blob: d2eca4adeb4106d5183bddc259ef1b9dfc431598 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000073#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000074#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000077#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000078#include "llvm/Support/MathExtras.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000079#include "llvm/Support/Streams.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000080#include "llvm/ADT/Statistic.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000081#include <ostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000082#include <algorithm>
Jeff Cohen97af7512006-12-02 02:22:01 +000083#include <cmath>
Chris Lattner53e677a2004-04-02 20:23:17 +000084using namespace llvm;
85
Chris Lattner3b27d682006-12-19 22:30:33 +000086STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
Chris Lattner53e677a2004-04-02 20:23:17 +0000104namespace {
Chris Lattner5d8925c2006-08-27 22:30:17 +0000105 RegisterPass<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +0000106 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +0000107}
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Chris Lattner53e677a2004-04-02 20:23:17 +0000116SCEV::~SCEV() {}
117void SCEV::dump() const {
Bill Wendlinge8156192006-12-07 01:30:32 +0000118 print(cerr);
Chris Lattner53e677a2004-04-02 20:23:17 +0000119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have. This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124 const Type *Ty = getType();
Chris Lattner42a75512007-01-15 02:27:26 +0000125 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000126 // Default to a full range if no better information is available.
Reid Spencerc6aedf72007-02-28 22:03:51 +0000127 return ConstantRange(getBitWidth());
Chris Lattner53e677a2004-04-02 20:23:17 +0000128}
129
Reid Spencer581b0d42007-02-28 19:57:34 +0000130uint32_t SCEV::getBitWidth() const {
131 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
132 return ITy->getBitWidth();
133 return 0;
134}
135
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
137SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000141 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000146 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
Chris Lattner4dc534c2005-02-13 04:37:18 +0000154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156 const SCEVHandle &Conc) const {
157 return this;
158}
159
Chris Lattner53e677a2004-04-02 20:23:17 +0000160void SCEVCouldNotCompute::print(std::ostream &OS) const {
161 OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165 return S->getSCEVType() == scCouldNotCompute;
166}
167
168
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value. Don't use a SCEVHandle here, or else the object will
171// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000173
Chris Lattner53e677a2004-04-02 20:23:17 +0000174
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000175SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000176 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000177}
Chris Lattner53e677a2004-04-02 20:23:17 +0000178
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000179SCEVHandle SCEVConstant::get(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000180 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000181 if (R == 0) R = new SCEVConstant(V);
182 return R;
183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000185ConstantRange SCEVConstant::getValueRange() const {
Reid Spencerdc5c1592007-02-28 18:57:32 +0000186 return ConstantRange(V->getValue());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000187}
Chris Lattner53e677a2004-04-02 20:23:17 +0000188
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000189const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000190
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000191void SCEVConstant::print(std::ostream &OS) const {
192 WriteAsOperand(OS, V, false);
193}
Chris Lattner53e677a2004-04-02 20:23:17 +0000194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
196// particular input. Don't use a SCEVHandle here, or else the object will
197// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000198static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
199 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000201SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
202 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000203 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000204 "Cannot truncate non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000205 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
206 && "This is not a truncating conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000207}
Chris Lattner53e677a2004-04-02 20:23:17 +0000208
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000209SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000210 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000211}
Chris Lattner53e677a2004-04-02 20:23:17 +0000212
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000213ConstantRange SCEVTruncateExpr::getValueRange() const {
Reid Spencerc6aedf72007-02-28 22:03:51 +0000214 return getOperand()->getValueRange().truncate(getBitWidth());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000215}
Chris Lattner53e677a2004-04-02 20:23:17 +0000216
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000217void SCEVTruncateExpr::print(std::ostream &OS) const {
218 OS << "(truncate " << *Op << " to " << *Ty << ")";
219}
220
221// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
222// particular input. Don't use a SCEVHandle here, or else the object will never
223// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000224static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
225 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Reid Spencer48d8a702006-11-01 21:53:12 +0000228 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Chris Lattner42a75512007-01-15 02:27:26 +0000229 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000231 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
232 && "This is not an extending conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000236 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
Reid Spencerc6aedf72007-02-28 22:03:51 +0000240 return getOperand()->getValueRange().zeroExtend(getBitWidth());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000250static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
251 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000254 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
255 std::vector<SCEV*>(Operands.begin(),
256 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261 const char *OpStr = getOperationStr();
262 OS << "(" << *Operands[0];
263 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264 OS << OpStr << *Operands[i];
265 OS << ")";
266}
267
Chris Lattner4dc534c2005-02-13 04:37:18 +0000268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270 const SCEVHandle &Conc) const {
271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273 if (H != getOperand(i)) {
274 std::vector<SCEVHandle> NewOps;
275 NewOps.reserve(getNumOperands());
276 for (unsigned j = 0; j != i; ++j)
277 NewOps.push_back(getOperand(j));
278 NewOps.push_back(H);
279 for (++i; i != e; ++i)
280 NewOps.push_back(getOperand(i)->
281 replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283 if (isa<SCEVAddExpr>(this))
284 return SCEVAddExpr::get(NewOps);
285 else if (isa<SCEVMulExpr>(this))
286 return SCEVMulExpr::get(NewOps);
287 else
288 assert(0 && "Unknown commutative expr!");
289 }
290 }
291 return this;
292}
293
294
Chris Lattner60a05cc2006-04-01 04:48:52 +0000295// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000296// input. Don't use a SCEVHandle here, or else the object will never be
297// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000298static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
299 SCEVSDivExpr*> > SCEVSDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000300
Chris Lattner60a05cc2006-04-01 04:48:52 +0000301SCEVSDivExpr::~SCEVSDivExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000302 SCEVSDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000303}
304
Chris Lattner60a05cc2006-04-01 04:48:52 +0000305void SCEVSDivExpr::print(std::ostream &OS) const {
306 OS << "(" << *LHS << " /s " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000307}
308
Chris Lattner60a05cc2006-04-01 04:48:52 +0000309const Type *SCEVSDivExpr::getType() const {
Reid Spencerc5b206b2006-12-31 05:48:39 +0000310 return LHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311}
312
313// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
314// particular input. Don't use a SCEVHandle here, or else the object will never
315// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000316static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
317 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000318
319SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000320 SCEVAddRecExprs->erase(std::make_pair(L,
321 std::vector<SCEV*>(Operands.begin(),
322 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Chris Lattner4dc534c2005-02-13 04:37:18 +0000325SCEVHandle SCEVAddRecExpr::
326replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
327 const SCEVHandle &Conc) const {
328 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
330 if (H != getOperand(i)) {
331 std::vector<SCEVHandle> NewOps;
332 NewOps.reserve(getNumOperands());
333 for (unsigned j = 0; j != i; ++j)
334 NewOps.push_back(getOperand(j));
335 NewOps.push_back(H);
336 for (++i; i != e; ++i)
337 NewOps.push_back(getOperand(i)->
338 replaceSymbolicValuesWithConcrete(Sym, Conc));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000339
Chris Lattner4dc534c2005-02-13 04:37:18 +0000340 return get(NewOps, L);
341 }
342 }
343 return this;
344}
345
346
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
348 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000349 // contain L and if the start is invariant.
350 return !QueryLoop->contains(L->getHeader()) &&
351 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000352}
353
354
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000355void SCEVAddRecExpr::print(std::ostream &OS) const {
356 OS << "{" << *Operands[0];
357 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358 OS << ",+," << *Operands[i];
359 OS << "}<" << L->getHeader()->getName() + ">";
360}
Chris Lattner53e677a2004-04-02 20:23:17 +0000361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value. Don't use a SCEVHandle here, or else the object will never be
364// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000365static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000366
Chris Lattnerb3364092006-10-04 21:49:37 +0000367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000368
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370 // All non-instruction values are loop invariant. All instructions are loop
371 // invariant if they are not contained in the specified loop.
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 return !L->contains(I->getParent());
374 return true;
375}
Chris Lattner53e677a2004-04-02 20:23:17 +0000376
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377const Type *SCEVUnknown::getType() const {
378 return V->getType();
379}
Chris Lattner53e677a2004-04-02 20:23:17 +0000380
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000381void SCEVUnknown::print(std::ostream &OS) const {
382 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000383}
384
Chris Lattner8d741b82004-06-20 06:23:15 +0000385//===----------------------------------------------------------------------===//
386// SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391 /// than the complexity of the RHS. This comparator is used to canonicalize
392 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000393 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Chris Lattner8d741b82004-06-20 06:23:15 +0000394 bool operator()(SCEV *LHS, SCEV *RHS) {
395 return LHS->getSCEVType() < RHS->getSCEVType();
396 }
397 };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine. In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411 if (Ops.size() < 2) return; // Noop
412 if (Ops.size() == 2) {
413 // This is the common case, which also happens to be trivially simple.
414 // Special case it.
415 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416 std::swap(Ops[0], Ops[1]);
417 return;
418 }
419
420 // Do the rough sort by complexity.
421 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423 // Now that we are sorted by complexity, group elements of the same
424 // complexity. Note that this is, at worst, N^2, but the vector is likely to
425 // be extremely short in practice. Note that we take this approach because we
426 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000427 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000428 SCEV *S = Ops[i];
429 unsigned Complexity = S->getSCEVType();
430
431 // If there are any objects of the same complexity and same value as this
432 // one, group them.
433 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434 if (Ops[j] == S) { // Found a duplicate.
435 // Move it to immediately after i'th element.
436 std::swap(Ops[i+1], Ops[j]);
437 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000438 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000439 }
440 }
441 }
442}
443
Chris Lattner53e677a2004-04-02 20:23:17 +0000444
Chris Lattner53e677a2004-04-02 20:23:17 +0000445
446//===----------------------------------------------------------------------===//
447// Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000453 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000454 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000455 C = Constant::getNullValue(Ty);
456 else if (Ty->isFloatingPoint())
457 C = ConstantFP::get(Ty, Val);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000458 else
Reid Spencerb83eb642006-10-20 07:07:24 +0000459 C = ConstantInt::get(Ty, Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000460 return SCEVUnknown::get(C);
461}
462
Reid Spencer35fa4392007-03-01 22:28:51 +0000463SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) {
464 return SCEVUnknown::get(ConstantInt::get(Val));
465}
466
Chris Lattner53e677a2004-04-02 20:23:17 +0000467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type. If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471 const Type *SrcTy = V->getType();
Chris Lattner42a75512007-01-15 02:27:26 +0000472 assert(SrcTy->isInteger() && Ty->isInteger() &&
Chris Lattner53e677a2004-04-02 20:23:17 +0000473 "Cannot truncate or zero extend with non-integer arguments!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000474 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000475 return V; // No conversion
Reid Spencere7ca0422007-01-08 01:26:33 +0000476 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000477 return SCEVTruncateExpr::get(V, Ty);
478 return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000483SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000484 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000486
Chris Lattnerb06432c2004-04-23 21:29:03 +0000487 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000492SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000493 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000494 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000495}
496
497
Chris Lattner53e677a2004-04-02 20:23:17 +0000498/// PartialFact - Compute V!/(V-NumSteps)!
499static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
500 // Handle this case efficiently, it is common to have constant iteration
501 // counts while computing loop exit values.
502 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
Reid Spencerdc5c1592007-02-28 18:57:32 +0000503 APInt Val = SC->getValue()->getValue();
504 APInt Result(Val.getBitWidth(), 1);
Chris Lattner53e677a2004-04-02 20:23:17 +0000505 for (; NumSteps; --NumSteps)
506 Result *= Val-(NumSteps-1);
Reid Spencerc7cd7a02007-03-01 19:32:33 +0000507 return SCEVUnknown::get(ConstantInt::get(Result));
Chris Lattner53e677a2004-04-02 20:23:17 +0000508 }
509
510 const Type *Ty = V->getType();
511 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000512 return SCEVUnknown::getIntegerSCEV(1, Ty);
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000513
Chris Lattner53e677a2004-04-02 20:23:17 +0000514 SCEVHandle Result = V;
515 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000516 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000517 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000518 return Result;
519}
520
521
522/// evaluateAtIteration - Return the value of this chain of recurrences at
523/// the specified iteration number. We can evaluate this recurrence by
524/// multiplying each element in the chain by the binomial coefficient
525/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
526///
527/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
528///
529/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
530/// Is the binomial equation safe using modular arithmetic??
531///
532SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
533 SCEVHandle Result = getStart();
534 int Divisor = 1;
535 const Type *Ty = It->getType();
536 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
537 SCEVHandle BC = PartialFact(It, i);
538 Divisor *= i;
Chris Lattner60a05cc2006-04-01 04:48:52 +0000539 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000540 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000541 Result = SCEVAddExpr::get(Result, Val);
542 }
543 return Result;
544}
545
546
547//===----------------------------------------------------------------------===//
548// SCEV Expression folder implementations
549//===----------------------------------------------------------------------===//
550
551SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
552 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000553 return SCEVUnknown::get(
Reid Spencer315d0552006-12-05 22:39:58 +0000554 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000555
556 // If the input value is a chrec scev made out of constants, truncate
557 // all of the constants.
558 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
559 std::vector<SCEVHandle> Operands;
560 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
561 // FIXME: This should allow truncation of other expression types!
562 if (isa<SCEVConstant>(AddRec->getOperand(i)))
563 Operands.push_back(get(AddRec->getOperand(i), Ty));
564 else
565 break;
566 if (Operands.size() == AddRec->getNumOperands())
567 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
568 }
569
Chris Lattnerb3364092006-10-04 21:49:37 +0000570 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000571 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
572 return Result;
573}
574
575SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
576 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000577 return SCEVUnknown::get(
Reid Spencerd977d862006-12-12 23:36:14 +0000578 ConstantExpr::getZExt(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000579
580 // FIXME: If the input value is a chrec scev, and we can prove that the value
581 // did not overflow the old, smaller, value, we can zero extend all of the
582 // operands (often constants). This would allow analysis of something like
583 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
584
Chris Lattnerb3364092006-10-04 21:49:37 +0000585 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000586 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
587 return Result;
588}
589
590// get - Get a canonical add expression, or something simpler if possible.
591SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
592 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000593 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000594
595 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000596 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000597
598 // If there are any constants, fold them together.
599 unsigned Idx = 0;
600 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
601 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000602 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000603 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
604 // We found two constants, fold them together!
605 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
606 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
607 Ops[0] = SCEVConstant::get(CI);
608 Ops.erase(Ops.begin()+1); // Erase the folded element
609 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000610 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000611 } else {
612 // If we couldn't fold the expression, move to the next constant. Note
613 // that this is impossible to happen in practice because we always
614 // constant fold constant ints to constant ints.
615 ++Idx;
616 }
617 }
618
619 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +0000620 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000621 Ops.erase(Ops.begin());
622 --Idx;
623 }
624 }
625
Chris Lattner627018b2004-04-07 16:16:11 +0000626 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000627
Chris Lattner53e677a2004-04-02 20:23:17 +0000628 // Okay, check to see if the same value occurs in the operand list twice. If
629 // so, merge them together into an multiply expression. Since we sorted the
630 // list, these values are required to be adjacent.
631 const Type *Ty = Ops[0]->getType();
632 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
633 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
634 // Found a match, merge the two values into a multiply, and add any
635 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000636 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000637 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
638 if (Ops.size() == 2)
639 return Mul;
640 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
641 Ops.push_back(Mul);
642 return SCEVAddExpr::get(Ops);
643 }
644
645 // Okay, now we know the first non-constant operand. If there are add
646 // operands they would be next.
647 if (Idx < Ops.size()) {
648 bool DeletedAdd = false;
649 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
650 // If we have an add, expand the add operands onto the end of the operands
651 // list.
652 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
653 Ops.erase(Ops.begin()+Idx);
654 DeletedAdd = true;
655 }
656
657 // If we deleted at least one add, we added operands to the end of the list,
658 // and they are not necessarily sorted. Recurse to resort and resimplify
659 // any operands we just aquired.
660 if (DeletedAdd)
661 return get(Ops);
662 }
663
664 // Skip over the add expression until we get to a multiply.
665 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
666 ++Idx;
667
668 // If we are adding something to a multiply expression, make sure the
669 // something is not already an operand of the multiply. If so, merge it into
670 // the multiply.
671 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
672 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
673 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
674 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
675 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000676 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000677 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
678 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
679 if (Mul->getNumOperands() != 2) {
680 // If the multiply has more than two operands, we must get the
681 // Y*Z term.
682 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
683 MulOps.erase(MulOps.begin()+MulOp);
684 InnerMul = SCEVMulExpr::get(MulOps);
685 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000686 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000687 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
688 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
689 if (Ops.size() == 2) return OuterMul;
690 if (AddOp < Idx) {
691 Ops.erase(Ops.begin()+AddOp);
692 Ops.erase(Ops.begin()+Idx-1);
693 } else {
694 Ops.erase(Ops.begin()+Idx);
695 Ops.erase(Ops.begin()+AddOp-1);
696 }
697 Ops.push_back(OuterMul);
698 return SCEVAddExpr::get(Ops);
699 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000700
Chris Lattner53e677a2004-04-02 20:23:17 +0000701 // Check this multiply against other multiplies being added together.
702 for (unsigned OtherMulIdx = Idx+1;
703 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
704 ++OtherMulIdx) {
705 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
706 // If MulOp occurs in OtherMul, we can fold the two multiplies
707 // together.
708 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
709 OMulOp != e; ++OMulOp)
710 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
711 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
712 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
713 if (Mul->getNumOperands() != 2) {
714 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
715 MulOps.erase(MulOps.begin()+MulOp);
716 InnerMul1 = SCEVMulExpr::get(MulOps);
717 }
718 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
719 if (OtherMul->getNumOperands() != 2) {
720 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
721 OtherMul->op_end());
722 MulOps.erase(MulOps.begin()+OMulOp);
723 InnerMul2 = SCEVMulExpr::get(MulOps);
724 }
725 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
726 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
727 if (Ops.size() == 2) return OuterMul;
728 Ops.erase(Ops.begin()+Idx);
729 Ops.erase(Ops.begin()+OtherMulIdx-1);
730 Ops.push_back(OuterMul);
731 return SCEVAddExpr::get(Ops);
732 }
733 }
734 }
735 }
736
737 // If there are any add recurrences in the operands list, see if any other
738 // added values are loop invariant. If so, we can fold them into the
739 // recurrence.
740 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
741 ++Idx;
742
743 // Scan over all recurrences, trying to fold loop invariants into them.
744 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
745 // Scan all of the other operands to this add and add them to the vector if
746 // they are loop invariant w.r.t. the recurrence.
747 std::vector<SCEVHandle> LIOps;
748 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
749 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
750 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
751 LIOps.push_back(Ops[i]);
752 Ops.erase(Ops.begin()+i);
753 --i; --e;
754 }
755
756 // If we found some loop invariants, fold them into the recurrence.
757 if (!LIOps.empty()) {
758 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
759 LIOps.push_back(AddRec->getStart());
760
761 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
762 AddRecOps[0] = SCEVAddExpr::get(LIOps);
763
764 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
765 // If all of the other operands were loop invariant, we are done.
766 if (Ops.size() == 1) return NewRec;
767
768 // Otherwise, add the folded AddRec by the non-liv parts.
769 for (unsigned i = 0;; ++i)
770 if (Ops[i] == AddRec) {
771 Ops[i] = NewRec;
772 break;
773 }
774 return SCEVAddExpr::get(Ops);
775 }
776
777 // Okay, if there weren't any loop invariants to be folded, check to see if
778 // there are multiple AddRec's with the same loop induction variable being
779 // added together. If so, we can fold them.
780 for (unsigned OtherIdx = Idx+1;
781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
782 if (OtherIdx != Idx) {
783 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
784 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
785 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
786 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
787 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
788 if (i >= NewOps.size()) {
789 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
790 OtherAddRec->op_end());
791 break;
792 }
793 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
794 }
795 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
796
797 if (Ops.size() == 2) return NewAddRec;
798
799 Ops.erase(Ops.begin()+Idx);
800 Ops.erase(Ops.begin()+OtherIdx-1);
801 Ops.push_back(NewAddRec);
802 return SCEVAddExpr::get(Ops);
803 }
804 }
805
806 // Otherwise couldn't fold anything into this recurrence. Move onto the
807 // next one.
808 }
809
810 // Okay, it looks like we really DO need an add expr. Check to see if we
811 // already have one, otherwise create a new one.
812 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000813 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
814 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000815 if (Result == 0) Result = new SCEVAddExpr(Ops);
816 return Result;
817}
818
819
820SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
821 assert(!Ops.empty() && "Cannot get empty mul!");
822
823 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000824 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000825
826 // If there are any constants, fold them together.
827 unsigned Idx = 0;
828 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
829
830 // C1*(C2+V) -> C1*C2 + C1*V
831 if (Ops.size() == 2)
832 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
833 if (Add->getNumOperands() == 2 &&
834 isa<SCEVConstant>(Add->getOperand(0)))
835 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
836 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
837
838
839 ++Idx;
840 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
841 // We found two constants, fold them together!
842 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
844 Ops[0] = SCEVConstant::get(CI);
845 Ops.erase(Ops.begin()+1); // Erase the folded element
846 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000847 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000848 } else {
849 // If we couldn't fold the expression, move to the next constant. Note
850 // that this is impossible to happen in practice because we always
851 // constant fold constant ints to constant ints.
852 ++Idx;
853 }
854 }
855
856 // If we are left with a constant one being multiplied, strip it off.
857 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
858 Ops.erase(Ops.begin());
859 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +0000860 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 // If we have a multiply of zero, it will always be zero.
862 return Ops[0];
863 }
864 }
865
866 // Skip over the add expression until we get to a multiply.
867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
868 ++Idx;
869
870 if (Ops.size() == 1)
871 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000872
Chris Lattner53e677a2004-04-02 20:23:17 +0000873 // If there are mul operands inline them all into this expression.
874 if (Idx < Ops.size()) {
875 bool DeletedMul = false;
876 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
877 // If we have an mul, expand the mul operands onto the end of the operands
878 // list.
879 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
880 Ops.erase(Ops.begin()+Idx);
881 DeletedMul = true;
882 }
883
884 // If we deleted at least one mul, we added operands to the end of the list,
885 // and they are not necessarily sorted. Recurse to resort and resimplify
886 // any operands we just aquired.
887 if (DeletedMul)
888 return get(Ops);
889 }
890
891 // If there are any add recurrences in the operands list, see if any other
892 // added values are loop invariant. If so, we can fold them into the
893 // recurrence.
894 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
895 ++Idx;
896
897 // Scan over all recurrences, trying to fold loop invariants into them.
898 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
899 // Scan all of the other operands to this mul and add them to the vector if
900 // they are loop invariant w.r.t. the recurrence.
901 std::vector<SCEVHandle> LIOps;
902 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
903 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
904 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
905 LIOps.push_back(Ops[i]);
906 Ops.erase(Ops.begin()+i);
907 --i; --e;
908 }
909
910 // If we found some loop invariants, fold them into the recurrence.
911 if (!LIOps.empty()) {
912 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
913 std::vector<SCEVHandle> NewOps;
914 NewOps.reserve(AddRec->getNumOperands());
915 if (LIOps.size() == 1) {
916 SCEV *Scale = LIOps[0];
917 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
918 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
919 } else {
920 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
921 std::vector<SCEVHandle> MulOps(LIOps);
922 MulOps.push_back(AddRec->getOperand(i));
923 NewOps.push_back(SCEVMulExpr::get(MulOps));
924 }
925 }
926
927 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
928
929 // If all of the other operands were loop invariant, we are done.
930 if (Ops.size() == 1) return NewRec;
931
932 // Otherwise, multiply the folded AddRec by the non-liv parts.
933 for (unsigned i = 0;; ++i)
934 if (Ops[i] == AddRec) {
935 Ops[i] = NewRec;
936 break;
937 }
938 return SCEVMulExpr::get(Ops);
939 }
940
941 // Okay, if there weren't any loop invariants to be folded, check to see if
942 // there are multiple AddRec's with the same loop induction variable being
943 // multiplied together. If so, we can fold them.
944 for (unsigned OtherIdx = Idx+1;
945 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
946 if (OtherIdx != Idx) {
947 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
948 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
949 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
950 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
951 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
952 G->getStart());
953 SCEVHandle B = F->getStepRecurrence();
954 SCEVHandle D = G->getStepRecurrence();
955 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
956 SCEVMulExpr::get(G, B),
957 SCEVMulExpr::get(B, D));
958 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
959 F->getLoop());
960 if (Ops.size() == 2) return NewAddRec;
961
962 Ops.erase(Ops.begin()+Idx);
963 Ops.erase(Ops.begin()+OtherIdx-1);
964 Ops.push_back(NewAddRec);
965 return SCEVMulExpr::get(Ops);
966 }
967 }
968
969 // Otherwise couldn't fold anything into this recurrence. Move onto the
970 // next one.
971 }
972
973 // Okay, it looks like we really DO need an mul expr. Check to see if we
974 // already have one, otherwise create a new one.
975 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000976 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
977 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000978 if (Result == 0)
979 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000980 return Result;
981}
982
Chris Lattner60a05cc2006-04-01 04:48:52 +0000983SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000984 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
985 if (RHSC->getValue()->equalsInt(1))
Reid Spencer1628cec2006-10-26 06:15:43 +0000986 return LHS; // X sdiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +0000987 if (RHSC->getValue()->isAllOnesValue())
Reid Spencer1628cec2006-10-26 06:15:43 +0000988 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000989
990 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
991 Constant *LHSCV = LHSC->getValue();
992 Constant *RHSCV = RHSC->getValue();
Reid Spencer1628cec2006-10-26 06:15:43 +0000993 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +0000994 }
995 }
996
997 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
998
Chris Lattnerb3364092006-10-04 21:49:37 +0000999 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
Chris Lattner60a05cc2006-04-01 04:48:52 +00001000 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00001001 return Result;
1002}
1003
1004
1005/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1006/// specified loop. Simplify the expression as much as possible.
1007SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1008 const SCEVHandle &Step, const Loop *L) {
1009 std::vector<SCEVHandle> Operands;
1010 Operands.push_back(Start);
1011 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1012 if (StepChrec->getLoop() == L) {
1013 Operands.insert(Operands.end(), StepChrec->op_begin(),
1014 StepChrec->op_end());
1015 return get(Operands, L);
1016 }
1017
1018 Operands.push_back(Step);
1019 return get(Operands, L);
1020}
1021
1022/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1023/// specified loop. Simplify the expression as much as possible.
1024SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1025 const Loop *L) {
1026 if (Operands.size() == 1) return Operands[0];
1027
1028 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
Reid Spencercae57542007-03-02 00:28:52 +00001029 if (StepC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001030 Operands.pop_back();
1031 return get(Operands, L); // { X,+,0 } --> X
1032 }
1033
1034 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001035 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1036 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001037 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1038 return Result;
1039}
1040
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001041SCEVHandle SCEVUnknown::get(Value *V) {
1042 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1043 return SCEVConstant::get(CI);
Chris Lattnerb3364092006-10-04 21:49:37 +00001044 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001045 if (Result == 0) Result = new SCEVUnknown(V);
1046 return Result;
1047}
1048
Chris Lattner53e677a2004-04-02 20:23:17 +00001049
1050//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001051// ScalarEvolutionsImpl Definition and Implementation
1052//===----------------------------------------------------------------------===//
1053//
1054/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1055/// evolution code.
1056///
1057namespace {
Chris Lattner95255282006-06-28 23:17:24 +00001058 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Chris Lattner53e677a2004-04-02 20:23:17 +00001059 /// F - The function we are analyzing.
1060 ///
1061 Function &F;
1062
1063 /// LI - The loop information for the function we are currently analyzing.
1064 ///
1065 LoopInfo &LI;
1066
1067 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1068 /// things.
1069 SCEVHandle UnknownValue;
1070
1071 /// Scalars - This is a cache of the scalars we have analyzed so far.
1072 ///
1073 std::map<Value*, SCEVHandle> Scalars;
1074
1075 /// IterationCounts - Cache the iteration count of the loops for this
1076 /// function as they are computed.
1077 std::map<const Loop*, SCEVHandle> IterationCounts;
1078
Chris Lattner3221ad02004-04-17 22:58:41 +00001079 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1080 /// the PHI instructions that we attempt to compute constant evolutions for.
1081 /// This allows us to avoid potentially expensive recomputation of these
1082 /// properties. An instruction maps to null if we are unable to compute its
1083 /// exit value.
1084 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001085
Chris Lattner53e677a2004-04-02 20:23:17 +00001086 public:
1087 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1088 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1089
1090 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1091 /// expression and create a new one.
1092 SCEVHandle getSCEV(Value *V);
1093
Chris Lattnera0740fb2005-08-09 23:36:33 +00001094 /// hasSCEV - Return true if the SCEV for this value has already been
1095 /// computed.
1096 bool hasSCEV(Value *V) const {
1097 return Scalars.count(V);
1098 }
1099
1100 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1101 /// the specified value.
1102 void setSCEV(Value *V, const SCEVHandle &H) {
1103 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1104 assert(isNew && "This entry already existed!");
1105 }
1106
1107
Chris Lattner53e677a2004-04-02 20:23:17 +00001108 /// getSCEVAtScope - Compute the value of the specified expression within
1109 /// the indicated loop (which may be null to indicate in no loop). If the
1110 /// expression cannot be evaluated, return UnknownValue itself.
1111 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1112
1113
1114 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1115 /// an analyzable loop-invariant iteration count.
1116 bool hasLoopInvariantIterationCount(const Loop *L);
1117
1118 /// getIterationCount - If the specified loop has a predictable iteration
1119 /// count, return it. Note that it is not valid to call this method on a
1120 /// loop without a loop-invariant iteration count.
1121 SCEVHandle getIterationCount(const Loop *L);
1122
1123 /// deleteInstructionFromRecords - This method should be called by the
1124 /// client before it removes an instruction from the program, to make sure
1125 /// that no dangling references are left around.
1126 void deleteInstructionFromRecords(Instruction *I);
1127
1128 private:
1129 /// createSCEV - We know that there is no SCEV for the specified value.
1130 /// Analyze the expression.
1131 SCEVHandle createSCEV(Value *V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001132
1133 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1134 /// SCEVs.
1135 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001136
1137 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1138 /// for the specified instruction and replaces any references to the
1139 /// symbolic value SymName with the specified value. This is used during
1140 /// PHI resolution.
1141 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1142 const SCEVHandle &SymName,
1143 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001144
1145 /// ComputeIterationCount - Compute the number of times the specified loop
1146 /// will iterate.
1147 SCEVHandle ComputeIterationCount(const Loop *L);
1148
Chris Lattner673e02b2004-10-12 01:49:27 +00001149 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1150 /// 'setcc load X, cst', try to se if we can compute the trip count.
1151 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1152 Constant *RHS,
1153 const Loop *L,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001154 ICmpInst::Predicate p);
Chris Lattner673e02b2004-10-12 01:49:27 +00001155
Chris Lattner7980fb92004-04-17 18:36:24 +00001156 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1157 /// constant number of times (the condition evolves only from constants),
1158 /// try to evaluate a few iterations of the loop until we get the exit
1159 /// condition gets a value of ExitWhen (true or false). If we cannot
1160 /// evaluate the trip count of the loop, return UnknownValue.
1161 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1162 bool ExitWhen);
1163
Chris Lattner53e677a2004-04-02 20:23:17 +00001164 /// HowFarToZero - Return the number of times a backedge comparing the
1165 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001166 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001167 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1168
1169 /// HowFarToNonZero - Return the number of times a backedge checking the
1170 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001171 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001172 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001173
Chris Lattnerdb25de42005-08-15 23:33:51 +00001174 /// HowManyLessThans - Return the number of times a backedge containing the
1175 /// specified less-than comparison will execute. If not computable, return
1176 /// UnknownValue.
1177 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1178
Chris Lattner3221ad02004-04-17 22:58:41 +00001179 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1180 /// in the header of its containing loop, we know the loop executes a
1181 /// constant number of times, and the PHI node is just a recurrence
1182 /// involving constants, fold it.
Reid Spencere8019bb2007-03-01 07:25:48 +00001183 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
Chris Lattner3221ad02004-04-17 22:58:41 +00001184 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001185 };
1186}
1187
1188//===----------------------------------------------------------------------===//
1189// Basic SCEV Analysis and PHI Idiom Recognition Code
1190//
1191
1192/// deleteInstructionFromRecords - This method should be called by the
1193/// client before it removes an instruction from the program, to make sure
1194/// that no dangling references are left around.
1195void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1196 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001197 if (PHINode *PN = dyn_cast<PHINode>(I))
1198 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001199}
1200
1201
1202/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1203/// expression and create a new one.
1204SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1205 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1206
1207 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1208 if (I != Scalars.end()) return I->second;
1209 SCEVHandle S = createSCEV(V);
1210 Scalars.insert(std::make_pair(V, S));
1211 return S;
1212}
1213
Chris Lattner4dc534c2005-02-13 04:37:18 +00001214/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1215/// the specified instruction and replaces any references to the symbolic value
1216/// SymName with the specified value. This is used during PHI resolution.
1217void ScalarEvolutionsImpl::
1218ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1219 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001220 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001221 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001222
Chris Lattner4dc534c2005-02-13 04:37:18 +00001223 SCEVHandle NV =
1224 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1225 if (NV == SI->second) return; // No change.
1226
1227 SI->second = NV; // Update the scalars map!
1228
1229 // Any instruction values that use this instruction might also need to be
1230 // updated!
1231 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1232 UI != E; ++UI)
1233 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1234}
Chris Lattner53e677a2004-04-02 20:23:17 +00001235
1236/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1237/// a loop header, making it a potential recurrence, or it doesn't.
1238///
1239SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1240 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1241 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1242 if (L->getHeader() == PN->getParent()) {
1243 // If it lives in the loop header, it has two incoming values, one
1244 // from outside the loop, and one from inside.
1245 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1246 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001247
Chris Lattner53e677a2004-04-02 20:23:17 +00001248 // While we are analyzing this PHI node, handle its value symbolically.
1249 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1250 assert(Scalars.find(PN) == Scalars.end() &&
1251 "PHI node already processed?");
1252 Scalars.insert(std::make_pair(PN, SymbolicName));
1253
1254 // Using this symbolic name for the PHI, analyze the value coming around
1255 // the back-edge.
1256 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1257
1258 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1259 // has a special value for the first iteration of the loop.
1260
1261 // If the value coming around the backedge is an add with the symbolic
1262 // value we just inserted, then we found a simple induction variable!
1263 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1264 // If there is a single occurrence of the symbolic value, replace it
1265 // with a recurrence.
1266 unsigned FoundIndex = Add->getNumOperands();
1267 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1268 if (Add->getOperand(i) == SymbolicName)
1269 if (FoundIndex == e) {
1270 FoundIndex = i;
1271 break;
1272 }
1273
1274 if (FoundIndex != Add->getNumOperands()) {
1275 // Create an add with everything but the specified operand.
1276 std::vector<SCEVHandle> Ops;
1277 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1278 if (i != FoundIndex)
1279 Ops.push_back(Add->getOperand(i));
1280 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1281
1282 // This is not a valid addrec if the step amount is varying each
1283 // loop iteration, but is not itself an addrec in this loop.
1284 if (Accum->isLoopInvariant(L) ||
1285 (isa<SCEVAddRecExpr>(Accum) &&
1286 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1287 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1288 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1289
1290 // Okay, for the entire analysis of this edge we assumed the PHI
1291 // to be symbolic. We now need to go back and update all of the
1292 // entries for the scalars that use the PHI (except for the PHI
1293 // itself) to use the new analyzed value instead of the "symbolic"
1294 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001295 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001296 return PHISCEV;
1297 }
1298 }
Chris Lattner97156e72006-04-26 18:34:07 +00001299 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1300 // Otherwise, this could be a loop like this:
1301 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1302 // In this case, j = {1,+,1} and BEValue is j.
1303 // Because the other in-value of i (0) fits the evolution of BEValue
1304 // i really is an addrec evolution.
1305 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1306 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1307
1308 // If StartVal = j.start - j.stride, we can use StartVal as the
1309 // initial step of the addrec evolution.
1310 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1311 AddRec->getOperand(1))) {
1312 SCEVHandle PHISCEV =
1313 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1314
1315 // Okay, for the entire analysis of this edge we assumed the PHI
1316 // to be symbolic. We now need to go back and update all of the
1317 // entries for the scalars that use the PHI (except for the PHI
1318 // itself) to use the new analyzed value instead of the "symbolic"
1319 // value.
1320 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1321 return PHISCEV;
1322 }
1323 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 }
1325
1326 return SymbolicName;
1327 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001328
Chris Lattner53e677a2004-04-02 20:23:17 +00001329 // If it's not a loop phi, we can't handle it yet.
1330 return SCEVUnknown::get(PN);
1331}
1332
Chris Lattnera17f0392006-12-12 02:26:09 +00001333/// GetConstantFactor - Determine the largest constant factor that S has. For
1334/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
Reid Spencer6263cba2007-02-28 23:31:17 +00001335static APInt GetConstantFactor(SCEVHandle S) {
Chris Lattnera17f0392006-12-12 02:26:09 +00001336 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
Reid Spencer6263cba2007-02-28 23:31:17 +00001337 APInt V = C->getValue()->getValue();
1338 if (!V.isMinValue())
Chris Lattnera17f0392006-12-12 02:26:09 +00001339 return V;
1340 else // Zero is a multiple of everything.
Reid Spencer6263cba2007-02-28 23:31:17 +00001341 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
Chris Lattnera17f0392006-12-12 02:26:09 +00001342 }
1343
Reid Spencer9b4aeb32007-03-02 02:59:25 +00001344 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1345 APInt Mask(cast<IntegerType>(T->getType())->getMask());
1346 APInt GCF(GetConstantFactor(T->getOperand()));
1347 Mask.zextOrTrunc(GCF.getBitWidth());
1348 return GCF & Mask;
1349 }
Chris Lattnera17f0392006-12-12 02:26:09 +00001350 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1351 return GetConstantFactor(E->getOperand());
1352
1353 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1354 // The result is the min of all operands.
Reid Spencer6263cba2007-02-28 23:31:17 +00001355 APInt Res = GetConstantFactor(A->getOperand(0));
1356 for (unsigned i = 1, e = A->getNumOperands();
1357 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i)
1358 Res = APIntOps::umin(Res, GetConstantFactor(A->getOperand(i)));
Chris Lattnera17f0392006-12-12 02:26:09 +00001359 return Res;
1360 }
1361
1362 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1363 // The result is the product of all the operands.
Reid Spencer6263cba2007-02-28 23:31:17 +00001364 APInt Res = GetConstantFactor(M->getOperand(0));
Chris Lattnera17f0392006-12-12 02:26:09 +00001365 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1366 Res *= GetConstantFactor(M->getOperand(i));
1367 return Res;
1368 }
1369
1370 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Chris Lattner75de5ab2006-12-19 01:16:02 +00001371 // For now, we just handle linear expressions.
1372 if (A->getNumOperands() == 2) {
1373 // We want the GCD between the start and the stride value.
Reid Spencer6263cba2007-02-28 23:31:17 +00001374 APInt Start = GetConstantFactor(A->getOperand(0));
1375 if (Start == 1)
1376 return APInt(A->getBitWidth(),1);
1377 APInt Stride = GetConstantFactor(A->getOperand(1));
1378 return APIntOps::GreatestCommonDivisor(Start, Stride);
Chris Lattner75de5ab2006-12-19 01:16:02 +00001379 }
Chris Lattnera17f0392006-12-12 02:26:09 +00001380 }
1381
1382 // SCEVSDivExpr, SCEVUnknown.
Reid Spencer6263cba2007-02-28 23:31:17 +00001383 return APInt(S->getBitWidth(), 1);
Chris Lattnera17f0392006-12-12 02:26:09 +00001384}
Chris Lattner53e677a2004-04-02 20:23:17 +00001385
1386/// createSCEV - We know that there is no SCEV for the specified value.
1387/// Analyze the expression.
1388///
1389SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1390 if (Instruction *I = dyn_cast<Instruction>(V)) {
1391 switch (I->getOpcode()) {
1392 case Instruction::Add:
1393 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1394 getSCEV(I->getOperand(1)));
1395 case Instruction::Mul:
1396 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1397 getSCEV(I->getOperand(1)));
Reid Spencer1628cec2006-10-26 06:15:43 +00001398 case Instruction::SDiv:
1399 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1400 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 break;
1402
1403 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001404 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1405 getSCEV(I->getOperand(1)));
Chris Lattnera17f0392006-12-12 02:26:09 +00001406 case Instruction::Or:
1407 // If the RHS of the Or is a constant, we may have something like:
1408 // X*4+1 which got turned into X*4|1. Handle this as an add so loop
1409 // optimizations will transparently handle this case.
1410 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1411 SCEVHandle LHS = getSCEV(I->getOperand(0));
Reid Spencer6263cba2007-02-28 23:31:17 +00001412 APInt CommonFact = GetConstantFactor(LHS);
1413 assert(!CommonFact.isMinValue() &&
1414 "Common factor should at least be 1!");
Reid Spencere479ef02007-03-01 17:17:21 +00001415 CommonFact.zextOrTrunc(CI->getValue().getBitWidth());
Reid Spencer6263cba2007-02-28 23:31:17 +00001416 if (CommonFact.ugt(CI->getValue())) {
Chris Lattnera17f0392006-12-12 02:26:09 +00001417 // If the LHS is a multiple that is larger than the RHS, use +.
1418 return SCEVAddExpr::get(LHS,
1419 getSCEV(I->getOperand(1)));
1420 }
1421 }
1422 break;
1423
Chris Lattner53e677a2004-04-02 20:23:17 +00001424 case Instruction::Shl:
1425 // Turn shift left of a constant amount into a multiply.
1426 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1427 Constant *X = ConstantInt::get(V->getType(), 1);
1428 X = ConstantExpr::getShl(X, SA);
1429 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1430 }
1431 break;
1432
Reid Spencer3da59db2006-11-27 01:05:10 +00001433 case Instruction::Trunc:
Chris Lattnerb2f3e702007-01-15 01:58:56 +00001434 return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001435
1436 case Instruction::ZExt:
Chris Lattnerb2f3e702007-01-15 01:58:56 +00001437 return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001438
1439 case Instruction::BitCast:
1440 // BitCasts are no-op casts so we just eliminate the cast.
Chris Lattner42a75512007-01-15 02:27:26 +00001441 if (I->getType()->isInteger() &&
1442 I->getOperand(0)->getType()->isInteger())
Chris Lattner82e8a8f2006-12-11 00:12:31 +00001443 return getSCEV(I->getOperand(0));
1444 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001445
1446 case Instruction::PHI:
1447 return createNodeForPHI(cast<PHINode>(I));
1448
1449 default: // We cannot analyze this expression.
1450 break;
1451 }
1452 }
1453
1454 return SCEVUnknown::get(V);
1455}
1456
1457
1458
1459//===----------------------------------------------------------------------===//
1460// Iteration Count Computation Code
1461//
1462
1463/// getIterationCount - If the specified loop has a predictable iteration
1464/// count, return it. Note that it is not valid to call this method on a
1465/// loop without a loop-invariant iteration count.
1466SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1467 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1468 if (I == IterationCounts.end()) {
1469 SCEVHandle ItCount = ComputeIterationCount(L);
1470 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1471 if (ItCount != UnknownValue) {
1472 assert(ItCount->isLoopInvariant(L) &&
1473 "Computed trip count isn't loop invariant for loop!");
1474 ++NumTripCountsComputed;
1475 } else if (isa<PHINode>(L->getHeader()->begin())) {
1476 // Only count loops that have phi nodes as not being computable.
1477 ++NumTripCountsNotComputed;
1478 }
1479 }
1480 return I->second;
1481}
1482
1483/// ComputeIterationCount - Compute the number of times the specified loop
1484/// will iterate.
1485SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1486 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001487 std::vector<BasicBlock*> ExitBlocks;
1488 L->getExitBlocks(ExitBlocks);
1489 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001490
1491 // Okay, there is one exit block. Try to find the condition that causes the
1492 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001493 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001494
1495 BasicBlock *ExitingBlock = 0;
1496 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1497 PI != E; ++PI)
1498 if (L->contains(*PI)) {
1499 if (ExitingBlock == 0)
1500 ExitingBlock = *PI;
1501 else
1502 return UnknownValue; // More than one block exiting!
1503 }
1504 assert(ExitingBlock && "No exits from loop, something is broken!");
1505
1506 // Okay, we've computed the exiting block. See what condition causes us to
1507 // exit.
1508 //
1509 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1511 if (ExitBr == 0) return UnknownValue;
1512 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00001513
1514 // At this point, we know we have a conditional branch that determines whether
1515 // the loop is exited. However, we don't know if the branch is executed each
1516 // time through the loop. If not, then the execution count of the branch will
1517 // not be equal to the trip count of the loop.
1518 //
1519 // Currently we check for this by checking to see if the Exit branch goes to
1520 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00001521 // times as the loop. We also handle the case where the exit block *is* the
1522 // loop header. This is common for un-rotated loops. More extensive analysis
1523 // could be done to handle more cases here.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001524 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00001525 ExitBr->getSuccessor(1) != L->getHeader() &&
1526 ExitBr->getParent() != L->getHeader())
Chris Lattner8b0e3602007-01-07 02:24:26 +00001527 return UnknownValue;
1528
Reid Spencere4d87aa2006-12-23 06:05:41 +00001529 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1530
1531 // If its not an integer comparison then compute it the hard way.
1532 // Note that ICmpInst deals with pointer comparisons too so we must check
1533 // the type of the operand.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001534 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Chris Lattner7980fb92004-04-17 18:36:24 +00001535 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1536 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537
Reid Spencere4d87aa2006-12-23 06:05:41 +00001538 // If the condition was exit on true, convert the condition to exit on false
1539 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00001540 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001541 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001542 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00001543 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001544
1545 // Handle common loops like: for (X = "string"; *X; ++X)
1546 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1547 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1548 SCEVHandle ItCnt =
1549 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1550 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1551 }
1552
Chris Lattner53e677a2004-04-02 20:23:17 +00001553 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1554 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1555
1556 // Try to evaluate any dependencies out of the loop.
1557 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1558 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1559 Tmp = getSCEVAtScope(RHS, L);
1560 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1561
Reid Spencere4d87aa2006-12-23 06:05:41 +00001562 // At this point, we would like to compute how many iterations of the
1563 // loop the predicate will return true for these inputs.
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1565 // If there is a constant, force it into the RHS.
1566 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001567 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 }
1569
1570 // FIXME: think about handling pointer comparisons! i.e.:
1571 // while (P != P+100) ++P;
1572
1573 // If we have a comparison of a chrec against a constant, try to use value
1574 // ranges to answer this query.
1575 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1576 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1577 if (AddRec->getLoop() == L) {
1578 // Form the comparison range using the constant of the correct type so
1579 // that the ConstantRange class knows to do a signed or unsigned
1580 // comparison.
1581 ConstantInt *CompVal = RHSC->getValue();
1582 const Type *RealTy = ExitCond->getOperand(0)->getType();
Reid Spencer4da49122006-12-12 05:05:00 +00001583 CompVal = dyn_cast<ConstantInt>(
Reid Spencerb6ba3e62006-12-12 09:17:50 +00001584 ConstantExpr::getBitCast(CompVal, RealTy));
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (CompVal) {
1586 // Form the constant range.
Reid Spencerc6aedf72007-02-28 22:03:51 +00001587 ConstantRange CompRange(
1588 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001589
Reid Spencere4d87aa2006-12-23 06:05:41 +00001590 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
Reid Spencerc5b206b2006-12-31 05:48:39 +00001591 false /*Always treat as unsigned range*/);
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1593 }
1594 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001595
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001597 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 // Convert to: while (X-Y != 0)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001599 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1600 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001602 }
1603 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 // Convert to: while (X-Y == 0) // while (X == Y)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001605 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1606 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001608 }
1609 case ICmpInst::ICMP_SLT: {
1610 SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1611 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001612 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001613 }
1614 case ICmpInst::ICMP_SGT: {
1615 SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1616 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001617 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001618 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001620#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001621 cerr << "ComputeIterationCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00001622 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Bill Wendlinge8156192006-12-07 01:30:32 +00001623 cerr << "[unsigned] ";
1624 cerr << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00001625 << Instruction::getOpcodeName(Instruction::ICmp)
1626 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001627#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001628 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001629 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001630 return ComputeIterationCountExhaustively(L, ExitCond,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001631 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00001632}
1633
Chris Lattner673e02b2004-10-12 01:49:27 +00001634static ConstantInt *
1635EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1636 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1637 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1638 assert(isa<SCEVConstant>(Val) &&
1639 "Evaluation of SCEV at constant didn't fold correctly?");
1640 return cast<SCEVConstant>(Val)->getValue();
1641}
1642
1643/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1644/// and a GEP expression (missing the pointer index) indexing into it, return
1645/// the addressed element of the initializer or null if the index expression is
1646/// invalid.
1647static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001648GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00001649 const std::vector<ConstantInt*> &Indices) {
1650 Constant *Init = GV->getInitializer();
1651 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001652 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00001653 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1654 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1655 Init = cast<Constant>(CS->getOperand(Idx));
1656 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1657 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1658 Init = cast<Constant>(CA->getOperand(Idx));
1659 } else if (isa<ConstantAggregateZero>(Init)) {
1660 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1661 assert(Idx < STy->getNumElements() && "Bad struct index!");
1662 Init = Constant::getNullValue(STy->getElementType(Idx));
1663 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1664 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1665 Init = Constant::getNullValue(ATy->getElementType());
1666 } else {
1667 assert(0 && "Unknown constant aggregate type!");
1668 }
1669 return 0;
1670 } else {
1671 return 0; // Unknown initializer type
1672 }
1673 }
1674 return Init;
1675}
1676
1677/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1678/// 'setcc load X, cst', try to se if we can compute the trip count.
1679SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001680ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001681 const Loop *L,
1682 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001683 if (LI->isVolatile()) return UnknownValue;
1684
1685 // Check to see if the loaded pointer is a getelementptr of a global.
1686 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1687 if (!GEP) return UnknownValue;
1688
1689 // Make sure that it is really a constant global we are gepping, with an
1690 // initializer, and make sure the first IDX is really 0.
1691 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1692 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1693 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1694 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1695 return UnknownValue;
1696
1697 // Okay, we allow one non-constant index into the GEP instruction.
1698 Value *VarIdx = 0;
1699 std::vector<ConstantInt*> Indexes;
1700 unsigned VarIdxNum = 0;
1701 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1702 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1703 Indexes.push_back(CI);
1704 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1705 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1706 VarIdx = GEP->getOperand(i);
1707 VarIdxNum = i-2;
1708 Indexes.push_back(0);
1709 }
1710
1711 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1712 // Check to see if X is a loop variant variable value now.
1713 SCEVHandle Idx = getSCEV(VarIdx);
1714 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1715 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1716
1717 // We can only recognize very limited forms of loop index expressions, in
1718 // particular, only affine AddRec's like {C1,+,C2}.
1719 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1720 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1721 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1722 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1723 return UnknownValue;
1724
1725 unsigned MaxSteps = MaxBruteForceIterations;
1726 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001727 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00001728 ConstantInt::get(IdxExpr->getType(), IterationNum);
Chris Lattner673e02b2004-10-12 01:49:27 +00001729 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1730
1731 // Form the GEP offset.
1732 Indexes[VarIdxNum] = Val;
1733
1734 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1735 if (Result == 0) break; // Cannot compute!
1736
1737 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00001738 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001739 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00001740 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001741#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001742 cerr << "\n***\n*** Computed loop count " << *ItCst
1743 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1744 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00001745#endif
1746 ++NumArrayLenItCounts;
1747 return SCEVConstant::get(ItCst); // Found terminating iteration!
1748 }
1749 }
1750 return UnknownValue;
1751}
1752
1753
Chris Lattner3221ad02004-04-17 22:58:41 +00001754/// CanConstantFold - Return true if we can constant fold an instruction of the
1755/// specified type, assuming that all operands were constants.
1756static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00001757 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00001758 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1759 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001760
Chris Lattner3221ad02004-04-17 22:58:41 +00001761 if (const CallInst *CI = dyn_cast<CallInst>(I))
1762 if (const Function *F = CI->getCalledFunction())
1763 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1764 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001765}
1766
Chris Lattner3221ad02004-04-17 22:58:41 +00001767/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1768/// in the loop that V is derived from. We allow arbitrary operations along the
1769/// way, but the operands of an operation must either be constants or a value
1770/// derived from a constant PHI. If this expression does not fit with these
1771/// constraints, return null.
1772static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1773 // If this is not an instruction, or if this is an instruction outside of the
1774 // loop, it can't be derived from a loop PHI.
1775 Instruction *I = dyn_cast<Instruction>(V);
1776 if (I == 0 || !L->contains(I->getParent())) return 0;
1777
1778 if (PHINode *PN = dyn_cast<PHINode>(I))
1779 if (L->getHeader() == I->getParent())
1780 return PN;
1781 else
1782 // We don't currently keep track of the control flow needed to evaluate
1783 // PHIs, so we cannot handle PHIs inside of loops.
1784 return 0;
1785
1786 // If we won't be able to constant fold this expression even if the operands
1787 // are constants, return early.
1788 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001789
Chris Lattner3221ad02004-04-17 22:58:41 +00001790 // Otherwise, we can evaluate this instruction if all of its operands are
1791 // constant or derived from a PHI node themselves.
1792 PHINode *PHI = 0;
1793 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1794 if (!(isa<Constant>(I->getOperand(Op)) ||
1795 isa<GlobalValue>(I->getOperand(Op)))) {
1796 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1797 if (P == 0) return 0; // Not evolving from PHI
1798 if (PHI == 0)
1799 PHI = P;
1800 else if (PHI != P)
1801 return 0; // Evolving from multiple different PHIs.
1802 }
1803
1804 // This is a expression evolving from a constant PHI!
1805 return PHI;
1806}
1807
1808/// EvaluateExpression - Given an expression that passes the
1809/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1810/// in the loop has the value PHIVal. If we can't fold this expression for some
1811/// reason, return null.
1812static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1813 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001814 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001815 return GV;
1816 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001817 Instruction *I = cast<Instruction>(V);
1818
1819 std::vector<Constant*> Operands;
1820 Operands.resize(I->getNumOperands());
1821
1822 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1823 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1824 if (Operands[i] == 0) return 0;
1825 }
1826
Chris Lattner2e3a1d12007-01-30 23:52:44 +00001827 return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00001828}
1829
1830/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1831/// in the header of its containing loop, we know the loop executes a
1832/// constant number of times, and the PHI node is just a recurrence
1833/// involving constants, fold it.
1834Constant *ScalarEvolutionsImpl::
Reid Spencere8019bb2007-03-01 07:25:48 +00001835getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
Chris Lattner3221ad02004-04-17 22:58:41 +00001836 std::map<PHINode*, Constant*>::iterator I =
1837 ConstantEvolutionLoopExitValue.find(PN);
1838 if (I != ConstantEvolutionLoopExitValue.end())
1839 return I->second;
1840
Reid Spencere8019bb2007-03-01 07:25:48 +00001841 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00001842 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1843
1844 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1845
1846 // Since the loop is canonicalized, the PHI node must have two entries. One
1847 // entry must be a constant (coming in from outside of the loop), and the
1848 // second must be derived from the same PHI.
1849 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1850 Constant *StartCST =
1851 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1852 if (StartCST == 0)
1853 return RetVal = 0; // Must be a constant.
1854
1855 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1856 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1857 if (PN2 != PN)
1858 return RetVal = 0; // Not derived from same PHI.
1859
1860 // Execute the loop symbolically to determine the exit value.
Reid Spencere8019bb2007-03-01 07:25:48 +00001861 if (Its.getActiveBits() >= 32)
1862 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00001863
Reid Spencere8019bb2007-03-01 07:25:48 +00001864 unsigned NumIterations = Its.getZExtValue(); // must be in range
1865 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00001866 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1867 if (IterationNum == NumIterations)
1868 return RetVal = PHIVal; // Got exit value!
1869
1870 // Compute the value of the PHI node for the next iteration.
1871 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1872 if (NextPHI == PHIVal)
1873 return RetVal = NextPHI; // Stopped evolving!
1874 if (NextPHI == 0)
1875 return 0; // Couldn't evaluate!
1876 PHIVal = NextPHI;
1877 }
1878}
1879
Chris Lattner7980fb92004-04-17 18:36:24 +00001880/// ComputeIterationCountExhaustively - If the trip is known to execute a
1881/// constant number of times (the condition evolves only from constants),
1882/// try to evaluate a few iterations of the loop until we get the exit
1883/// condition gets a value of ExitWhen (true or false). If we cannot
1884/// evaluate the trip count of the loop, return UnknownValue.
1885SCEVHandle ScalarEvolutionsImpl::
1886ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1887 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1888 if (PN == 0) return UnknownValue;
1889
1890 // Since the loop is canonicalized, the PHI node must have two entries. One
1891 // entry must be a constant (coming in from outside of the loop), and the
1892 // second must be derived from the same PHI.
1893 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1894 Constant *StartCST =
1895 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1896 if (StartCST == 0) return UnknownValue; // Must be a constant.
1897
1898 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1899 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1900 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1901
1902 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1903 // the loop symbolically to determine when the condition gets a value of
1904 // "ExitWhen".
1905 unsigned IterationNum = 0;
1906 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1907 for (Constant *PHIVal = StartCST;
1908 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001909 ConstantInt *CondVal =
1910 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00001911
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001912 // Couldn't symbolically evaluate.
Chris Lattneref3baf02007-01-12 18:28:58 +00001913 if (!CondVal) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001914
Reid Spencere8019bb2007-03-01 07:25:48 +00001915 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001916 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001917 ++NumBruteForceTripCountsComputed;
Reid Spencerc5b206b2006-12-31 05:48:39 +00001918 return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00001919 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001920
Chris Lattner3221ad02004-04-17 22:58:41 +00001921 // Compute the value of the PHI node for the next iteration.
1922 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1923 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001924 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001925 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001926 }
1927
1928 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001929 return UnknownValue;
1930}
1931
1932/// getSCEVAtScope - Compute the value of the specified expression within the
1933/// indicated loop (which may be null to indicate in no loop). If the
1934/// expression cannot be evaluated, return UnknownValue.
1935SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1936 // FIXME: this should be turned into a virtual method on SCEV!
1937
Chris Lattner3221ad02004-04-17 22:58:41 +00001938 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001939
Chris Lattner3221ad02004-04-17 22:58:41 +00001940 // If this instruction is evolves from a constant-evolving PHI, compute the
1941 // exit value from the loop without using SCEVs.
1942 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1943 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1944 const Loop *LI = this->LI[I->getParent()];
1945 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1946 if (PHINode *PN = dyn_cast<PHINode>(I))
1947 if (PN->getParent() == LI->getHeader()) {
1948 // Okay, there is no closed form solution for the PHI node. Check
1949 // to see if the loop that contains it has a known iteration count.
1950 // If so, we may be able to force computation of the exit value.
1951 SCEVHandle IterationCount = getIterationCount(LI);
1952 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1953 // Okay, we know how many times the containing loop executes. If
1954 // this is a constant evolving PHI node, get the final value at
1955 // the specified iteration number.
1956 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Reid Spencere8019bb2007-03-01 07:25:48 +00001957 ICC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00001958 LI);
1959 if (RV) return SCEVUnknown::get(RV);
1960 }
1961 }
1962
Reid Spencer09906f32006-12-04 21:33:23 +00001963 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00001964 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00001965 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00001966 // result. This is particularly useful for computing loop exit values.
1967 if (CanConstantFold(I)) {
1968 std::vector<Constant*> Operands;
1969 Operands.reserve(I->getNumOperands());
1970 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1971 Value *Op = I->getOperand(i);
1972 if (Constant *C = dyn_cast<Constant>(Op)) {
1973 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001974 } else {
1975 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1976 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
Reid Spencerd977d862006-12-12 23:36:14 +00001977 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1978 Op->getType(),
1979 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00001980 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1981 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
Reid Spencerd977d862006-12-12 23:36:14 +00001982 Operands.push_back(ConstantExpr::getIntegerCast(C,
1983 Op->getType(),
1984 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00001985 else
1986 return V;
1987 } else {
1988 return V;
1989 }
1990 }
1991 }
Chris Lattner2e3a1d12007-01-30 23:52:44 +00001992 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1993 return SCEVUnknown::get(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001994 }
1995 }
1996
1997 // This is some other type of SCEVUnknown, just return it.
1998 return V;
1999 }
2000
Chris Lattner53e677a2004-04-02 20:23:17 +00002001 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2002 // Avoid performing the look-up in the common case where the specified
2003 // expression has no loop-variant portions.
2004 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2005 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2006 if (OpAtScope != Comm->getOperand(i)) {
2007 if (OpAtScope == UnknownValue) return UnknownValue;
2008 // Okay, at least one of these operands is loop variant but might be
2009 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00002010 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00002011 NewOps.push_back(OpAtScope);
2012
2013 for (++i; i != e; ++i) {
2014 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2015 if (OpAtScope == UnknownValue) return UnknownValue;
2016 NewOps.push_back(OpAtScope);
2017 }
2018 if (isa<SCEVAddExpr>(Comm))
2019 return SCEVAddExpr::get(NewOps);
2020 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2021 return SCEVMulExpr::get(NewOps);
2022 }
2023 }
2024 // If we got here, all operands are loop invariant.
2025 return Comm;
2026 }
2027
Chris Lattner60a05cc2006-04-01 04:48:52 +00002028 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2029 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002030 if (LHS == UnknownValue) return LHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002031 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002032 if (RHS == UnknownValue) return RHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002033 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2034 return Div; // must be loop invariant
2035 return SCEVSDivExpr::get(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002036 }
2037
2038 // If this is a loop recurrence for a loop that does not contain L, then we
2039 // are dealing with the final value computed by the loop.
2040 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2041 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2042 // To evaluate this recurrence, we need to know how many times the AddRec
2043 // loop iterates. Compute this now.
2044 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2045 if (IterationCount == UnknownValue) return UnknownValue;
2046 IterationCount = getTruncateOrZeroExtend(IterationCount,
2047 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002048
Chris Lattner53e677a2004-04-02 20:23:17 +00002049 // If the value is affine, simplify the expression evaluation to just
2050 // Start + Step*IterationCount.
2051 if (AddRec->isAffine())
2052 return SCEVAddExpr::get(AddRec->getStart(),
2053 SCEVMulExpr::get(IterationCount,
2054 AddRec->getOperand(1)));
2055
2056 // Otherwise, evaluate it the hard way.
2057 return AddRec->evaluateAtIteration(IterationCount);
2058 }
2059 return UnknownValue;
2060 }
2061
2062 //assert(0 && "Unknown SCEV type!");
2063 return UnknownValue;
2064}
2065
2066
2067/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2068/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2069/// might be the same) or two SCEVCouldNotCompute objects.
2070///
2071static std::pair<SCEVHandle,SCEVHandle>
2072SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2073 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Reid Spencere8019bb2007-03-01 07:25:48 +00002074 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2075 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2076 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002077
Chris Lattner53e677a2004-04-02 20:23:17 +00002078 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00002079 if (!LC || !MC || !NC) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002080 SCEV *CNC = new SCEVCouldNotCompute();
2081 return std::make_pair(CNC, CNC);
2082 }
2083
Reid Spencere8019bb2007-03-01 07:25:48 +00002084 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2085 APInt L(LC->getValue()->getValue());
2086 APInt M(MC->getValue()->getValue());
2087 APInt N(MC->getValue()->getValue());
2088 APInt Two(BitWidth, 2);
2089 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002090
Reid Spencere8019bb2007-03-01 07:25:48 +00002091 {
2092 using namespace APIntOps;
2093 APInt C(L);
2094 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2095 // The B coefficient is M-N/2
2096 APInt B(M);
2097 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002098
Reid Spencere8019bb2007-03-01 07:25:48 +00002099 // The A coefficient is N/2
2100 APInt A(N);
2101 A = A.sdiv(Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00002102
Reid Spencere8019bb2007-03-01 07:25:48 +00002103 // Compute the B^2-4ac term.
2104 APInt SqrtTerm(B);
2105 SqrtTerm *= B;
2106 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00002107
Reid Spencere8019bb2007-03-01 07:25:48 +00002108 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2109 // integer value or else APInt::sqrt() will assert.
2110 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002111
Reid Spencere8019bb2007-03-01 07:25:48 +00002112 // Compute the two solutions for the quadratic formula.
2113 // The divisions must be performed as signed divisions.
2114 APInt NegB(-B);
2115 APInt TwoA( A * Two );
2116 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2117 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002118
Reid Spencere8019bb2007-03-01 07:25:48 +00002119 return std::make_pair(SCEVUnknown::get(Solution1),
2120 SCEVUnknown::get(Solution2));
2121 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00002122}
2123
2124/// HowFarToZero - Return the number of times a backedge comparing the specified
2125/// value to zero will execute. If not computable, return UnknownValue
2126SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2127 // If the value is a constant
2128 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2129 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00002130 if (C->getValue()->isZero()) return C;
Chris Lattner53e677a2004-04-02 20:23:17 +00002131 return UnknownValue; // Otherwise it will loop infinitely.
2132 }
2133
2134 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2135 if (!AddRec || AddRec->getLoop() != L)
2136 return UnknownValue;
2137
2138 if (AddRec->isAffine()) {
2139 // If this is an affine expression the execution count of this branch is
2140 // equal to:
2141 //
2142 // (0 - Start/Step) iff Start % Step == 0
2143 //
2144 // Get the initial value for the loop.
2145 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002146 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002147 SCEVHandle Step = AddRec->getOperand(1);
2148
2149 Step = getSCEVAtScope(Step, L->getParentLoop());
2150
2151 // Figure out if Start % Step == 0.
2152 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2153 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2154 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002155 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002156 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2157 return Start; // 0 - Start/-1 == Start
2158
2159 // Check to see if Start is divisible by SC with no remainder.
2160 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2161 ConstantInt *StartCC = StartC->getValue();
2162 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
Reid Spencer0a783f72006-11-02 01:53:59 +00002163 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002164 if (Rem->isNullValue()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002165 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002166 return SCEVUnknown::get(Result);
2167 }
2168 }
2169 }
Chris Lattner42a75512007-01-15 02:27:26 +00002170 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002171 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2172 // the quadratic equation to solve it.
2173 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2174 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2175 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2176 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002177#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00002178 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2179 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002180#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002181 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002182 if (ConstantInt *CB =
2183 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002184 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002185 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002186 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002187
Chris Lattner53e677a2004-04-02 20:23:17 +00002188 // We can only use this value if the chrec ends up with an exact zero
2189 // value at this index. When solving for "X*X != 5", for example, we
2190 // should not accept a root of 2.
2191 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2192 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
Reid Spencercae57542007-03-02 00:28:52 +00002193 if (EvalVal->getValue()->isZero())
Chris Lattner53e677a2004-04-02 20:23:17 +00002194 return R1; // We found a quadratic root!
2195 }
2196 }
2197 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002198
Chris Lattner53e677a2004-04-02 20:23:17 +00002199 return UnknownValue;
2200}
2201
2202/// HowFarToNonZero - Return the number of times a backedge checking the
2203/// specified value for nonzero will execute. If not computable, return
2204/// UnknownValue
2205SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2206 // Loops that look like: while (X == 0) are very strange indeed. We don't
2207 // handle them yet except for the trivial case. This could be expanded in the
2208 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002209
Chris Lattner53e677a2004-04-02 20:23:17 +00002210 // If the value is a constant, check to see if it is known to be non-zero
2211 // already. If so, the backedge will execute zero times.
2212 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2213 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00002214 Constant *NonZero =
2215 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002216 if (NonZero == ConstantInt::getTrue())
Chris Lattner53e677a2004-04-02 20:23:17 +00002217 return getSCEV(Zero);
2218 return UnknownValue; // Otherwise it will loop infinitely.
2219 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002220
Chris Lattner53e677a2004-04-02 20:23:17 +00002221 // We could implement others, but I really doubt anyone writes loops like
2222 // this, and if they did, they would already be constant folded.
2223 return UnknownValue;
2224}
2225
Chris Lattnerdb25de42005-08-15 23:33:51 +00002226/// HowManyLessThans - Return the number of times a backedge containing the
2227/// specified less-than comparison will execute. If not computable, return
2228/// UnknownValue.
2229SCEVHandle ScalarEvolutionsImpl::
2230HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2231 // Only handle: "ADDREC < LoopInvariant".
2232 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2233
2234 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2235 if (!AddRec || AddRec->getLoop() != L)
2236 return UnknownValue;
2237
2238 if (AddRec->isAffine()) {
2239 // FORNOW: We only support unit strides.
2240 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2241 if (AddRec->getOperand(1) != One)
2242 return UnknownValue;
2243
2244 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't
2245 // know that m is >= n on input to the loop. If it is, the condition return
2246 // true zero times. What we really should return, for full generality, is
2247 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2248 // canonical loop form: most do-loops will have a check that dominates the
2249 // loop, that only enters the loop if [n-1]<m. If we can find this check,
2250 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2251
2252 // Search for the check.
2253 BasicBlock *Preheader = L->getLoopPreheader();
2254 BasicBlock *PreheaderDest = L->getHeader();
2255 if (Preheader == 0) return UnknownValue;
2256
2257 BranchInst *LoopEntryPredicate =
2258 dyn_cast<BranchInst>(Preheader->getTerminator());
2259 if (!LoopEntryPredicate) return UnknownValue;
2260
2261 // This might be a critical edge broken out. If the loop preheader ends in
2262 // an unconditional branch to the loop, check to see if the preheader has a
2263 // single predecessor, and if so, look for its terminator.
2264 while (LoopEntryPredicate->isUnconditional()) {
2265 PreheaderDest = Preheader;
2266 Preheader = Preheader->getSinglePredecessor();
2267 if (!Preheader) return UnknownValue; // Multiple preds.
2268
2269 LoopEntryPredicate =
2270 dyn_cast<BranchInst>(Preheader->getTerminator());
2271 if (!LoopEntryPredicate) return UnknownValue;
2272 }
2273
2274 // Now that we found a conditional branch that dominates the loop, check to
2275 // see if it is the comparison we are looking for.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002276 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2277 Value *PreCondLHS = ICI->getOperand(0);
2278 Value *PreCondRHS = ICI->getOperand(1);
2279 ICmpInst::Predicate Cond;
2280 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2281 Cond = ICI->getPredicate();
2282 else
2283 Cond = ICI->getInversePredicate();
Chris Lattnerdb25de42005-08-15 23:33:51 +00002284
Reid Spencere4d87aa2006-12-23 06:05:41 +00002285 switch (Cond) {
2286 case ICmpInst::ICMP_UGT:
2287 std::swap(PreCondLHS, PreCondRHS);
2288 Cond = ICmpInst::ICMP_ULT;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002289 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002290 case ICmpInst::ICMP_SGT:
2291 std::swap(PreCondLHS, PreCondRHS);
2292 Cond = ICmpInst::ICMP_SLT;
2293 break;
2294 default: break;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002295 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00002296
Reid Spencere4d87aa2006-12-23 06:05:41 +00002297 if (Cond == ICmpInst::ICMP_SLT) {
Chris Lattner42a75512007-01-15 02:27:26 +00002298 if (PreCondLHS->getType()->isInteger()) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002299 if (RHS != getSCEV(PreCondRHS))
2300 return UnknownValue; // Not a comparison against 'm'.
2301
2302 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2303 != getSCEV(PreCondLHS))
2304 return UnknownValue; // Not a comparison against 'n-1'.
2305 }
2306 else return UnknownValue;
2307 } else if (Cond == ICmpInst::ICMP_ULT)
2308 return UnknownValue;
2309
2310 // cerr << "Computed Loop Trip Count as: "
2311 // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2312 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2313 }
2314 else
2315 return UnknownValue;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002316 }
2317
2318 return UnknownValue;
2319}
2320
Chris Lattner53e677a2004-04-02 20:23:17 +00002321/// getNumIterationsInRange - Return the number of iterations of this loop that
2322/// produce values in the specified constant range. Another way of looking at
2323/// this is that it returns the first iteration number where the value is not in
2324/// the condition, thus computing the exit count. If the iteration count can't
2325/// be computed, an instance of SCEVCouldNotCompute is returned.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002326SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2327 bool isSigned) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002328 if (Range.isFullSet()) // Infinite loop.
2329 return new SCEVCouldNotCompute();
2330
2331 // If the start is a non-zero constant, shift the range to simplify things.
2332 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00002333 if (!SC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002334 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002335 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002336 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2337 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2338 return ShiftedAddRec->getNumIterationsInRange(
Reid Spencer581b0d42007-02-28 19:57:34 +00002339 Range.subtract(SC->getValue()->getValue()),isSigned);
Chris Lattner53e677a2004-04-02 20:23:17 +00002340 // This is strange and shouldn't happen.
2341 return new SCEVCouldNotCompute();
2342 }
2343
2344 // The only time we can solve this is when we have all constant indices.
2345 // Otherwise, we cannot determine the overflow conditions.
2346 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2347 if (!isa<SCEVConstant>(getOperand(i)))
2348 return new SCEVCouldNotCompute();
2349
2350
2351 // Okay at this point we know that all elements of the chrec are constants and
2352 // that the start element is zero.
2353
2354 // First check to see if the range contains zero. If not, the first
2355 // iteration exits.
Reid Spencera6e8a952007-03-01 07:54:15 +00002356 if (!Range.contains(APInt(getBitWidth(),0)))
Reid Spencer581b0d42007-02-28 19:57:34 +00002357 return SCEVConstant::get(ConstantInt::get(getType(),0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002358
Chris Lattner53e677a2004-04-02 20:23:17 +00002359 if (isAffine()) {
2360 // If this is an affine expression then we have this situation:
2361 // Solve {0,+,A} in Range === Ax in Range
2362
2363 // Since we know that zero is in the range, we know that the upper value of
2364 // the range must be the first possible exit value. Also note that we
2365 // already checked for a full range.
Reid Spencer581b0d42007-02-28 19:57:34 +00002366 const APInt &Upper = Range.getUpper();
2367 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2368 APInt One(getBitWidth(),1);
Chris Lattner53e677a2004-04-02 20:23:17 +00002369
2370 // The exit value should be (Upper+A-1)/A.
Reid Spencer581b0d42007-02-28 19:57:34 +00002371 APInt ExitVal(Upper);
2372 if (A != One)
2373 ExitVal = (Upper + A - One).sdiv(A);
Reid Spencerc7cd7a02007-03-01 19:32:33 +00002374 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00002375
2376 // Evaluate at the exit value. If we really did fall out of the valid
2377 // range, then we computed our trip count, otherwise wrap around or other
2378 // things must have happened.
2379 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
Reid Spencera6e8a952007-03-01 07:54:15 +00002380 if (Range.contains(Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002381 return new SCEVCouldNotCompute(); // Something strange happened
2382
2383 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00002384 assert(Range.contains(
2385 EvaluateConstantChrecAtConstant(this,
Reid Spencerc7cd7a02007-03-01 19:32:33 +00002386 ConstantInt::get(ExitVal - One))->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002387 "Linear scev computation is off in a bad way!");
2388 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2389 } else if (isQuadratic()) {
2390 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2391 // quadratic equation to solve it. To do this, we must frame our problem in
2392 // terms of figuring out when zero is crossed, instead of when
2393 // Range.getUpper() is crossed.
2394 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Reid Spencer581b0d42007-02-28 19:57:34 +00002395 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
Reid Spencerc7cd7a02007-03-01 19:32:33 +00002396 ConstantInt::get(Range.getUpper())));
Chris Lattner53e677a2004-04-02 20:23:17 +00002397 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2398
2399 // Next, solve the constructed addrec
2400 std::pair<SCEVHandle,SCEVHandle> Roots =
2401 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2402 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2403 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2404 if (R1) {
2405 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002406 if (ConstantInt *CB =
2407 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002408 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002409 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002410 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002411
Chris Lattner53e677a2004-04-02 20:23:17 +00002412 // Make sure the root is not off by one. The returned iteration should
2413 // not be in the range, but the previous one should be. When solving
2414 // for "X*X < 5", for example, we should not return a root of 2.
2415 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2416 R1->getValue());
Reid Spencera6e8a952007-03-01 07:54:15 +00002417 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002418 // The next iteration must be out of the range...
2419 Constant *NextVal =
2420 ConstantExpr::getAdd(R1->getValue(),
2421 ConstantInt::get(R1->getType(), 1));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002422
Chris Lattner53e677a2004-04-02 20:23:17 +00002423 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencera6e8a952007-03-01 07:54:15 +00002424 if (!Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002425 return SCEVUnknown::get(NextVal);
2426 return new SCEVCouldNotCompute(); // Something strange happened
2427 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002428
Chris Lattner53e677a2004-04-02 20:23:17 +00002429 // If R1 was not in the range, then it is a good return value. Make
2430 // sure that R1-1 WAS in the range though, just in case.
2431 Constant *NextVal =
2432 ConstantExpr::getSub(R1->getValue(),
2433 ConstantInt::get(R1->getType(), 1));
2434 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencera6e8a952007-03-01 07:54:15 +00002435 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002436 return R1;
2437 return new SCEVCouldNotCompute(); // Something strange happened
2438 }
2439 }
2440 }
2441
2442 // Fallback, if this is a general polynomial, figure out the progression
2443 // through brute force: evaluate until we find an iteration that fails the
2444 // test. This is likely to be slow, but getting an accurate trip count is
2445 // incredibly important, we will be able to simplify the exit test a lot, and
2446 // we are almost guaranteed to get a trip count in this case.
2447 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2448 ConstantInt *One = ConstantInt::get(getType(), 1);
2449 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2450 do {
2451 ++NumBruteForceEvaluations;
2452 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2453 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2454 return new SCEVCouldNotCompute();
2455
2456 // Check to see if we found the value!
Reid Spencera6e8a952007-03-01 07:54:15 +00002457 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002458 return SCEVConstant::get(TestVal);
2459
2460 // Increment to test the next index.
2461 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2462 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002463
Chris Lattner53e677a2004-04-02 20:23:17 +00002464 return new SCEVCouldNotCompute();
2465}
2466
2467
2468
2469//===----------------------------------------------------------------------===//
2470// ScalarEvolution Class Implementation
2471//===----------------------------------------------------------------------===//
2472
2473bool ScalarEvolution::runOnFunction(Function &F) {
2474 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2475 return false;
2476}
2477
2478void ScalarEvolution::releaseMemory() {
2479 delete (ScalarEvolutionsImpl*)Impl;
2480 Impl = 0;
2481}
2482
2483void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2484 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002485 AU.addRequiredTransitive<LoopInfo>();
2486}
2487
2488SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2489 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2490}
2491
Chris Lattnera0740fb2005-08-09 23:36:33 +00002492/// hasSCEV - Return true if the SCEV for this value has already been
2493/// computed.
2494bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002495 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002496}
2497
2498
2499/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2500/// the specified value.
2501void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2502 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2503}
2504
2505
Chris Lattner53e677a2004-04-02 20:23:17 +00002506SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2507 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2508}
2509
2510bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2511 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2512}
2513
2514SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2515 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2516}
2517
2518void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2519 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2520}
2521
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002522static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002523 const Loop *L) {
2524 // Print all inner loops first
2525 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2526 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002527
Bill Wendlinge8156192006-12-07 01:30:32 +00002528 cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002529
2530 std::vector<BasicBlock*> ExitBlocks;
2531 L->getExitBlocks(ExitBlocks);
2532 if (ExitBlocks.size() != 1)
Bill Wendlinge8156192006-12-07 01:30:32 +00002533 cerr << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002534
2535 if (SE->hasLoopInvariantIterationCount(L)) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002536 cerr << *SE->getIterationCount(L) << " iterations! ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002537 } else {
Bill Wendlinge8156192006-12-07 01:30:32 +00002538 cerr << "Unpredictable iteration count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002539 }
2540
Bill Wendlinge8156192006-12-07 01:30:32 +00002541 cerr << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00002542}
2543
Reid Spencerce9653c2004-12-07 04:03:45 +00002544void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002545 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2546 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2547
2548 OS << "Classifying expressions for: " << F.getName() << "\n";
2549 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner42a75512007-01-15 02:27:26 +00002550 if (I->getType()->isInteger()) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00002551 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002552 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002553 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002554 SV->print(OS);
2555 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002556
Chris Lattner42a75512007-01-15 02:27:26 +00002557 if ((*I).getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002558 ConstantRange Bounds = SV->getValueRange();
2559 if (!Bounds.isFullSet())
2560 OS << "Bounds: " << Bounds << " ";
2561 }
2562
Chris Lattner6ffe5512004-04-27 15:13:33 +00002563 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002564 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002565 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002566 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2567 OS << "<<Unknown>>";
2568 } else {
2569 OS << *ExitValue;
2570 }
2571 }
2572
2573
2574 OS << "\n";
2575 }
2576
2577 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2578 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2579 PrintLoopInfo(OS, this, *I);
2580}
2581