blob: 012ff8ad8339787e0d2b4992999e1e87e49bf978 [file] [log] [blame]
Chandler Carruthaeef83c2013-01-07 01:37:14 +00001//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file provides the implementation of a basic TargetTransformInfo pass
11/// predicated on the target abstractions present in the target independent
12/// code generator. It uses these (primarily TargetLowering) to model as much
13/// of the TTI query interface as possible. It is included by most targets so
14/// that they can specialize only a small subset of the query space.
15///
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "basictti"
19#include "llvm/CodeGen/Passes.h"
Chandler Carruthbe049292013-01-07 03:08:10 +000020#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruthaeef83c2013-01-07 01:37:14 +000021#include "llvm/Target/TargetLowering.h"
Chandler Carruthaeef83c2013-01-07 01:37:14 +000022#include <utility>
23
24using namespace llvm;
25
26namespace {
27
28class BasicTTI : public ImmutablePass, public TargetTransformInfo {
Benjamin Kramer69e42db2013-01-11 20:05:37 +000029 const TargetLoweringBase *TLI;
Chandler Carruthaeef83c2013-01-07 01:37:14 +000030
31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
32 /// are set if the result needs to be inserted and/or extracted from vectors.
33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
34
35public:
36 BasicTTI() : ImmutablePass(ID), TLI(0) {
37 llvm_unreachable("This pass cannot be directly constructed");
38 }
39
Benjamin Kramer69e42db2013-01-11 20:05:37 +000040 BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) {
Chandler Carruthaeef83c2013-01-07 01:37:14 +000041 initializeBasicTTIPass(*PassRegistry::getPassRegistry());
42 }
43
44 virtual void initializePass() {
45 pushTTIStack(this);
46 }
47
48 virtual void finalizePass() {
49 popTTIStack();
50 }
51
52 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53 TargetTransformInfo::getAnalysisUsage(AU);
54 }
55
56 /// Pass identification.
57 static char ID;
58
59 /// Provide necessary pointer adjustments for the two base classes.
60 virtual void *getAdjustedAnalysisPointer(const void *ID) {
61 if (ID == &TargetTransformInfo::ID)
62 return (TargetTransformInfo*)this;
63 return this;
64 }
65
66 /// \name Scalar TTI Implementations
67 /// @{
68
69 virtual bool isLegalAddImmediate(int64_t imm) const;
70 virtual bool isLegalICmpImmediate(int64_t imm) const;
71 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
72 int64_t BaseOffset, bool HasBaseReg,
73 int64_t Scale) const;
74 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
75 virtual bool isTypeLegal(Type *Ty) const;
76 virtual unsigned getJumpBufAlignment() const;
77 virtual unsigned getJumpBufSize() const;
78 virtual bool shouldBuildLookupTables() const;
79
80 /// @}
81
82 /// \name Vector TTI Implementations
83 /// @{
84
85 virtual unsigned getNumberOfRegisters(bool Vector) const;
Nadav Rotem83be7b02013-01-09 01:15:42 +000086 virtual unsigned getMaximumUnrollFactor() const;
Nadav Rotem14925e62013-01-09 22:29:00 +000087 virtual unsigned getRegisterBitWidth(bool Vector) const;
Arnold Schwaighofer6bf4f672013-04-04 23:26:21 +000088 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
89 OperandValueKind,
90 OperandValueKind) const;
Chandler Carruthaeef83c2013-01-07 01:37:14 +000091 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
92 int Index, Type *SubTp) const;
93 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
94 Type *Src) const;
95 virtual unsigned getCFInstrCost(unsigned Opcode) const;
96 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
97 Type *CondTy) const;
98 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
99 unsigned Index) const;
100 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
101 unsigned Alignment,
102 unsigned AddressSpace) const;
103 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
104 ArrayRef<Type*> Tys) const;
105 virtual unsigned getNumberOfParts(Type *Tp) const;
Arnold Schwaighoferfb55a8f2013-02-08 14:50:48 +0000106 virtual unsigned getAddressComputationCost(Type *Ty) const;
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000107
108 /// @}
109};
110
111}
112
113INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
114 "Target independent code generator's TTI", true, true, false)
115char BasicTTI::ID = 0;
116
117ImmutablePass *
Benjamin Kramer69e42db2013-01-11 20:05:37 +0000118llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) {
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000119 return new BasicTTI(TLI);
120}
121
122
123bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
124 return TLI->isLegalAddImmediate(imm);
125}
126
127bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
128 return TLI->isLegalICmpImmediate(imm);
129}
130
131bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
132 int64_t BaseOffset, bool HasBaseReg,
133 int64_t Scale) const {
Benjamin Kramer69e42db2013-01-11 20:05:37 +0000134 TargetLoweringBase::AddrMode AM;
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000135 AM.BaseGV = BaseGV;
136 AM.BaseOffs = BaseOffset;
137 AM.HasBaseReg = HasBaseReg;
138 AM.Scale = Scale;
139 return TLI->isLegalAddressingMode(AM, Ty);
140}
141
142bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
143 return TLI->isTruncateFree(Ty1, Ty2);
144}
145
146bool BasicTTI::isTypeLegal(Type *Ty) const {
147 EVT T = TLI->getValueType(Ty);
148 return TLI->isTypeLegal(T);
149}
150
151unsigned BasicTTI::getJumpBufAlignment() const {
152 return TLI->getJumpBufAlignment();
153}
154
155unsigned BasicTTI::getJumpBufSize() const {
156 return TLI->getJumpBufSize();
157}
158
159bool BasicTTI::shouldBuildLookupTables() const {
160 return TLI->supportJumpTables() &&
161 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
162 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
163}
164
165//===----------------------------------------------------------------------===//
166//
167// Calls used by the vectorizers.
168//
169//===----------------------------------------------------------------------===//
170
171unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
172 bool Extract) const {
173 assert (Ty->isVectorTy() && "Can only scalarize vectors");
174 unsigned Cost = 0;
175
176 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
177 if (Insert)
178 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
179 if (Extract)
180 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
181 }
182
183 return Cost;
184}
185
186unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
187 return 1;
188}
189
Nadav Rotem14925e62013-01-09 22:29:00 +0000190unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
191 return 32;
192}
193
Nadav Rotem83be7b02013-01-09 01:15:42 +0000194unsigned BasicTTI::getMaximumUnrollFactor() const {
195 return 1;
196}
197
Arnold Schwaighofer6bf4f672013-04-04 23:26:21 +0000198unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
199 OperandValueKind,
200 OperandValueKind) const {
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000201 // Check if any of the operands are vector operands.
202 int ISD = TLI->InstructionOpcodeToISD(Opcode);
203 assert(ISD && "Invalid opcode");
204
205 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
206
207 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
208 // The operation is legal. Assume it costs 1.
209 // If the type is split to multiple registers, assume that thre is some
210 // overhead to this.
211 // TODO: Once we have extract/insert subvector cost we need to use them.
212 if (LT.first > 1)
213 return LT.first * 2;
214 return LT.first * 1;
215 }
216
217 if (!TLI->isOperationExpand(ISD, LT.second)) {
218 // If the operation is custom lowered then assume
219 // thare the code is twice as expensive.
220 return LT.first * 2;
221 }
222
223 // Else, assume that we need to scalarize this op.
224 if (Ty->isVectorTy()) {
225 unsigned Num = Ty->getVectorNumElements();
226 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
227 // return the cost of multiple scalar invocation plus the cost of inserting
228 // and extracting the values.
229 return getScalarizationOverhead(Ty, true, true) + Num * Cost;
230 }
231
232 // We don't know anything about this scalar instruction.
233 return 1;
234}
235
236unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
237 Type *SubTp) const {
238 return 1;
239}
240
241unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
242 Type *Src) const {
243 int ISD = TLI->InstructionOpcodeToISD(Opcode);
244 assert(ISD && "Invalid opcode");
245
246 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
247 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
248
Nadav Rotem3e40d922013-01-11 19:54:13 +0000249 // Check for NOOP conversions.
250 if (SrcLT.first == DstLT.first &&
251 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
252
253 // Bitcast between types that are legalized to the same type are free.
254 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
255 return 0;
256 }
257
258 if (Opcode == Instruction::Trunc &&
259 TLI->isTruncateFree(SrcLT.second, DstLT.second))
260 return 0;
261
262 if (Opcode == Instruction::ZExt &&
263 TLI->isZExtFree(SrcLT.second, DstLT.second))
264 return 0;
265
266 // If the cast is marked as legal (or promote) then assume low cost.
267 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second))
268 return 1;
269
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000270 // Handle scalar conversions.
271 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
272
273 // Scalar bitcasts are usually free.
274 if (Opcode == Instruction::BitCast)
275 return 0;
276
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000277 // Just check the op cost. If the operation is legal then assume it costs 1.
278 if (!TLI->isOperationExpand(ISD, DstLT.second))
279 return 1;
280
281 // Assume that illegal scalar instruction are expensive.
282 return 4;
283 }
284
285 // Check vector-to-vector casts.
286 if (Dst->isVectorTy() && Src->isVectorTy()) {
287
288 // If the cast is between same-sized registers, then the check is simple.
289 if (SrcLT.first == DstLT.first &&
290 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
291
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000292 // Assume that Zext is done using AND.
293 if (Opcode == Instruction::ZExt)
294 return 1;
295
296 // Assume that sext is done using SHL and SRA.
297 if (Opcode == Instruction::SExt)
298 return 2;
299
300 // Just check the op cost. If the operation is legal then assume it costs
301 // 1 and multiply by the type-legalization overhead.
302 if (!TLI->isOperationExpand(ISD, DstLT.second))
303 return SrcLT.first * 1;
304 }
305
306 // If we are converting vectors and the operation is illegal, or
307 // if the vectors are legalized to different types, estimate the
308 // scalarization costs.
309 unsigned Num = Dst->getVectorNumElements();
310 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
311 Src->getScalarType());
312
313 // Return the cost of multiple scalar invocation plus the cost of
314 // inserting and extracting the values.
315 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
316 }
317
318 // We already handled vector-to-vector and scalar-to-scalar conversions. This
319 // is where we handle bitcast between vectors and scalars. We need to assume
320 // that the conversion is scalarized in one way or another.
321 if (Opcode == Instruction::BitCast)
322 // Illegal bitcasts are done by storing and loading from a stack slot.
323 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
324 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
325
326 llvm_unreachable("Unhandled cast");
327 }
328
329unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
330 // Branches are assumed to be predicted.
331 return 0;
332}
333
334unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
335 Type *CondTy) const {
336 int ISD = TLI->InstructionOpcodeToISD(Opcode);
337 assert(ISD && "Invalid opcode");
338
339 // Selects on vectors are actually vector selects.
340 if (ISD == ISD::SELECT) {
341 assert(CondTy && "CondTy must exist");
342 if (CondTy->isVectorTy())
343 ISD = ISD::VSELECT;
344 }
345
346 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
347
348 if (!TLI->isOperationExpand(ISD, LT.second)) {
349 // The operation is legal. Assume it costs 1. Multiply
350 // by the type-legalization overhead.
351 return LT.first * 1;
352 }
353
354 // Otherwise, assume that the cast is scalarized.
355 if (ValTy->isVectorTy()) {
356 unsigned Num = ValTy->getVectorNumElements();
357 if (CondTy)
358 CondTy = CondTy->getScalarType();
359 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
360 CondTy);
361
362 // Return the cost of multiple scalar invocation plus the cost of inserting
363 // and extracting the values.
364 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
365 }
366
367 // Unknown scalar opcode.
368 return 1;
369}
370
371unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
372 unsigned Index) const {
373 return 1;
374}
375
376unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
377 unsigned Alignment,
378 unsigned AddressSpace) const {
379 assert(!Src->isVoidTy() && "Invalid type");
380 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
381
382 // Assume that all loads of legal types cost 1.
383 return LT.first;
384}
385
Benjamin Kramer8611d442013-02-28 19:09:33 +0000386unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000387 ArrayRef<Type *> Tys) const {
Benjamin Kramer8611d442013-02-28 19:09:33 +0000388 unsigned ISD = 0;
389 switch (IID) {
390 default: {
391 // Assume that we need to scalarize this intrinsic.
392 unsigned ScalarizationCost = 0;
393 unsigned ScalarCalls = 1;
394 if (RetTy->isVectorTy()) {
395 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000396 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
397 }
Benjamin Kramer8611d442013-02-28 19:09:33 +0000398 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
399 if (Tys[i]->isVectorTy()) {
400 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
401 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
402 }
403 }
404
405 return ScalarCalls + ScalarizationCost;
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000406 }
Benjamin Kramer8611d442013-02-28 19:09:33 +0000407 // Look for intrinsics that can be lowered directly or turned into a scalar
408 // intrinsic call.
409 case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
410 case Intrinsic::sin: ISD = ISD::FSIN; break;
411 case Intrinsic::cos: ISD = ISD::FCOS; break;
412 case Intrinsic::exp: ISD = ISD::FEXP; break;
413 case Intrinsic::exp2: ISD = ISD::FEXP2; break;
414 case Intrinsic::log: ISD = ISD::FLOG; break;
415 case Intrinsic::log10: ISD = ISD::FLOG10; break;
416 case Intrinsic::log2: ISD = ISD::FLOG2; break;
417 case Intrinsic::fabs: ISD = ISD::FABS; break;
418 case Intrinsic::floor: ISD = ISD::FFLOOR; break;
419 case Intrinsic::ceil: ISD = ISD::FCEIL; break;
420 case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
421 case Intrinsic::rint: ISD = ISD::FRINT; break;
422 case Intrinsic::pow: ISD = ISD::FPOW; break;
423 case Intrinsic::fma: ISD = ISD::FMA; break;
424 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add?
425 }
426
427 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
428
429 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
430 // The operation is legal. Assume it costs 1.
431 // If the type is split to multiple registers, assume that thre is some
432 // overhead to this.
433 // TODO: Once we have extract/insert subvector cost we need to use them.
434 if (LT.first > 1)
435 return LT.first * 2;
436 return LT.first * 1;
437 }
438
439 if (!TLI->isOperationExpand(ISD, LT.second)) {
440 // If the operation is custom lowered then assume
441 // thare the code is twice as expensive.
442 return LT.first * 2;
443 }
444
445 // Else, assume that we need to scalarize this intrinsic. For math builtins
446 // this will emit a costly libcall, adding call overhead and spills. Make it
447 // very expensive.
448 if (RetTy->isVectorTy()) {
449 unsigned Num = RetTy->getVectorNumElements();
450 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
451 Tys);
452 return 10 * Cost * Num;
453 }
454
455 // This is going to be turned into a library call, make it expensive.
456 return 10;
Chandler Carruthaeef83c2013-01-07 01:37:14 +0000457}
458
459unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
460 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
461 return LT.first;
462}
Arnold Schwaighoferfb55a8f2013-02-08 14:50:48 +0000463
464unsigned BasicTTI::getAddressComputationCost(Type *Ty) const {
465 return 0;
466}