blob: 7394d8f2e1cf174f81b05b9bb22857a63cad08fd [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000088 // We always build a machine code representation for the function
89 return true;
Chris Lattner72614082002-10-25 22:55:53 +000090 }
91
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000092 virtual const char *getPassName() const {
93 return "X86 Simple Instruction Selection";
94 }
95
Chris Lattner72614082002-10-25 22:55:53 +000096 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000097 /// block. This simply creates a new MachineBasicBlock to emit code into
98 /// and adds it to the current MachineFunction. Subsequent visit* for
99 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000100 ///
101 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
106 /// from the stack into virtual registers.
107 ///
108 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109
110 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
111 /// because we have to generate our sources into the source basic blocks,
112 /// not the current one.
113 ///
114 void SelectPHINodes();
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 // Visitation methods for various instructions. These methods simply emit
117 // fixed X86 code for each instruction.
118 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000119
120 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000121 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000122 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000123
124 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000125 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000126 unsigned Reg;
127 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000128 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
129 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000130 };
131 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
132 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000133 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000134 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000135
136 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000137 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000138 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
139 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000140 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000141 unsigned DestReg, const Type *DestTy,
142 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000143 void doMultiplyConst(MachineBasicBlock *MBB,
144 MachineBasicBlock::iterator &MBBI,
145 unsigned DestReg, const Type *DestTy,
146 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000147 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000148
Chris Lattnerf01729e2002-11-02 20:54:46 +0000149 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
150 void visitRem(BinaryOperator &B) { visitDivRem(B); }
151 void visitDivRem(BinaryOperator &B);
152
Chris Lattnere2954c82002-11-02 20:04:26 +0000153 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000154 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
155 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
156 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000157
Chris Lattner6d40c192003-01-16 16:43:00 +0000158 // Comparison operators...
159 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000160 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
161 MachineBasicBlock *MBB,
162 MachineBasicBlock::iterator &MBBI);
163
Chris Lattner6fc3c522002-11-17 21:11:55 +0000164 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000165 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
166 MachineBasicBlock::iterator &MBBI,
167 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000168 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000169 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000170 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000171 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000172 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000173 void visitMallocInst(MallocInst &I);
174 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000175
Chris Lattnere2954c82002-11-02 20:04:26 +0000176 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000177 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000178 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000179 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000180 void visitVANextInst(VANextInst &I);
181 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000182
183 void visitInstruction(Instruction &I) {
184 std::cerr << "Cannot instruction select: " << I;
185 abort();
186 }
187
Brian Gaeke95780cc2002-12-13 07:56:18 +0000188 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 ///
190 void promote32(unsigned targetReg, const ValueRecord &VR);
191
192 /// EmitByteSwap - Byteswap SrcReg into DestReg.
193 ///
194 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000195
Chris Lattner3e130a22003-01-13 00:32:26 +0000196 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
197 /// constant expression GEP support.
198 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000199 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000200 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000201 User::op_iterator IdxEnd, unsigned TargetReg);
202
Chris Lattner548f61d2003-04-23 17:22:12 +0000203 /// emitCastOperation - Common code shared between visitCastInst and
204 /// constant expression cast support.
205 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
206 Value *Src, const Type *DestTy, unsigned TargetReg);
207
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000208 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
209 /// and constant expression support.
210 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
211 MachineBasicBlock::iterator &IP,
212 Value *Op0, Value *Op1,
213 unsigned OperatorClass, unsigned TargetReg);
214
Chris Lattner58c41fe2003-08-24 19:19:47 +0000215 /// emitSetCCOperation - Common code shared between visitSetCondInst and
216 /// constant expression support.
217 void emitSetCCOperation(MachineBasicBlock *BB,
218 MachineBasicBlock::iterator &IP,
219 Value *Op0, Value *Op1, unsigned Opcode,
220 unsigned TargetReg);
221
222
Chris Lattnerc5291f52002-10-27 21:16:59 +0000223 /// copyConstantToRegister - Output the instructions required to put the
224 /// specified constant into the specified register.
225 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000226 void copyConstantToRegister(MachineBasicBlock *MBB,
227 MachineBasicBlock::iterator &MBBI,
228 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000229
Chris Lattner3e130a22003-01-13 00:32:26 +0000230 /// makeAnotherReg - This method returns the next register number we haven't
231 /// yet used.
232 ///
233 /// Long values are handled somewhat specially. They are always allocated
234 /// as pairs of 32 bit integer values. The register number returned is the
235 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
236 /// of the long value.
237 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000238 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000239 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
240 "Current target doesn't have X86 reg info??");
241 const X86RegisterInfo *MRI =
242 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000243 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000244 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000245 // Create the lower part
246 F->getSSARegMap()->createVirtualRegister(RC);
247 // Create the upper part.
248 return F->getSSARegMap()->createVirtualRegister(RC)-1;
249 }
250
Chris Lattnerc0812d82002-12-13 06:56:29 +0000251 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000252 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000253 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000254 }
255
Chris Lattner72614082002-10-25 22:55:53 +0000256 /// getReg - This method turns an LLVM value into a register number. This
257 /// is guaranteed to produce the same register number for a particular value
258 /// every time it is queried.
259 ///
260 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000261 unsigned getReg(Value *V) {
262 // Just append to the end of the current bb.
263 MachineBasicBlock::iterator It = BB->end();
264 return getReg(V, BB, It);
265 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000266 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000267 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000268 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000269 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000270 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000271 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000272 }
Chris Lattner72614082002-10-25 22:55:53 +0000273
Chris Lattner6f8fd252002-10-27 21:23:43 +0000274 // If this operand is a constant, emit the code to copy the constant into
275 // the register here...
276 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000277 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000278 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000279 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000280 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
281 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000282 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000283 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000284 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000285
Chris Lattner72614082002-10-25 22:55:53 +0000286 return Reg;
287 }
Chris Lattner72614082002-10-25 22:55:53 +0000288 };
289}
290
Chris Lattner43189d12002-11-17 20:07:45 +0000291/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
292/// Representation.
293///
294enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000295 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000296};
297
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000298/// getClass - Turn a primitive type into a "class" number which is based on the
299/// size of the type, and whether or not it is floating point.
300///
Chris Lattner43189d12002-11-17 20:07:45 +0000301static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 switch (Ty->getPrimitiveID()) {
303 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000304 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000305 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000306 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000307 case Type::IntTyID:
308 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000309 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000310
Chris Lattner94af4142002-12-25 05:13:53 +0000311 case Type::FloatTyID:
312 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000313
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000314 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000315 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000316 default:
317 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000318 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000319 }
320}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000321
Chris Lattner6b993cc2002-12-15 08:02:15 +0000322// getClassB - Just like getClass, but treat boolean values as bytes.
323static inline TypeClass getClassB(const Type *Ty) {
324 if (Ty == Type::BoolTy) return cByte;
325 return getClass(Ty);
326}
327
Chris Lattner06925362002-11-17 21:56:38 +0000328
Chris Lattnerc5291f52002-10-27 21:16:59 +0000329/// copyConstantToRegister - Output the instructions required to put the
330/// specified constant into the specified register.
331///
Chris Lattner8a307e82002-12-16 19:32:50 +0000332void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
333 MachineBasicBlock::iterator &IP,
334 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000335 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000336 unsigned Class = 0;
337 switch (CE->getOpcode()) {
338 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000339 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000340 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000341 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000342 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000343 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000344 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000345
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000346 case Instruction::Xor: ++Class; // FALL THROUGH
347 case Instruction::Or: ++Class; // FALL THROUGH
348 case Instruction::And: ++Class; // FALL THROUGH
349 case Instruction::Sub: ++Class; // FALL THROUGH
350 case Instruction::Add:
351 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
352 Class, R);
353 return;
354
Chris Lattner58c41fe2003-08-24 19:19:47 +0000355 case Instruction::SetNE:
356 case Instruction::SetEQ:
357 case Instruction::SetLT:
358 case Instruction::SetGT:
359 case Instruction::SetLE:
360 case Instruction::SetGE:
361 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
362 CE->getOpcode(), R);
363 return;
364
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000365 default:
366 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000367 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000368 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000369 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000370
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000372 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000373
374 if (Class == cLong) {
375 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000376 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000377 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
378 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
379 return;
380 }
381
Chris Lattner94af4142002-12-25 05:13:53 +0000382 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000383
384 static const unsigned IntegralOpcodeTab[] = {
385 X86::MOVir8, X86::MOVir16, X86::MOVir32
386 };
387
Chris Lattner6b993cc2002-12-15 08:02:15 +0000388 if (C->getType() == Type::BoolTy) {
389 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000390 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000391 ConstantInt *CI = cast<ConstantInt>(C);
392 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000393 }
Chris Lattner94af4142002-12-25 05:13:53 +0000394 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
395 double Value = CFP->getValue();
396 if (Value == +0.0)
397 BMI(MBB, IP, X86::FLD0, 0, R);
398 else if (Value == +1.0)
399 BMI(MBB, IP, X86::FLD1, 0, R);
400 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000401 // Otherwise we need to spill the constant to memory...
402 MachineConstantPool *CP = F->getConstantPool();
403 unsigned CPI = CP->getConstantPoolIndex(CFP);
404 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000405 }
406
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000407 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000408 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000409 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000410 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000411 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000412 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000413 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000414 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000415 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000416 }
417}
418
Chris Lattner065faeb2002-12-28 20:24:02 +0000419/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
420/// the stack into virtual registers.
421///
422void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
423 // Emit instructions to load the arguments... On entry to a function on the
424 // X86, the stack frame looks like this:
425 //
426 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000427 // [ESP + 4] -- first argument (leftmost lexically)
428 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000429 // ...
430 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000431 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000432 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000433
434 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
435 unsigned Reg = getReg(*I);
436
Chris Lattner065faeb2002-12-28 20:24:02 +0000437 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000438 switch (getClassB(I->getType())) {
439 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000440 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000441 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
442 break;
443 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000444 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000445 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
446 break;
447 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000448 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000449 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
450 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000451 case cLong:
452 FI = MFI->CreateFixedObject(8, ArgOffset);
453 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
454 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
455 ArgOffset += 4; // longs require 4 additional bytes
456 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000457 case cFP:
458 unsigned Opcode;
459 if (I->getType() == Type::FloatTy) {
460 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000461 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000462 } else {
463 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000464 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000465 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000466 }
467 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
468 break;
469 default:
470 assert(0 && "Unhandled argument type!");
471 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000472 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000473 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000474
475 // If the function takes variable number of arguments, add a frame offset for
476 // the start of the first vararg value... this is used to expand
477 // llvm.va_start.
478 if (Fn.getFunctionType()->isVarArg())
479 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000480}
481
482
Chris Lattner333b2fa2002-12-13 10:09:43 +0000483/// SelectPHINodes - Insert machine code to generate phis. This is tricky
484/// because we have to generate our sources into the source basic blocks, not
485/// the current one.
486///
487void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000488 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000489 const Function &LF = *F->getFunction(); // The LLVM function...
490 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
491 const BasicBlock *BB = I;
492 MachineBasicBlock *MBB = MBBMap[I];
493
494 // Loop over all of the PHI nodes in the LLVM basic block...
495 unsigned NumPHIs = 0;
496 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000497 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000498
Chris Lattner333b2fa2002-12-13 10:09:43 +0000499 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000500 unsigned PHIReg = getReg(*PN);
501 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
502 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
503
504 MachineInstr *LongPhiMI = 0;
505 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
506 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
507 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
508 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000509
Chris Lattnera6e73f12003-05-12 14:22:21 +0000510 // PHIValues - Map of blocks to incoming virtual registers. We use this
511 // so that we only initialize one incoming value for a particular block,
512 // even if the block has multiple entries in the PHI node.
513 //
514 std::map<MachineBasicBlock*, unsigned> PHIValues;
515
Chris Lattner333b2fa2002-12-13 10:09:43 +0000516 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
517 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000518 unsigned ValReg;
519 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
520 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000521
Chris Lattnera6e73f12003-05-12 14:22:21 +0000522 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
523 // We already inserted an initialization of the register for this
524 // predecessor. Recycle it.
525 ValReg = EntryIt->second;
526
527 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000528 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000529 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000530 Value *Val = PN->getIncomingValue(i);
531
532 // If this is a constant or GlobalValue, we may have to insert code
533 // into the basic block to compute it into a virtual register.
534 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
535 // Because we don't want to clobber any values which might be in
536 // physical registers with the computation of this constant (which
537 // might be arbitrarily complex if it is a constant expression),
538 // just insert the computation at the top of the basic block.
539 MachineBasicBlock::iterator PI = PredMBB->begin();
540
541 // Skip over any PHI nodes though!
542 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
543 ++PI;
544
545 ValReg = getReg(Val, PredMBB, PI);
546 } else {
547 ValReg = getReg(Val);
548 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000549
550 // Remember that we inserted a value for this PHI for this predecessor
551 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
552 }
553
Chris Lattner3e130a22003-01-13 00:32:26 +0000554 PhiMI->addRegOperand(ValReg);
555 PhiMI->addMachineBasicBlockOperand(PredMBB);
556 if (LongPhiMI) {
557 LongPhiMI->addRegOperand(ValReg+1);
558 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
559 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000560 }
561 }
562 }
563}
564
Chris Lattner6d40c192003-01-16 16:43:00 +0000565// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
566// the conditional branch instruction which is the only user of the cc
567// instruction. This is the case if the conditional branch is the only user of
568// the setcc, and if the setcc is in the same basic block as the conditional
569// branch. We also don't handle long arguments below, so we reject them here as
570// well.
571//
572static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
573 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000574 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000575 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
576 const Type *Ty = SCI->getOperand(0)->getType();
577 if (Ty != Type::LongTy && Ty != Type::ULongTy)
578 return SCI;
579 }
580 return 0;
581}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000582
Chris Lattner6d40c192003-01-16 16:43:00 +0000583// Return a fixed numbering for setcc instructions which does not depend on the
584// order of the opcodes.
585//
586static unsigned getSetCCNumber(unsigned Opcode) {
587 switch(Opcode) {
588 default: assert(0 && "Unknown setcc instruction!");
589 case Instruction::SetEQ: return 0;
590 case Instruction::SetNE: return 1;
591 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000592 case Instruction::SetGE: return 3;
593 case Instruction::SetGT: return 4;
594 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000595 }
596}
Chris Lattner06925362002-11-17 21:56:38 +0000597
Chris Lattner6d40c192003-01-16 16:43:00 +0000598// LLVM -> X86 signed X86 unsigned
599// ----- ---------- ------------
600// seteq -> sete sete
601// setne -> setne setne
602// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000603// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000604// setgt -> setg seta
605// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000606// ----
607// sets // Used by comparison with 0 optimization
608// setns
609static const unsigned SetCCOpcodeTab[2][8] = {
610 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
611 0, 0 },
612 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
613 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000614};
615
Chris Lattnerb2acc512003-10-19 21:09:10 +0000616// EmitComparison - This function emits a comparison of the two operands,
617// returning the extended setcc code to use.
618unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
619 MachineBasicBlock *MBB,
620 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000621 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000622 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000623 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000624 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000625
626 // Special case handling of: cmp R, i
627 if (Class == cByte || Class == cShort || Class == cInt)
628 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000629 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
630
Chris Lattner333864d2003-06-05 19:30:30 +0000631 // Mask off any upper bits of the constant, if there are any...
632 Op1v &= (1ULL << (8 << Class)) - 1;
633
Chris Lattnerb2acc512003-10-19 21:09:10 +0000634 // If this is a comparison against zero, emit more efficient code. We
635 // can't handle unsigned comparisons against zero unless they are == or
636 // !=. These should have been strength reduced already anyway.
637 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
638 static const unsigned TESTTab[] = {
639 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
640 };
641 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
642
643 if (OpNum == 2) return 6; // Map jl -> js
644 if (OpNum == 3) return 7; // Map jg -> jns
645 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000646 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000647
648 static const unsigned CMPTab[] = {
649 X86::CMPri8, X86::CMPri16, X86::CMPri32
650 };
651
652 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
653 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000654 }
655
Chris Lattner58c41fe2003-08-24 19:19:47 +0000656 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000657 switch (Class) {
658 default: assert(0 && "Unknown type class!");
659 // Emit: cmp <var1>, <var2> (do the comparison). We can
660 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
661 // 32-bit.
662 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000663 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000664 break;
665 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000666 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000667 break;
668 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000669 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 break;
671 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000672 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
673 BMI(MBB, IP, X86::FNSTSWr8, 0);
674 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000675 break;
676
677 case cLong:
678 if (OpNum < 2) { // seteq, setne
679 unsigned LoTmp = makeAnotherReg(Type::IntTy);
680 unsigned HiTmp = makeAnotherReg(Type::IntTy);
681 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000682 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
683 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
684 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000685 break; // Allow the sete or setne to be generated from flags set by OR
686 } else {
687 // Emit a sequence of code which compares the high and low parts once
688 // each, then uses a conditional move to handle the overflow case. For
689 // example, a setlt for long would generate code like this:
690 //
691 // AL = lo(op1) < lo(op2) // Signedness depends on operands
692 // BL = hi(op1) < hi(op2) // Always unsigned comparison
693 // dest = hi(op1) == hi(op2) ? AL : BL;
694 //
695
Chris Lattner6d40c192003-01-16 16:43:00 +0000696 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000697 // classes! Until then, hardcode registers so that we can deal with their
698 // aliases (because we don't have conditional byte moves).
699 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000700 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
701 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
702 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000703 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000704 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
705 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
706 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000707 // NOTE: visitSetCondInst knows that the value is dumped into the BL
708 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000709 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000710 }
711 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000712 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000713}
Chris Lattner3e130a22003-01-13 00:32:26 +0000714
Chris Lattner6d40c192003-01-16 16:43:00 +0000715
716/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
717/// register, then move it to wherever the result should be.
718///
719void ISel::visitSetCondInst(SetCondInst &I) {
720 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
721
Chris Lattner6d40c192003-01-16 16:43:00 +0000722 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000723 MachineBasicBlock::iterator MII = BB->end();
724 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
725 DestReg);
726}
Chris Lattner6d40c192003-01-16 16:43:00 +0000727
Chris Lattner58c41fe2003-08-24 19:19:47 +0000728/// emitSetCCOperation - Common code shared between visitSetCondInst and
729/// constant expression support.
730void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
731 MachineBasicBlock::iterator &IP,
732 Value *Op0, Value *Op1, unsigned Opcode,
733 unsigned TargetReg) {
734 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000735 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000736
Chris Lattnerb2acc512003-10-19 21:09:10 +0000737 const Type *CompTy = Op0->getType();
738 unsigned CompClass = getClassB(CompTy);
739 bool isSigned = CompTy->isSigned() && CompClass != cFP;
740
741 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000742 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000743 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000744 } else {
745 // Handle long comparisons by copying the value which is already in BL into
746 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000747 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000748 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000749}
Chris Lattner51b49a92002-11-02 19:45:49 +0000750
Chris Lattner58c41fe2003-08-24 19:19:47 +0000751
752
753
Brian Gaekec2505982002-11-30 11:57:28 +0000754/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
755/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000756void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
757 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000758
759 // Make sure we have the register number for this value...
760 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
761
Chris Lattner3e130a22003-01-13 00:32:26 +0000762 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000763 case cByte:
764 // Extend value into target register (8->32)
765 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000766 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000767 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000768 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000769 break;
770 case cShort:
771 // Extend value into target register (16->32)
772 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000773 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000774 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000775 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000776 break;
777 case cInt:
778 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000779 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000780 break;
781 default:
782 assert(0 && "Unpromotable operand class in promote32");
783 }
Brian Gaekec2505982002-11-30 11:57:28 +0000784}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000785
Chris Lattner72614082002-10-25 22:55:53 +0000786/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
787/// we have the following possibilities:
788///
789/// ret void: No return value, simply emit a 'ret' instruction
790/// ret sbyte, ubyte : Extend value into EAX and return
791/// ret short, ushort: Extend value into EAX and return
792/// ret int, uint : Move value into EAX and return
793/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000794/// ret long, ulong : Move value into EAX/EDX and return
795/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000796///
Chris Lattner3e130a22003-01-13 00:32:26 +0000797void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000798 if (I.getNumOperands() == 0) {
799 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
800 return;
801 }
802
803 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000804 unsigned RetReg = getReg(RetVal);
805 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000806 case cByte: // integral return values: extend or move into EAX and return
807 case cShort:
808 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000809 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000810 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000811 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000812 break;
813 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000814 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000815 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000816 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000817 break;
818 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000819 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
820 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000821 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000822 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000823 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000824 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000825 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000826 }
Chris Lattner43189d12002-11-17 20:07:45 +0000827 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000828 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000829}
830
Chris Lattner55f6fab2003-01-16 18:07:23 +0000831// getBlockAfter - Return the basic block which occurs lexically after the
832// specified one.
833static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
834 Function::iterator I = BB; ++I; // Get iterator to next block
835 return I != BB->getParent()->end() ? &*I : 0;
836}
837
Chris Lattner51b49a92002-11-02 19:45:49 +0000838/// visitBranchInst - Handle conditional and unconditional branches here. Note
839/// that since code layout is frozen at this point, that if we are trying to
840/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000841/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000842///
Chris Lattner94af4142002-12-25 05:13:53 +0000843void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000844 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
845
846 if (!BI.isConditional()) { // Unconditional branch?
847 if (BI.getSuccessor(0) != NextBB)
848 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000849 return;
850 }
851
852 // See if we can fold the setcc into the branch itself...
853 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
854 if (SCI == 0) {
855 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
856 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000857 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000858 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000859 if (BI.getSuccessor(1) == NextBB) {
860 if (BI.getSuccessor(0) != NextBB)
861 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
862 } else {
863 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
864
865 if (BI.getSuccessor(0) != NextBB)
866 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
867 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000868 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000869 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000870
871 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000872 MachineBasicBlock::iterator MII = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +0000873 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB, MII);
874
875 const Type *CompTy = SCI->getOperand(0)->getType();
876 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000877
Chris Lattnerb2acc512003-10-19 21:09:10 +0000878
Chris Lattner6d40c192003-01-16 16:43:00 +0000879 // LLVM -> X86 signed X86 unsigned
880 // ----- ---------- ------------
881 // seteq -> je je
882 // setne -> jne jne
883 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000884 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000885 // setgt -> jg ja
886 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000887 // ----
888 // js // Used by comparison with 0 optimization
889 // jns
890
891 static const unsigned OpcodeTab[2][8] = {
892 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
893 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
894 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000895 };
896
Chris Lattner55f6fab2003-01-16 18:07:23 +0000897 if (BI.getSuccessor(0) != NextBB) {
898 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
899 if (BI.getSuccessor(1) != NextBB)
900 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
901 } else {
902 // Change to the inverse condition...
903 if (BI.getSuccessor(1) != NextBB) {
904 OpNum ^= 1;
905 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
906 }
907 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000908}
909
Chris Lattner3e130a22003-01-13 00:32:26 +0000910
911/// doCall - This emits an abstract call instruction, setting up the arguments
912/// and the return value as appropriate. For the actual function call itself,
913/// it inserts the specified CallMI instruction into the stream.
914///
915void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
916 const std::vector<ValueRecord> &Args) {
917
Chris Lattner065faeb2002-12-28 20:24:02 +0000918 // Count how many bytes are to be pushed on the stack...
919 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000920
Chris Lattner3e130a22003-01-13 00:32:26 +0000921 if (!Args.empty()) {
922 for (unsigned i = 0, e = Args.size(); i != e; ++i)
923 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000924 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000925 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000926 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000927 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000928 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000929 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000930 break;
931 default: assert(0 && "Unknown class!");
932 }
933
934 // Adjust the stack pointer for the new arguments...
935 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
936
937 // Arguments go on the stack in reverse order, as specified by the ABI.
938 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000939 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000940 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000941 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000942 case cByte:
943 case cShort: {
944 // Promote arg to 32 bits wide into a temporary register...
945 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000946 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000947 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
948 X86::ESP, ArgOffset).addReg(R);
949 break;
950 }
951 case cInt:
952 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000953 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000954 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000955 case cLong:
956 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
957 X86::ESP, ArgOffset).addReg(ArgReg);
958 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
959 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
960 ArgOffset += 4; // 8 byte entry, not 4.
961 break;
962
Chris Lattner065faeb2002-12-28 20:24:02 +0000963 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000964 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000965 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000966 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000967 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000968 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
969 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
970 X86::ESP, ArgOffset).addReg(ArgReg);
971 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000972 }
973 break;
974
Chris Lattner3e130a22003-01-13 00:32:26 +0000975 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000976 }
977 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000978 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000979 } else {
980 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000981 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000982
Chris Lattner3e130a22003-01-13 00:32:26 +0000983 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000984
Chris Lattner065faeb2002-12-28 20:24:02 +0000985 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000986
987 // If there is a return value, scavenge the result from the location the call
988 // leaves it in...
989 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000990 if (Ret.Ty != Type::VoidTy) {
991 unsigned DestClass = getClassB(Ret.Ty);
992 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000993 case cByte:
994 case cShort:
995 case cInt: {
996 // Integral results are in %eax, or the appropriate portion
997 // thereof.
998 static const unsigned regRegMove[] = {
999 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
1000 };
1001 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001002 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001003 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001004 }
Chris Lattner94af4142002-12-25 05:13:53 +00001005 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001006 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001007 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001008 case cLong: // Long values are left in EDX:EAX
1009 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1010 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1011 break;
1012 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001013 }
Chris Lattnera3243642002-12-04 23:45:28 +00001014 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001015}
Chris Lattner2df035b2002-11-02 19:27:56 +00001016
Chris Lattner3e130a22003-01-13 00:32:26 +00001017
1018/// visitCallInst - Push args on stack and do a procedure call instruction.
1019void ISel::visitCallInst(CallInst &CI) {
1020 MachineInstr *TheCall;
1021 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001022 // Is it an intrinsic function call?
1023 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
1024 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1025 return;
1026 }
1027
Chris Lattner3e130a22003-01-13 00:32:26 +00001028 // Emit a CALL instruction with PC-relative displacement.
1029 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1030 } else { // Emit an indirect call...
1031 unsigned Reg = getReg(CI.getCalledValue());
1032 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1033 }
1034
1035 std::vector<ValueRecord> Args;
1036 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001037 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001038
1039 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1040 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1041}
1042
Chris Lattneraeb54b82003-08-28 21:23:43 +00001043
Chris Lattnereca195e2003-05-08 19:44:13 +00001044void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
1045 unsigned TmpReg1, TmpReg2;
1046 switch (ID) {
1047 case LLVMIntrinsic::va_start:
1048 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001049 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001050 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001051 return;
1052
Chris Lattnereca195e2003-05-08 19:44:13 +00001053 case LLVMIntrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001054 TmpReg1 = getReg(CI);
1055 TmpReg2 = getReg(CI.getOperand(1));
1056 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001057 return;
Chris Lattner73815062003-10-18 05:56:40 +00001058 case LLVMIntrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001059
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001060 case LLVMIntrinsic::longjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001061 case LLVMIntrinsic::siglongjmp:
Chris Lattneraeb54b82003-08-28 21:23:43 +00001062 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +00001063 return;
1064
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001065 case LLVMIntrinsic::setjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001066 case LLVMIntrinsic::sigsetjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +00001067 // Setjmp always returns zero...
1068 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001069 return;
Chris Lattnereca195e2003-05-08 19:44:13 +00001070 default: assert(0 && "Unknown intrinsic for X86!");
1071 }
1072}
1073
1074
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001075/// visitSimpleBinary - Implement simple binary operators for integral types...
1076/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1077/// Xor.
1078void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1079 unsigned DestReg = getReg(B);
1080 MachineBasicBlock::iterator MI = BB->end();
1081 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1082 OperatorClass, DestReg);
1083}
Chris Lattner3e130a22003-01-13 00:32:26 +00001084
Chris Lattnerb2acc512003-10-19 21:09:10 +00001085/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1086/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1087/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001088///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001089/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1090/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001091///
1092void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001093 MachineBasicBlock::iterator &IP,
1094 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001095 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001096 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001097
1098 // sub 0, X -> neg X
1099 if (OperatorClass == 1 && Class != cLong)
1100 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1101 if (CI->isNullValue()) {
1102 unsigned op1Reg = getReg(Op1, MBB, IP);
1103 switch (Class) {
1104 default: assert(0 && "Unknown class for this function!");
1105 case cByte:
1106 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1107 return;
1108 case cShort:
1109 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1110 return;
1111 case cInt:
1112 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1113 return;
1114 }
1115 }
1116
Chris Lattner35333e12003-06-05 18:28:55 +00001117 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1118 static const unsigned OpcodeTab[][4] = {
1119 // Arithmetic operators
1120 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1121 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1122
1123 // Bitwise operators
1124 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1125 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1126 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001127 };
Chris Lattner35333e12003-06-05 18:28:55 +00001128
1129 bool isLong = false;
1130 if (Class == cLong) {
1131 isLong = true;
1132 Class = cInt; // Bottom 32 bits are handled just like ints
1133 }
1134
1135 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1136 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001137 unsigned Op0r = getReg(Op0, MBB, IP);
1138 unsigned Op1r = getReg(Op1, MBB, IP);
1139 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001140
1141 if (isLong) { // Handle the upper 32 bits of long values...
1142 static const unsigned TopTab[] = {
1143 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1144 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001145 BMI(MBB, IP, TopTab[OperatorClass], 2,
1146 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001147 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001148 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001149 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001150
1151 // Special case: op Reg, <const>
1152 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1153 unsigned Op0r = getReg(Op0, MBB, IP);
1154
1155 // xor X, -1 -> not X
1156 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1157 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1158 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1159 return;
1160 }
1161
1162 // add X, -1 -> dec X
1163 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1164 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1165 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1166 return;
1167 }
1168
1169 // add X, 1 -> inc X
1170 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1171 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1172 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1173 return;
1174 }
1175
1176 static const unsigned OpcodeTab[][3] = {
1177 // Arithmetic operators
1178 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1179 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1180
1181 // Bitwise operators
1182 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1183 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1184 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1185 };
1186
1187 assert(Class < 3 && "General code handles 64-bit integer types!");
1188 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1189 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1190
1191 // Mask off any upper bits of the constant, if there are any...
1192 Op1v &= (1ULL << (8 << Class)) - 1;
1193 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001194}
1195
Chris Lattner3e130a22003-01-13 00:32:26 +00001196/// doMultiply - Emit appropriate instructions to multiply together the
1197/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1198/// result should be given as DestTy.
1199///
Chris Lattner8a307e82002-12-16 19:32:50 +00001200void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001201 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001202 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001203 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001204 switch (Class) {
1205 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001206 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001207 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001208 case cInt:
1209 case cShort:
1210 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1211 .addReg(op0Reg).addReg(op1Reg);
1212 return;
1213 case cByte:
1214 // Must use the MUL instruction, which forces use of AL...
1215 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1216 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1217 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1218 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001219 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001220 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001221 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001222}
1223
Chris Lattnerb2acc512003-10-19 21:09:10 +00001224// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1225// returns zero when the input is not exactly a power of two.
1226static unsigned ExactLog2(unsigned Val) {
1227 if (Val == 0) return 0;
1228 unsigned Count = 0;
1229 while (Val != 1) {
1230 if (Val & 1) return 0;
1231 Val >>= 1;
1232 ++Count;
1233 }
1234 return Count+1;
1235}
1236
1237void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1238 MachineBasicBlock::iterator &IP,
1239 unsigned DestReg, const Type *DestTy,
1240 unsigned op0Reg, unsigned ConstRHS) {
1241 unsigned Class = getClass(DestTy);
1242
1243 // If the element size is exactly a power of 2, use a shift to get it.
1244 if (unsigned Shift = ExactLog2(ConstRHS)) {
1245 switch (Class) {
1246 default: assert(0 && "Unknown class for this function!");
1247 case cByte:
1248 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1249 return;
1250 case cShort:
1251 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1252 return;
1253 case cInt:
1254 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1255 return;
1256 }
1257 }
1258
1259 // Most general case, emit a normal multiply...
1260 static const unsigned MOVirTab[] = {
1261 X86::MOVir8, X86::MOVir16, X86::MOVir32
1262 };
1263
1264 unsigned TmpReg = makeAnotherReg(DestTy);
1265 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1266
1267 // Emit a MUL to multiply the register holding the index by
1268 // elementSize, putting the result in OffsetReg.
1269 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1270}
1271
Chris Lattnerca9671d2002-11-02 20:28:58 +00001272/// visitMul - Multiplies are not simple binary operators because they must deal
1273/// with the EAX register explicitly.
1274///
1275void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001276 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001277 unsigned DestReg = getReg(I);
1278
1279 // Simple scalar multiply?
1280 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001281 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1282 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1283 MachineBasicBlock::iterator MBBI = BB->end();
1284 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1285 } else {
1286 unsigned Op1Reg = getReg(I.getOperand(1));
1287 MachineBasicBlock::iterator MBBI = BB->end();
1288 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1289 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001290 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001291 unsigned Op1Reg = getReg(I.getOperand(1));
1292
Chris Lattner3e130a22003-01-13 00:32:26 +00001293 // Long value. We have to do things the hard way...
1294 // Multiply the two low parts... capturing carry into EDX
1295 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1296 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1297
1298 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1299 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1300 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1301
1302 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001303 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1304 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001305
1306 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1307 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1308 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1309
1310 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001311 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1312 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001313
1314 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1315 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1316 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001317}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001318
Chris Lattner06925362002-11-17 21:56:38 +00001319
Chris Lattnerf01729e2002-11-02 20:54:46 +00001320/// visitDivRem - Handle division and remainder instructions... these
1321/// instruction both require the same instructions to be generated, they just
1322/// select the result from a different register. Note that both of these
1323/// instructions work differently for signed and unsigned operands.
1324///
1325void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001326 unsigned Class = getClass(I.getType());
1327 unsigned Op0Reg, Op1Reg, ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001328
1329 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 case cFP: // Floating point divide
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001331 if (I.getOpcode() == Instruction::Div) {
1332 Op0Reg = getReg(I.getOperand(0));
1333 Op1Reg = getReg(I.getOperand(1));
Chris Lattner94af4142002-12-25 05:13:53 +00001334 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001335 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001336 MachineInstr *TheCall =
1337 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1338 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001339 Args.push_back(ValueRecord(I.getOperand(0)));
1340 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001341 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1342 }
Chris Lattner94af4142002-12-25 05:13:53 +00001343 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001344 case cLong: {
1345 static const char *FnName[] =
1346 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1347
1348 unsigned NameIdx = I.getType()->isUnsigned()*2;
1349 NameIdx += I.getOpcode() == Instruction::Div;
1350 MachineInstr *TheCall =
1351 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1352
1353 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001354 Args.push_back(ValueRecord(I.getOperand(0)));
1355 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001356 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1357 return;
1358 }
1359 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001360 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001361 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001362 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001363
1364 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1365 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001366 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001367 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1368 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1369
1370 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001371 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1372 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001373 };
1374
1375 bool isSigned = I.getType()->isSigned();
1376 unsigned Reg = Regs[Class];
1377 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001378
1379 // Put the first operand into one of the A registers...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001380 Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001381 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1382
1383 if (isSigned) {
1384 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001385 unsigned ShiftResult = makeAnotherReg(I.getType());
1386 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1387 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001388 } else {
1389 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1390 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1391 }
1392
Chris Lattner06925362002-11-17 21:56:38 +00001393 // Emit the appropriate divide or remainder instruction...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001394 Op1Reg = getReg(I.getOperand(1));
Chris Lattner92845e32002-11-21 18:54:29 +00001395 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001396
Chris Lattnerf01729e2002-11-02 20:54:46 +00001397 // Figure out which register we want to pick the result out of...
1398 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1399
Chris Lattnerf01729e2002-11-02 20:54:46 +00001400 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001401 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001402}
Chris Lattnere2954c82002-11-02 20:04:26 +00001403
Chris Lattner06925362002-11-17 21:56:38 +00001404
Brian Gaekea1719c92002-10-31 23:03:59 +00001405/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1406/// for constant immediate shift values, and for constant immediate
1407/// shift values equal to 1. Even the general case is sort of special,
1408/// because the shift amount has to be in CL, not just any old register.
1409///
Chris Lattner3e130a22003-01-13 00:32:26 +00001410void ISel::visitShiftInst(ShiftInst &I) {
1411 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001412 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001413 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001414 bool isSigned = I.getType()->isSigned();
1415 unsigned Class = getClass(I.getType());
1416
1417 static const unsigned ConstantOperand[][4] = {
1418 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1419 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1420 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1421 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1422 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001423
Chris Lattner3e130a22003-01-13 00:32:26 +00001424 static const unsigned NonConstantOperand[][4] = {
1425 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1426 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1427 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1428 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1429 };
Chris Lattner796df732002-11-02 00:44:25 +00001430
Chris Lattner3e130a22003-01-13 00:32:26 +00001431 // Longs, as usual, are handled specially...
1432 if (Class == cLong) {
1433 // If we have a constant shift, we can generate much more efficient code
1434 // than otherwise...
1435 //
1436 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1437 unsigned Amount = CUI->getValue();
1438 if (Amount < 32) {
1439 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1440 if (isLeftShift) {
1441 BuildMI(BB, Opc[3], 3,
1442 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1443 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1444 } else {
1445 BuildMI(BB, Opc[3], 3,
1446 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1447 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1448 }
1449 } else { // Shifting more than 32 bits
1450 Amount -= 32;
1451 if (isLeftShift) {
1452 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1453 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1454 } else {
1455 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1456 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1457 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1458 }
1459 }
1460 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001461 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1462
1463 if (!isLeftShift && isSigned) {
1464 // If this is a SHR of a Long, then we need to do funny sign extension
1465 // stuff. TmpReg gets the value to use as the high-part if we are
1466 // shifting more than 32 bits.
1467 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1468 } else {
1469 // Other shifts use a fixed zero value if the shift is more than 32
1470 // bits.
1471 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1472 }
1473
1474 // Initialize CL with the shift amount...
1475 unsigned ShiftAmount = getReg(I.getOperand(1));
1476 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1477
1478 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1479 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1480 if (isLeftShift) {
1481 // TmpReg2 = shld inHi, inLo
1482 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1483 // TmpReg3 = shl inLo, CL
1484 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1485
1486 // Set the flags to indicate whether the shift was by more than 32 bits.
1487 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1488
1489 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1490 BuildMI(BB, X86::CMOVNErr32, 2,
1491 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1492 // DestLo = (>32) ? TmpReg : TmpReg3;
1493 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1494 } else {
1495 // TmpReg2 = shrd inLo, inHi
1496 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1497 // TmpReg3 = s[ah]r inHi, CL
1498 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1499 .addReg(SrcReg+1);
1500
1501 // Set the flags to indicate whether the shift was by more than 32 bits.
1502 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1503
1504 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1505 BuildMI(BB, X86::CMOVNErr32, 2,
1506 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1507
1508 // DestHi = (>32) ? TmpReg : TmpReg3;
1509 BuildMI(BB, X86::CMOVNErr32, 2,
1510 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1511 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001512 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001513 return;
1514 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001515
Chris Lattner3e130a22003-01-13 00:32:26 +00001516 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1517 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1518 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001519
Chris Lattner3e130a22003-01-13 00:32:26 +00001520 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1521 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1522 } else { // The shift amount is non-constant.
1523 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001524
Chris Lattner3e130a22003-01-13 00:32:26 +00001525 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1526 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1527 }
1528}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001529
Chris Lattner3e130a22003-01-13 00:32:26 +00001530
1531/// doFPLoad - This method is used to load an FP value from memory using the
1532/// current endianness. NOTE: This method returns a partially constructed load
1533/// instruction which needs to have the memory source filled in still.
1534///
1535MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1536 MachineBasicBlock::iterator &MBBI,
1537 const Type *Ty, unsigned DestReg) {
1538 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1539 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1540
1541 if (TM.getTargetData().isLittleEndian()) // fast path...
1542 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1543
1544 // If we are big-endian, start by creating an LEA instruction to represent the
1545 // address of the memory location to load from...
1546 //
1547 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1548 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1549
1550 // Allocate a temporary stack slot to transform the value into...
1551 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1552
1553 // Perform the bswaps 32 bits at a time...
1554 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1555 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1556 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1557 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1558 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1559 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1560 FrameIdx, Offset).addReg(TmpReg2);
1561
1562 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1563 TmpReg1 = makeAnotherReg(Type::UIntTy);
1564 TmpReg2 = makeAnotherReg(Type::UIntTy);
1565
1566 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1567 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1568 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1569 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1570 }
1571
1572 // Now we can reload the final byteswapped result into the final destination.
1573 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1574 return Result;
1575}
1576
1577/// EmitByteSwap - Byteswap SrcReg into DestReg.
1578///
1579void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1580 // Emit the byte swap instruction...
1581 switch (Class) {
1582 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001583 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001584 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1585 break;
1586 case cInt:
1587 // Use the 32 bit bswap instruction to do a 32 bit swap...
1588 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1589 break;
1590
1591 case cShort:
1592 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001593 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001594 // into AX to do the xchg.
1595 //
1596 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1597 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1598 .addReg(X86::AH, MOTy::UseAndDef);
1599 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1600 break;
1601 default: assert(0 && "Cannot byteswap this class!");
1602 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001603}
1604
Chris Lattner06925362002-11-17 21:56:38 +00001605
Chris Lattner6fc3c522002-11-17 21:11:55 +00001606/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001607/// instruction. The load and store instructions are the only place where we
1608/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001609///
1610void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001611 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1612 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001613 unsigned SrcAddrReg = getReg(I.getOperand(0));
1614 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001615
Brian Gaekebfedb912003-07-17 21:30:06 +00001616 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001617 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001618 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001619 MachineBasicBlock::iterator MBBI = BB->end();
1620 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001621 return;
1622 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001623 case cLong: case cInt: case cShort: case cByte:
1624 break; // Integers of various sizes handled below
1625 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001626 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001627
Chris Lattnere8f0d922002-12-24 00:03:11 +00001628 // We need to adjust the input pointer if we are emulating a big-endian
1629 // long-pointer target. On these systems, the pointer that we are interested
1630 // in is in the upper part of the eight byte memory image of the pointer. It
1631 // also happens to be byte-swapped, but this will be handled later.
1632 //
1633 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1634 unsigned R = makeAnotherReg(Type::UIntTy);
1635 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1636 SrcAddrReg = R;
1637 }
Chris Lattner94af4142002-12-25 05:13:53 +00001638
Chris Lattnere8f0d922002-12-24 00:03:11 +00001639 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001640 if (!isLittleEndian) // If big endian we need an intermediate stage
1641 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001642
Chris Lattner3e130a22003-01-13 00:32:26 +00001643 static const unsigned Opcode[] = {
1644 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1645 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001646 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1647
Chris Lattner3e130a22003-01-13 00:32:26 +00001648 // Handle long values now...
1649 if (Class == cLong) {
1650 if (isLittleEndian) {
1651 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1652 } else {
1653 EmitByteSwap(IReg+1, DestReg, cInt);
1654 unsigned TempReg = makeAnotherReg(Type::IntTy);
1655 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1656 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001657 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001658 return;
1659 }
1660
1661 if (!isLittleEndian)
1662 EmitByteSwap(IReg, DestReg, Class);
1663}
1664
1665
1666/// doFPStore - This method is used to store an FP value to memory using the
1667/// current endianness.
1668///
1669void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1670 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1671 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1672
1673 if (TM.getTargetData().isLittleEndian()) { // fast path...
1674 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1675 return;
1676 }
1677
1678 // Allocate a temporary stack slot to transform the value into...
1679 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1680 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1681 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1682
1683 // Store the value into a temporary stack slot...
1684 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1685
1686 // Perform the bswaps 32 bits at a time...
1687 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1688 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1689 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1690 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1691 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1692 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1693 DestAddrReg, Offset).addReg(TmpReg2);
1694
1695 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1696 TmpReg1 = makeAnotherReg(Type::UIntTy);
1697 TmpReg2 = makeAnotherReg(Type::UIntTy);
1698
1699 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1700 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1701 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1702 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001703 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001704}
1705
Chris Lattner06925362002-11-17 21:56:38 +00001706
Chris Lattner6fc3c522002-11-17 21:11:55 +00001707/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1708/// instruction.
1709///
1710void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001711 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1712 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001713 unsigned ValReg = getReg(I.getOperand(0));
1714 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001715
Brian Gaekebfedb912003-07-17 21:30:06 +00001716 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001717 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001718 case cLong:
1719 if (isLittleEndian) {
1720 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1721 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1722 AddressReg, 4).addReg(ValReg+1);
1723 } else {
1724 unsigned T1 = makeAnotherReg(Type::IntTy);
1725 unsigned T2 = makeAnotherReg(Type::IntTy);
1726 EmitByteSwap(T1, ValReg , cInt);
1727 EmitByteSwap(T2, ValReg+1, cInt);
1728 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1729 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1730 }
Chris Lattner94af4142002-12-25 05:13:53 +00001731 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001732 case cFP:
1733 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1734 return;
1735 case cInt: case cShort: case cByte:
1736 break; // Integers of various sizes handled below
1737 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001738 }
1739
1740 if (!isLittleEndian && hasLongPointers &&
1741 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001742 unsigned R = makeAnotherReg(Type::UIntTy);
1743 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1744 AddressReg = R;
1745 }
1746
Chris Lattner94af4142002-12-25 05:13:53 +00001747 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001748 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1749 EmitByteSwap(R, ValReg, Class);
1750 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001751 }
1752
Chris Lattner94af4142002-12-25 05:13:53 +00001753 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001754 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1755}
1756
1757
Brian Gaekec11232a2002-11-26 10:43:30 +00001758/// visitCastInst - Here we have various kinds of copying with or without
1759/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001760void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001761 Value *Op = CI.getOperand(0);
1762 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1763 // of the case are GEP instructions, then the cast does not need to be
1764 // generated explicitly, it will be folded into the GEP.
1765 if (CI.getType() == Type::LongTy &&
1766 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1767 bool AllUsesAreGEPs = true;
1768 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1769 if (!isa<GetElementPtrInst>(*I)) {
1770 AllUsesAreGEPs = false;
1771 break;
1772 }
1773
1774 // No need to codegen this cast if all users are getelementptr instrs...
1775 if (AllUsesAreGEPs) return;
1776 }
1777
Chris Lattner548f61d2003-04-23 17:22:12 +00001778 unsigned DestReg = getReg(CI);
1779 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001780 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001781}
1782
1783/// emitCastOperation - Common code shared between visitCastInst and
1784/// constant expression cast support.
1785void ISel::emitCastOperation(MachineBasicBlock *BB,
1786 MachineBasicBlock::iterator &IP,
1787 Value *Src, const Type *DestTy,
1788 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001789 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001790 const Type *SrcTy = Src->getType();
1791 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001792 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001793
Chris Lattner3e130a22003-01-13 00:32:26 +00001794 // Implement casts to bool by using compare on the operand followed by set if
1795 // not zero on the result.
1796 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001797 switch (SrcClass) {
1798 case cByte:
1799 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1800 break;
1801 case cShort:
1802 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1803 break;
1804 case cInt:
1805 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1806 break;
1807 case cLong: {
1808 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1809 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1810 break;
1811 }
1812 case cFP:
1813 assert(0 && "FIXME: implement cast FP to bool");
1814 abort();
1815 }
1816
1817 // If the zero flag is not set, then the value is true, set the byte to
1818 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001819 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001820 return;
1821 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001822
1823 static const unsigned RegRegMove[] = {
1824 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1825 };
1826
1827 // Implement casts between values of the same type class (as determined by
1828 // getClass) by using a register-to-register move.
1829 if (SrcClass == DestClass) {
1830 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001831 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001832 } else if (SrcClass == cFP) {
1833 if (SrcTy == Type::FloatTy) { // double -> float
1834 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001835 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001836 } else { // float -> double
1837 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1838 "Unknown cFP member!");
1839 // Truncate from double to float by storing to memory as short, then
1840 // reading it back.
1841 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1842 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001843 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1844 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001845 }
1846 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001847 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1848 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001849 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001850 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001851 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001852 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001853 return;
1854 }
1855
1856 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1857 // or zero extension, depending on whether the source type was signed.
1858 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1859 SrcClass < DestClass) {
1860 bool isLong = DestClass == cLong;
1861 if (isLong) DestClass = cInt;
1862
1863 static const unsigned Opc[][4] = {
1864 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1865 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1866 };
1867
1868 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001869 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1870 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001871
1872 if (isLong) { // Handle upper 32 bits as appropriate...
1873 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001874 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001875 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001876 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001877 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001878 return;
1879 }
1880
1881 // Special case long -> int ...
1882 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001883 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001884 return;
1885 }
1886
1887 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1888 // move out of AX or AL.
1889 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1890 && SrcClass > DestClass) {
1891 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001892 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1893 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001894 return;
1895 }
1896
1897 // Handle casts from integer to floating point now...
1898 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001899 // Promote the integer to a type supported by FLD. We do this because there
1900 // are no unsigned FLD instructions, so we must promote an unsigned value to
1901 // a larger signed value, then use FLD on the larger value.
1902 //
1903 const Type *PromoteType = 0;
1904 unsigned PromoteOpcode;
1905 switch (SrcTy->getPrimitiveID()) {
1906 case Type::BoolTyID:
1907 case Type::SByteTyID:
1908 // We don't have the facilities for directly loading byte sized data from
1909 // memory (even signed). Promote it to 16 bits.
1910 PromoteType = Type::ShortTy;
1911 PromoteOpcode = X86::MOVSXr16r8;
1912 break;
1913 case Type::UByteTyID:
1914 PromoteType = Type::ShortTy;
1915 PromoteOpcode = X86::MOVZXr16r8;
1916 break;
1917 case Type::UShortTyID:
1918 PromoteType = Type::IntTy;
1919 PromoteOpcode = X86::MOVZXr32r16;
1920 break;
1921 case Type::UIntTyID: {
1922 // Make a 64 bit temporary... and zero out the top of it...
1923 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1924 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1925 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1926 SrcTy = Type::LongTy;
1927 SrcClass = cLong;
1928 SrcReg = TmpReg;
1929 break;
1930 }
1931 case Type::ULongTyID:
1932 assert("FIXME: not implemented: cast ulong X to fp type!");
1933 default: // No promotion needed...
1934 break;
1935 }
1936
1937 if (PromoteType) {
1938 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001939 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1940 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001941 SrcTy = PromoteType;
1942 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001943 SrcReg = TmpReg;
1944 }
1945
1946 // Spill the integer to memory and reload it from there...
1947 int FrameIdx =
1948 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1949
1950 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001951 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1952 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001953 FrameIdx, 4).addReg(SrcReg+1);
1954 } else {
1955 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001956 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001957 }
1958
1959 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001960 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001961 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001962 return;
1963 }
1964
1965 // Handle casts from floating point to integer now...
1966 if (SrcClass == cFP) {
1967 // Change the floating point control register to use "round towards zero"
1968 // mode when truncating to an integer value.
1969 //
1970 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001971 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001972
1973 // Load the old value of the high byte of the control word...
1974 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001975 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001976
1977 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001978 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001979
1980 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001981 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001982
1983 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001984 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001985 CWFrameIdx, 1).addReg(HighPartOfCW);
1986
1987 // We don't have the facilities for directly storing byte sized data to
1988 // memory. Promote it to 16 bits. We also must promote unsigned values to
1989 // larger classes because we only have signed FP stores.
1990 unsigned StoreClass = DestClass;
1991 const Type *StoreTy = DestTy;
1992 if (StoreClass == cByte || DestTy->isUnsigned())
1993 switch (StoreClass) {
1994 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1995 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1996 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001997 // The following treatment of cLong may not be perfectly right,
1998 // but it survives chains of casts of the form
1999 // double->ulong->double.
2000 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002001 default: assert(0 && "Unknown store class!");
2002 }
2003
2004 // Spill the integer to memory and reload it from there...
2005 int FrameIdx =
2006 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2007
2008 static const unsigned Op1[] =
2009 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002010 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002011
2012 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002013 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
2014 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002015 } else {
2016 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002017 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002018 }
2019
2020 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002021 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002022 return;
2023 }
2024
Brian Gaeked474e9c2002-12-06 10:49:33 +00002025 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002026 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002027 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002028}
Brian Gaekea1719c92002-10-31 23:03:59 +00002029
Chris Lattner73815062003-10-18 05:56:40 +00002030/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002031///
Chris Lattner73815062003-10-18 05:56:40 +00002032void ISel::visitVANextInst(VANextInst &I) {
2033 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002034 unsigned DestReg = getReg(I);
2035
Chris Lattnereca195e2003-05-08 19:44:13 +00002036 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002037 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002038 default:
2039 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002040 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002041 return;
2042 case Type::PointerTyID:
2043 case Type::UIntTyID:
2044 case Type::IntTyID:
2045 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002046 break;
2047 case Type::ULongTyID:
2048 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002049 case Type::DoubleTyID:
2050 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002051 break;
2052 }
2053
2054 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002055 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2056}
Chris Lattnereca195e2003-05-08 19:44:13 +00002057
Chris Lattner73815062003-10-18 05:56:40 +00002058void ISel::visitVAArgInst(VAArgInst &I) {
2059 unsigned VAList = getReg(I.getOperand(0));
2060 unsigned DestReg = getReg(I);
2061
2062 switch (I.getType()->getPrimitiveID()) {
2063 default:
2064 std::cerr << I;
2065 assert(0 && "Error: bad type for va_next instruction!");
2066 return;
2067 case Type::PointerTyID:
2068 case Type::UIntTyID:
2069 case Type::IntTyID:
2070 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2071 break;
2072 case Type::ULongTyID:
2073 case Type::LongTyID:
2074 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2075 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2076 break;
2077 case Type::DoubleTyID:
2078 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2079 break;
2080 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002081}
2082
2083
Chris Lattner3e130a22003-01-13 00:32:26 +00002084void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2085 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002086 MachineBasicBlock::iterator MI = BB->end();
2087 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002088 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002089}
2090
Brian Gaeke71794c02002-12-13 11:22:48 +00002091void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002092 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002093 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002094 User::op_iterator IdxEnd, unsigned TargetReg) {
2095 const TargetData &TD = TM.getTargetData();
2096 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002097 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002098
Brian Gaeke20244b72002-12-12 15:33:40 +00002099 // GEPs have zero or more indices; we must perform a struct access
2100 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002101 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2102 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002103 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002104 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002105 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002106 // It's a struct access. idx is the index into the structure,
2107 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002108 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2109 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00002110 && "Funny-looking structure index in GEP");
2111 // Use the TargetData structure to pick out what the layout of
2112 // the structure is in memory. Since the structure index must
2113 // be constant, we can get its value and use it to find the
2114 // right byte offset from the StructLayout class's list of
2115 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002116 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002117 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2118 if (FieldOff) {
2119 NextReg = makeAnotherReg(Type::UIntTy);
2120 // Emit an ADD to add FieldOff to the basePtr.
2121 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
2122 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002123 // The next type is the member of the structure selected by the
2124 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002125 Ty = StTy->getElementTypes()[idxValue];
2126 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002127 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002128
Brian Gaeke20244b72002-12-12 15:33:40 +00002129 // idx is the index into the array. Unlike with structure
2130 // indices, we may not know its actual value at code-generation
2131 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002132 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2133
Chris Lattnerf5854472003-06-21 16:01:24 +00002134 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2135 // operand on X86. Handle this case directly now...
2136 if (CastInst *CI = dyn_cast<CastInst>(idx))
2137 if (CI->getOperand(0)->getType() == Type::IntTy ||
2138 CI->getOperand(0)->getType() == Type::UIntTy)
2139 idx = CI->getOperand(0);
2140
Chris Lattner3e130a22003-01-13 00:32:26 +00002141 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002142 // must find the size of the pointed-to type (Not coincidentally, the next
2143 // type is the type of the elements in the array).
2144 Ty = SqTy->getElementType();
2145 unsigned elementSize = TD.getTypeSize(Ty);
2146
2147 // If idxReg is a constant, we don't need to perform the multiply!
2148 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002149 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002150 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002151 NextReg = makeAnotherReg(Type::UIntTy);
2152 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002153 }
2154 } else if (elementSize == 1) {
2155 // If the element size is 1, we don't have to multiply, just add
2156 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002157 NextReg = makeAnotherReg(Type::UIntTy);
2158 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002159 } else {
2160 unsigned idxReg = getReg(idx, MBB, IP);
2161 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002162
2163 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2164
Chris Lattner8a307e82002-12-16 19:32:50 +00002165 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00002166 NextReg = makeAnotherReg(Type::UIntTy);
2167 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002168 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002169 }
2170 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002171 // one, so we don't need to worry about BaseReg itself, anymore.
2172 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002173 }
2174 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002175 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002176 // put the answer. A 32-bit move should do it, because we are in
2177 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002178 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002179}
2180
2181
Chris Lattner065faeb2002-12-28 20:24:02 +00002182/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2183/// frame manager, otherwise do it the hard way.
2184///
2185void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002186 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002187 const Type *Ty = I.getAllocatedType();
2188 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2189
2190 // If this is a fixed size alloca in the entry block for the function,
2191 // statically stack allocate the space.
2192 //
2193 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2194 if (I.getParent() == I.getParent()->getParent()->begin()) {
2195 TySize *= CUI->getValue(); // Get total allocated size...
2196 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2197
2198 // Create a new stack object using the frame manager...
2199 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2200 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2201 return;
2202 }
2203 }
2204
2205 // Create a register to hold the temporary result of multiplying the type size
2206 // constant by the variable amount.
2207 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2208 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002209
2210 // TotalSizeReg = mul <numelements>, <TypeSize>
2211 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002212 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002213
2214 // AddedSize = add <TotalSizeReg>, 15
2215 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2216 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2217
2218 // AlignedSize = and <AddedSize>, ~15
2219 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2220 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2221
Brian Gaekee48ec012002-12-13 06:46:31 +00002222 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002223 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002224
Brian Gaekee48ec012002-12-13 06:46:31 +00002225 // Put a pointer to the space into the result register, by copying
2226 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002227 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2228
Misha Brukman48196b32003-05-03 02:18:17 +00002229 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002230 // object.
2231 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002232}
Chris Lattner3e130a22003-01-13 00:32:26 +00002233
2234/// visitMallocInst - Malloc instructions are code generated into direct calls
2235/// to the library malloc.
2236///
2237void ISel::visitMallocInst(MallocInst &I) {
2238 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2239 unsigned Arg;
2240
2241 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2242 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2243 } else {
2244 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002245 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002246 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002247 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002248 }
2249
2250 std::vector<ValueRecord> Args;
2251 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2252 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2253 1).addExternalSymbol("malloc", true);
2254 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2255}
2256
2257
2258/// visitFreeInst - Free instructions are code gen'd to call the free libc
2259/// function.
2260///
2261void ISel::visitFreeInst(FreeInst &I) {
2262 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002263 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002264 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2265 1).addExternalSymbol("free", true);
2266 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2267}
2268
Brian Gaeke20244b72002-12-12 15:33:40 +00002269
Chris Lattnerd281de22003-07-26 23:49:58 +00002270/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002271/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002272/// generated code sucks but the implementation is nice and simple.
2273///
Brian Gaeke19df3872003-08-13 18:18:15 +00002274FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002275 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002276}