blob: ab80bab95c7064d8471cc7f57f012a386d8ec1c1 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattnere995a2a2004-05-23 21:00:47 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattnere995a2a2004-05-23 21:00:47 +00008//===----------------------------------------------------------------------===//
9//
Daniel Berlinaad15882007-09-16 21:45:02 +000010// This file defines an implementation of Andersen's interprocedural alias
11// analysis
Chris Lattnere995a2a2004-05-23 21:00:47 +000012//
13// In pointer analysis terms, this is a subset-based, flow-insensitive,
Daniel Berlinaad15882007-09-16 21:45:02 +000014// field-sensitive, and context-insensitive algorithm pointer algorithm.
Chris Lattnere995a2a2004-05-23 21:00:47 +000015//
16// This algorithm is implemented as three stages:
17// 1. Object identification.
18// 2. Inclusion constraint identification.
Daniel Berlind81ccc22007-09-24 19:45:49 +000019// 3. Offline constraint graph optimization
20// 4. Inclusion constraint solving.
Chris Lattnere995a2a2004-05-23 21:00:47 +000021//
22// The object identification stage identifies all of the memory objects in the
23// program, which includes globals, heap allocated objects, and stack allocated
24// objects.
25//
26// The inclusion constraint identification stage finds all inclusion constraints
27// in the program by scanning the program, looking for pointer assignments and
28// other statements that effect the points-to graph. For a statement like "A =
29// B", this statement is processed to indicate that A can point to anything that
Daniel Berlinaad15882007-09-16 21:45:02 +000030// B can point to. Constraints can handle copies, loads, and stores, and
31// address taking.
Chris Lattnere995a2a2004-05-23 21:00:47 +000032//
Daniel Berline6f04792007-09-24 22:20:45 +000033// The offline constraint graph optimization portion includes offline variable
Daniel Berlinc864edb2008-03-05 19:31:47 +000034// substitution algorithms intended to compute pointer and location
Daniel Berline6f04792007-09-24 22:20:45 +000035// equivalences. Pointer equivalences are those pointers that will have the
36// same points-to sets, and location equivalences are those variables that
Daniel Berlinc864edb2008-03-05 19:31:47 +000037// always appear together in points-to sets. It also includes an offline
38// cycle detection algorithm that allows cycles to be collapsed sooner
39// during solving.
Daniel Berlind81ccc22007-09-24 19:45:49 +000040//
Chris Lattnere995a2a2004-05-23 21:00:47 +000041// The inclusion constraint solving phase iteratively propagates the inclusion
42// constraints until a fixed point is reached. This is an O(N^3) algorithm.
43//
Daniel Berlinaad15882007-09-16 21:45:02 +000044// Function constraints are handled as if they were structs with X fields.
45// Thus, an access to argument X of function Y is an access to node index
46// getNode(Y) + X. This representation allows handling of indirect calls
Daniel Berlind81ccc22007-09-24 19:45:49 +000047// without any issues. To wit, an indirect call Y(a,b) is equivalent to
Daniel Berlinaad15882007-09-16 21:45:02 +000048// *(Y + 1) = a, *(Y + 2) = b.
49// The return node for a function is always located at getNode(F) +
50// CallReturnPos. The arguments start at getNode(F) + CallArgPos.
Chris Lattnere995a2a2004-05-23 21:00:47 +000051//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000052// Future Improvements:
Daniel Berlinc864edb2008-03-05 19:31:47 +000053// Use of BDD's.
Chris Lattnere995a2a2004-05-23 21:00:47 +000054//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "anders-aa"
57#include "llvm/Constants.h"
58#include "llvm/DerivedTypes.h"
59#include "llvm/Instructions.h"
60#include "llvm/Module.h"
61#include "llvm/Pass.h"
Reid Spencerd7d83db2007-02-05 23:42:17 +000062#include "llvm/Support/Compiler.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000063#include "llvm/Support/InstIterator.h"
64#include "llvm/Support/InstVisitor.h"
65#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000066#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000067#include "llvm/Support/Debug.h"
68#include "llvm/ADT/Statistic.h"
Daniel Berlinaad15882007-09-16 21:45:02 +000069#include "llvm/ADT/SparseBitVector.h"
Chris Lattnerbe207732007-09-30 00:47:20 +000070#include "llvm/ADT/DenseSet.h"
Jeff Cohenca5183d2007-03-05 00:00:42 +000071#include <algorithm>
Chris Lattnere995a2a2004-05-23 21:00:47 +000072#include <set>
Daniel Berlinaad15882007-09-16 21:45:02 +000073#include <list>
Dan Gohmanc9235d22008-03-21 23:51:57 +000074#include <map>
Daniel Berlinaad15882007-09-16 21:45:02 +000075#include <stack>
76#include <vector>
Daniel Berlin3a3f1632007-12-12 00:37:04 +000077#include <queue>
78
79// Determining the actual set of nodes the universal set can consist of is very
80// expensive because it means propagating around very large sets. We rely on
81// other analysis being able to determine which nodes can never be pointed to in
82// order to disambiguate further than "points-to anything".
83#define FULL_UNIVERSAL 0
Chris Lattnere995a2a2004-05-23 21:00:47 +000084
Daniel Berlinaad15882007-09-16 21:45:02 +000085using namespace llvm;
Daniel Berlind81ccc22007-09-24 19:45:49 +000086STATISTIC(NumIters , "Number of iterations to reach convergence");
87STATISTIC(NumConstraints, "Number of constraints");
88STATISTIC(NumNodes , "Number of nodes");
89STATISTIC(NumUnified , "Number of variables unified");
Daniel Berlin3a3f1632007-12-12 00:37:04 +000090STATISTIC(NumErased , "Number of redundant constraints erased");
Chris Lattnere995a2a2004-05-23 21:00:47 +000091
Chris Lattner3b27d682006-12-19 22:30:33 +000092namespace {
Daniel Berlinaad15882007-09-16 21:45:02 +000093 const unsigned SelfRep = (unsigned)-1;
94 const unsigned Unvisited = (unsigned)-1;
95 // Position of the function return node relative to the function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +000096 const unsigned CallReturnPos = 1;
Daniel Berlinaad15882007-09-16 21:45:02 +000097 // Position of the function call node relative to the function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +000098 const unsigned CallFirstArgPos = 2;
99
100 struct BitmapKeyInfo {
101 static inline SparseBitVector<> *getEmptyKey() {
102 return reinterpret_cast<SparseBitVector<> *>(-1);
103 }
104 static inline SparseBitVector<> *getTombstoneKey() {
105 return reinterpret_cast<SparseBitVector<> *>(-2);
106 }
107 static unsigned getHashValue(const SparseBitVector<> *bitmap) {
108 return bitmap->getHashValue();
109 }
110 static bool isEqual(const SparseBitVector<> *LHS,
111 const SparseBitVector<> *RHS) {
112 if (LHS == RHS)
113 return true;
114 else if (LHS == getEmptyKey() || RHS == getEmptyKey()
115 || LHS == getTombstoneKey() || RHS == getTombstoneKey())
116 return false;
117
118 return *LHS == *RHS;
119 }
120
121 static bool isPod() { return true; }
122 };
Daniel Berlinaad15882007-09-16 21:45:02 +0000123
Reid Spencerd7d83db2007-02-05 23:42:17 +0000124 class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
125 private InstVisitor<Andersens> {
Hartmut Kaiser081fdf22007-10-25 23:49:14 +0000126 struct Node;
Daniel Berlinaad15882007-09-16 21:45:02 +0000127
128 /// Constraint - Objects of this structure are used to represent the various
129 /// constraints identified by the algorithm. The constraints are 'copy',
130 /// for statements like "A = B", 'load' for statements like "A = *B",
131 /// 'store' for statements like "*A = B", and AddressOf for statements like
132 /// A = alloca; The Offset is applied as *(A + K) = B for stores,
133 /// A = *(B + K) for loads, and A = B + K for copies. It is
Daniel Berlind81ccc22007-09-24 19:45:49 +0000134 /// illegal on addressof constraints (because it is statically
Daniel Berlinaad15882007-09-16 21:45:02 +0000135 /// resolvable to A = &C where C = B + K)
136
137 struct Constraint {
138 enum ConstraintType { Copy, Load, Store, AddressOf } Type;
139 unsigned Dest;
140 unsigned Src;
141 unsigned Offset;
142
143 Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
144 : Type(Ty), Dest(D), Src(S), Offset(O) {
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +0000145 assert((Offset == 0 || Ty != AddressOf) &&
Daniel Berlinaad15882007-09-16 21:45:02 +0000146 "Offset is illegal on addressof constraints");
147 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000148
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000149 bool operator==(const Constraint &RHS) const {
150 return RHS.Type == Type
151 && RHS.Dest == Dest
152 && RHS.Src == Src
153 && RHS.Offset == Offset;
154 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000155
156 bool operator!=(const Constraint &RHS) const {
157 return !(*this == RHS);
158 }
159
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000160 bool operator<(const Constraint &RHS) const {
161 if (RHS.Type != Type)
162 return RHS.Type < Type;
163 else if (RHS.Dest != Dest)
164 return RHS.Dest < Dest;
165 else if (RHS.Src != Src)
166 return RHS.Src < Src;
167 return RHS.Offset < Offset;
168 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000169 };
170
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000171 // Information DenseSet requires implemented in order to be able to do
172 // it's thing
173 struct PairKeyInfo {
174 static inline std::pair<unsigned, unsigned> getEmptyKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000175 return std::make_pair(~0U, ~0U);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000176 }
177 static inline std::pair<unsigned, unsigned> getTombstoneKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000178 return std::make_pair(~0U - 1, ~0U - 1);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000179 }
180 static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
181 return P.first ^ P.second;
182 }
183 static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
184 const std::pair<unsigned, unsigned> &RHS) {
185 return LHS == RHS;
186 }
187 };
188
Daniel Berlin336c6c02007-09-29 00:50:40 +0000189 struct ConstraintKeyInfo {
190 static inline Constraint getEmptyKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000191 return Constraint(Constraint::Copy, ~0U, ~0U, ~0U);
Daniel Berlin336c6c02007-09-29 00:50:40 +0000192 }
193 static inline Constraint getTombstoneKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000194 return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1);
Daniel Berlin336c6c02007-09-29 00:50:40 +0000195 }
196 static unsigned getHashValue(const Constraint &C) {
197 return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
198 }
199 static bool isEqual(const Constraint &LHS,
200 const Constraint &RHS) {
201 return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
202 && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
203 }
204 };
205
Daniel Berlind81ccc22007-09-24 19:45:49 +0000206 // Node class - This class is used to represent a node in the constraint
Daniel Berline6f04792007-09-24 22:20:45 +0000207 // graph. Due to various optimizations, it is not always the case that
208 // there is a mapping from a Node to a Value. In particular, we add
209 // artificial Node's that represent the set of pointed-to variables shared
210 // for each location equivalent Node.
Daniel Berlinaad15882007-09-16 21:45:02 +0000211 struct Node {
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000212 private:
213 static unsigned Counter;
214
215 public:
Daniel Berlind81ccc22007-09-24 19:45:49 +0000216 Value *Val;
Daniel Berlinaad15882007-09-16 21:45:02 +0000217 SparseBitVector<> *Edges;
218 SparseBitVector<> *PointsTo;
219 SparseBitVector<> *OldPointsTo;
Daniel Berlinaad15882007-09-16 21:45:02 +0000220 std::list<Constraint> Constraints;
221
Daniel Berlind81ccc22007-09-24 19:45:49 +0000222 // Pointer and location equivalence labels
223 unsigned PointerEquivLabel;
224 unsigned LocationEquivLabel;
225 // Predecessor edges, both real and implicit
226 SparseBitVector<> *PredEdges;
227 SparseBitVector<> *ImplicitPredEdges;
228 // Set of nodes that point to us, only use for location equivalence.
229 SparseBitVector<> *PointedToBy;
230 // Number of incoming edges, used during variable substitution to early
231 // free the points-to sets
232 unsigned NumInEdges;
Daniel Berline6f04792007-09-24 22:20:45 +0000233 // True if our points-to set is in the Set2PEClass map
Daniel Berlind81ccc22007-09-24 19:45:49 +0000234 bool StoredInHash;
Daniel Berline6f04792007-09-24 22:20:45 +0000235 // True if our node has no indirect constraints (complex or otherwise)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000236 bool Direct;
237 // True if the node is address taken, *or* it is part of a group of nodes
238 // that must be kept together. This is set to true for functions and
239 // their arg nodes, which must be kept at the same position relative to
240 // their base function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000241 bool AddressTaken;
Daniel Berlinaad15882007-09-16 21:45:02 +0000242
Daniel Berlind81ccc22007-09-24 19:45:49 +0000243 // Nodes in cycles (or in equivalence classes) are united together using a
244 // standard union-find representation with path compression. NodeRep
245 // gives the index into GraphNodes for the representative Node.
246 unsigned NodeRep;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000247
248 // Modification timestamp. Assigned from Counter.
249 // Used for work list prioritization.
250 unsigned Timestamp;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000251
Dan Gohmanded2b0d2007-12-14 15:41:34 +0000252 explicit Node(bool direct = true) :
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000253 Val(0), Edges(0), PointsTo(0), OldPointsTo(0),
Daniel Berlind81ccc22007-09-24 19:45:49 +0000254 PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
255 ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
256 StoredInHash(false), Direct(direct), AddressTaken(false),
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000257 NodeRep(SelfRep), Timestamp(0) { }
Daniel Berlinaad15882007-09-16 21:45:02 +0000258
Chris Lattnere995a2a2004-05-23 21:00:47 +0000259 Node *setValue(Value *V) {
260 assert(Val == 0 && "Value already set for this node!");
261 Val = V;
262 return this;
263 }
264
265 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000266 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +0000267 Value *getValue() const { return Val; }
268
Chris Lattnere995a2a2004-05-23 21:00:47 +0000269 /// addPointerTo - Add a pointer to the list of pointees of this node,
270 /// returning true if this caused a new pointer to be added, or false if
271 /// we already knew about the points-to relation.
Daniel Berlinaad15882007-09-16 21:45:02 +0000272 bool addPointerTo(unsigned Node) {
273 return PointsTo->test_and_set(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000274 }
275
276 /// intersects - Return true if the points-to set of this node intersects
277 /// with the points-to set of the specified node.
278 bool intersects(Node *N) const;
279
280 /// intersectsIgnoring - Return true if the points-to set of this node
281 /// intersects with the points-to set of the specified node on any nodes
282 /// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +0000283 bool intersectsIgnoring(Node *N, unsigned) const;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000284
285 // Timestamp a node (used for work list prioritization)
286 void Stamp() {
287 Timestamp = Counter++;
288 }
289
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000290 bool isRep() const {
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000291 return( (int) NodeRep < 0 );
292 }
293 };
294
295 struct WorkListElement {
296 Node* node;
297 unsigned Timestamp;
298 WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
299
300 // Note that we reverse the sense of the comparison because we
301 // actually want to give low timestamps the priority over high,
302 // whereas priority is typically interpreted as a greater value is
303 // given high priority.
304 bool operator<(const WorkListElement& that) const {
305 return( this->Timestamp > that.Timestamp );
306 }
307 };
308
309 // Priority-queue based work list specialized for Nodes.
310 class WorkList {
311 std::priority_queue<WorkListElement> Q;
312
313 public:
314 void insert(Node* n) {
315 Q.push( WorkListElement(n, n->Timestamp) );
316 }
317
318 // We automatically discard non-representative nodes and nodes
319 // that were in the work list twice (we keep a copy of the
320 // timestamp in the work list so we can detect this situation by
321 // comparing against the node's current timestamp).
322 Node* pop() {
323 while( !Q.empty() ) {
324 WorkListElement x = Q.top(); Q.pop();
325 Node* INode = x.node;
326
327 if( INode->isRep() &&
328 INode->Timestamp == x.Timestamp ) {
329 return(x.node);
330 }
331 }
332 return(0);
333 }
334
335 bool empty() {
336 return Q.empty();
337 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000338 };
339
340 /// GraphNodes - This vector is populated as part of the object
341 /// identification stage of the analysis, which populates this vector with a
342 /// node for each memory object and fills in the ValueNodes map.
343 std::vector<Node> GraphNodes;
344
345 /// ValueNodes - This map indicates the Node that a particular Value* is
346 /// represented by. This contains entries for all pointers.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000347 DenseMap<Value*, unsigned> ValueNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000348
349 /// ObjectNodes - This map contains entries for each memory object in the
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000350 /// program: globals, alloca's and mallocs.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000351 DenseMap<Value*, unsigned> ObjectNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000352
353 /// ReturnNodes - This map contains an entry for each function in the
354 /// program that returns a value.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000355 DenseMap<Function*, unsigned> ReturnNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000356
357 /// VarargNodes - This map contains the entry used to represent all pointers
358 /// passed through the varargs portion of a function call for a particular
359 /// function. An entry is not present in this map for functions that do not
360 /// take variable arguments.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000361 DenseMap<Function*, unsigned> VarargNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000362
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000363
Chris Lattnere995a2a2004-05-23 21:00:47 +0000364 /// Constraints - This vector contains a list of all of the constraints
365 /// identified by the program.
366 std::vector<Constraint> Constraints;
367
Daniel Berlind81ccc22007-09-24 19:45:49 +0000368 // Map from graph node to maximum K value that is allowed (for functions,
Daniel Berlinaad15882007-09-16 21:45:02 +0000369 // this is equivalent to the number of arguments + CallFirstArgPos)
370 std::map<unsigned, unsigned> MaxK;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000371
372 /// This enum defines the GraphNodes indices that correspond to important
373 /// fixed sets.
374 enum {
375 UniversalSet = 0,
376 NullPtr = 1,
Daniel Berlind81ccc22007-09-24 19:45:49 +0000377 NullObject = 2,
378 NumberSpecialNodes
Chris Lattnere995a2a2004-05-23 21:00:47 +0000379 };
Daniel Berlind81ccc22007-09-24 19:45:49 +0000380 // Stack for Tarjan's
Daniel Berlinaad15882007-09-16 21:45:02 +0000381 std::stack<unsigned> SCCStack;
Daniel Berlinaad15882007-09-16 21:45:02 +0000382 // Map from Graph Node to DFS number
383 std::vector<unsigned> Node2DFS;
384 // Map from Graph Node to Deleted from graph.
385 std::vector<bool> Node2Deleted;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000386 // Same as Node Maps, but implemented as std::map because it is faster to
387 // clear
388 std::map<unsigned, unsigned> Tarjan2DFS;
389 std::map<unsigned, bool> Tarjan2Deleted;
390 // Current DFS number
Daniel Berlinaad15882007-09-16 21:45:02 +0000391 unsigned DFSNumber;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000392
393 // Work lists.
394 WorkList w1, w2;
395 WorkList *CurrWL, *NextWL; // "current" and "next" work lists
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000396
Daniel Berlind81ccc22007-09-24 19:45:49 +0000397 // Offline variable substitution related things
398
399 // Temporary rep storage, used because we can't collapse SCC's in the
400 // predecessor graph by uniting the variables permanently, we can only do so
401 // for the successor graph.
402 std::vector<unsigned> VSSCCRep;
403 // Mapping from node to whether we have visited it during SCC finding yet.
404 std::vector<bool> Node2Visited;
405 // During variable substitution, we create unknowns to represent the unknown
406 // value that is a dereference of a variable. These nodes are known as
407 // "ref" nodes (since they represent the value of dereferences).
408 unsigned FirstRefNode;
409 // During HVN, we create represent address taken nodes as if they were
410 // unknown (since HVN, unlike HU, does not evaluate unions).
411 unsigned FirstAdrNode;
412 // Current pointer equivalence class number
413 unsigned PEClass;
414 // Mapping from points-to sets to equivalence classes
415 typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
416 BitVectorMap Set2PEClass;
417 // Mapping from pointer equivalences to the representative node. -1 if we
418 // have no representative node for this pointer equivalence class yet.
419 std::vector<int> PEClass2Node;
420 // Mapping from pointer equivalences to representative node. This includes
421 // pointer equivalent but not location equivalent variables. -1 if we have
422 // no representative node for this pointer equivalence class yet.
423 std::vector<int> PENLEClass2Node;
Daniel Berlinc864edb2008-03-05 19:31:47 +0000424 // Union/Find for HCD
425 std::vector<unsigned> HCDSCCRep;
426 // HCD's offline-detected cycles; "Statically DeTected"
427 // -1 if not part of such a cycle, otherwise a representative node.
428 std::vector<int> SDT;
429 // Whether to use SDT (UniteNodes can use it during solving, but not before)
430 bool SDTActive;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000431
Chris Lattnere995a2a2004-05-23 21:00:47 +0000432 public:
Daniel Berlinaad15882007-09-16 21:45:02 +0000433 static char ID;
Devang Patelc7582092008-03-19 21:56:59 +0000434 Andersens() : ModulePass((intptr_t)&ID) {}
Devang Patel1cee94f2008-03-18 00:39:19 +0000435
Chris Lattnerb12914b2004-09-20 04:48:05 +0000436 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000437 InitializeAliasAnalysis(this);
438 IdentifyObjects(M);
439 CollectConstraints(M);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000440#undef DEBUG_TYPE
441#define DEBUG_TYPE "anders-aa-constraints"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000442 DEBUG(PrintConstraints());
Daniel Berlind81ccc22007-09-24 19:45:49 +0000443#undef DEBUG_TYPE
444#define DEBUG_TYPE "anders-aa"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000445 SolveConstraints();
446 DEBUG(PrintPointsToGraph());
447
448 // Free the constraints list, as we don't need it to respond to alias
449 // requests.
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000450 std::vector<Constraint>().swap(Constraints);
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000451 //These are needed for Print() (-analyze in opt)
452 //ObjectNodes.clear();
453 //ReturnNodes.clear();
454 //VarargNodes.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000455 return false;
456 }
457
458 void releaseMemory() {
459 // FIXME: Until we have transitively required passes working correctly,
460 // this cannot be enabled! Otherwise, using -count-aa with the pass
461 // causes memory to be freed too early. :(
462#if 0
463 // The memory objects and ValueNodes data structures at the only ones that
464 // are still live after construction.
465 std::vector<Node>().swap(GraphNodes);
466 ValueNodes.clear();
467#endif
468 }
469
470 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
471 AliasAnalysis::getAnalysisUsage(AU);
472 AU.setPreservesAll(); // Does not transform code
473 }
474
475 //------------------------------------------------
476 // Implement the AliasAnalysis API
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000477 //
Chris Lattnere995a2a2004-05-23 21:00:47 +0000478 AliasResult alias(const Value *V1, unsigned V1Size,
479 const Value *V2, unsigned V2Size);
Reid Spencer3a9ec242006-08-28 01:02:49 +0000480 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
481 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000482 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
483 bool pointsToConstantMemory(const Value *P);
484
485 virtual void deleteValue(Value *V) {
486 ValueNodes.erase(V);
487 getAnalysis<AliasAnalysis>().deleteValue(V);
488 }
489
490 virtual void copyValue(Value *From, Value *To) {
491 ValueNodes[To] = ValueNodes[From];
492 getAnalysis<AliasAnalysis>().copyValue(From, To);
493 }
494
495 private:
496 /// getNode - Return the node corresponding to the specified pointer scalar.
497 ///
Daniel Berlinaad15882007-09-16 21:45:02 +0000498 unsigned getNode(Value *V) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000499 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000500 if (!isa<GlobalValue>(C))
501 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000502
Daniel Berlind81ccc22007-09-24 19:45:49 +0000503 DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000504 if (I == ValueNodes.end()) {
Jim Laskey16d42c62006-07-11 18:25:13 +0000505#ifndef NDEBUG
506 V->dump();
507#endif
Jim Laskeye37fe9b2006-07-11 17:58:07 +0000508 assert(0 && "Value does not have a node in the points-to graph!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000509 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000510 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000511 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000512
Chris Lattnere995a2a2004-05-23 21:00:47 +0000513 /// getObject - Return the node corresponding to the memory object for the
514 /// specified global or allocation instruction.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000515 unsigned getObject(Value *V) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000516 DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000517 assert(I != ObjectNodes.end() &&
518 "Value does not have an object in the points-to graph!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000519 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000520 }
521
522 /// getReturnNode - Return the node representing the return value for the
523 /// specified function.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000524 unsigned getReturnNode(Function *F) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000525 DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000526 assert(I != ReturnNodes.end() && "Function does not return a value!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000527 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000528 }
529
530 /// getVarargNode - Return the node representing the variable arguments
531 /// formal for the specified function.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000532 unsigned getVarargNode(Function *F) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000533 DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000534 assert(I != VarargNodes.end() && "Function does not take var args!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000535 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000536 }
537
538 /// getNodeValue - Get the node for the specified LLVM value and set the
539 /// value for it to be the specified value.
Daniel Berlinaad15882007-09-16 21:45:02 +0000540 unsigned getNodeValue(Value &V) {
541 unsigned Index = getNode(&V);
542 GraphNodes[Index].setValue(&V);
543 return Index;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000544 }
545
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000546 unsigned UniteNodes(unsigned First, unsigned Second,
547 bool UnionByRank = true);
Daniel Berlinaad15882007-09-16 21:45:02 +0000548 unsigned FindNode(unsigned Node);
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000549 unsigned FindNode(unsigned Node) const;
Daniel Berlinaad15882007-09-16 21:45:02 +0000550
Chris Lattnere995a2a2004-05-23 21:00:47 +0000551 void IdentifyObjects(Module &M);
552 void CollectConstraints(Module &M);
Daniel Berlinaad15882007-09-16 21:45:02 +0000553 bool AnalyzeUsesOfFunction(Value *);
554 void CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +0000555 void OptimizeConstraints();
556 unsigned FindEquivalentNode(unsigned, unsigned);
557 void ClumpAddressTaken();
558 void RewriteConstraints();
559 void HU();
560 void HVN();
Daniel Berlinc864edb2008-03-05 19:31:47 +0000561 void HCD();
562 void Search(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000563 void UnitePointerEquivalences();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000564 void SolveConstraints();
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000565 bool QueryNode(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000566 void Condense(unsigned Node);
567 void HUValNum(unsigned Node);
568 void HVNValNum(unsigned Node);
Daniel Berlinaad15882007-09-16 21:45:02 +0000569 unsigned getNodeForConstantPointer(Constant *C);
570 unsigned getNodeForConstantPointerTarget(Constant *C);
571 void AddGlobalInitializerConstraints(unsigned, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000572
Chris Lattnere995a2a2004-05-23 21:00:47 +0000573 void AddConstraintsForNonInternalLinkage(Function *F);
574 void AddConstraintsForCall(CallSite CS, Function *F);
Chris Lattner8a446432005-03-29 06:09:07 +0000575 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000576
577
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000578 void PrintNode(const Node *N) const;
579 void PrintConstraints() const ;
580 void PrintConstraint(const Constraint &) const;
581 void PrintLabels() const;
582 void PrintPointsToGraph() const;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000583
584 //===------------------------------------------------------------------===//
585 // Instruction visitation methods for adding constraints
586 //
587 friend class InstVisitor<Andersens>;
588 void visitReturnInst(ReturnInst &RI);
589 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
590 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
591 void visitCallSite(CallSite CS);
592 void visitAllocationInst(AllocationInst &AI);
593 void visitLoadInst(LoadInst &LI);
594 void visitStoreInst(StoreInst &SI);
595 void visitGetElementPtrInst(GetElementPtrInst &GEP);
596 void visitPHINode(PHINode &PN);
597 void visitCastInst(CastInst &CI);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000598 void visitICmpInst(ICmpInst &ICI) {} // NOOP!
599 void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
Chris Lattnere995a2a2004-05-23 21:00:47 +0000600 void visitSelectInst(SelectInst &SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000601 void visitVAArg(VAArgInst &I);
602 void visitInstruction(Instruction &I);
Daniel Berlinaad15882007-09-16 21:45:02 +0000603
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000604 //===------------------------------------------------------------------===//
605 // Implement Analyize interface
606 //
607 void print(std::ostream &O, const Module* M) const {
608 PrintPointsToGraph();
609 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000610 };
611
Devang Patel19974732007-05-03 01:11:54 +0000612 char Andersens::ID = 0;
Chris Lattner7f8897f2006-08-27 22:42:52 +0000613 RegisterPass<Andersens> X("anders-aa",
Devang Patel4f4c28f2008-03-20 02:25:21 +0000614 "Andersen's Interprocedural Alias Analysis", false,
Devang Patelc7582092008-03-19 21:56:59 +0000615 true);
Chris Lattnera5370172006-08-28 00:42:29 +0000616 RegisterAnalysisGroup<AliasAnalysis> Y(X);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000617
618 // Initialize Timestamp Counter (static).
619 unsigned Andersens::Node::Counter = 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000620}
621
Jeff Cohen534927d2005-01-08 22:01:16 +0000622ModulePass *llvm::createAndersensPass() { return new Andersens(); }
623
Chris Lattnere995a2a2004-05-23 21:00:47 +0000624//===----------------------------------------------------------------------===//
625// AliasAnalysis Interface Implementation
626//===----------------------------------------------------------------------===//
627
628AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
629 const Value *V2, unsigned V2Size) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000630 Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
631 Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
Chris Lattnere995a2a2004-05-23 21:00:47 +0000632
633 // Check to see if the two pointers are known to not alias. They don't alias
634 // if their points-to sets do not intersect.
Daniel Berlinaad15882007-09-16 21:45:02 +0000635 if (!N1->intersectsIgnoring(N2, NullObject))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000636 return NoAlias;
637
638 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
639}
640
Chris Lattnerf392c642005-03-28 06:21:17 +0000641AliasAnalysis::ModRefResult
642Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
643 // The only thing useful that we can contribute for mod/ref information is
644 // when calling external function calls: if we know that memory never escapes
645 // from the program, it cannot be modified by an external call.
646 //
647 // NOTE: This is not really safe, at least not when the entire program is not
648 // available. The deal is that the external function could call back into the
649 // program and modify stuff. We ignore this technical niggle for now. This
650 // is, after all, a "research quality" implementation of Andersen's analysis.
651 if (Function *F = CS.getCalledFunction())
Reid Spencer5cbf9852007-01-30 20:08:39 +0000652 if (F->isDeclaration()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000653 Node *N1 = &GraphNodes[FindNode(getNode(P))];
Chris Lattnerf392c642005-03-28 06:21:17 +0000654
Daniel Berlinaad15882007-09-16 21:45:02 +0000655 if (N1->PointsTo->empty())
656 return NoModRef;
Daniel Berlind3bf1ae2008-03-18 22:22:53 +0000657#if FULL_UNIVERSAL
658 if (!UniversalSet->PointsTo->test(FindNode(getNode(P))))
659 return NoModRef; // Universal set does not contain P
660#else
Daniel Berlinaad15882007-09-16 21:45:02 +0000661 if (!N1->PointsTo->test(UniversalSet))
Chris Lattnerf392c642005-03-28 06:21:17 +0000662 return NoModRef; // P doesn't point to the universal set.
Daniel Berlind3bf1ae2008-03-18 22:22:53 +0000663#endif
Chris Lattnerf392c642005-03-28 06:21:17 +0000664 }
665
666 return AliasAnalysis::getModRefInfo(CS, P, Size);
667}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000668
Reid Spencer3a9ec242006-08-28 01:02:49 +0000669AliasAnalysis::ModRefResult
670Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
671 return AliasAnalysis::getModRefInfo(CS1,CS2);
672}
673
Chris Lattnere995a2a2004-05-23 21:00:47 +0000674/// getMustAlias - We can provide must alias information if we know that a
675/// pointer can only point to a specific function or the null pointer.
676/// Unfortunately we cannot determine must-alias information for global
677/// variables or any other memory memory objects because we do not track whether
678/// a pointer points to the beginning of an object or a field of it.
679void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000680 Node *N = &GraphNodes[FindNode(getNode(P))];
681 if (N->PointsTo->count() == 1) {
682 Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
683 // If a function is the only object in the points-to set, then it must be
684 // the destination. Note that we can't handle global variables here,
685 // because we don't know if the pointer is actually pointing to a field of
686 // the global or to the beginning of it.
687 if (Value *V = Pointee->getValue()) {
688 if (Function *F = dyn_cast<Function>(V))
689 RetVals.push_back(F);
690 } else {
691 // If the object in the points-to set is the null object, then the null
692 // pointer is a must alias.
693 if (Pointee == &GraphNodes[NullObject])
694 RetVals.push_back(Constant::getNullValue(P->getType()));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000695 }
696 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000697 AliasAnalysis::getMustAliases(P, RetVals);
698}
699
700/// pointsToConstantMemory - If we can determine that this pointer only points
701/// to constant memory, return true. In practice, this means that if the
702/// pointer can only point to constant globals, functions, or the null pointer,
703/// return true.
704///
705bool Andersens::pointsToConstantMemory(const Value *P) {
Dan Gohman6a551e72008-02-21 17:33:24 +0000706 Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
Daniel Berlinaad15882007-09-16 21:45:02 +0000707 unsigned i;
708
709 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
710 bi != N->PointsTo->end();
711 ++bi) {
712 i = *bi;
713 Node *Pointee = &GraphNodes[i];
714 if (Value *V = Pointee->getValue()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000715 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
716 !cast<GlobalVariable>(V)->isConstant()))
717 return AliasAnalysis::pointsToConstantMemory(P);
718 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +0000719 if (i != NullObject)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000720 return AliasAnalysis::pointsToConstantMemory(P);
721 }
722 }
723
724 return true;
725}
726
727//===----------------------------------------------------------------------===//
728// Object Identification Phase
729//===----------------------------------------------------------------------===//
730
731/// IdentifyObjects - This stage scans the program, adding an entry to the
732/// GraphNodes list for each memory object in the program (global stack or
733/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
734///
735void Andersens::IdentifyObjects(Module &M) {
736 unsigned NumObjects = 0;
737
738 // Object #0 is always the universal set: the object that we don't know
739 // anything about.
740 assert(NumObjects == UniversalSet && "Something changed!");
741 ++NumObjects;
742
743 // Object #1 always represents the null pointer.
744 assert(NumObjects == NullPtr && "Something changed!");
745 ++NumObjects;
746
747 // Object #2 always represents the null object (the object pointed to by null)
748 assert(NumObjects == NullObject && "Something changed!");
749 ++NumObjects;
750
751 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000752 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
753 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000754 ObjectNodes[I] = NumObjects++;
755 ValueNodes[I] = NumObjects++;
756 }
757
758 // Add nodes for all of the functions and the instructions inside of them.
759 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
760 // The function itself is a memory object.
Daniel Berlinaad15882007-09-16 21:45:02 +0000761 unsigned First = NumObjects;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000762 ValueNodes[F] = NumObjects++;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000763 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
764 ReturnNodes[F] = NumObjects++;
765 if (F->getFunctionType()->isVarArg())
766 VarargNodes[F] = NumObjects++;
767
Daniel Berlinaad15882007-09-16 21:45:02 +0000768
Chris Lattnere995a2a2004-05-23 21:00:47 +0000769 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000770 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
771 I != E; ++I)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000772 {
773 if (isa<PointerType>(I->getType()))
774 ValueNodes[I] = NumObjects++;
775 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000776 MaxK[First] = NumObjects - First;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000777
778 // Scan the function body, creating a memory object for each heap/stack
779 // allocation in the body of the function and a node to represent all
780 // pointer values defined by instructions and used as operands.
781 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
782 // If this is an heap or stack allocation, create a node for the memory
783 // object.
784 if (isa<PointerType>(II->getType())) {
785 ValueNodes[&*II] = NumObjects++;
786 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
787 ObjectNodes[AI] = NumObjects++;
788 }
Nick Lewycky4ac0e8d2007-11-22 03:07:37 +0000789
790 // Calls to inline asm need to be added as well because the callee isn't
791 // referenced anywhere else.
792 if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
793 Value *Callee = CI->getCalledValue();
794 if (isa<InlineAsm>(Callee))
795 ValueNodes[Callee] = NumObjects++;
796 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000797 }
798 }
799
800 // Now that we know how many objects to create, make them all now!
801 GraphNodes.resize(NumObjects);
802 NumNodes += NumObjects;
803}
804
805//===----------------------------------------------------------------------===//
806// Constraint Identification Phase
807//===----------------------------------------------------------------------===//
808
809/// getNodeForConstantPointer - Return the node corresponding to the constant
810/// pointer itself.
Daniel Berlinaad15882007-09-16 21:45:02 +0000811unsigned Andersens::getNodeForConstantPointer(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000812 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
813
Chris Lattner267a1b02005-03-27 18:58:23 +0000814 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000815 return NullPtr;
Reid Spencere8404342004-07-18 00:18:30 +0000816 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
817 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000818 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
819 switch (CE->getOpcode()) {
820 case Instruction::GetElementPtr:
821 return getNodeForConstantPointer(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000822 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000823 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000824 case Instruction::BitCast:
825 return getNodeForConstantPointer(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000826 default:
Bill Wendlinge8156192006-12-07 01:30:32 +0000827 cerr << "Constant Expr not yet handled: " << *CE << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +0000828 assert(0);
829 }
830 } else {
831 assert(0 && "Unknown constant pointer!");
832 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000833 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000834}
835
836/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
837/// specified constant pointer.
Daniel Berlinaad15882007-09-16 21:45:02 +0000838unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000839 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
840
841 if (isa<ConstantPointerNull>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000842 return NullObject;
Reid Spencere8404342004-07-18 00:18:30 +0000843 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
844 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000845 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
846 switch (CE->getOpcode()) {
847 case Instruction::GetElementPtr:
848 return getNodeForConstantPointerTarget(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000849 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000850 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000851 case Instruction::BitCast:
852 return getNodeForConstantPointerTarget(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000853 default:
Bill Wendlinge8156192006-12-07 01:30:32 +0000854 cerr << "Constant Expr not yet handled: " << *CE << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +0000855 assert(0);
856 }
857 } else {
858 assert(0 && "Unknown constant pointer!");
859 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000860 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000861}
862
863/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
864/// object N, which contains values indicated by C.
Daniel Berlinaad15882007-09-16 21:45:02 +0000865void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
866 Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000867 if (C->getType()->isFirstClassType()) {
868 if (isa<PointerType>(C->getType()))
Daniel Berlinaad15882007-09-16 21:45:02 +0000869 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
870 getNodeForConstantPointer(C)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000871 } else if (C->isNullValue()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000872 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
873 NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000874 return;
Chris Lattner8a446432005-03-29 06:09:07 +0000875 } else if (!isa<UndefValue>(C)) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000876 // If this is an array or struct, include constraints for each element.
877 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
878 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Daniel Berlinaad15882007-09-16 21:45:02 +0000879 AddGlobalInitializerConstraints(NodeIndex,
880 cast<Constant>(C->getOperand(i)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000881 }
882}
883
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000884/// AddConstraintsForNonInternalLinkage - If this function does not have
885/// internal linkage, realize that we can't trust anything passed into or
886/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000887void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000888 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000889 if (isa<PointerType>(I->getType()))
890 // If this is an argument of an externally accessible function, the
891 // incoming pointer might point to anything.
892 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +0000893 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000894}
895
Chris Lattner8a446432005-03-29 06:09:07 +0000896/// AddConstraintsForCall - If this is a call to a "known" function, add the
897/// constraints and return true. If this is a call to an unknown function,
898/// return false.
899bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
Reid Spencer5cbf9852007-01-30 20:08:39 +0000900 assert(F->isDeclaration() && "Not an external function!");
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000901
902 // These functions don't induce any points-to constraints.
Chris Lattner175b9632005-03-29 20:36:05 +0000903 if (F->getName() == "atoi" || F->getName() == "atof" ||
904 F->getName() == "atol" || F->getName() == "atoll" ||
905 F->getName() == "remove" || F->getName() == "unlink" ||
906 F->getName() == "rename" || F->getName() == "memcmp" ||
Chris Lattner01ac91e2006-03-03 01:21:36 +0000907 F->getName() == "llvm.memset.i32" ||
908 F->getName() == "llvm.memset.i64" ||
Chris Lattner175b9632005-03-29 20:36:05 +0000909 F->getName() == "strcmp" || F->getName() == "strncmp" ||
910 F->getName() == "execl" || F->getName() == "execlp" ||
911 F->getName() == "execle" || F->getName() == "execv" ||
912 F->getName() == "execvp" || F->getName() == "chmod" ||
913 F->getName() == "puts" || F->getName() == "write" ||
914 F->getName() == "open" || F->getName() == "create" ||
915 F->getName() == "truncate" || F->getName() == "chdir" ||
916 F->getName() == "mkdir" || F->getName() == "rmdir" ||
917 F->getName() == "read" || F->getName() == "pipe" ||
918 F->getName() == "wait" || F->getName() == "time" ||
919 F->getName() == "stat" || F->getName() == "fstat" ||
920 F->getName() == "lstat" || F->getName() == "strtod" ||
921 F->getName() == "strtof" || F->getName() == "strtold" ||
922 F->getName() == "fopen" || F->getName() == "fdopen" ||
923 F->getName() == "freopen" ||
924 F->getName() == "fflush" || F->getName() == "feof" ||
925 F->getName() == "fileno" || F->getName() == "clearerr" ||
926 F->getName() == "rewind" || F->getName() == "ftell" ||
927 F->getName() == "ferror" || F->getName() == "fgetc" ||
928 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
929 F->getName() == "fwrite" || F->getName() == "fread" ||
930 F->getName() == "fgets" || F->getName() == "ungetc" ||
931 F->getName() == "fputc" ||
932 F->getName() == "fputs" || F->getName() == "putc" ||
933 F->getName() == "ftell" || F->getName() == "rewind" ||
934 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
935 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
936 F->getName() == "printf" || F->getName() == "fprintf" ||
937 F->getName() == "sprintf" || F->getName() == "vprintf" ||
938 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
939 F->getName() == "scanf" || F->getName() == "fscanf" ||
940 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
941 F->getName() == "modf")
Chris Lattner8a446432005-03-29 06:09:07 +0000942 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000943
Chris Lattner175b9632005-03-29 20:36:05 +0000944
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000945 // These functions do induce points-to edges.
Daniel Berlinaad15882007-09-16 21:45:02 +0000946 if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" ||
Chris Lattner01ac91e2006-03-03 01:21:36 +0000947 F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" ||
Chris Lattner4de57fd2005-03-29 06:52:20 +0000948 F->getName() == "memmove") {
Daniel Berlinaad15882007-09-16 21:45:02 +0000949
950 // *Dest = *Src, which requires an artificial graph node to represent the
951 // constraint. It is broken up into *Dest = temp, temp = *Src
952 unsigned FirstArg = getNode(CS.getArgument(0));
953 unsigned SecondArg = getNode(CS.getArgument(1));
954 unsigned TempArg = GraphNodes.size();
955 GraphNodes.push_back(Node());
956 Constraints.push_back(Constraint(Constraint::Store,
957 FirstArg, TempArg));
958 Constraints.push_back(Constraint(Constraint::Load,
959 TempArg, SecondArg));
Daniel Berlina2ce2e32008-04-07 14:20:50 +0000960 // In addition, Dest = Src
961 Constraints.push_back(Constraint(Constraint::Copy,
962 FirstArg, SecondArg));
Chris Lattner8a446432005-03-29 06:09:07 +0000963 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000964 }
965
Chris Lattner77b50562005-03-29 20:04:24 +0000966 // Result = Arg0
967 if (F->getName() == "realloc" || F->getName() == "strchr" ||
968 F->getName() == "strrchr" || F->getName() == "strstr" ||
969 F->getName() == "strtok") {
Chris Lattner8a446432005-03-29 06:09:07 +0000970 Constraints.push_back(Constraint(Constraint::Copy,
971 getNode(CS.getInstruction()),
972 getNode(CS.getArgument(0))));
973 return true;
974 }
975
976 return false;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000977}
978
979
Chris Lattnere995a2a2004-05-23 21:00:47 +0000980
Daniel Berlinaad15882007-09-16 21:45:02 +0000981/// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
982/// If this is used by anything complex (i.e., the address escapes), return
983/// true.
984bool Andersens::AnalyzeUsesOfFunction(Value *V) {
985
986 if (!isa<PointerType>(V->getType())) return true;
987
988 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
989 if (dyn_cast<LoadInst>(*UI)) {
990 return false;
991 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
992 if (V == SI->getOperand(1)) {
993 return false;
994 } else if (SI->getOperand(1)) {
995 return true; // Storing the pointer
996 }
997 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
998 if (AnalyzeUsesOfFunction(GEP)) return true;
999 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
1000 // Make sure that this is just the function being called, not that it is
1001 // passing into the function.
1002 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1003 if (CI->getOperand(i) == V) return true;
1004 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
1005 // Make sure that this is just the function being called, not that it is
1006 // passing into the function.
1007 for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
1008 if (II->getOperand(i) == V) return true;
1009 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
1010 if (CE->getOpcode() == Instruction::GetElementPtr ||
1011 CE->getOpcode() == Instruction::BitCast) {
1012 if (AnalyzeUsesOfFunction(CE))
1013 return true;
1014 } else {
1015 return true;
1016 }
1017 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
1018 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1019 return true; // Allow comparison against null.
1020 } else if (dyn_cast<FreeInst>(*UI)) {
1021 return false;
1022 } else {
1023 return true;
1024 }
1025 return false;
1026}
1027
Chris Lattnere995a2a2004-05-23 21:00:47 +00001028/// CollectConstraints - This stage scans the program, adding a constraint to
1029/// the Constraints list for each instruction in the program that induces a
1030/// constraint, and setting up the initial points-to graph.
1031///
1032void Andersens::CollectConstraints(Module &M) {
1033 // First, the universal set points to itself.
Daniel Berlinaad15882007-09-16 21:45:02 +00001034 Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
1035 UniversalSet));
1036 Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
1037 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001038
1039 // Next, the null pointer points to the null object.
Daniel Berlinaad15882007-09-16 21:45:02 +00001040 Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001041
1042 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +00001043 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1044 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001045 // Associate the address of the global object as pointing to the memory for
1046 // the global: &G = <G memory>
Daniel Berlinaad15882007-09-16 21:45:02 +00001047 unsigned ObjectIndex = getObject(I);
1048 Node *Object = &GraphNodes[ObjectIndex];
Chris Lattnere995a2a2004-05-23 21:00:47 +00001049 Object->setValue(I);
Daniel Berlinaad15882007-09-16 21:45:02 +00001050 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
1051 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001052
1053 if (I->hasInitializer()) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001054 AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
Chris Lattnere995a2a2004-05-23 21:00:47 +00001055 } else {
1056 // If it doesn't have an initializer (i.e. it's defined in another
1057 // translation unit), it points to the universal set.
Daniel Berlinaad15882007-09-16 21:45:02 +00001058 Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
1059 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001060 }
1061 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001062
Chris Lattnere995a2a2004-05-23 21:00:47 +00001063 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001064 // Set up the return value node.
1065 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
Daniel Berlinaad15882007-09-16 21:45:02 +00001066 GraphNodes[getReturnNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001067 if (F->getFunctionType()->isVarArg())
Daniel Berlinaad15882007-09-16 21:45:02 +00001068 GraphNodes[getVarargNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001069
1070 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +00001071 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1072 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001073 if (isa<PointerType>(I->getType()))
1074 getNodeValue(*I);
1075
Daniel Berlinaad15882007-09-16 21:45:02 +00001076 // At some point we should just add constraints for the escaping functions
1077 // at solve time, but this slows down solving. For now, we simply mark
1078 // address taken functions as escaping and treat them as external.
1079 if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F))
Chris Lattnere995a2a2004-05-23 21:00:47 +00001080 AddConstraintsForNonInternalLinkage(F);
1081
Reid Spencer5cbf9852007-01-30 20:08:39 +00001082 if (!F->isDeclaration()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001083 // Scan the function body, creating a memory object for each heap/stack
1084 // allocation in the body of the function and a node to represent all
1085 // pointer values defined by instructions and used as operands.
1086 visit(F);
Chris Lattner8a446432005-03-29 06:09:07 +00001087 } else {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001088 // External functions that return pointers return the universal set.
1089 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
1090 Constraints.push_back(Constraint(Constraint::Copy,
1091 getReturnNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001092 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001093
1094 // Any pointers that are passed into the function have the universal set
1095 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +00001096 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1097 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001098 if (isa<PointerType>(I->getType())) {
1099 // Pointers passed into external functions could have anything stored
1100 // through them.
1101 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +00001102 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001103 // Memory objects passed into external function calls can have the
1104 // universal set point to them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001105#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001106 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001107 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001108 getNode(I)));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001109#else
1110 Constraints.push_back(Constraint(Constraint::Copy,
1111 getNode(I),
1112 UniversalSet));
1113#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001114 }
1115
1116 // If this is an external varargs function, it can also store pointers
1117 // into any pointers passed through the varargs section.
1118 if (F->getFunctionType()->isVarArg())
1119 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001120 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001121 }
1122 }
1123 NumConstraints += Constraints.size();
1124}
1125
1126
1127void Andersens::visitInstruction(Instruction &I) {
1128#ifdef NDEBUG
1129 return; // This function is just a big assert.
1130#endif
1131 if (isa<BinaryOperator>(I))
1132 return;
1133 // Most instructions don't have any effect on pointer values.
1134 switch (I.getOpcode()) {
1135 case Instruction::Br:
1136 case Instruction::Switch:
1137 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +00001138 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001139 case Instruction::Free:
Reid Spencere4d87aa2006-12-23 06:05:41 +00001140 case Instruction::ICmp:
1141 case Instruction::FCmp:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001142 return;
1143 default:
1144 // Is this something we aren't handling yet?
Bill Wendlinge8156192006-12-07 01:30:32 +00001145 cerr << "Unknown instruction: " << I;
Chris Lattnere995a2a2004-05-23 21:00:47 +00001146 abort();
1147 }
1148}
1149
1150void Andersens::visitAllocationInst(AllocationInst &AI) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001151 unsigned ObjectIndex = getObject(&AI);
1152 GraphNodes[ObjectIndex].setValue(&AI);
1153 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
1154 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001155}
1156
1157void Andersens::visitReturnInst(ReturnInst &RI) {
1158 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
1159 // return V --> <Copy/retval{F}/v>
1160 Constraints.push_back(Constraint(Constraint::Copy,
1161 getReturnNode(RI.getParent()->getParent()),
1162 getNode(RI.getOperand(0))));
1163}
1164
1165void Andersens::visitLoadInst(LoadInst &LI) {
1166 if (isa<PointerType>(LI.getType()))
1167 // P1 = load P2 --> <Load/P1/P2>
1168 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
1169 getNode(LI.getOperand(0))));
1170}
1171
1172void Andersens::visitStoreInst(StoreInst &SI) {
1173 if (isa<PointerType>(SI.getOperand(0)->getType()))
1174 // store P1, P2 --> <Store/P2/P1>
1175 Constraints.push_back(Constraint(Constraint::Store,
1176 getNode(SI.getOperand(1)),
1177 getNode(SI.getOperand(0))));
1178}
1179
1180void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1181 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
1182 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
1183 getNode(GEP.getOperand(0))));
1184}
1185
1186void Andersens::visitPHINode(PHINode &PN) {
1187 if (isa<PointerType>(PN.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001188 unsigned PNN = getNodeValue(PN);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001189 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1190 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
1191 Constraints.push_back(Constraint(Constraint::Copy, PNN,
1192 getNode(PN.getIncomingValue(i))));
1193 }
1194}
1195
1196void Andersens::visitCastInst(CastInst &CI) {
1197 Value *Op = CI.getOperand(0);
1198 if (isa<PointerType>(CI.getType())) {
1199 if (isa<PointerType>(Op->getType())) {
1200 // P1 = cast P2 --> <Copy/P1/P2>
1201 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
1202 getNode(CI.getOperand(0))));
1203 } else {
1204 // P1 = cast int --> <Copy/P1/Univ>
Chris Lattner175b9632005-03-29 20:36:05 +00001205#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001206 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
Daniel Berlinaad15882007-09-16 21:45:02 +00001207 UniversalSet));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001208#else
1209 getNodeValue(CI);
Chris Lattner175b9632005-03-29 20:36:05 +00001210#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001211 }
1212 } else if (isa<PointerType>(Op->getType())) {
1213 // int = cast P1 --> <Copy/Univ/P1>
Chris Lattner175b9632005-03-29 20:36:05 +00001214#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001215 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001216 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001217 getNode(CI.getOperand(0))));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001218#else
1219 getNode(CI.getOperand(0));
Chris Lattner175b9632005-03-29 20:36:05 +00001220#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001221 }
1222}
1223
1224void Andersens::visitSelectInst(SelectInst &SI) {
1225 if (isa<PointerType>(SI.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001226 unsigned SIN = getNodeValue(SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001227 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
1228 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1229 getNode(SI.getOperand(1))));
1230 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1231 getNode(SI.getOperand(2))));
1232 }
1233}
1234
Chris Lattnere995a2a2004-05-23 21:00:47 +00001235void Andersens::visitVAArg(VAArgInst &I) {
1236 assert(0 && "vaarg not handled yet!");
1237}
1238
1239/// AddConstraintsForCall - Add constraints for a call with actual arguments
1240/// specified by CS to the function specified by F. Note that the types of
1241/// arguments might not match up in the case where this is an indirect call and
1242/// the function pointer has been casted. If this is the case, do something
1243/// reasonable.
1244void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001245 Value *CallValue = CS.getCalledValue();
1246 bool IsDeref = F == NULL;
1247
1248 // If this is a call to an external function, try to handle it directly to get
1249 // some taste of context sensitivity.
1250 if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
Chris Lattner8a446432005-03-29 06:09:07 +00001251 return;
1252
Chris Lattnere995a2a2004-05-23 21:00:47 +00001253 if (isa<PointerType>(CS.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001254 unsigned CSN = getNode(CS.getInstruction());
1255 if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
1256 if (IsDeref)
1257 Constraints.push_back(Constraint(Constraint::Load, CSN,
1258 getNode(CallValue), CallReturnPos));
1259 else
1260 Constraints.push_back(Constraint(Constraint::Copy, CSN,
1261 getNode(CallValue) + CallReturnPos));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001262 } else {
1263 // If the function returns a non-pointer value, handle this just like we
1264 // treat a nonpointer cast to pointer.
1265 Constraints.push_back(Constraint(Constraint::Copy, CSN,
Daniel Berlinaad15882007-09-16 21:45:02 +00001266 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001267 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001268 } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001269#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001270 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001271 UniversalSet,
1272 getNode(CallValue) + CallReturnPos));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001273#else
1274 Constraints.push_back(Constraint(Constraint::Copy,
1275 getNode(CallValue) + CallReturnPos,
1276 UniversalSet));
1277#endif
1278
1279
Chris Lattnere995a2a2004-05-23 21:00:47 +00001280 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001281
Chris Lattnere995a2a2004-05-23 21:00:47 +00001282 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001283 bool external = !F || F->isDeclaration();
Daniel Berlinaad15882007-09-16 21:45:02 +00001284 if (F) {
1285 // Direct Call
1286 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001287 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
1288 {
1289#if !FULL_UNIVERSAL
1290 if (external && isa<PointerType>((*ArgI)->getType()))
1291 {
1292 // Add constraint that ArgI can now point to anything due to
1293 // escaping, as can everything it points to. The second portion of
1294 // this should be taken care of by universal = *universal
1295 Constraints.push_back(Constraint(Constraint::Copy,
1296 getNode(*ArgI),
1297 UniversalSet));
1298 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001299#endif
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001300 if (isa<PointerType>(AI->getType())) {
1301 if (isa<PointerType>((*ArgI)->getType())) {
1302 // Copy the actual argument into the formal argument.
1303 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1304 getNode(*ArgI)));
1305 } else {
1306 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1307 UniversalSet));
1308 }
1309 } else if (isa<PointerType>((*ArgI)->getType())) {
1310#if FULL_UNIVERSAL
1311 Constraints.push_back(Constraint(Constraint::Copy,
1312 UniversalSet,
1313 getNode(*ArgI)));
1314#else
1315 Constraints.push_back(Constraint(Constraint::Copy,
1316 getNode(*ArgI),
1317 UniversalSet));
1318#endif
1319 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001320 }
1321 } else {
1322 //Indirect Call
1323 unsigned ArgPos = CallFirstArgPos;
1324 for (; ArgI != ArgE; ++ArgI) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001325 if (isa<PointerType>((*ArgI)->getType())) {
1326 // Copy the actual argument into the formal argument.
Daniel Berlinaad15882007-09-16 21:45:02 +00001327 Constraints.push_back(Constraint(Constraint::Store,
1328 getNode(CallValue),
1329 getNode(*ArgI), ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001330 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001331 Constraints.push_back(Constraint(Constraint::Store,
1332 getNode (CallValue),
1333 UniversalSet, ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001334 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001335 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001336 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001337 // Copy all pointers passed through the varargs section to the varargs node.
Daniel Berlinaad15882007-09-16 21:45:02 +00001338 if (F && F->getFunctionType()->isVarArg())
Chris Lattnere995a2a2004-05-23 21:00:47 +00001339 for (; ArgI != ArgE; ++ArgI)
1340 if (isa<PointerType>((*ArgI)->getType()))
1341 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
1342 getNode(*ArgI)));
1343 // If more arguments are passed in than we track, just drop them on the floor.
1344}
1345
1346void Andersens::visitCallSite(CallSite CS) {
1347 if (isa<PointerType>(CS.getType()))
1348 getNodeValue(*CS.getInstruction());
1349
1350 if (Function *F = CS.getCalledFunction()) {
1351 AddConstraintsForCall(CS, F);
1352 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001353 AddConstraintsForCall(CS, NULL);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001354 }
1355}
1356
1357//===----------------------------------------------------------------------===//
1358// Constraint Solving Phase
1359//===----------------------------------------------------------------------===//
1360
1361/// intersects - Return true if the points-to set of this node intersects
1362/// with the points-to set of the specified node.
1363bool Andersens::Node::intersects(Node *N) const {
Daniel Berlinaad15882007-09-16 21:45:02 +00001364 return PointsTo->intersects(N->PointsTo);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001365}
1366
1367/// intersectsIgnoring - Return true if the points-to set of this node
1368/// intersects with the points-to set of the specified node on any nodes
1369/// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +00001370bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
1371 // TODO: If we are only going to call this with the same value for Ignoring,
1372 // we should move the special values out of the points-to bitmap.
1373 bool WeHadIt = PointsTo->test(Ignoring);
1374 bool NHadIt = N->PointsTo->test(Ignoring);
1375 bool Result = false;
1376 if (WeHadIt)
1377 PointsTo->reset(Ignoring);
1378 if (NHadIt)
1379 N->PointsTo->reset(Ignoring);
1380 Result = PointsTo->intersects(N->PointsTo);
1381 if (WeHadIt)
1382 PointsTo->set(Ignoring);
1383 if (NHadIt)
1384 N->PointsTo->set(Ignoring);
1385 return Result;
Chris Lattnere995a2a2004-05-23 21:00:47 +00001386}
1387
Daniel Berlind81ccc22007-09-24 19:45:49 +00001388void dumpToDOUT(SparseBitVector<> *bitmap) {
Bill Wendlingcab5f5d2007-09-24 22:43:48 +00001389#ifndef NDEBUG
Daniel Berlind81ccc22007-09-24 19:45:49 +00001390 dump(*bitmap, DOUT);
Bill Wendlingcab5f5d2007-09-24 22:43:48 +00001391#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +00001392}
1393
1394
1395/// Clump together address taken variables so that the points-to sets use up
1396/// less space and can be operated on faster.
1397
1398void Andersens::ClumpAddressTaken() {
1399#undef DEBUG_TYPE
1400#define DEBUG_TYPE "anders-aa-renumber"
1401 std::vector<unsigned> Translate;
1402 std::vector<Node> NewGraphNodes;
1403
1404 Translate.resize(GraphNodes.size());
1405 unsigned NewPos = 0;
1406
1407 for (unsigned i = 0; i < Constraints.size(); ++i) {
1408 Constraint &C = Constraints[i];
1409 if (C.Type == Constraint::AddressOf) {
1410 GraphNodes[C.Src].AddressTaken = true;
1411 }
1412 }
1413 for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
1414 unsigned Pos = NewPos++;
1415 Translate[i] = Pos;
1416 NewGraphNodes.push_back(GraphNodes[i]);
1417 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1418 }
1419
1420 // I believe this ends up being faster than making two vectors and splicing
1421 // them.
1422 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1423 if (GraphNodes[i].AddressTaken) {
1424 unsigned Pos = NewPos++;
1425 Translate[i] = Pos;
1426 NewGraphNodes.push_back(GraphNodes[i]);
1427 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1428 }
1429 }
1430
1431 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1432 if (!GraphNodes[i].AddressTaken) {
1433 unsigned Pos = NewPos++;
1434 Translate[i] = Pos;
1435 NewGraphNodes.push_back(GraphNodes[i]);
1436 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1437 }
1438 }
1439
1440 for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
1441 Iter != ValueNodes.end();
1442 ++Iter)
1443 Iter->second = Translate[Iter->second];
1444
1445 for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
1446 Iter != ObjectNodes.end();
1447 ++Iter)
1448 Iter->second = Translate[Iter->second];
1449
1450 for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
1451 Iter != ReturnNodes.end();
1452 ++Iter)
1453 Iter->second = Translate[Iter->second];
1454
1455 for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
1456 Iter != VarargNodes.end();
1457 ++Iter)
1458 Iter->second = Translate[Iter->second];
1459
1460 for (unsigned i = 0; i < Constraints.size(); ++i) {
1461 Constraint &C = Constraints[i];
1462 C.Src = Translate[C.Src];
1463 C.Dest = Translate[C.Dest];
1464 }
1465
1466 GraphNodes.swap(NewGraphNodes);
1467#undef DEBUG_TYPE
1468#define DEBUG_TYPE "anders-aa"
1469}
1470
1471/// The technique used here is described in "Exploiting Pointer and Location
1472/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1473/// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm,
1474/// and is equivalent to value numbering the collapsed constraint graph without
1475/// evaluating unions. This is used as a pre-pass to HU in order to resolve
1476/// first order pointer dereferences and speed up/reduce memory usage of HU.
1477/// Running both is equivalent to HRU without the iteration
1478/// HVN in more detail:
1479/// Imagine the set of constraints was simply straight line code with no loops
1480/// (we eliminate cycles, so there are no loops), such as:
1481/// E = &D
1482/// E = &C
1483/// E = F
1484/// F = G
1485/// G = F
1486/// Applying value numbering to this code tells us:
1487/// G == F == E
1488///
1489/// For HVN, this is as far as it goes. We assign new value numbers to every
1490/// "address node", and every "reference node".
1491/// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
1492/// cycle must have the same value number since the = operation is really
1493/// inclusion, not overwrite), and value number nodes we receive points-to sets
1494/// before we value our own node.
1495/// The advantage of HU over HVN is that HU considers the inclusion property, so
1496/// that if you have
1497/// E = &D
1498/// E = &C
1499/// E = F
1500/// F = G
1501/// F = &D
1502/// G = F
1503/// HU will determine that G == F == E. HVN will not, because it cannot prove
1504/// that the points to information ends up being the same because they all
1505/// receive &D from E anyway.
1506
1507void Andersens::HVN() {
1508 DOUT << "Beginning HVN\n";
1509 // Build a predecessor graph. This is like our constraint graph with the
1510 // edges going in the opposite direction, and there are edges for all the
1511 // constraints, instead of just copy constraints. We also build implicit
1512 // edges for constraints are implied but not explicit. I.E for the constraint
1513 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1514 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1515 Constraint &C = Constraints[i];
1516 if (C.Type == Constraint::AddressOf) {
1517 GraphNodes[C.Src].AddressTaken = true;
1518 GraphNodes[C.Src].Direct = false;
1519
1520 // Dest = &src edge
1521 unsigned AdrNode = C.Src + FirstAdrNode;
1522 if (!GraphNodes[C.Dest].PredEdges)
1523 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1524 GraphNodes[C.Dest].PredEdges->set(AdrNode);
1525
1526 // *Dest = src edge
1527 unsigned RefNode = C.Dest + FirstRefNode;
1528 if (!GraphNodes[RefNode].ImplicitPredEdges)
1529 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1530 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1531 } else if (C.Type == Constraint::Load) {
1532 if (C.Offset == 0) {
1533 // dest = *src edge
1534 if (!GraphNodes[C.Dest].PredEdges)
1535 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1536 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1537 } else {
1538 GraphNodes[C.Dest].Direct = false;
1539 }
1540 } else if (C.Type == Constraint::Store) {
1541 if (C.Offset == 0) {
1542 // *dest = src edge
1543 unsigned RefNode = C.Dest + FirstRefNode;
1544 if (!GraphNodes[RefNode].PredEdges)
1545 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1546 GraphNodes[RefNode].PredEdges->set(C.Src);
1547 }
1548 } else {
1549 // Dest = Src edge and *Dest = *Src edge
1550 if (!GraphNodes[C.Dest].PredEdges)
1551 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1552 GraphNodes[C.Dest].PredEdges->set(C.Src);
1553 unsigned RefNode = C.Dest + FirstRefNode;
1554 if (!GraphNodes[RefNode].ImplicitPredEdges)
1555 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1556 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1557 }
1558 }
1559 PEClass = 1;
1560 // Do SCC finding first to condense our predecessor graph
1561 DFSNumber = 0;
1562 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1563 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1564 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1565
1566 for (unsigned i = 0; i < FirstRefNode; ++i) {
1567 unsigned Node = VSSCCRep[i];
1568 if (!Node2Visited[Node])
1569 HVNValNum(Node);
1570 }
1571 for (BitVectorMap::iterator Iter = Set2PEClass.begin();
1572 Iter != Set2PEClass.end();
1573 ++Iter)
1574 delete Iter->first;
1575 Set2PEClass.clear();
1576 Node2DFS.clear();
1577 Node2Deleted.clear();
1578 Node2Visited.clear();
1579 DOUT << "Finished HVN\n";
1580
1581}
1582
1583/// This is the workhorse of HVN value numbering. We combine SCC finding at the
1584/// same time because it's easy.
1585void Andersens::HVNValNum(unsigned NodeIndex) {
1586 unsigned MyDFS = DFSNumber++;
1587 Node *N = &GraphNodes[NodeIndex];
1588 Node2Visited[NodeIndex] = true;
1589 Node2DFS[NodeIndex] = MyDFS;
1590
1591 // First process all our explicit edges
1592 if (N->PredEdges)
1593 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1594 Iter != N->PredEdges->end();
1595 ++Iter) {
1596 unsigned j = VSSCCRep[*Iter];
1597 if (!Node2Deleted[j]) {
1598 if (!Node2Visited[j])
1599 HVNValNum(j);
1600 if (Node2DFS[NodeIndex] > Node2DFS[j])
1601 Node2DFS[NodeIndex] = Node2DFS[j];
1602 }
1603 }
1604
1605 // Now process all the implicit edges
1606 if (N->ImplicitPredEdges)
1607 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1608 Iter != N->ImplicitPredEdges->end();
1609 ++Iter) {
1610 unsigned j = VSSCCRep[*Iter];
1611 if (!Node2Deleted[j]) {
1612 if (!Node2Visited[j])
1613 HVNValNum(j);
1614 if (Node2DFS[NodeIndex] > Node2DFS[j])
1615 Node2DFS[NodeIndex] = Node2DFS[j];
1616 }
1617 }
1618
1619 // See if we found any cycles
1620 if (MyDFS == Node2DFS[NodeIndex]) {
1621 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1622 unsigned CycleNodeIndex = SCCStack.top();
1623 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1624 VSSCCRep[CycleNodeIndex] = NodeIndex;
1625 // Unify the nodes
1626 N->Direct &= CycleNode->Direct;
1627
1628 if (CycleNode->PredEdges) {
1629 if (!N->PredEdges)
1630 N->PredEdges = new SparseBitVector<>;
1631 *(N->PredEdges) |= CycleNode->PredEdges;
1632 delete CycleNode->PredEdges;
1633 CycleNode->PredEdges = NULL;
1634 }
1635 if (CycleNode->ImplicitPredEdges) {
1636 if (!N->ImplicitPredEdges)
1637 N->ImplicitPredEdges = new SparseBitVector<>;
1638 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1639 delete CycleNode->ImplicitPredEdges;
1640 CycleNode->ImplicitPredEdges = NULL;
1641 }
1642
1643 SCCStack.pop();
1644 }
1645
1646 Node2Deleted[NodeIndex] = true;
1647
1648 if (!N->Direct) {
1649 GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
1650 return;
1651 }
1652
1653 // Collect labels of successor nodes
1654 bool AllSame = true;
1655 unsigned First = ~0;
1656 SparseBitVector<> *Labels = new SparseBitVector<>;
1657 bool Used = false;
1658
1659 if (N->PredEdges)
1660 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1661 Iter != N->PredEdges->end();
1662 ++Iter) {
1663 unsigned j = VSSCCRep[*Iter];
1664 unsigned Label = GraphNodes[j].PointerEquivLabel;
1665 // Ignore labels that are equal to us or non-pointers
1666 if (j == NodeIndex || Label == 0)
1667 continue;
1668 if (First == (unsigned)~0)
1669 First = Label;
1670 else if (First != Label)
1671 AllSame = false;
1672 Labels->set(Label);
1673 }
1674
1675 // We either have a non-pointer, a copy of an existing node, or a new node.
1676 // Assign the appropriate pointer equivalence label.
1677 if (Labels->empty()) {
1678 GraphNodes[NodeIndex].PointerEquivLabel = 0;
1679 } else if (AllSame) {
1680 GraphNodes[NodeIndex].PointerEquivLabel = First;
1681 } else {
1682 GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
1683 if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
1684 unsigned EquivClass = PEClass++;
1685 Set2PEClass[Labels] = EquivClass;
1686 GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
1687 Used = true;
1688 }
1689 }
1690 if (!Used)
1691 delete Labels;
1692 } else {
1693 SCCStack.push(NodeIndex);
1694 }
1695}
1696
1697/// The technique used here is described in "Exploiting Pointer and Location
1698/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1699/// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm,
1700/// and is equivalent to value numbering the collapsed constraint graph
1701/// including evaluating unions.
1702void Andersens::HU() {
1703 DOUT << "Beginning HU\n";
1704 // Build a predecessor graph. This is like our constraint graph with the
1705 // edges going in the opposite direction, and there are edges for all the
1706 // constraints, instead of just copy constraints. We also build implicit
1707 // edges for constraints are implied but not explicit. I.E for the constraint
1708 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1709 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1710 Constraint &C = Constraints[i];
1711 if (C.Type == Constraint::AddressOf) {
1712 GraphNodes[C.Src].AddressTaken = true;
1713 GraphNodes[C.Src].Direct = false;
1714
1715 GraphNodes[C.Dest].PointsTo->set(C.Src);
1716 // *Dest = src edge
1717 unsigned RefNode = C.Dest + FirstRefNode;
1718 if (!GraphNodes[RefNode].ImplicitPredEdges)
1719 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1720 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1721 GraphNodes[C.Src].PointedToBy->set(C.Dest);
1722 } else if (C.Type == Constraint::Load) {
1723 if (C.Offset == 0) {
1724 // dest = *src edge
1725 if (!GraphNodes[C.Dest].PredEdges)
1726 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1727 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1728 } else {
1729 GraphNodes[C.Dest].Direct = false;
1730 }
1731 } else if (C.Type == Constraint::Store) {
1732 if (C.Offset == 0) {
1733 // *dest = src edge
1734 unsigned RefNode = C.Dest + FirstRefNode;
1735 if (!GraphNodes[RefNode].PredEdges)
1736 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1737 GraphNodes[RefNode].PredEdges->set(C.Src);
1738 }
1739 } else {
1740 // Dest = Src edge and *Dest = *Src edg
1741 if (!GraphNodes[C.Dest].PredEdges)
1742 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1743 GraphNodes[C.Dest].PredEdges->set(C.Src);
1744 unsigned RefNode = C.Dest + FirstRefNode;
1745 if (!GraphNodes[RefNode].ImplicitPredEdges)
1746 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1747 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1748 }
1749 }
1750 PEClass = 1;
1751 // Do SCC finding first to condense our predecessor graph
1752 DFSNumber = 0;
1753 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1754 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1755 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1756
1757 for (unsigned i = 0; i < FirstRefNode; ++i) {
1758 if (FindNode(i) == i) {
1759 unsigned Node = VSSCCRep[i];
1760 if (!Node2Visited[Node])
1761 Condense(Node);
1762 }
1763 }
1764
1765 // Reset tables for actual labeling
1766 Node2DFS.clear();
1767 Node2Visited.clear();
1768 Node2Deleted.clear();
1769 // Pre-grow our densemap so that we don't get really bad behavior
1770 Set2PEClass.resize(GraphNodes.size());
1771
1772 // Visit the condensed graph and generate pointer equivalence labels.
1773 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1774 for (unsigned i = 0; i < FirstRefNode; ++i) {
1775 if (FindNode(i) == i) {
1776 unsigned Node = VSSCCRep[i];
1777 if (!Node2Visited[Node])
1778 HUValNum(Node);
1779 }
1780 }
1781 // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
1782 Set2PEClass.clear();
1783 DOUT << "Finished HU\n";
1784}
1785
1786
1787/// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
1788void Andersens::Condense(unsigned NodeIndex) {
1789 unsigned MyDFS = DFSNumber++;
1790 Node *N = &GraphNodes[NodeIndex];
1791 Node2Visited[NodeIndex] = true;
1792 Node2DFS[NodeIndex] = MyDFS;
1793
1794 // First process all our explicit edges
1795 if (N->PredEdges)
1796 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1797 Iter != N->PredEdges->end();
1798 ++Iter) {
1799 unsigned j = VSSCCRep[*Iter];
1800 if (!Node2Deleted[j]) {
1801 if (!Node2Visited[j])
1802 Condense(j);
1803 if (Node2DFS[NodeIndex] > Node2DFS[j])
1804 Node2DFS[NodeIndex] = Node2DFS[j];
1805 }
1806 }
1807
1808 // Now process all the implicit edges
1809 if (N->ImplicitPredEdges)
1810 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1811 Iter != N->ImplicitPredEdges->end();
1812 ++Iter) {
1813 unsigned j = VSSCCRep[*Iter];
1814 if (!Node2Deleted[j]) {
1815 if (!Node2Visited[j])
1816 Condense(j);
1817 if (Node2DFS[NodeIndex] > Node2DFS[j])
1818 Node2DFS[NodeIndex] = Node2DFS[j];
1819 }
1820 }
1821
1822 // See if we found any cycles
1823 if (MyDFS == Node2DFS[NodeIndex]) {
1824 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1825 unsigned CycleNodeIndex = SCCStack.top();
1826 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1827 VSSCCRep[CycleNodeIndex] = NodeIndex;
1828 // Unify the nodes
1829 N->Direct &= CycleNode->Direct;
1830
1831 *(N->PointsTo) |= CycleNode->PointsTo;
1832 delete CycleNode->PointsTo;
1833 CycleNode->PointsTo = NULL;
1834 if (CycleNode->PredEdges) {
1835 if (!N->PredEdges)
1836 N->PredEdges = new SparseBitVector<>;
1837 *(N->PredEdges) |= CycleNode->PredEdges;
1838 delete CycleNode->PredEdges;
1839 CycleNode->PredEdges = NULL;
1840 }
1841 if (CycleNode->ImplicitPredEdges) {
1842 if (!N->ImplicitPredEdges)
1843 N->ImplicitPredEdges = new SparseBitVector<>;
1844 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1845 delete CycleNode->ImplicitPredEdges;
1846 CycleNode->ImplicitPredEdges = NULL;
1847 }
1848 SCCStack.pop();
1849 }
1850
1851 Node2Deleted[NodeIndex] = true;
1852
1853 // Set up number of incoming edges for other nodes
1854 if (N->PredEdges)
1855 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1856 Iter != N->PredEdges->end();
1857 ++Iter)
1858 ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
1859 } else {
1860 SCCStack.push(NodeIndex);
1861 }
1862}
1863
1864void Andersens::HUValNum(unsigned NodeIndex) {
1865 Node *N = &GraphNodes[NodeIndex];
1866 Node2Visited[NodeIndex] = true;
1867
1868 // Eliminate dereferences of non-pointers for those non-pointers we have
1869 // already identified. These are ref nodes whose non-ref node:
1870 // 1. Has already been visited determined to point to nothing (and thus, a
1871 // dereference of it must point to nothing)
1872 // 2. Any direct node with no predecessor edges in our graph and with no
1873 // points-to set (since it can't point to anything either, being that it
1874 // receives no points-to sets and has none).
1875 if (NodeIndex >= FirstRefNode) {
1876 unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
1877 if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
1878 || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
1879 && GraphNodes[j].PointsTo->empty())){
1880 return;
1881 }
1882 }
1883 // Process all our explicit edges
1884 if (N->PredEdges)
1885 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1886 Iter != N->PredEdges->end();
1887 ++Iter) {
1888 unsigned j = VSSCCRep[*Iter];
1889 if (!Node2Visited[j])
1890 HUValNum(j);
1891
1892 // If this edge turned out to be the same as us, or got no pointer
1893 // equivalence label (and thus points to nothing) , just decrement our
1894 // incoming edges and continue.
1895 if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
1896 --GraphNodes[j].NumInEdges;
1897 continue;
1898 }
1899
1900 *(N->PointsTo) |= GraphNodes[j].PointsTo;
1901
1902 // If we didn't end up storing this in the hash, and we're done with all
1903 // the edges, we don't need the points-to set anymore.
1904 --GraphNodes[j].NumInEdges;
1905 if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
1906 delete GraphNodes[j].PointsTo;
1907 GraphNodes[j].PointsTo = NULL;
1908 }
1909 }
1910 // If this isn't a direct node, generate a fresh variable.
1911 if (!N->Direct) {
1912 N->PointsTo->set(FirstRefNode + NodeIndex);
1913 }
1914
1915 // See If we have something equivalent to us, if not, generate a new
1916 // equivalence class.
1917 if (N->PointsTo->empty()) {
1918 delete N->PointsTo;
1919 N->PointsTo = NULL;
1920 } else {
1921 if (N->Direct) {
1922 N->PointerEquivLabel = Set2PEClass[N->PointsTo];
1923 if (N->PointerEquivLabel == 0) {
1924 unsigned EquivClass = PEClass++;
1925 N->StoredInHash = true;
1926 Set2PEClass[N->PointsTo] = EquivClass;
1927 N->PointerEquivLabel = EquivClass;
1928 }
1929 } else {
1930 N->PointerEquivLabel = PEClass++;
1931 }
1932 }
1933}
1934
1935/// Rewrite our list of constraints so that pointer equivalent nodes are
1936/// replaced by their the pointer equivalence class representative.
1937void Andersens::RewriteConstraints() {
1938 std::vector<Constraint> NewConstraints;
Chris Lattnerbe207732007-09-30 00:47:20 +00001939 DenseSet<Constraint, ConstraintKeyInfo> Seen;
Daniel Berlind81ccc22007-09-24 19:45:49 +00001940
1941 PEClass2Node.clear();
1942 PENLEClass2Node.clear();
1943
1944 // We may have from 1 to Graphnodes + 1 equivalence classes.
1945 PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
1946 PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
1947
1948 // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
1949 // nodes, and rewriting constraints to use the representative nodes.
1950 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1951 Constraint &C = Constraints[i];
1952 unsigned RHSNode = FindNode(C.Src);
1953 unsigned LHSNode = FindNode(C.Dest);
1954 unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
1955 unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
1956
1957 // First we try to eliminate constraints for things we can prove don't point
1958 // to anything.
1959 if (LHSLabel == 0) {
1960 DEBUG(PrintNode(&GraphNodes[LHSNode]));
1961 DOUT << " is a non-pointer, ignoring constraint.\n";
1962 continue;
1963 }
1964 if (RHSLabel == 0) {
1965 DEBUG(PrintNode(&GraphNodes[RHSNode]));
1966 DOUT << " is a non-pointer, ignoring constraint.\n";
1967 continue;
1968 }
1969 // This constraint may be useless, and it may become useless as we translate
1970 // it.
1971 if (C.Src == C.Dest && C.Type == Constraint::Copy)
1972 continue;
Daniel Berlinc7a12ae2007-09-27 15:42:23 +00001973
Daniel Berlind81ccc22007-09-24 19:45:49 +00001974 C.Src = FindEquivalentNode(RHSNode, RHSLabel);
1975 C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00001976 if ((C.Src == C.Dest && C.Type == Constraint::Copy)
Chris Lattnerbe207732007-09-30 00:47:20 +00001977 || Seen.count(C))
Daniel Berlind81ccc22007-09-24 19:45:49 +00001978 continue;
1979
Chris Lattnerbe207732007-09-30 00:47:20 +00001980 Seen.insert(C);
Daniel Berlind81ccc22007-09-24 19:45:49 +00001981 NewConstraints.push_back(C);
1982 }
1983 Constraints.swap(NewConstraints);
1984 PEClass2Node.clear();
1985}
1986
1987/// See if we have a node that is pointer equivalent to the one being asked
1988/// about, and if so, unite them and return the equivalent node. Otherwise,
1989/// return the original node.
1990unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
1991 unsigned NodeLabel) {
1992 if (!GraphNodes[NodeIndex].AddressTaken) {
1993 if (PEClass2Node[NodeLabel] != -1) {
1994 // We found an existing node with the same pointer label, so unify them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001995 // We specifically request that Union-By-Rank not be used so that
1996 // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
1997 return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
Daniel Berlind81ccc22007-09-24 19:45:49 +00001998 } else {
1999 PEClass2Node[NodeLabel] = NodeIndex;
2000 PENLEClass2Node[NodeLabel] = NodeIndex;
2001 }
2002 } else if (PENLEClass2Node[NodeLabel] == -1) {
2003 PENLEClass2Node[NodeLabel] = NodeIndex;
2004 }
2005
2006 return NodeIndex;
2007}
2008
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002009void Andersens::PrintLabels() const {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002010 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2011 if (i < FirstRefNode) {
2012 PrintNode(&GraphNodes[i]);
2013 } else if (i < FirstAdrNode) {
2014 DOUT << "REF(";
2015 PrintNode(&GraphNodes[i-FirstRefNode]);
2016 DOUT <<")";
2017 } else {
2018 DOUT << "ADR(";
2019 PrintNode(&GraphNodes[i-FirstAdrNode]);
2020 DOUT <<")";
2021 }
2022
2023 DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel
2024 << " and SCC rep " << VSSCCRep[i]
2025 << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
2026 << "\n";
2027 }
2028}
2029
Daniel Berlinc864edb2008-03-05 19:31:47 +00002030/// The technique used here is described in "The Ant and the
2031/// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
2032/// Lines of Code. In Programming Language Design and Implementation
2033/// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
2034/// Detection) algorithm. It is called a hybrid because it performs an
2035/// offline analysis and uses its results during the solving (online)
2036/// phase. This is just the offline portion; the results of this
2037/// operation are stored in SDT and are later used in SolveContraints()
2038/// and UniteNodes().
2039void Andersens::HCD() {
2040 DOUT << "Starting HCD.\n";
2041 HCDSCCRep.resize(GraphNodes.size());
2042
2043 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2044 GraphNodes[i].Edges = new SparseBitVector<>;
2045 HCDSCCRep[i] = i;
2046 }
2047
2048 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2049 Constraint &C = Constraints[i];
2050 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2051 if (C.Type == Constraint::AddressOf) {
2052 continue;
2053 } else if (C.Type == Constraint::Load) {
2054 if( C.Offset == 0 )
2055 GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
2056 } else if (C.Type == Constraint::Store) {
2057 if( C.Offset == 0 )
2058 GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
2059 } else {
2060 GraphNodes[C.Dest].Edges->set(C.Src);
2061 }
2062 }
2063
2064 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2065 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2066 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
2067 SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);
2068
2069 DFSNumber = 0;
2070 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2071 unsigned Node = HCDSCCRep[i];
2072 if (!Node2Deleted[Node])
2073 Search(Node);
2074 }
2075
2076 for (unsigned i = 0; i < GraphNodes.size(); ++i)
2077 if (GraphNodes[i].Edges != NULL) {
2078 delete GraphNodes[i].Edges;
2079 GraphNodes[i].Edges = NULL;
2080 }
2081
2082 while( !SCCStack.empty() )
2083 SCCStack.pop();
2084
2085 Node2DFS.clear();
2086 Node2Visited.clear();
2087 Node2Deleted.clear();
2088 HCDSCCRep.clear();
2089 DOUT << "HCD complete.\n";
2090}
2091
2092// Component of HCD:
2093// Use Nuutila's variant of Tarjan's algorithm to detect
2094// Strongly-Connected Components (SCCs). For non-trivial SCCs
2095// containing ref nodes, insert the appropriate information in SDT.
2096void Andersens::Search(unsigned Node) {
2097 unsigned MyDFS = DFSNumber++;
2098
2099 Node2Visited[Node] = true;
2100 Node2DFS[Node] = MyDFS;
2101
2102 for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
2103 End = GraphNodes[Node].Edges->end();
2104 Iter != End;
2105 ++Iter) {
2106 unsigned J = HCDSCCRep[*Iter];
2107 assert(GraphNodes[J].isRep() && "Debug check; must be representative");
2108 if (!Node2Deleted[J]) {
2109 if (!Node2Visited[J])
2110 Search(J);
2111 if (Node2DFS[Node] > Node2DFS[J])
2112 Node2DFS[Node] = Node2DFS[J];
2113 }
2114 }
2115
2116 if( MyDFS != Node2DFS[Node] ) {
2117 SCCStack.push(Node);
2118 return;
2119 }
2120
2121 // This node is the root of a SCC, so process it.
2122 //
2123 // If the SCC is "non-trivial" (not a singleton) and contains a reference
2124 // node, we place this SCC into SDT. We unite the nodes in any case.
2125 if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
2126 SparseBitVector<> SCC;
2127
2128 SCC.set(Node);
2129
2130 bool Ref = (Node >= FirstRefNode);
2131
2132 Node2Deleted[Node] = true;
2133
2134 do {
2135 unsigned P = SCCStack.top(); SCCStack.pop();
2136 Ref |= (P >= FirstRefNode);
2137 SCC.set(P);
2138 HCDSCCRep[P] = Node;
2139 } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);
2140
2141 if (Ref) {
2142 unsigned Rep = SCC.find_first();
2143 assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");
2144
2145 SparseBitVector<>::iterator i = SCC.begin();
2146
2147 // Skip over the non-ref nodes
2148 while( *i < FirstRefNode )
2149 ++i;
2150
2151 while( i != SCC.end() )
2152 SDT[ (*i++) - FirstRefNode ] = Rep;
2153 }
2154 }
2155}
2156
2157
Daniel Berlind81ccc22007-09-24 19:45:49 +00002158/// Optimize the constraints by performing offline variable substitution and
2159/// other optimizations.
2160void Andersens::OptimizeConstraints() {
2161 DOUT << "Beginning constraint optimization\n";
2162
Daniel Berlinc864edb2008-03-05 19:31:47 +00002163 SDTActive = false;
2164
Daniel Berlind81ccc22007-09-24 19:45:49 +00002165 // Function related nodes need to stay in the same relative position and can't
2166 // be location equivalent.
2167 for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
2168 Iter != MaxK.end();
2169 ++Iter) {
2170 for (unsigned i = Iter->first;
2171 i != Iter->first + Iter->second;
2172 ++i) {
2173 GraphNodes[i].AddressTaken = true;
2174 GraphNodes[i].Direct = false;
2175 }
2176 }
2177
2178 ClumpAddressTaken();
2179 FirstRefNode = GraphNodes.size();
2180 FirstAdrNode = FirstRefNode + GraphNodes.size();
2181 GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
2182 Node(false));
2183 VSSCCRep.resize(GraphNodes.size());
2184 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2185 VSSCCRep[i] = i;
2186 }
2187 HVN();
2188 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2189 Node *N = &GraphNodes[i];
2190 delete N->PredEdges;
2191 N->PredEdges = NULL;
2192 delete N->ImplicitPredEdges;
2193 N->ImplicitPredEdges = NULL;
2194 }
2195#undef DEBUG_TYPE
2196#define DEBUG_TYPE "anders-aa-labels"
2197 DEBUG(PrintLabels());
2198#undef DEBUG_TYPE
2199#define DEBUG_TYPE "anders-aa"
2200 RewriteConstraints();
2201 // Delete the adr nodes.
2202 GraphNodes.resize(FirstRefNode * 2);
2203
2204 // Now perform HU
2205 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2206 Node *N = &GraphNodes[i];
2207 if (FindNode(i) == i) {
2208 N->PointsTo = new SparseBitVector<>;
2209 N->PointedToBy = new SparseBitVector<>;
2210 // Reset our labels
2211 }
2212 VSSCCRep[i] = i;
2213 N->PointerEquivLabel = 0;
2214 }
2215 HU();
2216#undef DEBUG_TYPE
2217#define DEBUG_TYPE "anders-aa-labels"
2218 DEBUG(PrintLabels());
2219#undef DEBUG_TYPE
2220#define DEBUG_TYPE "anders-aa"
2221 RewriteConstraints();
2222 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2223 if (FindNode(i) == i) {
2224 Node *N = &GraphNodes[i];
2225 delete N->PointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002226 N->PointsTo = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002227 delete N->PredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002228 N->PredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002229 delete N->ImplicitPredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002230 N->ImplicitPredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002231 delete N->PointedToBy;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002232 N->PointedToBy = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002233 }
2234 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002235
2236 // perform Hybrid Cycle Detection (HCD)
2237 HCD();
2238 SDTActive = true;
2239
2240 // No longer any need for the upper half of GraphNodes (for ref nodes).
Daniel Berlind81ccc22007-09-24 19:45:49 +00002241 GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
Daniel Berlinc864edb2008-03-05 19:31:47 +00002242
2243 // HCD complete.
2244
Daniel Berlind81ccc22007-09-24 19:45:49 +00002245 DOUT << "Finished constraint optimization\n";
2246 FirstRefNode = 0;
2247 FirstAdrNode = 0;
2248}
2249
2250/// Unite pointer but not location equivalent variables, now that the constraint
2251/// graph is built.
2252void Andersens::UnitePointerEquivalences() {
2253 DOUT << "Uniting remaining pointer equivalences\n";
2254 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002255 if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002256 unsigned Label = GraphNodes[i].PointerEquivLabel;
2257
2258 if (Label && PENLEClass2Node[Label] != -1)
2259 UniteNodes(i, PENLEClass2Node[Label]);
2260 }
2261 }
2262 DOUT << "Finished remaining pointer equivalences\n";
2263 PENLEClass2Node.clear();
2264}
2265
2266/// Create the constraint graph used for solving points-to analysis.
2267///
Daniel Berlinaad15882007-09-16 21:45:02 +00002268void Andersens::CreateConstraintGraph() {
2269 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2270 Constraint &C = Constraints[i];
2271 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2272 if (C.Type == Constraint::AddressOf)
2273 GraphNodes[C.Dest].PointsTo->set(C.Src);
2274 else if (C.Type == Constraint::Load)
2275 GraphNodes[C.Src].Constraints.push_back(C);
2276 else if (C.Type == Constraint::Store)
2277 GraphNodes[C.Dest].Constraints.push_back(C);
2278 else if (C.Offset != 0)
2279 GraphNodes[C.Src].Constraints.push_back(C);
2280 else
2281 GraphNodes[C.Src].Edges->set(C.Dest);
2282 }
2283}
2284
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002285// Perform DFS and cycle detection.
2286bool Andersens::QueryNode(unsigned Node) {
2287 assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
Daniel Berlinaad15882007-09-16 21:45:02 +00002288 unsigned OurDFS = ++DFSNumber;
2289 SparseBitVector<> ToErase;
2290 SparseBitVector<> NewEdges;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002291 Tarjan2DFS[Node] = OurDFS;
2292
2293 // Changed denotes a change from a recursive call that we will bubble up.
2294 // Merged is set if we actually merge a node ourselves.
2295 bool Changed = false, Merged = false;
Daniel Berlinaad15882007-09-16 21:45:02 +00002296
2297 for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
2298 bi != GraphNodes[Node].Edges->end();
2299 ++bi) {
2300 unsigned RepNode = FindNode(*bi);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002301 // If this edge points to a non-representative node but we are
2302 // already planning to add an edge to its representative, we have no
2303 // need for this edge anymore.
Daniel Berlinaad15882007-09-16 21:45:02 +00002304 if (RepNode != *bi && NewEdges.test(RepNode)){
2305 ToErase.set(*bi);
2306 continue;
2307 }
2308
2309 // Continue about our DFS.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002310 if (!Tarjan2Deleted[RepNode]){
2311 if (Tarjan2DFS[RepNode] == 0) {
2312 Changed |= QueryNode(RepNode);
2313 // May have been changed by QueryNode
Daniel Berlinaad15882007-09-16 21:45:02 +00002314 RepNode = FindNode(RepNode);
2315 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002316 if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
2317 Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
Daniel Berlinaad15882007-09-16 21:45:02 +00002318 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002319
2320 // We may have just discovered that this node is part of a cycle, in
2321 // which case we can also erase it.
Daniel Berlinaad15882007-09-16 21:45:02 +00002322 if (RepNode != *bi) {
2323 ToErase.set(*bi);
2324 NewEdges.set(RepNode);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002325 }
2326 }
2327
Daniel Berlinaad15882007-09-16 21:45:02 +00002328 GraphNodes[Node].Edges->intersectWithComplement(ToErase);
2329 GraphNodes[Node].Edges |= NewEdges;
2330
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002331 // If this node is a root of a non-trivial SCC, place it on our
2332 // worklist to be processed.
2333 if (OurDFS == Tarjan2DFS[Node]) {
2334 while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
2335 Node = UniteNodes(Node, SCCStack.top());
Daniel Berlinaad15882007-09-16 21:45:02 +00002336
2337 SCCStack.pop();
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002338 Merged = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002339 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002340 Tarjan2Deleted[Node] = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002341
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002342 if (Merged)
2343 NextWL->insert(&GraphNodes[Node]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002344 } else {
2345 SCCStack.push(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002346 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002347
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002348 return(Changed | Merged);
2349}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002350
2351/// SolveConstraints - This stage iteratively processes the constraints list
2352/// propagating constraints (adding edges to the Nodes in the points-to graph)
2353/// until a fixed point is reached.
2354///
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002355/// We use a variant of the technique called "Lazy Cycle Detection", which is
2356/// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
2357/// Analysis for Millions of Lines of Code. In Programming Language Design and
2358/// Implementation (PLDI), June 2007."
2359/// The paper describes performing cycle detection one node at a time, which can
2360/// be expensive if there are no cycles, but there are long chains of nodes that
2361/// it heuristically believes are cycles (because it will DFS from each node
2362/// without state from previous nodes).
2363/// Instead, we use the heuristic to build a worklist of nodes to check, then
2364/// cycle detect them all at the same time to do this more cheaply. This
2365/// catches cycles slightly later than the original technique did, but does it
2366/// make significantly cheaper.
2367
Chris Lattnere995a2a2004-05-23 21:00:47 +00002368void Andersens::SolveConstraints() {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002369 CurrWL = &w1;
2370 NextWL = &w2;
Daniel Berlinaad15882007-09-16 21:45:02 +00002371
Daniel Berlind81ccc22007-09-24 19:45:49 +00002372 OptimizeConstraints();
2373#undef DEBUG_TYPE
2374#define DEBUG_TYPE "anders-aa-constraints"
2375 DEBUG(PrintConstraints());
2376#undef DEBUG_TYPE
2377#define DEBUG_TYPE "anders-aa"
2378
Daniel Berlinaad15882007-09-16 21:45:02 +00002379 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2380 Node *N = &GraphNodes[i];
2381 N->PointsTo = new SparseBitVector<>;
2382 N->OldPointsTo = new SparseBitVector<>;
2383 N->Edges = new SparseBitVector<>;
2384 }
2385 CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +00002386 UnitePointerEquivalences();
2387 assert(SCCStack.empty() && "SCC Stack should be empty by now!");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002388 Node2DFS.clear();
2389 Node2Deleted.clear();
Daniel Berlinaad15882007-09-16 21:45:02 +00002390 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2391 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2392 DFSNumber = 0;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002393 DenseSet<Constraint, ConstraintKeyInfo> Seen;
2394 DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
2395
2396 // Order graph and add initial nodes to work list.
Daniel Berlinaad15882007-09-16 21:45:02 +00002397 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002398 Node *INode = &GraphNodes[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002399
2400 // Add to work list if it's a representative and can contribute to the
2401 // calculation right now.
2402 if (INode->isRep() && !INode->PointsTo->empty()
2403 && (!INode->Edges->empty() || !INode->Constraints.empty())) {
2404 INode->Stamp();
2405 CurrWL->insert(INode);
Daniel Berlinaad15882007-09-16 21:45:02 +00002406 }
2407 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002408 std::queue<unsigned int> TarjanWL;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002409#if !FULL_UNIVERSAL
2410 // "Rep and special variables" - in order for HCD to maintain conservative
2411 // results when !FULL_UNIVERSAL, we need to treat the special variables in
2412 // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
2413 // the analysis - it's ok to add edges from the special nodes, but never
2414 // *to* the special nodes.
2415 std::vector<unsigned int> RSV;
2416#endif
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002417 while( !CurrWL->empty() ) {
2418 DOUT << "Starting iteration #" << ++NumIters << "\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002419
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002420 Node* CurrNode;
2421 unsigned CurrNodeIndex;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002422
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002423 // Actual cycle checking code. We cycle check all of the lazy cycle
2424 // candidates from the last iteration in one go.
2425 if (!TarjanWL.empty()) {
2426 DFSNumber = 0;
2427
2428 Tarjan2DFS.clear();
2429 Tarjan2Deleted.clear();
2430 while (!TarjanWL.empty()) {
2431 unsigned int ToTarjan = TarjanWL.front();
2432 TarjanWL.pop();
2433 if (!Tarjan2Deleted[ToTarjan]
2434 && GraphNodes[ToTarjan].isRep()
2435 && Tarjan2DFS[ToTarjan] == 0)
2436 QueryNode(ToTarjan);
2437 }
2438 }
2439
2440 // Add to work list if it's a representative and can contribute to the
2441 // calculation right now.
2442 while( (CurrNode = CurrWL->pop()) != NULL ) {
2443 CurrNodeIndex = CurrNode - &GraphNodes[0];
2444 CurrNode->Stamp();
2445
2446
Daniel Berlinaad15882007-09-16 21:45:02 +00002447 // Figure out the changed points to bits
2448 SparseBitVector<> CurrPointsTo;
2449 CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
2450 CurrNode->OldPointsTo);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002451 if (CurrPointsTo.empty())
Daniel Berlinaad15882007-09-16 21:45:02 +00002452 continue;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002453
Daniel Berlinaad15882007-09-16 21:45:02 +00002454 *(CurrNode->OldPointsTo) |= CurrPointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002455
2456 // Check the offline-computed equivalencies from HCD.
2457 bool SCC = false;
2458 unsigned Rep;
2459
2460 if (SDT[CurrNodeIndex] >= 0) {
2461 SCC = true;
2462 Rep = FindNode(SDT[CurrNodeIndex]);
2463
2464#if !FULL_UNIVERSAL
2465 RSV.clear();
2466#endif
2467 for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
2468 bi != CurrPointsTo.end(); ++bi) {
2469 unsigned Node = FindNode(*bi);
2470#if !FULL_UNIVERSAL
2471 if (Node < NumberSpecialNodes) {
2472 RSV.push_back(Node);
2473 continue;
2474 }
2475#endif
2476 Rep = UniteNodes(Rep,Node);
2477 }
2478#if !FULL_UNIVERSAL
2479 RSV.push_back(Rep);
2480#endif
2481
2482 NextWL->insert(&GraphNodes[Rep]);
2483
2484 if ( ! CurrNode->isRep() )
2485 continue;
2486 }
2487
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002488 Seen.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002489
Daniel Berlinaad15882007-09-16 21:45:02 +00002490 /* Now process the constraints for this node. */
2491 for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
2492 li != CurrNode->Constraints.end(); ) {
2493 li->Src = FindNode(li->Src);
2494 li->Dest = FindNode(li->Dest);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002495
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002496 // Delete redundant constraints
2497 if( Seen.count(*li) ) {
2498 std::list<Constraint>::iterator lk = li; li++;
2499
2500 CurrNode->Constraints.erase(lk);
2501 ++NumErased;
2502 continue;
2503 }
2504 Seen.insert(*li);
2505
Daniel Berlinaad15882007-09-16 21:45:02 +00002506 // Src and Dest will be the vars we are going to process.
2507 // This may look a bit ugly, but what it does is allow us to process
Daniel Berlind81ccc22007-09-24 19:45:49 +00002508 // both store and load constraints with the same code.
Daniel Berlinaad15882007-09-16 21:45:02 +00002509 // Load constraints say that every member of our RHS solution has K
2510 // added to it, and that variable gets an edge to LHS. We also union
2511 // RHS+K's solution into the LHS solution.
2512 // Store constraints say that every member of our LHS solution has K
2513 // added to it, and that variable gets an edge from RHS. We also union
2514 // RHS's solution into the LHS+K solution.
2515 unsigned *Src;
2516 unsigned *Dest;
2517 unsigned K = li->Offset;
2518 unsigned CurrMember;
2519 if (li->Type == Constraint::Load) {
2520 Src = &CurrMember;
2521 Dest = &li->Dest;
2522 } else if (li->Type == Constraint::Store) {
2523 Src = &li->Src;
2524 Dest = &CurrMember;
2525 } else {
2526 // TODO Handle offseted copy constraint
2527 li++;
2528 continue;
2529 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002530
2531 // See if we can use Hybrid Cycle Detection (that is, check
Daniel Berlinaad15882007-09-16 21:45:02 +00002532 // if it was a statically detected offline equivalence that
Daniel Berlinc864edb2008-03-05 19:31:47 +00002533 // involves pointers; if so, remove the redundant constraints).
2534 if( SCC && K == 0 ) {
2535#if FULL_UNIVERSAL
2536 CurrMember = Rep;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002537
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002538 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2539 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2540 NextWL->insert(&GraphNodes[*Dest]);
Daniel Berlinc864edb2008-03-05 19:31:47 +00002541#else
2542 for (unsigned i=0; i < RSV.size(); ++i) {
2543 CurrMember = RSV[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002544
Daniel Berlinc864edb2008-03-05 19:31:47 +00002545 if (*Dest < NumberSpecialNodes)
2546 continue;
2547 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2548 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2549 NextWL->insert(&GraphNodes[*Dest]);
2550 }
2551#endif
2552 // since all future elements of the points-to set will be
2553 // equivalent to the current ones, the complex constraints
2554 // become redundant.
2555 //
2556 std::list<Constraint>::iterator lk = li; li++;
2557#if !FULL_UNIVERSAL
2558 // In this case, we can still erase the constraints when the
2559 // elements of the points-to sets are referenced by *Dest,
2560 // but not when they are referenced by *Src (i.e. for a Load
2561 // constraint). This is because if another special variable is
2562 // put into the points-to set later, we still need to add the
2563 // new edge from that special variable.
2564 if( lk->Type != Constraint::Load)
2565#endif
2566 GraphNodes[CurrNodeIndex].Constraints.erase(lk);
2567 } else {
2568 const SparseBitVector<> &Solution = CurrPointsTo;
2569
2570 for (SparseBitVector<>::iterator bi = Solution.begin();
2571 bi != Solution.end();
2572 ++bi) {
2573 CurrMember = *bi;
2574
2575 // Need to increment the member by K since that is where we are
2576 // supposed to copy to/from. Note that in positive weight cycles,
2577 // which occur in address taking of fields, K can go past
2578 // MaxK[CurrMember] elements, even though that is all it could point
2579 // to.
2580 if (K > 0 && K > MaxK[CurrMember])
2581 continue;
2582 else
2583 CurrMember = FindNode(CurrMember + K);
2584
2585 // Add an edge to the graph, so we can just do regular
2586 // bitmap ior next time. It may also let us notice a cycle.
2587#if !FULL_UNIVERSAL
2588 if (*Dest < NumberSpecialNodes)
2589 continue;
2590#endif
2591 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2592 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2593 NextWL->insert(&GraphNodes[*Dest]);
2594
2595 }
2596 li++;
Daniel Berlinaad15882007-09-16 21:45:02 +00002597 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002598 }
2599 SparseBitVector<> NewEdges;
2600 SparseBitVector<> ToErase;
2601
2602 // Now all we have left to do is propagate points-to info along the
2603 // edges, erasing the redundant edges.
Daniel Berlinaad15882007-09-16 21:45:02 +00002604 for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
2605 bi != CurrNode->Edges->end();
2606 ++bi) {
2607
2608 unsigned DestVar = *bi;
2609 unsigned Rep = FindNode(DestVar);
2610
Bill Wendlingf059deb2008-02-26 10:51:52 +00002611 // If we ended up with this node as our destination, or we've already
2612 // got an edge for the representative, delete the current edge.
2613 if (Rep == CurrNodeIndex ||
2614 (Rep != DestVar && NewEdges.test(Rep))) {
Daniel Berlinc864edb2008-03-05 19:31:47 +00002615 ToErase.set(DestVar);
2616 continue;
Bill Wendlingf059deb2008-02-26 10:51:52 +00002617 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002618
Bill Wendlingf059deb2008-02-26 10:51:52 +00002619 std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002620
2621 // This is where we do lazy cycle detection.
2622 // If this is a cycle candidate (equal points-to sets and this
2623 // particular edge has not been cycle-checked previously), add to the
2624 // list to check for cycles on the next iteration.
2625 if (!EdgesChecked.count(edge) &&
2626 *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
2627 EdgesChecked.insert(edge);
2628 TarjanWL.push(Rep);
Daniel Berlinaad15882007-09-16 21:45:02 +00002629 }
2630 // Union the points-to sets into the dest
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002631#if !FULL_UNIVERSAL
2632 if (Rep >= NumberSpecialNodes)
2633#endif
Daniel Berlinaad15882007-09-16 21:45:02 +00002634 if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002635 NextWL->insert(&GraphNodes[Rep]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002636 }
2637 // If this edge's destination was collapsed, rewrite the edge.
2638 if (Rep != DestVar) {
2639 ToErase.set(DestVar);
2640 NewEdges.set(Rep);
2641 }
2642 }
2643 CurrNode->Edges->intersectWithComplement(ToErase);
2644 CurrNode->Edges |= NewEdges;
2645 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002646
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002647 // Switch to other work list.
2648 WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
2649 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002650
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002651
Daniel Berlinaad15882007-09-16 21:45:02 +00002652 Node2DFS.clear();
2653 Node2Deleted.clear();
2654 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2655 Node *N = &GraphNodes[i];
2656 delete N->OldPointsTo;
2657 delete N->Edges;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002658 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002659 SDTActive = false;
2660 SDT.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002661}
2662
Daniel Berlinaad15882007-09-16 21:45:02 +00002663//===----------------------------------------------------------------------===//
2664// Union-Find
2665//===----------------------------------------------------------------------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002666
Daniel Berlinaad15882007-09-16 21:45:02 +00002667// Unite nodes First and Second, returning the one which is now the
2668// representative node. First and Second are indexes into GraphNodes
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002669unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
2670 bool UnionByRank) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002671 assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
2672 "Attempting to merge nodes that don't exist");
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002673
Daniel Berlinaad15882007-09-16 21:45:02 +00002674 Node *FirstNode = &GraphNodes[First];
2675 Node *SecondNode = &GraphNodes[Second];
2676
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002677 assert (SecondNode->isRep() && FirstNode->isRep() &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002678 "Trying to unite two non-representative nodes!");
2679 if (First == Second)
2680 return First;
2681
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002682 if (UnionByRank) {
2683 int RankFirst = (int) FirstNode ->NodeRep;
2684 int RankSecond = (int) SecondNode->NodeRep;
2685
2686 // Rank starts at -1 and gets decremented as it increases.
2687 // Translation: higher rank, lower NodeRep value, which is always negative.
2688 if (RankFirst > RankSecond) {
2689 unsigned t = First; First = Second; Second = t;
2690 Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
2691 } else if (RankFirst == RankSecond) {
2692 FirstNode->NodeRep = (unsigned) (RankFirst - 1);
2693 }
2694 }
2695
Daniel Berlinaad15882007-09-16 21:45:02 +00002696 SecondNode->NodeRep = First;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002697#if !FULL_UNIVERSAL
2698 if (First >= NumberSpecialNodes)
2699#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +00002700 if (FirstNode->PointsTo && SecondNode->PointsTo)
2701 FirstNode->PointsTo |= *(SecondNode->PointsTo);
2702 if (FirstNode->Edges && SecondNode->Edges)
2703 FirstNode->Edges |= *(SecondNode->Edges);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002704 if (!SecondNode->Constraints.empty())
Daniel Berlind81ccc22007-09-24 19:45:49 +00002705 FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
2706 SecondNode->Constraints);
2707 if (FirstNode->OldPointsTo) {
2708 delete FirstNode->OldPointsTo;
2709 FirstNode->OldPointsTo = new SparseBitVector<>;
2710 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002711
2712 // Destroy interesting parts of the merged-from node.
2713 delete SecondNode->OldPointsTo;
2714 delete SecondNode->Edges;
2715 delete SecondNode->PointsTo;
2716 SecondNode->Edges = NULL;
2717 SecondNode->PointsTo = NULL;
2718 SecondNode->OldPointsTo = NULL;
2719
2720 NumUnified++;
2721 DOUT << "Unified Node ";
2722 DEBUG(PrintNode(FirstNode));
2723 DOUT << " and Node ";
2724 DEBUG(PrintNode(SecondNode));
2725 DOUT << "\n";
2726
Daniel Berlinc864edb2008-03-05 19:31:47 +00002727 if (SDTActive)
2728 if (SDT[Second] >= 0)
2729 if (SDT[First] < 0)
2730 SDT[First] = SDT[Second];
2731 else {
2732 UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
2733 First = FindNode(First);
2734 }
2735
Daniel Berlinaad15882007-09-16 21:45:02 +00002736 return First;
2737}
2738
2739// Find the index into GraphNodes of the node representing Node, performing
2740// path compression along the way
2741unsigned Andersens::FindNode(unsigned NodeIndex) {
2742 assert (NodeIndex < GraphNodes.size()
2743 && "Attempting to find a node that can't exist");
2744 Node *N = &GraphNodes[NodeIndex];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002745 if (N->isRep())
Daniel Berlinaad15882007-09-16 21:45:02 +00002746 return NodeIndex;
2747 else
2748 return (N->NodeRep = FindNode(N->NodeRep));
2749}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002750
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002751// Find the index into GraphNodes of the node representing Node,
2752// don't perform path compression along the way (for Print)
2753unsigned Andersens::FindNode(unsigned NodeIndex) const {
2754 assert (NodeIndex < GraphNodes.size()
2755 && "Attempting to find a node that can't exist");
2756 const Node *N = &GraphNodes[NodeIndex];
2757 if (N->isRep())
2758 return NodeIndex;
2759 else
2760 return FindNode(N->NodeRep);
2761}
2762
Chris Lattnere995a2a2004-05-23 21:00:47 +00002763//===----------------------------------------------------------------------===//
2764// Debugging Output
2765//===----------------------------------------------------------------------===//
2766
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002767void Andersens::PrintNode(const Node *N) const {
Chris Lattnere995a2a2004-05-23 21:00:47 +00002768 if (N == &GraphNodes[UniversalSet]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002769 cerr << "<universal>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002770 return;
2771 } else if (N == &GraphNodes[NullPtr]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002772 cerr << "<nullptr>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002773 return;
2774 } else if (N == &GraphNodes[NullObject]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002775 cerr << "<null>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002776 return;
2777 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002778 if (!N->getValue()) {
2779 cerr << "artificial" << (intptr_t) N;
2780 return;
2781 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002782
2783 assert(N->getValue() != 0 && "Never set node label!");
2784 Value *V = N->getValue();
2785 if (Function *F = dyn_cast<Function>(V)) {
2786 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002787 N == &GraphNodes[getReturnNode(F)]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002788 cerr << F->getName() << ":retval";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002789 return;
Daniel Berlinaad15882007-09-16 21:45:02 +00002790 } else if (F->getFunctionType()->isVarArg() &&
2791 N == &GraphNodes[getVarargNode(F)]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002792 cerr << F->getName() << ":vararg";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002793 return;
2794 }
2795 }
2796
2797 if (Instruction *I = dyn_cast<Instruction>(V))
Bill Wendlinge8156192006-12-07 01:30:32 +00002798 cerr << I->getParent()->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002799 else if (Argument *Arg = dyn_cast<Argument>(V))
Bill Wendlinge8156192006-12-07 01:30:32 +00002800 cerr << Arg->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002801
2802 if (V->hasName())
Bill Wendlinge8156192006-12-07 01:30:32 +00002803 cerr << V->getName();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002804 else
Bill Wendlinge8156192006-12-07 01:30:32 +00002805 cerr << "(unnamed)";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002806
2807 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
Daniel Berlinaad15882007-09-16 21:45:02 +00002808 if (N == &GraphNodes[getObject(V)])
Bill Wendlinge8156192006-12-07 01:30:32 +00002809 cerr << "<mem>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002810}
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002811void Andersens::PrintConstraint(const Constraint &C) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002812 if (C.Type == Constraint::Store) {
2813 cerr << "*";
2814 if (C.Offset != 0)
2815 cerr << "(";
2816 }
2817 PrintNode(&GraphNodes[C.Dest]);
2818 if (C.Type == Constraint::Store && C.Offset != 0)
2819 cerr << " + " << C.Offset << ")";
2820 cerr << " = ";
2821 if (C.Type == Constraint::Load) {
2822 cerr << "*";
2823 if (C.Offset != 0)
2824 cerr << "(";
2825 }
2826 else if (C.Type == Constraint::AddressOf)
2827 cerr << "&";
2828 PrintNode(&GraphNodes[C.Src]);
2829 if (C.Offset != 0 && C.Type != Constraint::Store)
2830 cerr << " + " << C.Offset;
2831 if (C.Type == Constraint::Load && C.Offset != 0)
2832 cerr << ")";
2833 cerr << "\n";
2834}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002835
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002836void Andersens::PrintConstraints() const {
Bill Wendlinge8156192006-12-07 01:30:32 +00002837 cerr << "Constraints:\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002838
Daniel Berlind81ccc22007-09-24 19:45:49 +00002839 for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
2840 PrintConstraint(Constraints[i]);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002841}
2842
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002843void Andersens::PrintPointsToGraph() const {
Bill Wendlinge8156192006-12-07 01:30:32 +00002844 cerr << "Points-to graph:\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002845 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002846 const Node *N = &GraphNodes[i];
2847 if (FindNode(i) != i) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002848 PrintNode(N);
2849 cerr << "\t--> same as ";
2850 PrintNode(&GraphNodes[FindNode(i)]);
2851 cerr << "\n";
2852 } else {
2853 cerr << "[" << (N->PointsTo->count()) << "] ";
2854 PrintNode(N);
2855 cerr << "\t--> ";
2856
2857 bool first = true;
2858 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
2859 bi != N->PointsTo->end();
2860 ++bi) {
2861 if (!first)
2862 cerr << ", ";
2863 PrintNode(&GraphNodes[*bi]);
2864 first = false;
2865 }
2866 cerr << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002867 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002868 }
2869}