blob: eb7524a9c2fcb51ab556e318ade5b1f4a3dfb65f [file] [log] [blame]
Nick Lewyckya11e2eb2008-06-30 00:04:21 +00001//===- LoopVR.cpp - Value Range analysis driven by loop information -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "loopvr"
11#include "llvm/Analysis/LoopVR.h"
12#include "llvm/Constants.h"
13#include "llvm/Instructions.h"
14#include "llvm/Analysis/ScalarEvolutionExpressions.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/Support/CFG.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/Streams.h"
19using namespace llvm;
20
21char LoopVR::ID = 0;
22namespace {
23static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", true, true);
24}
25
26/// getRange - determine the range for a particular SCEV within a given Loop
27ConstantRange LoopVR::getRange(SCEVHandle S, Loop *L, ScalarEvolution &SE) {
28 SCEVHandle T = SE.getIterationCount(L);
29 if (isa<SCEVCouldNotCompute>(T))
30 return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true);
31
32 T = SE.getTruncateOrZeroExtend(T, S->getType());
33 return getRange(S, T, SE);
34}
35
36/// getRange - determine the range for a particular SCEV with a given trip count
37ConstantRange LoopVR::getRange(SCEVHandle S, SCEVHandle T, ScalarEvolution &SE){
38
39 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
40 return ConstantRange(C->getValue()->getValue());
41
42 ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true);
43
44 // {x,+,y,+,...z}. We detect overflow by checking the size of the set after
45 // summing the upper and lower.
46 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
47 ConstantRange X = getRange(Add->getOperand(0), T, SE);
48 if (X.isFullSet()) return FullSet;
49 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) {
50 ConstantRange Y = getRange(Add->getOperand(i), T, SE);
51 if (Y.isFullSet()) return FullSet;
52
53 APInt Spread_X = X.getSetSize(), Spread_Y = Y.getSetSize();
54 APInt NewLower = X.getLower() + Y.getLower();
55 APInt NewUpper = X.getUpper() + Y.getUpper() - 1;
56 if (NewLower == NewUpper)
57 return FullSet;
58
59 X = ConstantRange(NewLower, NewUpper);
60 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
61 return FullSet; // we've wrapped, therefore, full set.
62 }
63 return X;
64 }
65
66 // {x,*,y,*,...,z}. In order to detect overflow, we use k*bitwidth where
67 // k is the number of terms being multiplied.
68 if (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
69 ConstantRange X = getRange(Mul->getOperand(0), T, SE);
70 if (X.isFullSet()) return FullSet;
71
72 const IntegerType *Ty = IntegerType::get(X.getBitWidth());
73 const IntegerType *ExTy = IntegerType::get(X.getBitWidth() *
74 Mul->getNumOperands());
75 ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth());
76
77 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) {
78 ConstantRange Y = getRange(Mul->getOperand(i), T, SE);
79 if (Y.isFullSet()) return FullSet;
80
81 ConstantRange YExt = Y.zeroExtend(ExTy->getBitWidth());
82 XExt = ConstantRange(XExt.getLower() * YExt.getLower(),
83 ((XExt.getUpper()-1) * (YExt.getUpper()-1)) + 1);
84 }
85 return XExt.truncate(Ty->getBitWidth());
86 }
87
88 // X smax Y smax ... Z is: range(smax(X_smin, Y_smin, ..., Z_smin),
89 // smax(X_smax, Y_smax, ..., Z_smax))
90 // It doesn't matter if one of the SCEVs has FullSet because we're taking
91 // a maximum of the minimums across all of them.
92 if (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
93 ConstantRange X = getRange(SMax->getOperand(0), T, SE);
94 if (X.isFullSet()) return FullSet;
95
96 APInt smin = X.getSignedMin(), smax = X.getSignedMax();
97 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) {
98 ConstantRange Y = getRange(SMax->getOperand(i), T, SE);
99 smin = APIntOps::smax(smin, Y.getSignedMin());
100 smax = APIntOps::smax(smax, Y.getSignedMax());
101 }
102 if (smax + 1 == smin) return FullSet;
103 return ConstantRange(smin, smax + 1);
104 }
105
106 // X umax Y umax ... Z is: range(umax(X_umin, Y_umin, ..., Z_umin),
107 // umax(X_umax, Y_umax, ..., Z_umax))
108 // It doesn't matter if one of the SCEVs has FullSet because we're taking
109 // a maximum of the minimums across all of them.
110 if (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
111 ConstantRange X = getRange(UMax->getOperand(0), T, SE);
112 if (X.isFullSet()) return FullSet;
113
114 APInt umin = X.getUnsignedMin(), umax = X.getUnsignedMax();
115 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) {
116 ConstantRange Y = getRange(UMax->getOperand(i), T, SE);
117 umin = APIntOps::umax(umin, Y.getUnsignedMin());
118 umax = APIntOps::umax(umax, Y.getUnsignedMax());
119 }
120 if (umax + 1 == umin) return FullSet;
121 return ConstantRange(umin, umax + 1);
122 }
123
124 // L udiv R. Luckily, there's only ever 2 sides to a udiv.
125 if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
126 ConstantRange L = getRange(UDiv->getLHS(), T, SE);
127 ConstantRange R = getRange(UDiv->getRHS(), T, SE);
128 if (L.isFullSet() && R.isFullSet()) return FullSet;
129
130 if (R.getUnsignedMax() == 0) {
131 // RHS must be single-element zero. Return an empty set.
132 return ConstantRange(R.getBitWidth(), false);
133 }
134
135 APInt Lower = L.getUnsignedMin().udiv(R.getUnsignedMax());
136
137 APInt Upper;
138
139 if (R.getUnsignedMin() == 0) {
140 // Just because it contains zero, doesn't mean it will also contain one.
141 // Use maximalIntersectWith to get the right behaviour.
142 ConstantRange NotZero(APInt(L.getBitWidth(), 1),
143 APInt::getNullValue(L.getBitWidth()));
144 R = R.maximalIntersectWith(NotZero);
145 }
146
147 // But, the maximal intersection might still include zero. If it does, then
148 // we know it also included one.
149 if (R.contains(APInt::getNullValue(L.getBitWidth())))
150 Upper = L.getUnsignedMax();
151 else
152 Upper = L.getUnsignedMax().udiv(R.getUnsignedMin());
153
154 return ConstantRange(Lower, Upper);
155 }
156
157 // ConstantRange already implements the cast operators.
158
159 if (SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
160 T = SE.getTruncateOrZeroExtend(T, ZExt->getOperand()->getType());
161 ConstantRange X = getRange(ZExt->getOperand(), T, SE);
162 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
163 }
164
165 if (SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
166 T = SE.getTruncateOrZeroExtend(T, SExt->getOperand()->getType());
167 ConstantRange X = getRange(SExt->getOperand(), T, SE);
168 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
169 }
170
171 if (SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
172 T = SE.getTruncateOrZeroExtend(T, Trunc->getOperand()->getType());
173 ConstantRange X = getRange(Trunc->getOperand(), T, SE);
174 if (X.isFullSet()) return FullSet;
175 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
176 }
177
178 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
179 SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
180 if (!Trip) return FullSet;
181
182 if (AddRec->isAffine()) {
183 SCEVHandle StartHandle = AddRec->getStart();
184 SCEVHandle StepHandle = AddRec->getOperand(1);
185
186 SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle);
187 if (!Step) return FullSet;
188
189 uint32_t ExWidth = 2 * Trip->getValue()->getBitWidth();
190 APInt TripExt = Trip->getValue()->getValue(); TripExt.zext(ExWidth);
191 APInt StepExt = Step->getValue()->getValue(); StepExt.zext(ExWidth);
192 if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1)))
193 return FullSet;
194
195 SCEVHandle EndHandle = SE.getAddExpr(StartHandle,
196 SE.getMulExpr(T, StepHandle));
197 SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle);
198 SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle);
199 if (!Start || !End) return FullSet;
200
201 const APInt &StartInt = Start->getValue()->getValue();
202 const APInt &EndInt = End->getValue()->getValue();
203 const APInt &StepInt = Step->getValue()->getValue();
204
205 if (StepInt.isNegative()) {
206 if (EndInt == StartInt + 1) return FullSet;
207 return ConstantRange(EndInt, StartInt + 1);
208 } else {
209 if (StartInt == EndInt + 1) return FullSet;
210 return ConstantRange(StartInt, EndInt + 1);
211 }
212 }
213 }
214
215 // TODO: non-affine addrec, udiv, SCEVUnknown (narrowed from elsewhere)?
216
217 return FullSet;
218}
219
220bool LoopVR::runOnFunction(Function &F) { Map.clear(); return false; }
221
222void LoopVR::print(std::ostream &os, const Module *) const {
223 for (std::map<Value *, ConstantRange *>::const_iterator I = Map.begin(),
224 E = Map.end(); I != E; ++I) {
225 os << *I->first << ": ";
226 I->second->print(os);
227 os << "\n";
228 }
229}
230
231void LoopVR::releaseMemory() {
232 for (std::map<Value *, ConstantRange *>::iterator I = Map.begin(),
233 E = Map.end(); I != E; ++I) {
234 delete I->second;
235 }
236
237 Map.clear();
238}
239
240ConstantRange LoopVR::compute(Value *V) {
241 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
242 return ConstantRange(CI->getValue());
243
244 Instruction *I = dyn_cast<Instruction>(V);
245 if (!I)
246 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
247
248 LoopInfo &LI = getAnalysis<LoopInfo>();
249 ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
250
251 Loop *L = LI.getLoopFor(I->getParent());
252 if (L->isLoopInvariant(I))
253 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
254
255 SCEVHandle S = SE.getSCEV(I);
256 if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S))
257 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
258
259 return ConstantRange(getRange(S, L, SE));
260}
261
262ConstantRange LoopVR::get(Value *V) {
263 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
264 if (I == Map.end()) {
265 ConstantRange *CR = new ConstantRange(compute(V));
266 Map[V] = CR;
267 return *CR;
268 }
269
270 return *I->second;
271}
272
273void LoopVR::remove(Value *V) {
274 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
275 if (I != Map.end()) {
276 delete I->second;
277 Map.erase(I);
278 }
279}
280
281void LoopVR::narrow(Value *V, const ConstantRange &CR) {
282 if (CR.isFullSet()) return;
283
284 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
285 if (I == Map.end())
286 Map[V] = new ConstantRange(CR);
287 else
288 Map[V] = new ConstantRange(Map[V]->maximalIntersectWith(CR));
289}