodeVec.clear();
1331 const MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
1332 for (unsigned i=0; i < bbMvec.size(); i++)
1333 if (bbMvec[i] != brInstr &&
1334 mii.getNumDelaySlots(bbMvec[i]->getOpCode()) > 0)
1335 {
1336 SchedGraphNode* node = graph->getGraphNodeForInstr(bbMvec[i]);
1337 ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
1338 }
1339}
1340
1341
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001342//
1343// Schedule the delayed branch and its delay slots
1344//
Vikram S. Advec5b46322001-09-30 23:43:34 +00001345unsigned
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001346DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
1347{
1348 assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
1349 assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
1350 && "Slot for branch should be empty");
1351
1352 unsigned int nextSlot = delayedNodeSlotNum;
1353 cycles_t nextTime = delayedNodeCycle;
1354
1355 S.scheduleInstr(brNode, nextSlot, nextTime);
1356
1357 for (unsigned d=0; d < ndelays; d++)
1358 {
1359 ++nextSlot;
1360 if (nextSlot == S.nslots)
1361 {
1362 nextSlot = 0;
1363 nextTime++;
1364 }
1365
1366 // Find the first feasible instruction for this delay slot
1367 // Note that we only check for issue restrictions here.
1368 // We do *not* check for flow dependences but rely on pipeline
1369 // interlocks to resolve them. Machines without interlocks
1370 // will require this code to be modified.
1371 for (unsigned i=0; i < delayNodeVec.size(); i++)
1372 {
1373 const SchedGraphNode* dnode = delayNodeVec[i];
1374 if ( ! S.isScheduled(dnode)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001375 && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot)
1376 && instrIsFeasible(S, dnode->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001377 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001378 assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001379 && "Instructions without interlocks not yet supported "
1380 "when filling branch delay slots");
1381 S.scheduleInstr(dnode, nextSlot, nextTime);
1382 break;
1383 }
1384 }
1385 }
1386
1387 // Update current time if delay slots overflowed into later cycles.
1388 // Do this here because we know exactly which cycle is the last cycle
1389 // that contains delay slots. The next loop doesn't compute that.
1390 if (nextTime > S.getTime())
1391 S.updateTime(nextTime);
1392
1393 // Now put any remaining instructions in the unfilled delay slots.
1394 // This could lead to suboptimal performance but needed for correctness.
1395 nextSlot = delayedNodeSlotNum;
1396 nextTime = delayedNodeCycle;
1397 for (unsigned i=0; i < delayNodeVec.size(); i++)
1398 if (! S.isScheduled(delayNodeVec[i]))
1399 {
1400 do { // find the next empty slot
1401 ++nextSlot;
1402 if (nextSlot == S.nslots)
1403 {
1404 nextSlot = 0;
1405 nextTime++;
1406 }
1407 } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
1408
1409 S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
1410 break;
1411 }
Vikram S. Advec5b46322001-09-30 23:43:34 +00001412
1413 return 1 + ndelays;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001414}
1415
Vikram S. Advec5b46322001-09-30 23:43:34 +00001416
1417// Check if the instruction would conflict with instructions already
1418// chosen for the current cycle
1419//
1420static inline bool
1421ConflictsWithChoices(const SchedulingManager& S,
1422 MachineOpCode opCode)
1423{
1424 // Check if the instruction must issue by itself, and some feasible
1425 // choices have already been made for this cycle
1426 if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
1427 return true;
1428
1429 // For each class that opCode belongs to, check if there are too many
1430 // instructions of that class.
1431 //
1432 const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
1433 return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
1434}
1435
1436
1437//************************* External Functions *****************************/
1438
1439
1440//---------------------------------------------------------------------------
1441// Function: ViolatesMinimumGap
1442//
1443// Purpose:
1444// Check minimum gap requirements relative to instructions scheduled in
1445// previous cycles.
1446// Note that we do not need to consider `nextEarliestIssueTime' here because
1447// that is also captured in the earliest start times for each opcode.
1448//---------------------------------------------------------------------------
1449
1450static inline bool
1451ViolatesMinimumGap(const SchedulingManager& S,
1452 MachineOpCode opCode,
1453 const cycles_t inCycle)
1454{
1455 return (inCycle < S.getEarliestStartTimeForOp(opCode));
1456}
1457
1458
1459//---------------------------------------------------------------------------
1460// Function: instrIsFeasible
1461//
1462// Purpose:
1463// Check if any issue restrictions would prevent the instruction from
1464// being issued in the current cycle
1465//---------------------------------------------------------------------------
1466
1467bool
1468instrIsFeasible(const SchedulingManager& S,
1469 MachineOpCode opCode)
1470{
1471 // skip the instruction if it cannot be issued due to issue restrictions
1472 // caused by previously issued instructions
1473 if (ViolatesMinimumGap(S, opCode, S.getTime()))
1474 return false;
1475
1476 // skip the instruction if it cannot be issued due to issue restrictions
1477 // caused by previously chosen instructions for the current cycle
1478 if (ConflictsWithChoices(S, opCode))
1479 return false;
1480
1481 return true;
1482}
1483
1484//---------------------------------------------------------------------------
1485// Function: ScheduleInstructionsWithSSA
1486//
1487// Purpose:
1488// Entry point for instruction scheduling on SSA form.
1489// Schedules the machine instructions generated by instruction selection.
1490// Assumes that register allocation has not been done, i.e., operands
1491// are still in SSA form.
1492//---------------------------------------------------------------------------
1493
1494bool
1495ScheduleInstructionsWithSSA(Method* method,
1496 const TargetMachine &target)
1497{
1498 SchedGraphSet graphSet(method, target);
1499
1500 if (SchedDebugLevel >= Sched_PrintSchedGraphs)
1501 {
Chris Lattner697954c2002-01-20 22:54:45 +00001502 cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001503 graphSet.dump();
1504 }
1505
1506 for (SchedGraphSet::const_iterator GI=graphSet.begin();
1507 GI != graphSet.end(); ++GI)
1508 {
Chris Lattner3462cae2002-02-03 07:28:30 +00001509 SchedGraph* graph = GI->second;
Vikram S. Advec5b46322001-09-30 23:43:34 +00001510 const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks();
1511 assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
1512 const BasicBlock* bb = bbvec[0];
1513
1514 if (SchedDebugLevel >= Sched_PrintSchedTrace)
Chris Lattner697954c2002-01-20 22:54:45 +00001515 cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
Vikram S. Advec5b46322001-09-30 23:43:34 +00001516
1517 SchedPriorities schedPrio(method, graph); // expensive!
1518 SchedulingManager S(target, graph, schedPrio);
1519
1520 ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
1521
1522 ForwardListSchedule(S); // computes schedule in S
1523
Chris Lattner3462cae2002-02-03 07:28:30 +00001524 RecordSchedule(GI->first, S); // records schedule in BB
Vikram S. Advec5b46322001-09-30 23:43:34 +00001525 }
1526
1527 if (SchedDebugLevel >= Sched_PrintMachineCode)
1528 {
Chris Lattner697954c2002-01-20 22:54:45 +00001529 cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n";
Vikram S. Adveaf1d2c82001-11-08 05:18:18 +00001530 MachineCodeForMethod::get(method).dump();
Vikram S. Advec5b46322001-09-30 23:43:34 +00001531 }
1532
1533 return false; // no reason to fail yet
1534}
1535
1536