blob: 3214b79ce60088313cd715443fbdfe03fd036e78 [file] [log] [blame]
Chris Lattner0bbe58f2001-11-26 18:41:20 +00001//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
2//
3// This interface is used to identify and classify induction variables that
4// exist in the program. Induction variables must contain a PHI node that
5// exists in a loop header. Because of this, they are identified an managed by
6// this PHI node.
7//
8// Induction variables are classified into a type. Knowing that an induction
9// variable is of a specific type can constrain the values of the start and
10// step. For example, a SimpleLinear induction variable must have a start and
11// step values that are constants.
12//
13// Induction variables can be created with or without loop information. If no
14// loop information is available, induction variables cannot be recognized to be
15// more than SimpleLinear variables.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/InductionVariable.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/Expressions.h"
Chris Lattner7061dc52001-12-03 18:02:31 +000022#include "llvm/iPHINode.h"
23#include "llvm/InstrTypes.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000024#include "llvm/Type.h"
Chris Lattnere9bb2df2001-12-03 22:26:30 +000025#include "llvm/ConstantVals.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000026
27using analysis::ExprType;
28
29
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000030static bool isLoopInvariant(const Value *V, const Loop *L) {
Chris Lattner73e21422002-04-09 19:48:49 +000031 if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
Chris Lattner0bbe58f2001-11-26 18:41:20 +000032 return true;
33
Chris Lattnera298d272002-04-28 00:15:57 +000034 Instruction *I = cast<Instruction>(V);
35 BasicBlock *BB = I->getParent();
Chris Lattner0bbe58f2001-11-26 18:41:20 +000036
37 return !L->contains(BB);
38}
39
40enum InductionVariable::iType
41InductionVariable::Classify(const Value *Start, const Value *Step,
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000042 const Loop *L = 0) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000043 // Check for cannonical and simple linear expressions now...
Chris Lattnere9bb2df2001-12-03 22:26:30 +000044 if (ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
45 if (ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000046 if (CStart->equalsInt(0) && CStep->equalsInt(1))
47 return Cannonical;
48 else
49 return SimpleLinear;
50 }
51
52 // Without loop information, we cannot do any better, so bail now...
53 if (L == 0) return Unknown;
54
55 if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
56 return Linear;
57 return Unknown;
58}
59
60// Create an induction variable for the specified value. If it is a PHI, and
61// if it's recognizable, classify it and fill in instance variables.
62//
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000063InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000064 InductionType = Unknown; // Assume the worst
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000065 Phi = P;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000066
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000067 // If the PHI node has more than two predecessors, we don't know how to
Chris Lattner0bbe58f2001-11-26 18:41:20 +000068 // handle it.
69 //
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000070 if (Phi->getNumIncomingValues() != 2) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000071
Chris Lattner6de230a2001-12-05 06:32:30 +000072 // FIXME: Handle FP induction variables.
73 if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
74 return;
75
Chris Lattner0bbe58f2001-11-26 18:41:20 +000076 // If we have loop information, make sure that this PHI node is in the header
77 // of a loop...
78 //
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000079 const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000080 if (L && L->getHeader() != Phi->getParent())
81 return;
82
83 Value *V1 = Phi->getIncomingValue(0);
84 Value *V2 = Phi->getIncomingValue(1);
85
86 if (L == 0) { // No loop information? Base everything on expression analysis
87 ExprType E1 = analysis::ClassifyExpression(V1);
88 ExprType E2 = analysis::ClassifyExpression(V2);
89
90 if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
Chris Lattner697954c2002-01-20 22:54:45 +000091 std::swap(E1, E2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +000092
93 // E1 must be a constant incoming value, and E2 must be a linear expression
94 // with respect to the PHI node.
95 //
96 if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
97 E2.Var != Phi)
98 return;
99
100 // Okay, we have found an induction variable. Save the start and step values
101 const Type *ETy = Phi->getType();
102 if (ETy->isPointerType()) ETy = Type::ULongTy;
103
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000104 Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
105 Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000106 } else {
107 // Okay, at this point, we know that we have loop information...
108
109 // Make sure that V1 is the incoming value, and V2 is from the backedge of
110 // the loop.
111 if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
Chris Lattner697954c2002-01-20 22:54:45 +0000112 std::swap(V1, V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000113
114 Start = V1; // We know that Start has to be loop invariant...
115 Step = 0;
116
117 if (V2 == Phi) { // referencing the PHI directly? Must have zero step
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000118 Step = Constant::getNullValue(Phi->getType());
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000119 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
120 // TODO: This could be much better...
121 if (I->getOpcode() == Instruction::Add) {
122 if (I->getOperand(0) == Phi)
123 Step = I->getOperand(1);
124 else if (I->getOperand(1) == Phi)
125 Step = I->getOperand(0);
126 }
127 }
128
129 if (Step == 0) { // Unrecognized step value...
130 ExprType StepE = analysis::ClassifyExpression(V2);
131 if (StepE.ExprTy != ExprType::Linear ||
132 StepE.Var != Phi) return;
133
134 const Type *ETy = Phi->getType();
135 if (ETy->isPointerType()) ETy = Type::ULongTy;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000136 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
Chris Lattner621c9922001-12-04 08:12:47 +0000137 } else { // We were able to get a step value, simplify with expr analysis
138 ExprType StepE = analysis::ClassifyExpression(Step);
139 if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
140 // No offset from variable? Grab the variable
141 Step = StepE.Var;
142 } else if (StepE.ExprTy == ExprType::Constant) {
143 if (StepE.Offset)
144 Step = (Value*)StepE.Offset;
145 else
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000146 Step = Constant::getNullValue(Step->getType());
Chris Lattner6de230a2001-12-05 06:32:30 +0000147 const Type *ETy = Phi->getType();
148 if (ETy->isPointerType()) ETy = Type::ULongTy;
149 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
Chris Lattner621c9922001-12-04 08:12:47 +0000150 }
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000151 }
152 }
153
154 // Classify the induction variable type now...
155 InductionType = InductionVariable::Classify(Start, Step, L);
156}